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Abstract. With the recent advent of new heterogeneous computing architectures there is still a lack of parallel problem solving
environments that can help scientists to use easily and efficiently hybrid supercomputers. Many scientific simulations that use
structured grids to solve partial differential equations in fact rely on stencil computations. Stencil computations have become
crucial in solving many challenging problems in various domains, e.g., engineering or physics. Although many parallel stencil
computing approaches have been proposed, in most cases they solve only particular problems. As a result, scientists are strug-
gling when it comes to the subject of implementing a new stencil-based simulation, especially on high performance hybrid super-
computers. In response to the presented need we extend our previous work on a parallel programming framework for CUDA —
CaCUDA that now supports OpenCL. We present CaKernel — a tool that simplifies the development of parallel scientific appli-
cations on hybrid systems. CaKernel is built on the highly scalable and portable Cactus framework. In the CaKernel framework,
Cactus manages the inter-process communication via MPI while CaKernel manages the code running on Graphics Processing
Units (GPUs) and interactions between them. As a non-trivial test case we have developed a 3D CFD code to demonstrate the
performance and scalability of the automatically generated code.
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1. Introduction applications for such systems is a very difficult task be-
cause the tools and libraries supporting these new ar-
For the last decade, many scientists all over the chitectures are either immature, or require a lot of ef-
world have been using homogeneous HPC comput- forts from programmers.
ers organized into grid environments for their compu- As of June 2011, three out of the top five fastest
tational experiments [14]. Even though performance computers in the world use GPUs to achieve their
has grown exponentially, costs (the most significant of peek-performance [22]. While there are only ten GPU
which is power) have grown prohibitively. However, machines on the current Top 500 list, this number is
a new class of massively parallel system has emerged likely to grow rapidly. In the United States, NCSA has

in regent years, n?mely hyb'rid systems' which combine recently deployed its 153 TF GPU cluster, and TACC
classic computational architectures with new types of is planning to build a Peta-scale hybrid machine in
hardware accelerators. These new architectures offer 2012. Tn Europe, many supercomputing centers have
a promise of increased performance at lower power. recently provided the access to their hybrid supercom-

g&?vﬁuﬁm;:ghﬁ;ecs Ocl(l)lltlllorlllstiire ifll:rtévi};sshs?ﬁi puters aiming at the hundreds of TF, e.g., CINECA,
puting PSNC, HLRS to mention a few.

for many users. However, developing or porting legacy Despite the growing trend to make GPUs available

“Corresponding author: M. Blazewicz, E-mail: marqs@man. for supercomputing, there is a paucity of tools to ex-
poznan.pl. ploit the new hardware. CaKernel addresses this issue
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by providing a high-level API for stencil computations.
In a nutshell, the tool extends Cactus Computational
Toolkit [7,9] by assigning one GPU to one MPI pro-
cess and providing functions to deal with storage on
GPU, synchronization among threads, communication
between CPU and GPU, and optimization on GPU.
Consequently, a scientist may use CaKernel to easily
write any kind of stencil code for hybrid supercomput-
ers. In order to achieve that, a developer has to create
only the core stencil computation kernel, the surround-
ing boiler plate code is generated automatically by so-
called kernel descriptor and code generator.

The rest of the paper is organized as follows. Sec-
tion 2 presents related works. The next section contains
a brief description of the GPU programming mod-
els. Section 4 describes the general idea of the Cactus
framework, whereas the next section presents our con-
tribution to the framework. In Section 6 an example ap-
plication of CaKernel is laid out. Tests and results are
presented in Section 7. The last section presents con-
clusions and possible extensions to CaKernel that we
would like to introduce in the near future.

2. Related works

Many scientific applications that use structured grids
to solve partial differential equations have kernels that
rely on stencil computations. A framework for opti-
mizing these kernels on parallelized multiple GPUs
hybrid architectures can, therefore, have a significant
impact on the advancement of science. P. Micikevi-
cius has proposed an optimal 3D finite difference dis-
cretization of the wave equation in a CUDA environ-
ment [15]. He also proposed a way to minimize the
latency of inter-node communication by overlapping
slow PCI-Express data exchange with computations.
He achieved this by dividing the computational do-
main along the slowest varying dimension. Thibault
and Senocak have followed the idea of the domain
division pattern and implemented a 3D CFD model
based on finite difference discretization of Navier—
Stokes equations parallelized on single computational
node with 4 GPUs [21]. Jacobsen et al. have extended
this model by adding the inter-node communication
via MPI [13]. They have followed Micikevicius and
overlapped the communication with computations as
well as GPU-host with host-host data exchange in hy-
brid clusters. Unfortunately their computational model
divides the domain along the slowest varying dimen-
sion only, which is not suitable for all numerical prob-

lems. For large computational domains, the size of the
ghost zones becomes noticeable in comparison to the
remainder of the domain, and communication costs be-
come heavier than computational costs. This manifests
in the non-linear scaling of their model. Therefore, it
is a non-trivial task to obtain an optimal performance
on the GPU, not to mention how to achieve a sustained
performance on multiple-GPUs available in hybrid su-
percomputers.

