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Use of GPU computing for uncertainty
quantification in computational mechanics:
A case study
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Abstract. Graphics processing units (GPUs) are rapidly emerging as a more economical and highly competitive alternative
to CPU-based parallel computing. As the degree of software control of GPUs has increased, many researchers have explored
their use in non-gaming applications. Recent studies have shown that GPUs consistently outperform their best corresponding
CPU-based parallel computing alternatives in single-instruction multiple-data (SIMD) strategies. This study explores the use of
GPUs for uncertainty quantification in computational mechanics. Five types of analysis procedures that are frequently utilized
for uncertainty quantification of mechanical and dynamical systems have been considered and their GPU implementations have
been developed. The numerical examples presented in this study show that considerable gains in computational efficiency can
be obtained for these procedures. It is expected that the GPU implementations presented in this study will serve as initial bases
for further developments in the use of GPUs in the field of uncertainty quantification and will (i) aid the understanding of the
performance constraints on the relevant GPU kernels and (ii) provide some guidance regarding the computational and the data
structures to be utilized in these novel GPU implementations.
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1. Introduction

Primarily driven by the gaming industry, GPUs have
evolved from being partially programmable in 1999 to
a much more economical and highly competitive alter-
native architecture to CPU-based parallel computing in
2011. As the degree of software control (programma-
bility) of GPUs has increased, its use in the solution of
general purpose computing problems has spawned the
discipline of general purpose GPU (GPGPU) comput-
ing. The interest of researchers in GPGPU is primar-
ily due to four reasons: (i) better performance, (ii) an-
ticipated evolution, (iii) cost efficiency and (iv) energy
efficiency of GPUs.

The performance of a given algorithm on a given
processor is governed primarily by two factors: (i) peak
computational capability of the processor (typically
measured in giga floating point operations per second,
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Gflop/s) and (ii) memory bandwidth between the pro-
cessor and its dynamic random access memory (typ-
ically measured in gigabytes per second, GB/s). Fig-
ures 1 and 2 show a comparison of these two per-
formance metrics for GPUs vs contemporary CPUs.
While the peak performance of current CPUs is less
than 250 Gflop/s and 40 GB/s, GPUs have not only
broken the teraflop/s barrier but also outperform CPUs
in memory bandwidth by a factor of almost five. Apart
from depicting a clear computational edge of GPUs
compared to CPUs, Figs 1 and 2 highlight another dif-
ferentiating feature of GPUs: their chronological de-
velopment. While GPUs show an almost linear trend
with time in their development, CPUs await a break-
through in hardware development to take them out of
the saturation point that started to be displayed in 2003.

The evolution gap between CPUs and GPUs can
be attributed to their differing design philosophies.
When CPUs stopped developing in accordance with
the Moore’s law [16] in 2003, multi-core CPUs were
conceived. While multi-core chips provide exploitable
parallelism to applications, their primary objective is
to maintain, and possibly increase the performance of
sequential programs. GPUs, on the other hand, were
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Fig. 1. Evolution of GPUs compared to CPUs (theoretical
Gflop/s) [22].

Fig. 2. Evolution of GPUs compared to CPUs (theoretical
GB/s) [22].

initially designed to cater to computer games and
graphics rendering, which require a large number
of relatively lightweight computations. Thus, GPUs
evolved based on the so-called many-core philosophy,
which employs a large number of small computational
cores on the same chip. The size of these cores allows
GPUs to more economically possess a larger number
of cores when compared to multi-core CPUs.

This economic viability along with the size of the
cores on GPUs have a direct impact on their cost and
energy efficiency. A comparison between Intel’s Xeon
E5530 quad-core processor [11] and NVIDIA’s Tesla
C1060 GPU [23] shows that the former yields a cost

efficiency of about $4.5 per Gflop/s and an energy ef-
ficiency of about 0.7 watts per Gflop/s while the lat-
ter yields about $1.3 per Gflop/s and 0.2 watts per
Gflop/s. These specific CPU and GPU models were
chosen for the efficiency comparisons as this hardware
has been utilized for performing the numerical studies
presented later, herein. These models form a represen-
tative pair for comparing CPU and GPU performances
due to their equivalence in market price and convenient
availability in desktop computers.

GPUs are suitable for use in one of the very
commonly employed parallelization strategies, single-
instruction multiple-data (SIMD), because all the cores
in each of their multiprocessors are single instruction
multiple thread (SIMT) cores, i.e., all the cores exe-
cute the same set of instructions, but with different sets
of data. A large number of processor cores (e.g., 240
in the NVIDIA Tesla C1060) along with a large num-
ber of active threads is the key to GPU’s performance.
Threads execute in groups, called warps, and the exe-
cution alternates between active warps with warps be-
coming temporarily inactive when waiting for data.
This feature hides the memory latency to a great ex-
tent. Memory latency and the availability of only a
small amount of shared memory among the threads are
the two prime challenges for GPU algorithm develop-
ers. From a software point of view, programming on
the GPUs has become considerably easier since the in-
troduction of the NVIDIA CUDA™ programming en-
vironment, which is much like the programming lan-
guage C.

