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Abstract. With availability of large-scale parallel platforms comprised of tens-of-thousands of processors and beyond, there is
significant impetus for the development of scalable parallel sparse linear system solvers and preconditioners. An integral part
of this design process is the development of performance models capable of predicting performance and providing accurate
cost models for the solvers and preconditioners. There has been some work in the past on characterizing performance of the
iterative solvers themselves. In this paper, we investigate the problem of characterizing performance and scalability of banded
preconditioners. Recent work has demonstrated the superior convergence properties and robustness of banded preconditioners,
compared to state-of-the-art ILU family of preconditioners as well as algebraic multigrid preconditioners. Furthermore, when
used in conjunction with efficient banded solvers, banded preconditioners are capable of significantly faster time-to-solution. Our
banded solver, the Truncated Spike algorithm is specifically designed for parallel performance and tolerance to deep memory
hierarchies. Its regular structure is also highly amenable to accurate performance characterization. Using these characteristics,
we derive the following results in this paper: (i) we develop parallel formulations of the Truncated Spike solver, (ii) we develop
a highly accurate pseudo-analytical parallel performance model for our solver, (iii) we show excellent predication capabilities of
our model – based on which we argue the high scalability of our solver. Our pseudo-analytical performance model is based on
analytical performance characterization of each phase of our solver. These analytical models are then parameterized using actual
runtime information on target platforms. An important consequence of our performance models is that they reveal underlying
performance bottlenecks in both serial and parallel formulations. All of our results are validated on diverse heterogeneous multi-
clusters – platforms for which performance prediction is particularly challenging. Finally, we provide predict the scalability of the
Spike algorithm using up to 65,536 cores with our model. In this paper we extend the results presented in the Ninth International
Symposium on Parallel and Distributed Computing.
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1. Introduction and motivation

With the availability of petascale computing plat-
forms, the long-held vision of highly scalable paral-
lel platforms is now being realized. While the chal-
lenges associated with the development of algorithms
and software that can utilize these platforms have been
articulated, the task of programming parallel ensem-
bles with up to 100K processing cores must now be
accomplished in the context of complex scientific and
engineering applications. This extreme task requires
intricate algorithm and software design, coupled with
accurate analytical modeling. Programs that “appear”
to scale to moderate configurations of 10K cores pro-
vide no guarantees of performance when the number
of cores is scaled by an order of magnitude. Empiri-

cal performance extrapolation is fraught with signifi-
cant errors and inaccuracies. In this context, accurate
prediction of scalability and performance extrapolation
before comprehensive implementation are essential
components of algorithm and software development.

With respect to kernel algorithms, sparse linear
system solvers are among the most ubiquitous and
computationally expensive kernels in scientific and en-
gineering applications. The irregular structure of these
computations, both in terms of memory accesses, as
well as associated FLOP counts, makes their perfor-
mance notoriously difficult to characterize with mean-
ingful accuracy. Furthermore, these kernels often yield
low processor utilization, in the range of 10–15% of
peak. While there exist several parallel libraries of
sparse linear system solvers with demonstrated scala-
bility to thousands of processors, there exist few results
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on analytical extrapolation of performance to petascale
platforms. The need for powerful preconditioning tech-
niques for iterative solvers poses fundamental consid-
erations for parallel scalability of the solvers.

Motivated by need for extreme scalability and the
deep memory hierarchies of current platforms, we
have developed the next generation of hybrid solvers –
the Spike family of algorithms [3,5,10,22,29–32]. The
Spike solver toolkit is specifically designed for banded
systems (potentially sparse within the band). By using
a block-diagonal/Spike decomposition, it is inherently
parallel. By trading off FLOPS for memory references,
it delivers much better processor performance as well.
This combination results in an overall parallel perfor-
mance improvement of up to an order of magnitude
compared to state-of-the-art solvers in ScaLapack [4].
Other alternatives are based on approximate inverse
preconditioners (e.g., see [15,18]).

Spike has also been extended to the solution of
general sparse linear systems (e.g., see [24,26,27,37]).
This method relies on the extraction of a narrow band
from a general sparse matrix, for use as a precondi-
tioner. In contrast to existing envelope reduction tech-
niques, our method brings the heavy elements in the
matrix closer to the diagonal – thus resulting in an ef-
fective preconditioner. The resulting banded precondi-
tioned system is solved using the parallel Spike algo-
rithm, wrapped inside an iterative solver. We show the
resulting iterative solver is significantly better in terms
of robustness and time-to-solution compared to a wide
range of Incomplete LU-factorization (ILU) precondi-
tioners and parallel algebraic multigrid preconditioners
for broad classes of matrices. In addition to precondi-
tioning, iterative schemes require sparse matrix–vector
multiplication and often inner products.

An important aspect of Spike is the use of dense ker-
nels within its banded solve. In addition to yielding ex-
cellent performance through use of optimized BLAS
kernels, this also render the algorithm amenable to ana-
lytical characterization. Specifically, the algorithm can
be broken down into a sequence of steps, the perfor-
mance of each can be concisely captured by associated
asymptotic expressions. The interleaved communica-
tion in parallel formulation of Spike can be parame-
terized for target architectures, potentially resulting in
accurate parallel performance models.