In order to simplify many development efforts, var-
ious programming frameworks and tools have been
developed and some of them were already discussed
in [20]. However, it is worth to mention a rela-
tively new framework dedicated for stencil compu-
tations called Mint [24]. It allows for annotation in
the source code so stencil loops can be executed on
a GPU. Another example framework is Ypnos [19]
that performs automatic parallelization during com-
pilation process. However, both frameworks target
currently only single-GPU systems. As an alterna-
tive approach addressing programmer productivity and
code scalability for hybrid supercomputers, we present
CaKernel, an extension to the highly scalable and well-
known Cactus framework. In general, CaKernel en-
ables programmers to design and develop highly ef-
ficient stencil-based kernels than can be accelerated
by many GPUs available in hybrid systems. CaKernel
uses automatic code generation, drawing upon a highly
optimized set of code templates, and frees scientific
application developers from the need to understand
the details of optimization in GPU programming. The
Cactus framework frees the developer from the need
to write basic infrastructure, e.g., parameter parsing,
checkpointing and MPI communication. Thus, such
combination means that developers of scientific appli-
cations can focus on their domain science rather than
on complex technical details behind hybrid supercom-
puting.

3. GPU programming models

Currently, a GPU, in comparison to a CPU of similar
area, can execute more floating-point operations and
transfer more data at the same time. This is because
GPUs reduce the local storage and control complex-
ity comparing to the CPU. These absences increase the
burden on the programmer to achieve the device’s per-
formance potential.

CPUs typically provide two main levels of local
memory, the large indexed address space called the
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main memory, and a much smaller set of registers.
The access to registers is guaranteed to be very fast,
whereas the access to the main memory is often ac-
celerated thanks to a hierarchy of caches. In con-
trast, GPUs have been optimized to deal with graph-
ics. Thus, GPUs consist of many small multiprocessors
that can run many threads that have a faster access to
global memory, but caches are not managed automat-
ically [18]. Therefore, application programmers using
GPUs have to carefully design data structures and al-
gorithms to use efficiently caches to obtain a very good
performance. A modern CPU core can sustain execu-
tion of four (or more) instructions per cycle from a
single thread. In contrast, current NVIDIA GPUs need
at the very least 64 threads per multiprocessor, which
is a rough equivalent of a CPU core, in order to fully
utilize its computational resources. Even more threads
are required to hide the latency of accessing the de-
vice’s global memory. This aggravates the local stor-
age problem and increases the impact of threads’ own
initialization code. A second impact of reduced control
complexity is the loss of performance when branches
within so-called warp do not share the same direction.
A warp is a group of consecutive threads, usually 32
for NVIDIA’s and 64 for AMD’s GPUs.

Programming of GPUs is typically done using
CUDA [18], OpenCL [16]. CUDA and OpenCL ab-
stract the GPU to a lightweight multi-threaded ma-
chine with an elaborate memory hierarchy. CUDA was
developed by NVIDIA for their own GPUs, starting
with the G80 series. OpenCL is similar in many sub-
stantial ways to CUDA, but was developed by the in-
dependent Khronos Group. CUDA and OpenCL ab-
stract important GPU memory hierarchy and execu-
tion organization features in similar ways. However,
OpenCL was written as an independent standard that
could be implemented for any vendor’s hardware. It is
currently used, for instance, as a main programming
language for AMD’s GPUs. In this paper, we present
a framework for stencil computations which can use
both CUDA and OpenCL.

3.1. CUDA

The main programming vehicle in CUDA is a C++--
based language, called CUDA C. It is used to code rou-
tines, so-called kernels, that are executed on a GPU
by a large collection of threads. Application CPU code
launches kernels and also initiates data transfers be-
tween the CPU and GPU and between GPUs, if more
than one is present. Kernel launches can specify de-

pendencies forcing one kernel to wait for the com-
pletion of another, or indicating which two can exe-
cute concurrently. Dependencies can also be specified
between kernels and memory transfers. Additionally,
NVIDIA GPUDirect technology allows to transfer data
directly between GPUs. The Unified Virtual Address-
ing, in turn, facilitates the memory access allowing for
higher programmer productivity.

CUDA C provides the programmer with great free-
dom. But unless certain rules are followed, program
speed on a typical GPU will be just a small fraction of
its potential. These rules, based on the microarchitec-
ture of the GPU that will run the code, restrict mem-
ory access ordering, and encourage the use of so-called
shared memory to avoid multiple global accesses, suf-
ficient thread parallelism for latency hiding, and code
structuring to achieve warp-level branch convergence.
For details see [18].