Initially, GPGPU was primarily aimed towards the
thirteen dwarfs or building blocks of parallel com-
puting, seven of which were identified by Colella [6]
while six others were added by Asanovic et al. [1].
These thirteen dwarfs, believed to be important for ap-
plications in science and engineering in at least the
next decade, are listed in Table 1. Dense linear al-
gebra and fast Fourier transform (FFT) algorithms
have already matured into optimized routines and are
available as vendor libraries for GPUs: CUBLAS [19]
and CUFFT [20], respectively. CUBLAS implements
the basic linear algebra subroutine (BLAS) equiva-
lents and CUFFT implements one-, two- and three-
dimensional fast Fourier transforms on GPUs. While
these implementations are intended for pure GPU ap-
plications, hybrid algorithms have also been devel-
oped. Tomov et al. [29] have developed a suite of hy-
brid implementations of the equivalents of BLAS and
LAPACK routines, which are available as a library,
called MAGMA [14].
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Table 1

Dwarfs of parallel computing

1. Dense linear algebra 6. Unstructured grids 11. Backtrack & branch

2. Sparse linear algebra 7. Monte Carlo methods + bound

3. Spectral methods (FFT) 8. Combinatorial logic 12. Construct graphical

4. N-body methods 9. Graph traversal models

5. Structured grids 10. Dynamic programming 13. Finite state machine

Bolz et al. [3] developed GPU implementations
of conjugate gradient and multi-grid sparse matrix
solvers. Later, Bell and Garland [2] and Vázquez et
al. [31] developed efficient sparse matrix-vector prod-
uct implementations. Tomov et al. [30] implemented
probability-based simulations (Ising and percolation
models) on GPUs. Recently, Tian and Benkrid [28]
developed a GPU implementation of the Mersenne
twister random number generation algorithm. Spe-
cific science and engineering applications can also
be found in the literature. So [27] developed time-
domain computational electromagnetics algorithms for
GPU-based computers. Zhao [33] developed a GPU-
accelerated partial differential equation (PDE) solver
using the lattice Boltzmann model. Walsh et al. [32]
developed GPU implementations of algorithms per-
tinent to geoscience and engineering system simula-
tions. Januszewski and Kostur [13] developed a GPU
solver for stochastic differential equations.

Keeping in mind that this paper is not a survey study
of GPGPU applications, the literature survey has been
limited to only the most pertinent studies within the
context of uncertainty quantification problems. For the
interested reader, detailed surveys and lists of the ap-
plications of GPGPU can be found elsewhere [4,5,9,
18,21,25,26].

The purpose of this study is to demonstrate the
use of GPU computing in uncertainty quantification
problems that arise in computational mechanics and
dynamics. The field of uncertainty quantification ad-
dresses several types of analyses, such as uncertainty
analysis/propagation, sensitivity analysis, model val-
idation and calibration, and design exploration and
optimization. A common theme among all these pro-
cedures is that they require reanalysis of similar sys-
tems. Hence, the computational techniques developed
for one type of analysis can be easily adapted to an-
other. The focus of the methods presented in this study
concerns the uncertainty analysis of mechanical and
dynamical systems.

A conceptual representation of the class of prob-
lems addressed in this study is shown in Fig. 3. M de-
notes an input/output model of a physical system of

Fig. 3. Conceptual model.

interest, which often consists of a large system of or-
dinary differential equations (ODEs), PDEs and/or al-
gebraic equations; f denotes the input to the model and
y denotes the set of desired outputs. Uncertainty can
arise from primarily two sources: (i) the model itself
and (ii) the input to the model. When a physical sys-
tem cannot be deterministically modeled because of
incomplete knowledge of its parameters (e.g., geome-
try, physical properties, etc.), it is required to either as-
sume or experimentally deduce a statistical description
of the same. The input to the system, which is usually a
mathematical model of a physical process (e.g., earth-
quake, wind, etc.), is also often described most appro-
priately in a probabilistic formulation. Consequently,
the outputs of interest do not remain deterministic, and
it becomes necessary to (i) investigate and validate the
probabilistic models of the system and the input and
(ii) quantify the uncertainty of the system’s response
so that its long term behavior can be predicted with
reasonable confidence.