Based on these promising results, in this paper, we
aim to demonstrate the scalability characteristics of the
Spike solver toolkit. Specifically, we rely on an ana-
lytical characterization of various steps associated with
parallel Spike solve. Using this analytical characteri-
zation, we build a highly accurate performance model.

We show that the performance model yields excellent
predictive results across wide ranges of machine con-
figurations and problem parameters. We demonstrate
our results on complex heterogeneous architectures
(clusters with SMP nodes), where underlying network
latencies and bandwidths vary significantly depending
on machine configurations. Even for such challenging
platforms, with small training sets, we are able to build
highly accurate models of parallel performance.

Performance evaluation of parallel systems (a par-
allel system is defined as a combination of a parallel
platform and a program executing on the platform) is a
challenging task. The performance of serial programs
can be expressed in terms of the input size, with the
expectation that this quantification holds good on all
serial platforms. Similar quantification of parallel pro-
grams must include, in addition to problem size, the
number of processors, and various communication pa-
rameters of the underlying platform. What results is
a quantification of performance that is specific to the
machine, the problem instance, and in some cases, the
number of processors (particularly for heterogeneous
platforms). Changing any of these render the quantifi-
cation less accurate. Simply stated, the observed per-
formance of a program on a problem instance, using a
given number of processors, says little about the per-
formance on larger problem instances or numbers of
processors [17]. With these motivating challenges, re-
searchers have investigated both analytical and empir-
ical models for performance evaluation.

One of the major drawbacks of analytical modeling
is its reliance on asymptotes – namely that in many
cases, the results correspond to arbitrarily large prob-
lem instances or machine configurations. This, com-
bined with the difficulty in tight asymptotic analyses
has motivated research on empirical models for perfor-
mance analysis. The major drawback of an empirical
model is that it provides only limited ability to extrap-
olate performance to systems that cannot be sampled
(machines that do not exist). Furthermore, the highly
non-linear nature of performance profiles does not lent
itself easily to sampled interpolation. One of the major
applications of empirical modeling is in the develop-
ment of adaptive libraries [9,21,39].

Motivated by the drawbacks of analytical and empir-
ical approaches, researchers have attempted integrat-
ing the two approaches preserving associated benefits.
A pseudo-empirical (or semi-empirical) approach [6,7]
contains both analytical and empirical components.
The key difference between these efforts and our re-
sults here is the application and platform. Specifically,
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the irregular nature of our problem and the potentially
heterogeneous nature of our underlying platform pose
significant technical challenges. Unlike purely empir-
ical performance models that suffer from extrapola-
tion/sampling errors or purely analytical models that
only provide loose asymptotes on performance, our
model combines the benefits of both into a compre-
hensive pseudo-analytical model. In addition to be-
ing accurate, this model also clearly identifies perfor-
mance bottlenecks. For example, where asymptotes as-
sociated with memory access dominate computation,
we can infer that the computation is memory bound.
Similarly, where parameters associated with message
latencies dominate those associated with bandwidth
terms, we can conclude that message latencies domi-
nate performance; conversely that aggregating multiple
messages may result in further improvements in per-
formance. Such insights are critical for improving per-
formance on ultra-scale parallel systems.

We present the following specific results in this pa-
per: (i) development of a highly scalable parallel for-
mulation of the Truncated Spike solver, (ii) derivation
of asymptotic performance estimates of various steps
in Truncated Spike, (iii) parameterization of asymp-
totic performance models on target platforms, (iv) val-
idation of the accuracy of parameterized performance
models through extrapolation in machine configura-
tions as well as problem size and (v) using performance
models to argue superior scalability characteristics of
the parallel Spike solver to petascale architectures.

In the rest of the paper we provide the following:
(i) applications of banded preconditioners for the so-
lution of general sparse linear systems of equations
in Section 2; (ii) an overview of the Truncated Spike
solver and its various steps in Section 3 together with
results that illustrate its superior scalability and its abil-
ity to realize low relative residuals compared to banded
solvers in ScaLapack; (iii) performance modeling of
the Truncated Spike solver together with an analytical
characterization of its various steps in Section 4; and
(iv) detailed description of our methodology for train-
ing the analytical model in Section 5. Finally, we val-
idate our model and draw inferences from it in Sec-
tion 6, and conclude with a summary of our contribu-
tions and outline of ongoing research in Section 7.

2. Banded preconditioners and solvers

Our recent work has established preconditioners
based on banded approximations of matrices as ef-
fective high-performance alternatives to existing ILU-
based methods. Banded approximations to matrices are

derived by bringing heavy elements close to the diag-
onal using a weighted spectral ordering. Unlike clas-
sical envelope reduction algorithms, such as Reverse
Cuthill–McKee [8], weighted spectral reordering aims
at reordering the matrix so that the larger elements are
placed closer to the main diagonal. Weighted spectral
reordering is achieved by using the second smallest
eigenvalue and the corresponding eigenvector, namely
the Fiedler vector [11] of the Laplacian matrix corre-
sponding to the original matrix. After computing the
Fiedler vector sorting it (ascending or descending or-
der) produces the permutation that reorders the ma-
trix so that large elements are closer to the main di-
agonal and extracted central dominant band is a much
more effective preconditioner. MC73 algorithm [20]
in Harwell Subroutine Library is a multilevel scheme
for computing the Fiedler vector. We have recently de-
veloped a parallel algorithm [25] that achieves signifi-
cant speed improvement over MC73 for computing the
Fiedler vector. The new algorithm is based on the Trace
Minimization method [33,34].