3.2. OpenCL

OpenCL (Open Computing Language) is an open
standard defined by Khronos Group [16]. In contrast
to the CUDA library supported mainly by NVIDIA
it is a vendor-independent framework that enables
the programmer to develop software that can be exe-
cuted on heterogeneous platforms consisting of CPUs,
GPUs and potentially other processing units like FP-
GAs. Despite the differences in philosophy and design,
OpenCL is quite similar to CUDA. Kernels written
in C99 standard are compiled in the program runtime
and then can be executed in many threads on a single
or multiple devices. OpenCL supports both task-based
and data-based parallelism. It also defines an API to
query and control devices of different architectures and
from different manufacturers. The framework targets
many architectures and as such is quite generic. How-
ever, in order to make a given algorithm run efficiently,
the developer needs to take care of hardware specific
parameters, likewise in CUDA [17].

4. Cactus computational framework

The Cactus computational framework [1,7,10] is an
open source, modular, highly portable, programming
environment for collaborative research using high per-
formance computing. Cactus is distributed with a
generic parallel computational toolkit providing paral-
lelization, domain decomposition, coordinates, bound-
ary conditions, interpolators, reduction operators and
efficient I/O in different data formats.
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4.1. Cactus architecture

A Cactus application consists of a central piece
called the “flesh” and a collection of modules called
“thorns” (see Fig. 1). The flesh provides a framework
for defining and parsing parameters, for scheduling
work, interoperation between C, C++-, F77 and F90,
as well as interaction with other thorns. A “driver
thorn” is required for any Cactus application. It is re-
sponsible for a number of important runtime tasks in-
cluding memory management, synchronization of grid
functions and distribution of data. Thorns are described
using a domain specific language (DSL) called the
“Cactus Configuration Language” (CCL) [2]. The in-
formation in the CCL files includes the name of the
implementation, the declaration of functions and pa-
rameters, the schedule of the routines, whether they re-
quire synchronization after execution, etc. Details can
be found below in Section 4.2.

Cactus flesh is distributed with the Cactus computa-
tional toolkit (CCTK) which includes several arrange-
ments of thorns (i.e., groups of thorns with related
functionality) providing basic utilities. New function-

Cactus Thom

Configuration Files {CCL)
Interface, Parameters,

Source Code
Fortran/C/C ++, include files,

Schedule, Configuration Makefie
Documentation
Verification & Validation Thom guide, Examples,
Metadata
Computational
Application Toolkit

Ny

A AA

Toolkit A Computational A
AAA] |A ABAA
e

CCTK (...) Flesh CST

Fig. 1. The left diagram shows the internal structure of a typical Cac-
tus thorn while the right one gives an overview of a typical Cactus
application. In the right diagram, Cactus Specification Tool (CST)
provides bindings for the flesh and all Cactus thorns. The Cactus
Computational Toolkit (CCTK), which is distributed with the flesh,
provides a range of computational capabilities, such as parallel I/O,
data distribution, or checkpointing via the flesh. (Colors are visi-
ble in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0333.)

ality can be added to Cactus by simply extending ex-
isting thorns or creating new ones. The user may im-
plement their own routines solving a given problem by
the same means.

4.2. Cactus configuration language

Cactus requires three files in CCL, interface.ccl,
schedule.ccl and param.ccl, from each contributing
component to create global data structures, setting run-
time parameters, and binding all the C and Fortran sub-
routines interacting through the schedule tree.

e interface.ccl defines the thorn interface and inher-
itance along with variables and aliased functions.
Thorns typically do not define relationships with
other specific thorns, nor do they communicate
directly with other thorns. Instead they define re-
lationships with an interface, which may be pro-
vided by one of multiple thorns. This distinction
exists so that thorns providing the same interface
may be independently swapped without affecting
each other. Interfaces in Cactus are fairly similar
to abstract classes in Java or virtual base classes
in C++.

e schedule.ccl: defines a schedule tree to provide
a static workflow which orchestrates a computa-
tion in Cactus. Besides controlling when and how
scheduled functions provided by thorns should be
invoked by the Cactus scheduler, a schedule tree
also controls when storage for so-called grid func-
tion should be allocated and freed. Application
developers are responsible for scheduling their
routines at an appropriate place in the tree (e.g.,
INIT, PRESTEP, EVOL, POSTSTEP, etc.). Cac-
tus ensures that the routines are called at the cor-
rect time.

e param.ccl: defines parameters which can be spec-
ified in a Cactus parameter file and initialized at
the start of a Cactus run. Cactus provides tools to
parse the parameter file and check the range.

Besides the three required files, there is one more op-
tional file,

e configuration.ccl: defines build—time dependen-
cies in terms of provided and required capabili-
ties, e.g., interfaces to Cactus—external libraries.

The CCL files will be parsed by the flesh during
the compilation stage. After parsing the CCL files, the
flesh enables component binding by generating source
code to instantiate the different required thorn vari-
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ables, parameters and functions, as well as checking re-
quired thorn dependencies. When Cactus starts up the
flesh parses a user provided parameter file which de-
fines which thorns are required and provides key/value
pairs of parameter assignments. The flesh then acti-
vates only the required thorns, sets the given parame-
ters using default values for parameters which are not
specified in the parameter file, and creates the sched-
ule of which functions provided by the activated thorns
to run at which time. The Cactus flesh provides the
main iteration loop for simulations (although this can
be overloaded by any thorn). However, the flesh leaves
memory allocation and parallelization to a driver thorn.