Uncertainty analysis of such physical systems usu-
ally takes one of two paths. One entails discretiza-
tion of the associated random fields/processes using,
for instance, the Karhunen–Loeve expansion resulting
in a set of PDEs with stochastic coefficients. Within
the context of computational mechanics and dynamics,
the stochastic finite element method (SFEM) [7] falls
into this category. The other path consists of sampling-
based methods. These include the Monte Carlo method
[10], stratified sampling [17], Latin hypercube sam-
pling [15], etc., and operate by first generating a large
sample of the outputs of the uncertain system and
then, computing the desired statistics. While the for-
mer class of methods usually shows faster convergence
compared to the latter, it requires the knowledge of
a probabilistic description of the associated uncertain-
ties. In other words, SFEM-type methods work well
with aleatory uncertainties but become problematic
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when applied to epistemic uncertainties. Sampling-
based methods, however, do not suffer from this lim-
itation. As long as one can obtain the samples of the
uncertain phenomena, either experimentally (e.g., seis-
mogram records of earthquakes) or analytically, these
methods can be utilized; the trade-off is the slow con-
vergence rate of sampling-based methods.

However, with the advent of high-performance com-
puting, sampling-based methods have maintained their
feasibility as an attractive tool for uncertainty quan-
tification studies. Moreover, known to be embarrass-
ingly parallel, sampling-based methods are prime can-
didates for deploying parallel computing resources.
Parallelism can be exploited in two ways depending on
the size of the system in question. If the size of the sys-
tem is small, the entire solution algorithm can be made
to fit on one computational core, and different cores
can be utilized to generate different samples of the de-
sired response. When the size of the system is large, the
solution procedure itself can be parallelized. These two
strategies will be referred to as Type I and Type II par-
allelization strategies in the subsequent sections. The
examples presented in this study are channelled to-
wards sampling-based methods and utilize both of the
aforementioned parallelization strategies.

Three implementation approaches have been uti-
lized to deploy GPUs for uncertainty quantification
problems in this study: (i) use of already existing, op-
timized GPU libraries, such as CUBLAS and CUFFT;
(ii) development of new GPU kernels to address
a certain analysis; (iii) mixed approach, which uti-
lizes existing GPU libraries when possible and imple-
ments new GPU kernels otherwise. As will be demon-
strated by the numerical examples, the first approach is
straightforward and requires less work but also offers
moderate improvements in computational efficiency.
The second approach requires more work and a re-
formulation of many aspects of an algorithm, such as
computational structure and data-structure, but con-
siderable gains in the computational efficiency can be
obtained. The third approach attempts to find a bal-
ance between the required effort and the gains obtained
in computational efficiency. The numerical examples
presented in this study demonstrate all the three ap-
proaches and also serve as intermediate layers, con-
necting the dwarfs of parallel computing to the uncer-
tainty quantification problems, as depicted in Fig. 4.
The procedures mentioned in Fig. 4 are not meant to
be exhaustive but represent a large proportion of meth-
ods used in the uncertainty quantification of mechani-
cal and dynamical systems.

Fig. 4. Flow chart of primary and secondary building blocks.

These intermediate layers can be characterized into
two categories. The first category consists of the meth-
ods that are utilized to analyze deterministic mechan-
ical and dynamical systems. Time-domain analyses
of dynamical systems are often posed as a system of
PDEs, ODEs, integral equations or a combination of
these. In the frequency domain, transfer function meth-
ods are employed. The response of mechanical systems
to static loads can be determined by solving a system
of algebraic equations involving the pertinent system
matrices. The second category of intermediate layers
consists of the uncertainty quantification methods as
discussed earlier. It is evident that the parallelization of
the first category is more apt for larger systems while
that of the second category can be exploited for sys-
tems of all sizes.

Five types of analysis procedures, pertinent to the
uncertainty quantification of computational mechanics
models, depicted by shaded boxes in Fig. 4, have been
implemented on the GPU. These are: (i) static response
analysis of a structural system; (ii) frequency-domain
analysis of a linear dynamical system; (iii) time-
domain analysis of a linear dynamical system employ-
ing the convolution integral; (iv) direct Monte Carlo
simulation of a small dynamical system in the time-
domain using an explicit Rünge–Kutta time integration
scheme; and (v) numerical quadrature of a function
of random variables. As will be demonstrated by the
numerical results, the GPU implementations of these
analyses procedures offer considerable gains in com-
putational efficiency compared to their corresponding
multi-core CPU counterparts.
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2. Theoretical background

This section develops the theoretical framework per-
tinent to the numerical examples presented in this
study. Connections to the conceptual input/output
model presented in Fig. 3 are also discussed.