We have demonstrated that: (i) these banded pre-
conditioners are capable of better convergence char-
acteristics and robustness than other iterative solvers;
and (ii) when used with an efficient (approximate)
banded solver, they result in considerably shorter time-
to-solution especially for problems with a larger con-
dition number. We summarize these results in Table 1
for variety of linear systems (Table 2) and refer readers
to [26] for a comprehensive description of the method.

Simulation of microelectromechanical systems
(MEMS) is one of the areas where solution of large lin-
ear systems of equations is required. PRISM project at
Purdue University provided us with a linear system of
11,333,520 unknowns. The coefficient matrix is sym-
metric but not positive definite. The relative residual
required by the outer non-linear solver is 10−2. We
used an Intel cluster that consists of X5560 processors
on each node and Infiniband interconnect between the
nodes.

Multigrid methods [12] has recently gained consid-
erable attention (see, for example, [2,14,38,41]). Geo-
metric multigrid methods are often problem specific
and is not applicable for irregular problems such as
problems that are using unstructured grids. Algebraic
multigrid (AMG) method has been developed as a gen-
eral solver that does not rely on the formulation of the
underlying problem. Multigrid methods typically con-
sists of the following steps: smoothing, restriction and
prolongation. They can be either used as a solver or as
a solver for the systems involving a preconditioner.

To establish the basis of our comparison we use
two well-known algebraic multigrid preconditioners,
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namely Trilinos-ML [13] and Hyper (BoomerAMG)
[19] with PETSc. We used a banded preconditioner
with bandwidth 11.

BoomerAMG is developed in Lawrence Livermore
National Laboratory. We use the default settings for

Table 1

Total solve time (in seconds) for banded preconditioner, ILUTI, ILU-
PACK preconditioned BiCGStab and PARDISO on a uniprocessor
(‖rk ‖∞/‖r0 ‖∞ � 10−5), F means the method has failed

Matrix Banded LU based PARDISO ILUPACK

ILUTI(*, 10−1)

1 0.87 0.14 1.28 0.5

2 0.41 0.19 1.48 0.23

3 457.2 193.5 91.6 F2

4 5.63 0.84 450.73 2.86

5 0.82 0.88 270.17 44.6

6 0.7 0.27 0.88 0.27

7 77.3 26.2 1358.7 330

8 205.4 459.1 7.6 F

9 0.33 F 0.78 F

10 1.95 15.8 3.14 2.07

11 F F 1.07 F

12 0.42 F 1.74 0.46

13 7.0 F 45.3 F

14 F F 449.1 F

15 0.27 0.59 1.28 F

16 2.0 239.0 27.2 F

17 0.21 0.11 0.95 1.44

BoomerAMG. In Fig. 1 we show the total solve time
for both Spike-based banded preconditioned BiCGStab
[40] and BoomerAMG preconditioned BiCGStab. Scal-
ability of BoomerAMG suffers from excessive time
spent in preconditioner factorization time after 64
cores.

Trilinos-ML, developed in Sandia National Labora-
tory, is another algebraic multigrid preconditioner. For
Trilinos-ML we experimented with various smoothers
for the coarsest level grid, namely Chebyshev, Jacobi
and Gauss–Seidel. Chebyshev smoother is the fastest
and the most scalable therefore we show the relative
improvement over Trilinos-ML preconditioner with
Chebyshev smoother in Fig. 2. Our banded precondi-
tioner is faster than Trilinos-ML if more than 32 cores
is used.

Our Spike-based banded preconditioner is general
and works with a broad class of iterative solvers.
The associated Spike solver is also shown to scale
well with increasing number of processors. When
used with a scalable solver, the solver-banded pre-
conditioner combination holds potential for signifi-
cant performance gains. In this paper, we compre-
hensively analyze the scalability of the Spike-based
preconditioner. We analytically quantify the cost of
each phase of the Spike preconditioner. We parame-
trize our analytical model and demonstrate its ability
to accurately predict performance on increasing num-
ber of processors. We then use this validated para-
metrized analytical model to show that our precon-