5. CaKernel programming framework

We extended the CaCUDA kernel abstraction pre-
sented in the paper by Blazewicz et al. [4,20] to imple-
ment a programming abstraction in Cactus for hetero-
geneous architectures with OpenCL. This abstraction
enables automatic code generation from a set of highly
optimized OpenCL and CUDA templates to simplify
the development of scientific applications.

This kernel abstraction makes it easy to write and
execute computational kernels, but also makes it possi-
ble to optimize the kernel without changing the kernel
code itself. The whole optimization process is handled
by swapping the templates or adjusting the kernel pa-
rameters. In the Kernel Abstraction, there are three ma-
jor components: Kernel Descriptor, Computation Tem-
plates and Code Generator.

5.1. Kernel descriptor

The CaKernel kernel descriptor is similar in both
format and function to other Cactus Configuration
Language (CCL) files (see Section 4.2). The CaKernel
kernel descriptor (cakernel.ccl) is used to declare the
variables and parameters that will be needed in the
computations. The kernel descriptor is defined by:

o CCTK_KERNEL <name>: This keyword begins
the kernel descriptor definition. It is followed
by the kernel name, then by additional parame-
ters of the form <key>=<value>. These parame-
ters describe performance characteristics and grid
point dependencies. In the current implementa-
tion these are:

— TYPE: States on the required neighborhood of
each computational grid point. 3DBLOCK de-
clares that grid points in all directions are re-
quired for proper computations. 3DSTENCIL
defines that only grid points in cardinal direc-
tions are required. The last value, BOUNDARY,
is optimized for physical boundary update.

— STENCIL: This parameters defines the number
of additional grid points required for computa-
tions in each direction.

— TILE: This parameter defines the dimensions of
the kernel computational block. In future ver-
sions of the framework, it will rather be used as
an optimization hint than setting the parameter
itself.

e CCTK_KERNEL_VARIABLE: This keyword be-
gins declaration of variables required in current
kernel definitions. The pointers to the variables
will be automatically provided to the kernel and
data synchronized with the host. Additional pa-
rameters of the form <key>=<value> may also
be provided.

— CACHED: When set to YES the variable is au-
tomatically fetched and stored in local kernel’s
memory, either in shared memory or registers,
depending on the current optimization scheme.

— INTENT: If the intent is IN, then the GPU vari-
able will be updated and synchronized from the
CPU before the kernel is executed. If the intent
is OUT, the CPU variable will be updated from
the GPU variable after the kernel is executed. If
it is INOUT, both the effects of IN and OUT are
combined. If the intent is SEPERATEINOUT,
then two variables are used on the GPU to refer
to a single variable on the CPU.

o CCTK_KERNEL_PARAMETER: This keyword
begins the declaration parameters that will be au-
tomatically passed to the kernel.

5.2. Computation templates

Computation templates allow CaKernel to automat-
ically generate OpenCL or CUDA code based on ker-
nel descriptor and user’s numerical code. Each tem-
plate is optimized for a given type of computational
and communication strategy. A single computational
type, i.e., 3DSTENCIL, 3DBLOCK or BOUNDARY,
specified in the kernel descriptor corresponds to one
or more templates. Templates together with kernel de-
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#define CaKernel_ KERNEL_%{name}

_Computations_Begin_s \
for (tmpj = 0; tmpj < tilez_to; tmpj++) \
{ \

__syncthreads () ;

#define CaKernel_ KERNEL_%{name}
_Tterate_Local_Tile_s
$for_loop (tmpi, '-%{stencil_zn}"’,
'%{stencil_zp}’') %I
$var_loop ("cached=yes") %[
I3D_1(%vname, 0, 0, %var(tmpi)) =
I3D_1(%vname, 0, 0, %var(tmpi) + 1);
1%

of

P g G

1
gk = gk2 + tmpj;

o°

#define CaKernel KERNEL_%{name}
_Fetch_Front_Tile_To_Cache_s
$var_loop ("cached=yes") %I
I3D_1(%vname, 0, 0, stncl_zp) =
I3D(%$vname, 0, 0, stncl_zp);]%
__syncthreads () ;

P

#define CaKernel_ KERNEL_%{name}
_Limit_Threads_To_Compute_Begin_s \

/* TODO Add your computations here */ \

/* TODO Store results to global array */\

#define CaKernel KERNEL_%{name}
_Limit_Threads_To_Compute_End_s \
}
#define CaKernel KERNEL_%{name}
_Computations_End_s \

Fig. 2. A section of a CaKernel template that can be used to generate
a local stencil for the variables defined in the kernel descriptor in the
shared memory.

scriptors are passed to the code generator that produces
header files containing definitions of kernels in a form
of C-language macros. An example template is shown
in Fig. 2.