2.1. Time-domain analysis of a dynamical system

A spatially discretized, n degree-of-freedom (DOF)
dynamical system can be represented using a system of
2n ODEs in state-space as:

ẋ(t) = A(t)x(t) + Bf(t) + g(x), (1)

where A(t) is the time-dependent system matrix, B is
the load-distribution matrix, g(x) is a vector nonlinear
function, f(t) is the external input, x = {x1, . . . , xn, ẋ1,
. . . , ẋn}T is the state-vector, and (˙) denotes derivative
with respect to time. The response of such a system
can be computed by utilizing a time-marching scheme,
e.g., Rünge–Kutta methods.

For a linear, time-invariant system, the system of
ODEs in (1) degenerates into a simpler form:

ẋ(t) = Ax(t) + Bf(t). (2)

The response of the linear system in (2) can be written
using the convolution integral as:

y(t) = C
[

x0 +
∫ t

0
h(t − τ )f(τ ) dτ

]
, (3)

where C is an output matrix that maps the state-vector,
x(t), to the desired output vector, y(t); x0 is the vector
of initial conditions; and h(t) is the impulse response
function of the system given by:

h(t) = eAtB. (4)

The model, M, referred to in Fig. 3 is the physical
system, represented via a system of ODEs, or an im-
pulse response function arising from the ODE system;
the input is the externally applied load; and the output
is the desired response of the system.

2.2. Frequency-domain analysis of a dynamical
system

Often, the input to the system, f(t), is random in na-
ture and its description is most appropriately charac-

terized in the frequency-domain by the power spectral
density (PSD) of the random process governing the in-
put. In such cases, if the system is linear time-invariant,
the PSD of the response of the system can be directly
computed using the following matrix triple-product:

Sxx(ω) = H(ω)Sff(ω)HH (ω), (5)

where Sff(ω) is the PSD of the input random process;
H(ω) is the Fourier transform of the impulse response
function given by (4); and (·)H denotes complex con-
jugate transpose of a matrix. The desired output can be
extracted from Sxx(ω) using an output matrix, C, as:

y(ω) = CSxx(ω)CT. (6)

The model, M, in such problems is the physical sys-
tem, represented using a frequency response matrix;
the input is the PSD of an externally applied load; and
the relevant output is the PSD of the desired response
of the system.

2.3. Static deflection of a mechanical system

The static analysis of a system subjected to a time-
invariant load can be performed by first spatially dis-
cretizing the system to formulate its stiffness matrix,
K, and then computing its static deflection as:

u = K−1f, (7)

where u is the static response of the system and f is
a vector of the static load as applied to the discretized
model of the system. The desired output can be com-
puted from u using an output matrix, C, as:

y = Cu. (8)

The model, M, in such problems is the physical sys-
tem, represented using a system of linear algebraic
equations; the input is an externally applied load; and
the output is the response of the desired parts of the
system.

2.4. Numerical quadrature

Numerical quadrature finds many applications in
uncertainty quantification problems, especially when
aleatoric uncertainties are involved. The most common
application is the numerical approximation of the ex-
pectation operator. The expected value of a function,
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g(q), of N random variables, q = {q1, . . . , qN }T, hav-
ing a joint probability density function, fQ(q), can be
computed as:

E[g(q)] =
∫ ∞

− ∞
· · ·

∫ ∞

− ∞︸ ︷︷ ︸
N

g(q1, . . . , qN )

× fQ(q1, . . . , qN ) dq.

(9)

Although analytical integration of (9) can be per-
formed for certain types of distributions, e.g. the Gaus-
sian distribution, numerical quadrature is unavoidable
in most scenarios. In such cases, the multi-dimensional
integration in (9) can be computed approximately us-
ing a quadrature rule as:

E[g(q)] ≈
Na∑

i1=1

· · ·
Na∑

iN=1︸ ︷︷ ︸
N

wi1,...,iN g(qi1 , . . . , qiN )

× fQ(qi1 , . . . , qiN ),

(10)

where Na is the number of abscissas used by the quad-
rature rule and wi1,...,iN are the associated weights.
Since the quadrature rule in (10) is constructed as a
tensor-product of a one-dimensional quadrature rule,
Gauss–Hermite quadrature in this case, the abscis-
sas and the weights in (10) can be computed using
appropriate combinations of the one-dimensional ab-
scissas and weights. Due to the use of a full tensor-
product grid, the computational complexity of the
multi-dimensional numerical quadrature in (10) in-
creases exponentially with the number of dimensions;
in particular, the number of quadrature points in the N -
dimensional space is NNa . Thus, a multi-dimensional
numerical quadrature can be computationally very de-
manding.

The model, M, in such problems is the integration
operator of appropriate dimensions; the input is the
function of random variables; and the output is the
value of the integration.