Table 2

Properties of test matrices, k is the semi-bandwidth of the preconditioner

Number Name Condest k Dimension (N ) Non-zeros (nnz) Type

1 FINAN512 9.8 × 101 50 74,752 596,992 Financial optimization

2 FEM_3D_THERMAL1 1.7 × 103 50 17,880 430,740 3D thermal FEM

3 RAJAT31 4.4 × 103 30 4,690,002 20,316,253 Circuit simulation

4 H2O 4.9 × 103 50 67,024 2,216,736 Quantum chemistry

5 APPU 1.0 × 104 50 14,000 1,853,104 NASA benchmark

6 BUNDLE1 1.3 × 104 50 10,581 770,811 3D computer vision

7 MIPS80S-1 3.3 × 104 30 986,552 7,630,280 Nonlinear optimization

8 RAJAT30 8.7 × 104 30 643,994 6,175,244 Circuit simulation

9 DW8192 1.5 × 107 182 8192 41,746 Dielectric waveguide

10 DC1 1.1 × 1010 50 116,835 766,396 Circuit simulation

11 MSC23052 1.4 × 1012 50 23,052 1,154,814 Structural mechanics

12 FP 8.2 × 1012 2 7548 834,222 Electromagnetics

13 PRE2 3.3 × 1013 30 659,033 5,959,282 Harmonic balance method

14 KKT_POWER 4.2 × 1013 30 2,063,494 14,612,663 Nonlinear optimization (KKT)

15 RAEFSKY4 1.5 × 1014 50 19,779 1,328,611 Structural mechanics

16 ASIC_680k 9.4 × 1019 3 682,862 3,871,773 Circuit simulation

17 2D_54019_HIGHK 8.1 × 1032 2 54,019 996,414 Device simulation
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Fig. 1. Total solve time for banded Spike and Hypre preconditioner.
(Colors are visible in the online version of the article; http://dx.doi.
org/10.3233/SPR-2011-0316.)

Fig. 2. Speed improvement of banded Spike preconditioner over
Trilinos-ML. (Colors are visible in the online version of the article;
http:// dx.doi.org/10.3233/SPR-2011-0316.)

ditioner is capable of excellent scalability. Note that
the overall scalability is also impacted by the outer
solver. For example, all Krylov subspace methods
(such as CG, BiCGStab, . . . , etc.) require computa-
tion of inner products(MPI_ALLREDUCE). Precon-
ditioned Richardson iterations and Chebyshev itera-
tions [28], on the other hand, does not require com-
putation of inner products. In Fig. 3, we illustrate the
impact of global reduction on overall scalability for a
medium size test problem.

3. The Spike linear system solver

The goals of this paper are two fold: to demon-
strate the parallel efficiency and scalability of the Spike
banded linear system solver/preconditioner, and to de-

Fig. 3. Comparison of sparse matrix vector multiplication, global re-
ductions (MPI_ALLREDUCE) and total time for solving a medium
size problem using preconditioned conjugate gradient (PCG). (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-2011-0316.)

velop a predictive performance model in support of ob-
served experimental scalability. We initiate this discus-
sion with a brief overview of the Spike solver algo-
rithm.

Consider a method for solving the linear system
AX = F , where A is a narrow banded N × N ma-
trix and F corresponds to an N × s matrix of multiple
right-hand side vectors. Please note that the Spike algo-
rithm admits matrices that are sparse within the band –
generalized banded form (see Fig. 4). Furthermore, the
method can be generalized to arbitrary sparse matrices,
using Spike as a solver for the preconditioner (a banded
approximation to the matrix) [26]. LU-factorization of
each diagonal block, Aj , can be computed via La-
pack [1] and Pardiso [35,36] for banded and gener-
alized banded case, respectively. For our description
here, we assume that the bandwidth b is much less
than the system order N . Consider a partitioning of the
banded linear system into a block tridiagonal form as
shown in Fig. 5, with p = 3 partitions. Each banded
diagonal block Aj (j = 1, . . . , p), is of order nj (or
roughly of order N/p), and the coupling matrices Bj

(j = 1, . . . , p − 1), and Cj (j = 2, . . . , p), are of order
m � nj .

In order to illustrate the basic Spike solver, we as-
sume that each Aj is non-singular. We obtain the fac-
torization A = DS, where D is a block-diagonal ma-
trix consisting only of the diagonal blocks Aj and the
Spike matrix S is shown in Fig. 5. For a given parti-
tion j, we call Vj (j = 1, . . . , p − 1) and Wj (j =
2, . . . , p), respectively, the right and the left spikes each
of order nj × m.
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Fig. 4. Decomposition where A = D ∗ S, S = D−1A, Bj , Cj ∈
R

m×m and A is generalized banded.

Fig. 5. Decomposition where A = D ∗ S, S = D−1A, Bj , Cj ∈
R

m×m and A is banded.

Solving the system AX = F thus reduces to the
following two steps:

(a) solve DG = F , (1)

(b) solve SX = G. (2)

The inherently parallel nature of the Spike algorithm
becomes apparent from these two steps. Unlike tradi-
tional LU-factorization schemes, the computationally
expensive step (step (a) above) is perfectly parallel in
Spike. Step (b) above corresponds to solving a system
SX = G, which can be reduced to a system of much
smaller size:

ŜX̂ = Ĝ. (3)

This reduced system consists of the m rows of S imme-
diately above and below each partition. It is then possi-
ble to extract from Eq. (2) the independent reduced lin-
ear system (3), which involves only the top and bottom
elements of Vj , Wj , i.e., V (b)

j , V (t)
j , W (b)

j and W (t)
j , as

well as the corresponding parts of X and G. This re-
duced system is block tridiagonal with (p − 1) diagonal
blocks, the kth of which is given by:

[
Im V (b)

k

W (t)
k+1 Im

]

and the corresponding off-diagonal blocks are given
by:

[
W (b)

k 0

0 0

]
and

[
0 0

0 V (t)
k+1

]
.

Once the solution X̂ of the reduced system (3) is ob-
tained, the rest of the solution X is retrieved with per-
fect parallelism.