Another advantage of introducing the templates is
that the user does not need to be aware of a GPU-
specific architecture. Scientists using CaKernel can
concentrate on their domains rather than on technical
details of a particular hardware. Moreover, the same
computations may be easily launched on other archi-
tectures without rewriting the code.

In addition to our previous work, we have added
the templates hierarchy. The templates hierarchy facil-
itates inter-template dependencies definition. For ex-
ample each computational template require device ini-
tialization, memory handling, etc. The templates re-
sponsible for these operations are “triggered” to be

CCTK_KERNEL_TEMPLATE mem
scope=group compile=no
file="cacuda.vars-template.h" {
triggers{
mem$comp, comm$Scomp, shared
}
} "a template that defines the neccesary
variables"

CCTK_KERNEL_TEMPLATE comm$comp
scope=group compile=yes
file="cacuda.comm-template.cu" {
schedule {

"schedule CaKernel_CopyToDev in
CCTK_BASEGRID after
CaKernel_TInitFunctions

LANG: C
}\"Allocate memory for variables on
devices\""
}
include { mem, shared }
} "a template that performes the neccesary
boundary data exchange"

Fig. 3. A subset of syntax for defining the template hierarchy struc-
ture.

evaluated if one of the computational schemes is to
be used. The templates hierarchy is located in addi-
tional configuration file deps.ccl which syntax is sim-
ilar to the CCL language. The file is read and inter-
preted during the compilation by code generator. From
the user’s point of view the template hierarchy enables
compilation of the code for different architectures or
different optimization schemes by changing only the
name of the computational type in cakernel.ccl file.
The code generator supports also a small fraction of
regular expression syntax to enable multiple architec-
ture and optimization schemes specification within one
kernel descriptor definition. The example fragment of
the template hierarchy definition syntax is presented in
Fig. 3.

5.3. Code generator

The CaKernel framework uses Piraha [6] as a parser
for the kernel descriptor and as a code generator, auto-
matically creating OpenCL and CUDA-based macros
from cakernel.ccl and templates. The Piraha Parsing
Expression Grammar (PEG) is designed to resemble
the Java regular expression API and syntax, but at the
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g.compile ("w", \t\r\n T[#.%)*m);

g.compile ("wi", " ([ \t\r\n]|#.%)+");

g.compile (" KERNEL w,om CCTK_CUDA_KERNEL{ -wl}{
{-w

name} 1} ({key}{-w}={-w}{value}{-w})
N\ {{-w} ({varR}{-w} | {PAR} {-w}) *\\} {-w}");

g.compile ("KERNELS", "*{-w} ({KERNEL})*$") ;

g.compile ("name", "[A-Za-z0-9_]+");

g.compile ("key", "{name}");

g.compile ("value", "{name}|{dquote}|{squote
")

g.compile ("dgquote", "\" (\\\\["T| ["\\\\\"1)
*\u u) ;

g.compile ("squote", " (\\\\["T[I["\\\\"1)*"")

g.compile ("VAR", "CCTK_KERNEL_ VARIABLE ({-w
1} ({key}{-w}={-w}{value} {-w})* ) \\{{-w}{
name} ({-w}, {-w}{name}) *{-w}\\}{-w}{dquote
P

g.compile ("PAR", "CCTK_KERNEL PARAMETER ({-w
1} ({xey}{-w}=(-w} {(value) () * ) \\[{-w}{
name} ({-w}, {-w}{name})*{-w}\\}{-w}{dquote
)

g.compile ("digit", "[0-9]1+");

g.compile ("any", " ["]1*");

g.compile ("par", "{key}{-w}={-w}{any}");

Fig. 4. Piraha PEG grammar for parsing the kernel abstraction.

same time it provides the full power of a grammar
parser. Figure 4 presents the grammar defined in Piraha
and used to parse the kernel definitions. Both OpenCL
and CUDA implementations share the same parser and
grammar, only the templates are separated. As a result,
CaKernel is able to generate OpenCL as well as CUDA
code with the same set of tools from the same kernel
descriptor and user’s code.

Additionally, the code generator gives us opportu-
nity to optimize OpenCL and CUDA code during eval-
uation of a template by performing loop unrolling. Al-
though recommended on GPUs, the compilers often
are not capable to perform this optimization. This en-
hancement allowed us to significantly speed up our ex-
ample application.

The code generator makes it possible to solve a par-
ticular problem with the preferred algorithm for finite
difference calculations. The user only needs to write
code for a single element in the computational domain
and the automatically generated macros loop around
all the points that are necessary to carry out local com-
putations.

6. Example application

In order to present a practical application of pro-
posed framework we implemented a Computational

Fluid Dynamics (CFD) code using CaKernel. CFD is
one of the branches of fluid mechanics which uses
numerical methods and algorithms to solve and an-
alyze fluid flows. Currently it is used in many ar-
eas of research including petroleum reservoir simula-
tions, weather forecasting and optimizing aerodynamic
shape of planes, cars and sport suits. In our research
we have focused on a simple test case, namely the lid-
driven cavity problem. Since the main purpose for de-
veloping this application is to test the performance of
CaKernel environment, computations were performed
in single precision to make optimal use of the GPUs
ability.