3. Numerical examples

This section investigates the computational effi-
ciency of each of the methods introduced in the pre-

vious section. The computational times required by
GPU implementations are compared to that of cor-
responding single- and multi-core CPU implementa-
tions for each method. One NVIDIA Tesla C1060 GPU
and two Intel Xeon E5530 quad-core CPUs have been
utilized to perform all of the timing studies. More-
over, it is well known that GPUs typically perform
better in single precision (SP) compared to double pre-
cision (DP) arithmetic because of their hardware struc-
ture. For instance, the NVIDIA Tesla GPU has a peak
performance of 933 Gflop/s for SP compared to just
125 Gflop/s for DP. Therefore, in all the examples, tim-
ing comparisons have been performed for both SP and
DP computations. Since there is a negligible perfor-
mance gap in SP and DP computations performed on
a CPU, such a distinction has not been made for the
multi-core CPU computational gains.

Let tSC, tMC and tGP denote the computational times
for the execution of the single-core CPU, multi-core
CPU and GPU implementations of an algorithm re-
spectively. Gains in computational efficiency can been
defined as:

SMC =
tSC

tMC
, SGS =

tSC

tGP
and

(11)
SGM =

tMC

tGP
.

Thus, SMC is the gain in computational efficiency ob-
tained by the multi-core CPU implementation com-
pared to the single-core CPU implementation, and SGS
and SGM are the gains in computational efficiency ob-
tained by the GPU implementation compared to the
single- and multi-core CPU implementations, respec-
tively.

The performance of the parallel implementation has
been assumed to be optimal if the observed gain in
computational efficiency is close to its theoretical max-
imum. This theoretical prediction is straightforward
for the multi-core CPU implementations; since eight
computational cores are available on the CPU, the op-
timal multi-core CPU performance gain is expected
to be eight times that of the single-core CPU per-
formance. Establishing a theoretical peak for perfor-
mance gain for the GPU implementation is highly
problem dependent due to hardware constraints which
govern the optimization of the GPU kernel for perfor-
mance. The optimality of the GPU implementation has
been discussed in each of the examples individually.
The discussion of the GPU kernel-optimization utilizes
the terms memory-only performance and compute to
global memory access (CGMA) ratio.



Gaurav and S.F. Wojtkiewicz / Use of GPU computing for uncertainty quantification in computational mechanics: A case study 205

Memory-only performance is defined as the global-
memory throughput obtained when only memory read/
write operations are performed, and all the computa-
tions are omitted. This is an important metric to in-
dicate whether the global memory accesses are coa-
lesced. The closer the observed memory throughput is
to the theoretical peak memory bandwidth (102 GB/s
in this study), the better.

CGMA ratio is defined as the ratio of the total num-
ber of computations to the total number of global mem-
ory accesses. This ratio indicates whether the GPU
implementation is compute- or memory-bound. When
compute-bound, the reference peak performance of the
GPU implementation is governed by the theoretical
peak Gflop/s (933 Gflop/s for SP, 125 Gflop/s for DP
in this study). When memory-bound, the peak theoret-
ical performance can be computed involving the peak
theoretical bandwidth as:

Peak theoretical performance

= CGMA · Peak theoretical bandwidth
B

, (12)

where B is the number of bytes required to store the
data (B = 4 for SP, B = 8 for DP). Thus, the theo-
retical peak performance of the GPU implementation
presented in this study will be memory-bound if

CGMA <

{
36.6 for SP,
9.8 for DP,

(13)

otherwise, it will be compute-bound.
The CUDA visual profiler has been utilized to ob-

tain the memory-throughput of the GPU implemen-
tations while the CGMA ratio has been computed
manually. Moreover, the largest available problem-size
considered has been utilized to estimate the memory-
throughput and the computational performance of the
algorithms.

3.1. Example 1

The first example considers a cantilevered Eüler–
Bernoulli beam, as shown in Fig. 5. The beam is sub-
jected to a random, static tip load. A finite element dis-
cretization with cubic shape functions has been utilized
to obtain the stiffness matrix, K, and the load vector, f.
The static deflection of the beam is computed using (7)
due to 1000 different samples of the load. The sgetrf
and dgetrf routines have been utilized from the In-
tel’s MKL library [12], and their inherent parallelism

Fig. 5. Cantilever beam model.