The Spike algorithm, which builds on existing
dense matrix primitives (BLAS3), its own library of
banded matrix primitives, as well as existing Lapack
blocked matrix algorithms (see Fig. 6), consumes more
arithmetic operations than the classical banded LU-
factorization based methods (for example, those used
in Lapack, and it parallel counterpart Scalapack). How-
ever, Spike significantly reduces memory references
and interprocessor communications resulting in higher
performance than that realized by ScaLapack. For ex-
ample, Fig. 7 illustrates the superior scalability of
Spike compared to ScaLapack for a diagonally domi-
nant banded system on an Intel Clovertown. Note that
ScaLapack is actually slower than Lapack on two cores

Fig. 6. Hierarchy of computational modules in Spike algorithm.
(Colors are visible in the online version of the article; http://dx.doi.
org/10.3233/SPR-2011-0316.)

Fig. 7. Comparison of Spike algorithm to ScaLapack on two 4 core
Intel Clovertown processor. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/SPR-2011-0316.)



M. Manguoglu et al. / Performance models for the Spike banded linear system solver 19

Fig. 8. Off-chip data accessed (in bytes) for solving a banded system
with Spike and MKL-ScaLapack. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-2011-0316.)

Fig. 9. Solution time (in seconds) for a banded system with Spike
and MKL-ScaLapack. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/SPR-2011-0316.)

and matches the speed of Lapack on 4 cores. In con-
trast, Spike becomes twice as fast as Lapack on 2 cores
with reasonable speed improvements as the number of
cores increases. Further study [23] illustrates the rea-
son for the scalability of Spike by monitoring the off-
chip data accessed by ScaLapack (in Intel’s Math Ker-
nel Library (MKL)) and Spike during their respective
factorization and solve stages (see Fig. 8). Note that
Spike requires rougly half the size of data accessed off-
chip during the factorization stage. This results, in turn,
to Spike requiring less than half the time required by
ScaLapack to solve a banded system of order 0.6 mil-
lion with bandwidth 99, see Fig. 9. Since the Truncated
Spike algorithm is often used with an outer iterative
scheme (usually BiCGstab) – requiring very few outer
iterations – for non-diagonally dominant banded sys-
tems, we have compared both the relative residuals and
the time achieved by Spike in comparison to both La-
pack and ScaLapack on 2 cores of an Intel Clovertown
platform for solving 8 banded systems (sparse within

Fig. 10. Set of banded matrices from the University of Florida ma-
trix collection with large condition number, where ku and kl are up-
per and lower bandwidths, respectively, and N is system size. (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-2011-0316.)

Fig. 11. Final relative residuals after solving systems with Spike and
MKL-ScaLapack. (Colors are visible in the online version of the ar-
ticle; http://dx.doi.org/10.3233/SPR-2011-0316.)

the band) obtained from the University of Florida ma-
trix collection, see Fig. 10. These systems, however,
were treated as dense within the band. Figure 11 il-
lustrates the superior relative residuals obtained by our
hybrid Spike scheme compared to Lapack and ScaLa-
pack.

Recent work on generalizing Spike for solving
banded systems that are sparse within the band, as
well as its use as a solver for banded preconditioners
of iterative schemes for handling general sparse sys-
tems, has shown excellent performance characteristics,
e.g., see [26]. In particular, we have tested the use of
the Spike algorithm for solving narrow banded pre-
conditioners (bandwidth less than or equal to 51) ex-
tracted from 17 general sparse systems (orders ranging
from 7000 to 2 million, and the number of non-zero
elements ranging from 42,000 to 20 million) chosen
from the University of Florida collection to represent
12 different applications (see Table 2). In all success-
ful cases, BiCGstab + Spike as solver for banded pre-
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conditioners achieved higher parallel scalability than
BiCGstab + ILUPACK (approximate LU-factorization
preconditioners). Table 1 illustrates the robustness of
our scheme, two convergence failures compared to
eight failures for BiCGstab + ILUPACK.

Furthermore, Spike admits a variety of algorithms
in each of its solver steps – effectively presenting a
polyalgorithm capable of being tuned to diverse archi-
tecture for further performance optimization. In this
paper we deal with diagonally dominant linear sys-
tems. For such systems, since spikes decay as one
moves away from the main diagonal, a truncated varia-
tion of the algorithm is used. An extensive error analy-
sis for the Truncated Spike algorithm is given in [29].

4. Performance modeling and cost analysis of
Spike

We identify various steps in the Spike solver and an-
alytically quantify the number of operations in each
step. We also identify various communication steps in
parallel implementation and associate cost models with
these steps. We then train these models on target hard-
ware platforms to derive comprehensive performance
models. We validate these models by extrapolating per-
formance (well) beyond training sets and verifying it
experimentally. Finally, we use our validated perfor-
mance model to argue the excellent scaling character-
istics of the Spike solver.

To model computational steps, we count number
of memory references as well as number of opera-
tions (typically floating point operations). To model
communication steps, we model latency, link band-
width, as well as global congestion. It is important
to note that different terms may manifest themselves
to varying degrees on different hardware platforms.
Fitting these terms to experimental data automati-
cally detects these relationships, as we shall demon-
strate. Furthermore, fitting to experimental data also re-
veals whether specific steps are memory/computation
bound, latency/bandwidth bound, etc. These are impor-
tant features that directly guide algorithm development
and code optimization.