6.1. Background and governing equations

The CFD simulation we chose to perform is based
on the Navier—Stokes equations:

% +@-Vyu=—-V¢é+vrVu+f, 1
V-u=0, )

where u is the velocity field, v is the kinematic vis-
cosity, f is the body force, ¢ is the modified pressure
(pressure over density).

We followed the discretization described in Hirt [12]
and Torrey [23]. The problem was chosen because the
solution can be easily implemented on a uniformly
structured grid with a small number of grid functions.

6.2. Code validation and verification

To verify the numerical computations as well as
to test the overall performance, we’ve solved the lid-
driven cavity problem with a Reynolds number of 100.
As a verification test, we present a comparison of X
component of the velocity field in the midsection along
the Y'-axis with those measured by Ghia [8] in Fig. 5.

6.3. Sample of kernels definitions

We present a small fraction and potential of the
CaKernel framework with an example of a CFD ap-
plication. For solving the Navier—Stokes, two kernels
were implemented: explicit time integration and itera-
tive solver of pressure Poisson equations. After creat-
ing the kernels’ descriptors, the header files with the
proper macros were automatically generated. An sam-
ple of generated code is presented in Fig. 6.
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Fig. 5. Validation of the numerical results: the contours of the
X component of the velocity field along Y -axis in the midsection.
(Colors are visible in the online version of the article; http://dx.doi.
org/10.3233/SPR-2011-0333.)

As one may see, data caching and looping over
the grid points is done automatically without user’s
explicit interaction. This was facilitated by indexing
macros, i.e., dereferencing the proper element of an
array, either locate in main memory (/3D) or local
(I3D_I). It is important to note that only the variables
specified as cached in the kernel descriptor may be ac-
cessed using the /3D_I macro. Other uses would raise
a compilation error. It is also worth mentioning that
we are capable of efficiently accessing different types
of local memory within a single /13D_I macro. This is
very useful in facilitating programming on the GPGPU
architecture, where significant limitations in cached
memory require sophisticated optimizations patterns.
The sample of indexing macros with combination of
C++ templates is presented in Fig. 7. The proposed in-
dexing pattern combined with generated kernel frame
(see Fig. 6) results in stencils along the X and Y di-
rections being stored in shared memory and stencils in
the Z direction being stored in registers. Such indexing
significantly simplifies the caching pattern proposed by
P. Micikevicius [15]. A small section of a sample user’s
numerical code utilizing the automatically generated
macros is shown in Fig. 8.

7. Performance results
The first step to create the CaKernel framework was

to implement the standalone, CUDA-based version of
the CFD application. We have discussed details of the

#define CAKERNEL_Update_Vel_Begin \
__global__ void CAKERNEL_Update_Vel \
const CCTK_REAL *vx,CCTK_REAL *vx_out, \
SN

{ \
/* Declaring the 2D TILE of cached gf*/\

__shared__ CCTK_REAL vx_sh[TX][TY]; \

/* Declaring the z+- stencil cached gf*/\
CCTK_REAL vx_pl, vx_nl; \

/*Decl.ctrl. flow variables: indx,etc.*/\
short 1i = threadIdx.x; \

int gi = blockIdx.x * (CAKERNEL_Tilex - \
stncl_xn - stncl_xp) + 1i;\

bool fetch_data = gi < params.cagh_ni; \
short tilez_to = TZ; \
short tmpj; \
if (fetch_data) \
{ \
/* Caching the initial data: z-stencil*/\
I3D_1(vx, 0, 0, 0) = I3D(vx, 0, 0,-1);\
I3D_1(vx, 0, 0, 1) = I3D(vx, 0, 0, 0);\

# define CAKERNEL_Update_Vel_Comp_Begin \
/* Proceeding along the z direction */ \
for (tmpj = 0; tmpj < tilez_to; tmpj++)\

{

__syncthreads() ;
/* Rotating the cached variables */
I3p_1(vx, 0, 0,-1) = I3D_1(vx, 0, 0, 0);
I3D_1(vx, 0, 0, 0) = I3D_1(vx, 0, 0, 1);

gk = gk2 + tmpj;
/* Fetching the front tile */
I3D_1(vx, 0, 0, stncl_zp) =
I3D(vx, 0, 0, stncl_zp);
__syncthreads() ;
if (compute)
{
/* Your scientific code here */

P g g

# define CAKERNEL_Update_Vel_ Comp_End \
} \
}
#define CAKERNEL_Update_Vel_ End \
}

Fig. 6. A part of automatically generated macros to loop over the grid
points and caching the grid functions. The code has been simplified
for better readability — only one grid function is considered and not
all control flow variables are presented.

implementation and the performance results in [5].
This standalone application was used to test different
computational patterns in order to identify the strat-
egy to get the optimal performance. The application
is capable of performing computations on different ar-
chitectures: CPU (sequentially and with OpenMP) and
GPU (CUDA). Among the nodes it uses MPI to make
large scale simulations possible. This code obtains ap-
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template<int i, int j, int k, typename t>