Table 2

Gains in computational efficiency for Example 1

No. of DOF SMC SGS SGM

SP DP SP DP

128 1.00 1.95 2.00 1.95 2.00

512 1.56 3.67 6.25 2.35 4.01

1024 3.88 2.25 2.38 0.58 0.61

2048 6.31 4.04 3.56 0.64 0.56

4096 6.06 5.97 4.19 0.99 0.69

8192 6.46 32.10 27.65 4.97 4.28

16,384 7.31 213.85 205.33 29.25 28.09

has been utilized for the multi-core CPU implemen-
tation. The corresponding routines from the MAGMA
[14] library have been utilized for the GPU implemen-
tation; both have been assumed to be optimal in perfor-
mance based on the evidence available in their respec-
tive documentations. This example utilizes both Type I
and Type II parallelization strategies.

Table 2 shows the gains in computational efficiency
obtained for this example. The GPU implementation
shows gains in computational efficiency of approxi-
mately 200 times compared to the single-core CPU im-
plementation and approximately 30 times compared to
the multi-core CPU implementation for both SP and
DP computations for the largest considered problem
size. This example exclusively uses existing GPU li-
brary routines.

3.2. Example 2

The second example considers the same beam model
as in the previous example. It is now subjected to a
random dynamic load, governed by a first-order au-
toregressive, stationary random process, prescribed in
the form of its PSD, and the analysis is performed in
the frequency domain. The PSD of the response of all
of the states is directly computed using (5). Since the
input is present in only one degree-of-freedom of the
system, (5) can be computed by employing a rank-1
update algorithm followed by scaling with a complex
scalar. The rank-1 update has been performed using
the cherk and zherk BLAS routines from the In-
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Table 3

Gains in computational efficiency for Example 2

No. of DOF SMC SGS SGM

SP DP SP DP

100 0.32 0.91 0.48 1.02 1.50

500 0.97 14.71 6.09 15.68 6.30

1000 1.31 34.14 14.16 35.27 10.80

5000 1.32 68.17 27.05 66.76 20.42

7500 1.32 71.78 28.47 67.97 21.49

10,000 1.32 73.82 29.29 71.17 22.11

tel’s MKL library for the CPU implementation. The
scaling with the complex scalar has been performed
using a vectorized loop obtained by aggressive opti-
mization of the code via the compiler. Inherent paral-
lelism of the MKL BLAS routines has been exploited
to optimize the multi-core CPU performance. On the
GPU, the rank-1 update is performed using the corre-
sponding BLAS routines from the CUBLAS [19] li-
brary. A new GPU kernel has been developed for the
scaling. Since there is no need for sampling, this ex-
ample utilizes only the Type II parallelization strategy.

The gains in the computational efficiency obtained
for this example are shown in Table 3. The multi-core
CPU implementation does not show much gain in com-
putational efficiency because of the relatively small
size of the matrices involved. The GPU implemen-
tation, however, shows about 70 times better perfor-
mance for SP, and about 20 times better performance
for DP computations for the largest considered prob-
lem size.

About 98% of the computational time of the GPU
implementation is consumed by the BLAS routines
which have been assumed to be already optimized for
performance. The superior computational performance
of CUBLAS routines when compared to corresponding
MKL BLAS routines may be attributed to:

(i) efficient memory access of 2D data structures
via the use of texture memory maps on GPUs,

(ii) increased scalability of algorithms designed to
use GPUs,

(iii) simple thread control logic of GPUs, and/or
(iv) ability of GPUs to hide memory latency by

constantly switching between active and inac-
tive thread warps.

The new GPU kernel, which scales the involved
matrix–matrix product to obtain the spectral response
of the system, is memory-bound, with a CGMA ra-
tio of 2.25 and has been assumed optimal in perfor-
mance because it shows a computational performance

of 50.67 Gflop/s in SP and 23.82 Gflop/s in DP against
the theoretically predicted performances of 57.38 and
28.69 Gflop/s, respectively. This kernel utilizes n2

threads, n being the number of degrees-of-freedom of
the system, i.e., each thread scales one element of the
involved matrix. The real and imaginary components
of each element are stored in contiguous memory loca-
tions by utilizing the cuComplex and cuDouble-
Complex data structures provided by the CUDA run-
time library. In order to reduce the number of memory
accesses, each thread reads a matrix element into its
register memory, computes the complex product, and
writes the scaled element back to the global memory.
The complex scalar by which each matrix element is to
be multiplied is stored in the constant memory space
which allows for fast concurrent access of this constant
by all the threads and also saves two register variables
from being used by each thread.

This example demonstrates the mixed approach,
where existing GPU library routines have been utilized
in conjunction with a custom GPU kernel. However,
the majority of the computation is still being performed
by the vendor libraries.

3.3. Example 3

The third example considers the same beam model
as in the previous two examples but now subjected to a
time-dependent random load, governed by a first-order
autoregressive, stationary random process. The equa-
tions of motion for this example are written as in (2),
and the response is computed using the convolution in-
tegral, as given by (3). 100 samples of the response
were computed and the output matrix, C, was assumed
to be an identity matrix, i.e., all the states were com-
puted.