4.1. Cost analysis of the Truncated Spike steps

We identify the following steps in the solution of lin-
ear systems using the Spike algorithm. In each step, we
also give the Lapack routine that can be used to accom-
plish the operation. Building the Spike solver out of

optimized dense kernels significantly enhances perfor-
mance by optimizing for deep memory hierarchies. We
assume in our performance models that the upper and
lower bandwidths of the matrix A are identical, i.e.,
b = bl = bu. We assume that the dimension of matrix
A is N , and that the dimension of each partition, n, is
given by N/p. Recall that p is the number of partitions
used to cast A into its block tridiagonal form. We also
assume that the number of partitions is identical to the
number of processors used to solve the linear system.

(1) Compute the LU -factorization of blocks of A
(using call to subroutine DDBTRF)

• LjUj ← Aj for j = 1, 2, 3, 4.

This step involves nb2 computations and nb
memory references. We model this cost as
α1nb2 + β1nb.

(2) Compute spikes (using call to subroutine
DTBTRS):

• Solve for Vj : LjUjVj = [0 . . . 0 BT
j ]T for

j = 1, 2, 3.
• Solve for Wj : LjUjWj = [CT

j 0 . . . 0]T for
j = 2, 3, 4.

This step involves nb2 computations and nb
memory references. We model this cost as
α2nb2 + β2nb.

(3) Communicate spike tips W (t)
j (processor j sends

data to processor j − 1, for j = 2, 3, 4). W (t)
j

is the top b × b part of Wj . The data sent per
process is b2. Since each process communicates
this amount of data, we model this by the ex-
pression, α3b

2(p − 1) + β3b
2 + γ3. Here, the

first term models congestion on the network since
p − 1 processes communicate b2 data items at
the same time, the second term models link band-
width, and the third term models communication
latency. Note that the congestion term may dom-
inate on shared address space platforms.

(4) Factorize the reduced system (using call to sub-
routine DGETRF)

(
I V (b)

j

W (t)
j I

)
(4)

for j = 2, 3, 4. Since this corresponds to a dense
factorization of matrices of size b × b, we model
the cost using the expression α4b

3 + β4b
2. The

first term corresponds to the number of opera-
tions and the second step, the number of memory
references.
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Table 3

Truncated Spike algorithm cost model

Stage Cost

1. Factorize the diagonal blocks α1nb2 + β1nb

2. Compute spikes α2nb2 + β2nb

3. Communicate tips of spikes α3b2(p − 1) + β3b2 + γ3

4. Factorize the reduced system α4b3 + β4b2

5. Modify the right-hand side α5nb

6. Communicate tips of MRHS α6b(p − 1) + β6b + γ6

7. Solve the reduced system α7b2

8. Communicate solution of α8b(p − 1) + β8b + γ8

the reduced system

9. Retrieve the solution α9nb + β9n

(5) Modify the right-hand side by solving (using call
to subroutine DTBTRS): LjUjgj = fj (j = 1, 2,
3, 4). This step requires nb operations and nb
memory references. We model this by the expres-
sion α5nb.

(6) Communicate the modified right-hand side tips
g(t)
j (processor j sends data to processor j − 1 for

j = 2, 3, 4). The amount of data communicated
by each process is b. We model this communica-
tion cost by the expression α6b(p − 1) + β6b +
γ6. As before, the first term corresponds to con-
gestion, since p−1 processes communicate b data
words at the same time, the second term to link
bandwidth, and the third term to communication
latency.

(7) Solve the reduced system

(
I V (b)

j

W (t)
j+1 I

)(
x(b)

j

x(t)
j+1

)
=

(
g(b)
j

g(t)
j+1

)

(5)

for j = 2, 3, 4. This corresponds to triangular
solves of systems of order b. The number of op-
erations and memory references are both b2. The
cost is therefore modeled as α7b

2.
(8) Communicate the reduced system solution g(t)

j+1
(processor j sends data to processor j + 1 for
j = 1, 2, 3). As in Step 6, the amount of data
communicated by each process is b words, result-
ing in a total cost of α8b(p − 1) + β8b + γ8.

(9) Retrieve xj (j = 1, 2, 3, 4) (using call to subrou-

tine DGEMV) xj = fj − Vjx
(t)
j+1 − Wjx

(b)
j−1

(V4 = 0 and W1 = 0). This step involves nb op-
erations associated with the matrix–vector prod-
uct and n operations for vector addition. The
number of memory references in these two steps

is also given by nb and n, respectively. The asso-
ciated cost is modeled as α9nb + β9n.

The costs for various Spike steps are summarized in
Table 3. We note that Stages 3, 6 and 8 are communi-
cation stages, while Stages 1, 2, 4, 5, 7 and 9 are com-
putation only.

5. Parameterizing Spike performance models to
target platforms

We train our performance model for Spike on two
different target platforms – the Sun Constellation
Linux Cluster at the University of Texas (RANGER)
and an Intel Xeon Cluster (IXC). RANGER has 3936
nodes, with each node containing four 2.3 GHz AMD
Opteron Quad-Core 64-bit processors with a 1.0 GHz
Hypertransport system Bus. Each node in the system
has 32 GB of memory. Nodes are interconnected using
an Infiniband network. IXC has 256 nodes, with each
node containing two four-core Xeon E5462 (2.8 GHz,
12 MB L2 cache) processors with 16 GB RAM per
node and 1600 MHz front side bus. This cluster also
uses an Infiniband interconnect. We have also trained
our models to more monolithic machines such as the
IBM SP. However, the heterogeneous interconnects
of RANGER and IXC (on-chip interconnect, intran-
ode network, and Infiniband) provide more interest-
ing challenges from the point-of-view of performance
modeling.