_ device__ inline CI3D_1_t (t ptr_sh, comst
short &1i, const short &1j, const short &lk,
CCTK_REAL &v_pl, CCTK_REAL &v_nl)

{

if (k == 0) return ptr_sh[j + 131[i + 1i];
if(k == 1) return v_pl;
if(k ==-1) return v_nl;

}

#define I3D_1 (ptr, i, Jj, k) \
I3D_1_t<i, j, k>(ptr##_sh, 1i, 1j, 1k,
ptr##_pl , ptr##_nl)

Fig. 7. A combination of macro with C++ template function for
indexing cached grid functions. Thanks to optimization of the code
during the compilation process, register variables are accessed via
index as if they were explicitly referenced by a user.

#include <CaKernel_Update_Vel_3DBlock.h>

CAKERNEL_Update_Vel_Begin

/* users temporary variables */
CCTK_REAL tmpf = 0, v_sum, v, va, vb;

CAKERNEL_Update_Vel_Computations_Begin

/* more user’s code above */

v = (I3D_1(vx,0,0,0) + I3D_1(vx,-1,0,0) +
I3D 1(vx,0,1,0) + I3D 1(vx,-1,1,0)) /
4.0;

va = I3D_1(vy,1,0,0) - I3D_1(vy,0,0,0);

vb = I3D_1(vy,0,0,0) - I3D_1(vy,-1,0,0);

tmpf = params.cagh_dx * 2;

v_sum -= v / tmpf * (va + vb + COPYSIGN

(0.2, v) * (vb - va));
/* more user’s code below */
CAKERNEL_Update_Vel_Computations_End
CAKERNEL_Update_Vel_End

Fig. 8. A section of a scientific code responsible for explicit time
integration. The macros in the code are defined in an automatically
generated header file.

proximately 1 GFLOPS when running the sequential
CPU computations, almost linear scalability when run-
ning with OpenMP, and almost 100-fold speedup on a
single NVIDIA GeForce GTX480 Fermi card.

While designing the CaKernel environment, we fo-
cused on the computational patterns proven to be effi-
cient in stencil computations. The patterns were further
generalized to fit a wider variety of numerical prob-
lems. Implementation of the CFD application in the
newly created CaKernel environment results in a simi-
lar computational performance to the highly optimized
standalone implementation. A more detailed discus-
sion of performance results in CaCUDA environment,
i.e., a CUDA-only predecessor to the CaKernel envi-
ronment, can be found in our previous work [4].

In this paper we present the detailed performance
measurement of the CFD application that is devel-
oped with CaKernel. The biggest emphasis is given to
scaling, i.e., the ability of the framework to improve
the performance depending on the growth of compu-
tational resources. Particularly weak and strong scal-
ing evaluations were performed which are known to
be good performance tests of parallel computations.
The theoretical background of such approach may be
found in: [3,11]. All the computations were performed
on a cubic domain to fit largest variety of computa-
tional problems, challenge the domain division in all
directions simultaneously and avoid favoring the GPU-
specific capability of most efficient data transfer along
the slowest varying dimensions (Z-axis). In order to
limit the amount of copied data between CPU and
GPU to minimum, the boundary data exchange was
performed using special CUDA and OpenCL APIs to
transfer 3D slices. The latency introduced by addi-
tional data transfer between GPU and CPU via PCI
Express 2.0 bus was hidden by increasing the size of
ghost zones and performing redundant computations.
The optimal size of ghost zones that result in the best
performance could be estimated by carrying out sev-
eral testing runs.

The computations were performed on up to 16
nodes, each containing two NVIDIA Tesla M2050
GPUs. The nodes were interconnected using 40 Gbps
InfiniBand network.

7.1. Weak scaling

Weak scaling is a form of scalability testing with a
fixed problem size per computing unit. The growth of
the domain during the weak scaling test was kept pro-
portional in all directions to preserve the cubic shape
of the domain and the same number of grid points per
node. From preliminary tests we have observed that the
biggest impact on the overall performance of compu-
tations executed on multiple GPUs is the decomposi-
tion of the computational domain. As we observed, the
problem of finding the optimal division consists of two
subproblems with contradictory solutions:

e Minimizing the ratio of ghost cells: We need to
minimize the number of boundary which have
to be transferred between neighboring nodes. In
practice it leads to dividing the domain into
shapes similar to cubes.

e Limiting the number of divisions in the X direc-
tion to zero: Efficient utilization of the NVIDIA
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Fig. 9. The graph presents the results of the weak scaling test for both CUDA and OpenCL implementations. The domain size on each GPU was
equal to 1923. The chart shows the performance (in GFLOPS) and the speedup over a single GPU depending on the number of GPUs used. Two
cases were considered: with and without domain division along the X direction. (Colors are visible in the online version of the article; http://dx.

doi.org/10.3233/SPR-2011-0333.)