The convolution has been performed using the FFT,
which requires three steps: (i) computing the FFT of
the two vectors, (ii) computing the element-by-element
product of the transformed vectors and (iii) computing
the inverse FFT of the product. The FFTW [8] and the
CUFFT [20] libraries have been utilized to perform the
FFT and the inverse FFT on CPU and GPU, respec-
tively. The built-in shared-memory parallelism of the
FFTW library has been utilized along with a pthread
implementation of the element-by-element multipli-
cation to obtain the multi-core CPU implementation.
A custom kernel has been implemented to perform the
element-by-element product on the GPU. Both Type I
and Type II parallelization strategies have been em-
ployed in this example.
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Table 4

Gains in computational efficiency for Example 3

No. of DOF SMC SGS SGM

SP DP SP DP

Nt = 1024

60 6.23 245.44 132.54 45.11 21.26

124 6.84 233.62 145.32 37.49 21.26

252 7.33 294.83 151.90 44.01 20.73

Nt = 8192

64 7.36 337.54 384.71 54.52 52.28

128 7.42 692.61 806.69 102.65 108.69

256 7.40 1206.95 881.04 181.84 119.05

The gain in computational efficiency obtained us-
ing the multi-core CPU implementation approaches 8
and hence, has been characterized to be optimal. Ta-
ble 4 shows the gains in computational efficiency ob-
tained by the GPU implementation for different cases.
For the largest considered problem size, the GPU im-
plementation shows a gain in computational efficiency
of about 1200 and 180 times for SP and DP compu-
tations, respectively, compared to the single-core CPU
implementation, and about 880 and 120 times com-
pared to the multi-core CPU implementation for SP
and DP computations, respectively.

In the GPU implementation, the FFT operations
only consume about 20% of the computational time.
Since the CUFFT library has been utilized, this por-
tion of computation is assumed to be already optimal
in performance. The new GPU kernel, which performs
the element-by-element multiplication of the pertinent
complex matrices, has a memory-only performance of
80.57 GB/s. With a CGMA ratio of 1.5 for both SP and
DP computations, it is clearly memory-bound, having
a theoretical peak performance of 38.25 Gflop/s in SP
and 19.12 Gflop/s in DP computations, as computed
from (12). In the new GPU kernel, one thread-block
computes one sample of the response of the system.
The observed performance is 26.50 and 15.75 Gflop/s
in SP and DP respectively, which is approximately
70% and 82% of the theoretically predicted perfor-
mance for SP and DP. Such behavior is expected be-
cause the custom GPU kernel is memory-bound, and
shows a memory throughput of approximately 79%
of the theoretically available memory-bandwidth. The
custom kernel again utilizes the cuComplex and cu-
DoubleComplex data structures provided by the
CUDA runtime library as in the previous example. The
transformed impulse response matrix, H, of the sys-
tem is stored as a two-dimensional (2D) array of size

Nf × Ns where Nf is the number of frequency points
and Ns is the number of states squared. Samples of the
load, P, are stored in a 2D array of size Nf × Nls where
Nls is the number of load samples. Each thread-block
computes the element-by-element product of H with
one column of P. Within a thread-block, each thread
performs element-by-element product of one row of
H with the corresponding element of its load vector.
Such a task division provides two advantages: (i) since
the matrices are stored in column-major format, at a
given time successive threads access successive ele-
ments of a column of the matrix which ensures mem-
ory coalescence and (ii) each thread-block can collec-
tively store the required sample of the load vector in
shared-memory which reduces the number of global
memory accesses.

This example again demonstrates the mixed ap-
proach, where existing GPU library routines have been
utilized in conjunction with a new GPU kernel. How-
ever, in this example, the majority of the computa-
tion is performed by the new kernel, and consequently,
the gains in computational efficiency are considerably
higher when compared to those of the previous two ex-
amples.

3.4. Example 4

The fourth example considers a single degree-of-
freedom dynamical system as shown in Fig. 6. The sys-
tem is assumed to have a nonlinear damping term and
is subjected to a random load given by:

f (t) = A · [sin(t) + εt], (14)

where A is the amplitude of the load and εt is a unit
intensity Gaussian white noise random process. The
equation of motion of the dynamical system is given
by:

mẍ + cẋ + sgn(ẋ)|ẋ|0.5 + kx = f (t), (15)

where m = 2 kg, c = 1.6 Ns/m and k = 62.84 N/m are
the mass, damping and stiffness of the system, respec-
tively. A fourth-order explicit Rünge–Kutta method
has been employed to numerically integrate the equa-

Fig. 6. Single degree-of-freedom system.
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Fig. 7. Work division between threads for Example 4.

tion of motion. A 10 s time-history has been computed
with Nt = 1001 discrete points in time for a varying
number of samples, Ns, of the input.