With respect to linear systems, we use diagonal-
ly dominant systems of dimension 5,000,000 and
10,000,000 with 4.0 on the main diagonal and −0.01
on off diagonals with a right-hand side vector of all
ones. We use Goto blas [16] and PGI 7.1 compiler on
RANGER, while on IXC we use Intel Fortran Com-
piler 10.1 and Intel MKL 9.1. On RANGER, we train
the model using 16, 32, 64 processors (1, 2 and 4 nodes,
respectively) for bandwidths b = 15, 25 and 35 and
matrix dimension 5,000,000. On IXC, we train the
model using 16, 32 and 64 processors (4, 8 and 16
nodes, respectively) for bandwidths b = 10, 20 and
30 and matrix dimension 10,000,000. We select the
bandwidths and matrix dimensions in such a way that
the performance of the serial subroutine calls saturates
(note that at small matrix sizes, the performance of
the serial components of the algorithm may themselves
vary significantly). We time the individual stages of the
algorithm via wall clock time on each MPI process in-
dependently and use the maximum of all calls as the
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time consumed in that stage. Using a least squares ap-
proximation, we fit the models from Table 3 to deter-
mine various constants on each platform.

Those constants, namely αi, βi, γi for i = 1, . . . , 9,
for the RANGER and IXC platforms are given in Ta-
bles 4 and 5, respectively. If a parameter is smaller than
10−12, we replace it with ∼0 in the tables.

We note that Step 1 (factorization of diagonal
blocks) is primarily memory bound on the IXC, the
communication step in Stage 3 has little global con-
tention on both platforms, and the factorization in
Step 4 is primarily processor bound on both platforms.
We also note that Steps 3, 6 and 8 are communication
steps. Since both platforms have Infiniband intercon-
nects, we observe similar communication parameters.

6. Experimental validation of model

To validate the accuracy of the model, we predict
performance of the solver under two scenarios – scal-
ing number of processors for a fixed problem size and
scaling problem size with number of processors. In
each case, we enumerate predicted and observed run-

Table 4

Spike cost model parameters on RANGER

Stage αi βi γi

1 8.62 × 10−10 2.61 × 10−8 –

2 3.96 × 10−8 3.66 × 10−7 –

3 ∼0 1.21 × 10−6 9.48 × 10−4

4 ∼0 7.43 × 10−6 –

5 2.85 × 10−8 – –

6 4.31 × 10−9 4.10 × 10−7 3.59 × 10−5

7 1.19 × 10−7 – –

8 2.57 × 10−7 ∼0 6.42 × 10−4

9 8.86 × 10−8 9.51 × 10−9 –

Table 5

Spike cost model parameters on IXC

Stage αi βi γi

1 ∼0 3.07 × 10−8 –

2 2.70 × 10−8 1.46 × 10−7 –

3 ∼0 3.93 × 10−9 2.55 × 10−5

4 2.94 × 10−8 1.30 × 10−8 –

5 1.79 × 10−8 – –

6 3.16 × 10−9 1.19 × 10−7 2.39 × 10−5

7 1.69 × 10−7 – –

8 1.51 × 10−7 ∼0 1.24 × 10−4

9 1.05 × 10−8 2.55 × 10−9 –

time for the two platforms. As before, we generate sys-
tems of desired sizes.

On the RANGER platform, we generate two sys-
tems of 5M and 10M unknowns. We solve these sys-
tems on 128, 246, 512 and 1024 processors. Lack of
availability of larger chunks of the machine kept us
from scaling number of processors further. We note the
following two aspects of our validation setup that are
particularly noteworthy:

• Performance prediction is more difficult for
smaller problem sizes and correspondingly lower
efficiencies. For scalable systems such as ours,
larger problem instances generally lead to good
efficiencies, and correspondingly easier predic-
tion since speedup approaches linearity. For this
reason, our choice of problem sizes poses signifi-
cant challenges for performance prediction.

• Our training set is restricted to 64 processors, or
four nodes. The intra-node interconnect is signif-
icantly different from the Infiniband interconnect
across nodes. It is easy to see that our training set
is fairly limited considering the three levels of in-
terconnect that must be accurately modeled.

With this choice of machine and problem sizes, we
present the predicted and measured runtime along with
prediction error (all in seconds) on the RANGER plat-
form in Table 6. In most cases, the error in prediction
is less than 0.05 s. In some exceptional cases, the error
is as high as 0.2 s. In our opinion, this is excellent pre-
diction accuracy, considering the heterogeneous nature
of the interconnect, the limited training set and small
problem sizes (per processor). In fact, variations in se-
rial performance alone can account for much of this
prediction error.