GPUs architecture requires accessing consecutive
elements in memory by consecutive threads in
the block. Unfortunately, neither the CUDA nor
the OpenCL API require explicit definitions of
blocks and threads properties while performing
the 3D slice data exchanges. The impact of im-
proper memory transfers is noticeable. Dividing
the domain to fulfill the requirements of proper
inter-node load balancing and additionally fitting
the specifics of GPU architecture is not a triv-
ial task and requires explicit modifications to the
parts of the Cactus flesh which are responsible for
domain division.

As one may observe in Fig. 9 the better solution (i.e.,
the one without domain division along the X direc-
tion) of the CaKernel framework scales approximately
half as well as the theoretical optimal result (i.e., lin-
ear scaling). Despite of satisfactory scaling results for
GPUs architecture specifics (i.e., additional latency
and overhead introduced by data exchange between
CPU and GPU via PCI Express) it may be improved
by following one of two techniques:

e Extending the per node subdomain size: In our
weak scaling test we used the smallest per node
subdomain (192%, 189 MB and approximately
16% of the NVIDIA Tesla 2050 GPU capacity)
that properly leveraged all of the GPUs com-
putational resources in our particular computa-
tional problem. Using larger per-node subdo-
mains could reduce the ratio of redundant com-
putations and amount of data exchanged between
nodes to computations performed on the central
part of the subdomain;

e Resolving the second subproblem of domain di-
vision: This can be accomplished either by solv-
ing problems with non-cubic domains and align-
ing the smallest side of the domain along the X
dimension, or by improving the data exchange on
the boundaries along the X-axis.

Another interesting feature observed during the
weak scaling test is presented in the Fig. 10. The
graphs point out the pros and cons of dividing the
domain following each of identified domain division
subproblems and its impact on computations and com-
munication performance. As one may observe, the
communication time has great impact on the overall
performance of computations performed over domain
divided along the X dimension. It needs to be men-
tioned that the division in the X dimension was only
divided into two regions. Nevertheless the time needed
for computations was approximately equal to time re-
quired for data exchange between nodes. That is why
it so important to find the optimal domain division.

The graphs also present another important feature:
growing time of computations, i.e., explicit time inte-
gration and Poisson pressure solver along with increas-
ing the number of nodes taking part in computations.
The reason of such behavior is the growing number of
redundant computations introduced either by subopti-
mal domain division or increasing number of neigh-
bors for each node.

7.2. Strong scaling
Strong scaling is a form of scalability which keeps

the problem size fixed while the number of processors
is increased. In this test we used a cubic domain with
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side equal to 512 grid points. Following the experience
gained from weak scaling tests, we have followed the
optimal solution for domain division and avoided split-
ting the domain along the X direction (see Section 7.1
for details). In Fig. 11 the framework scales even bet-
ter than during the weak scaling and obtained approx-
imately 64% of the linear performance when comput-
ing on 32 nodes. The main reason of such great scaling
performance is that the NVIDIA GPUs perform bet-
ter on smaller amounts of data. In this particular test
case the computations on single node are performed on

data which occupies the full capacity of the NVIDIA
GPU. In practice, i.e., taking into consideration the
maximum potential of the GPUs to solve this particu-
lar problem, the strong scaling performance is approx-
imately 45% when comparing to linear scaling.

8. Conclusions

By extending our previous work on a parallel pro-
gramming framework for CUDA, we designed and
successfully implemented a new computational kernel
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Fig. 11. The graph presents the results of the strong scaling test. The domain size was fixed and equal to 5123, The chart shows the performance
(in GFLOPS) and the speedup over a single GPU depending on the number of GPUs used. Both CUDA and OpenCL implementations were
tested. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2011-0333.)

abstraction called CaKernel. Our solution is e for de-
veloping highly efficient large-scale applications with
stencil-based computations on hybrid supercomput-
ing systems that have already reached the level of
Petaflops. In particular, we created a set of highly op-
timized OpenCL templates for highly efficient sten-
cil computations. Users of CaKernel can now easily
switch from CUDA to OpenCL by modifying only
one control parameter. Thus, they can ran their sci-
entific applications on different hybrid systems inde-
pendently for the installed accelerated hardware. As
a vendor-independent framework, OpenCL supports
a wide range of hardware platforms with a mixture
of CPUs, GPUs, or even FPGAs etc. This in turn
makes CaKernel a more powerful parallel program-
ming framework on heterogeneous systems. Both the
CUDA and OpenCL implementations of CaKernel
have been tested and benchmarked with a 3D CFD
code. Although the performance and scalability re-
sults were very good as we demonstrated in previ-
ous sections, we are still working on various improve-
ments to CaKarnel. In the near future we would like
to improve procedures responsible for the fully au-
tomatically generated code. Additionally, we would
like to perform more comprehensive benchmarks us-
ing CaKernel on the biggest hybrid systems. Despite
the fact that CaKernel was primarily designed and im-
plemented for applications involving intensive stencil-
based computations, other types of applications will
added in the future using the template-based code gen-
eration approach.
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