On the IXC platform, we also use two different prob-
lem sizes. In this case, we use matrices of dimension
10M and 30M. The choice of larger problems is mo-
tivated by significant variations in serial runtime of
the Lapack subroutines used in various steps of Spike.
Since serial performance prediction of Lapack routines
is beyond the scope of this paper, we operate in a range
where serial performance is relatively stable. We ver-
ify our model on 128, 246 and 512 processors, enu-
merating measured and predicted parallel times, along
with prediction error (also in seconds) in Table 7. As
before, we note that in all cases, the prediction error is
less than 0.2 s.

Results from Tables 6 and 7 clearly demonstrate
excellent accuracy of our performance models. Us-
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Table 6

Model verification for RANGER (in seconds)

N b p Measured Model Error

5,000,000 35 128 2.78 2.64 0.13

5,000,000 25 128 1.55 1.49 0.06

5,000,000 15 128 0.70 0.66 0.04

5,000,000 35 256 1.49 1.33 0.16

5,000,000 25 256 0.79 0.75 0.04

5,000,000 15 256 0.35 0.33 0.02

5,000,000 35 512 0.67 0.67 0.00

5,000,000 25 512 0.38 0.38 0.00

5,000,000 15 512 0.20 0.17 0.03

5,000,000 35 1024 0.37 0.35 0.02

5,000,000 25 1024 0.21 0.20 0.01

5,000,000 15 1024 0.10 0.09 0.01

10,000,000 35 128 5.36 5.27 0.09

10,000,000 25 128 3.03 2.98 0.06

10,000,000 15 128 1.36 1.31 0.05

10,000,000 35 256 2.78 2.64 0.13

10,000,000 25 256 1.55 1.49 0.06

10,000,000 15 256 0.68 0.66 0.02

10,000,000 35 512 1.51 1.33 0.18

10,000,000 25 512 0.79 0.75 0.04

10,000,000 15 512 0.35 0.33 0.02

10,000,000 35 1024 0.69 0.68 0.01

10,000,000 25 1024 0.45 0.38 0.07

10,000,000 15 1024 0.19 0.17 0.02

ing the models, it is possible to perform more de-
tailed analytical studies of scalability. A simple obser-
vation is that the asymptotic times associated with the
various computation steps in Spike clearly dominate
the communication steps. For this reason, as problem
sizes are increased with increase in number of proces-
sors, we can maintain constant efficiencies (or linear
speedups) – thus validating the scalability of our Spike
solver. These conclusions are also supported by our ex-
perimental results in Tables 6 and 7.

Using our model we can predict the performance
and the scalability of the Spike algorithm for much
larger number of cores than we physically have or have
access to. We provide the prediction for the scalability
of Spike for solving a large system with 1,000,000,000
unknowns and semi-bandwidth 30 using upto 65,536
cores for RANGER and IXC platforms (see Fig. 12).
The Spike algorithm scaled well upto 65,536 cores on
both platforms.

Table 7

Model verification for IXC (in seconds)

N b p Measured Model Error

10,000,000 30 128 2.45 2.38 0.07

10,000,000 20 128 1.26 1.16 0.09

10,000,000 10 128 0.36 0.37 0.02

10,000,000 30 256 1.22 1.19 0.03

10,000,000 20 256 0.62 0.58 0.04

10,000,000 10 256 0.14 0.19 0.05

10,000,000 30 512 0.59 0.60 0.01

10,000,000 20 512 0.23 0.29 0.07

10,000,000 10 512 0.06 0.09 0.03

30,000,000 30 128 7.29 7.13 0.15

30,000,000 20 128 3.71 3.49 0.21

30,000,000 10 128 1.06 1.11 0.06

30,000,000 30 256 3.67 3.57 0.10

30,000,000 20 256 1.89 1.75 0.15

30,000,000 10 256 0.55 0.56 0.00

30,000,000 30 512 1.88 1.79 0.10

30,000,000 20 512 0.99 0.87 0.12

30,000,000 10 512 0.30 0.28 0.02

Fig. 12. Predicted total solve time for Spike. (Colors are visi-
ble in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0316.)

7. Concluding remarks

In this paper, we presented a highly efficient par-
allel linear solver, Spike, along with a comprehen-
sive performance model. We trained this model on
two different platforms and used the model to extrapo-
late performance to larger machine configurations and
problem instances. We verified the predicted perfor-
mance through experiments, and demonstrated that our
models are highly accurate. We also argue from this
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performance model that the computational costs as-
sociated with the algorithm asymptotically dominate
communication overheads, leading to highly scalable
parallel formulations. Coupled with the superior per-
formance of Spike even on small number of proces-
sors compared to state of the art banded solvers in
ScaLapack, we argue that Spike is capable of excel-
lent performance on large-scale parallel platforms. An
important consequence of our performance models is
that they reveal underlying performance bottlenecks in
both serial and parallel formulations. Specifically, they
identify computation steps that are memory or proces-
sor bound, and communication steps that are domi-
nated by latency, link bandwidth, or global contention.
These bottlenecks drive future algorithm design and
code optimization.

The performance models in this paper targeted one
instance of the Spike polyalgorithm. Other variants of
the Spike solver are more difficult to characterize than
the Truncated Spike algorithm considered here. Fur-
thermore, the use of Spike for solving general sparse
linear systems poses significant challenges for accurate
performance modeling. These are avenues for continu-
ing efforts on detailed performance characterization of
the Spike solver.
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