Since the size of the system is small, parallelism is
exploited across the number of samples, i.e., Type I
parallelization strategy has been employed. In both the
GPU and the CPU implementations, each thread com-
putes one sample of the response of the system, as
shown in Fig. 7. ‘RK’ denotes the Rünge–Kutta ODE
solver, f (i)(t) is the ith sample of the random input to
the system and x(i)(t) and ẋ(i)(t) are the corresponding
displacement and velocity time-histories. Ti represents
ith parallel thread, i.e., thread with index i. A pthread
implementation has been utilized to distribute the work
among parallel CPU threads. Table 5 shows the gains
in computational efficiency obtained for this example,
given as a function of the number of samples com-
puted. The gain in computational efficiency obtained
using the multi-core CPU implementation asymptot-
ically approaches 8, which is the maximum achiev-
able theoretical value, as discussed earlier. The GPU
implementation displays a gain in computational effi-
ciency of about 2300 times compared to the single-core
CPU implementation and about 300 times compared to
the multi-core CPU implementation for SP computa-
tions for the largest considered problem size. The cor-
responding gains in computational efficiency for DP
computations are observed to be 140 and 19 times, re-
spectively.

The CGMA ratio is 49 for SP and 72 for DP. Since
the number of global memory accesses is the same
for both SP and DP, the difference in the CGMA is
due to the difference in the number of compute in-
structions. Though the same GPU kernel is utilized for
both SP and DP computations, the difference in the
number of compute instructions arises due to differ-
ent implementations of the divide and the sine func-
tion at compiler-level. CUDA implements fast versions
of floating-point division and transcendental functions
(sine, cosine, etc.) for SP, which are not available for

Table 5

Optimized gains in computational efficiency for Example 4

No. of samples SMC SGS SGM

SP DP SP DP

1 0.39 0.48 0.07 1.25 0.20

10 1.88 4.63 0.73 2.47 0.39

100 2.56 44.16 5.22 17.24 2.06

1000 4.39 426.93 51.80 97.27 11.94

10,000 6.58 1994.32 121.78 303.09 18.83

50,000 7.47 2321.44 135.79 310.72 18.57

100,000 7.63 2336.58 138.08 306.37 18.37

DP, thus, causing the performance gap observed be-
tween the two. Based on the CGMA ratio, it is clear
that the GPU implementation is compute-bound.

The observed performance for SP and DP computa-
tions is 536.78 and 51.48 Gflop/s, respectively. These
are approximately 50% of that of their respective theo-
retical peaks. The difference between the observed and
the theoretical performance of the GPU implementa-
tion can be attributed to low processor occupancy (25%
for SP and 18.8% for DP computations) and high in-
struction overhead. The processor occupancy is low
due to high register pressure which, again, is due to a
fairly large number of instructions in the GPU kernel.
The size of the GPU kernel is large because each thread
is used to compute one sample of the dynamic response
of the system, and therefore, each thread must imple-
ment the four-stage explicit Rünge–Kutta method to
solve the dynamical system. All the loops have been
unrolled inside the kernel in order to improve compu-
tational efficiency, which also adds to the size of the
kernel.

A non-conventional data-structure has been utilized
for storing the samples of the dynamic response of the
system in order to ensure that the accesses to the global
memory are coalesced. An intuitive data-structure to
store the response samples of the system, which has
been utilized for the single- and multi-core CPU im-
plementations is shown in Fig. 8. The subscripts de-
note the time-step and the superscripts denote the sam-

ple number of the response, i.e., x(j)
i = x(j)(ti) is the

jth sample of the displacement at time ti of the system.
Adjacent cells represent contiguous memory locations.

It can be observed that each thread accesses two
sets of contiguous memory locations in order to store
the displacement and the velocity of the system, which
are separated by Nt memory locations. As the time-
marching progresses, these two memory locations shift
to the right by a stride of unity. Threads with consecu-
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Fig. 8. Intuitive data-structure used for CPU implementations of
Example 4.

tive indices access memory locations that are separated
by a distance 2Nt, which is the number of memory lo-
cations required to store entirely, one sample of the dy-
namic response of the system. Thus, adjacent threads
do not access adjacent memory locations. Such a mem-
ory access pattern does not affect the performance of
the CPU implementations. However, in GPU imple-
mentations, such a memory access pattern is referred
to as non-coalesced memory access and can cause con-
siderable degradation in the performance of the GPU
kernel.

If a similar data-structure is utilized for the GPU
implementation, its memory-only performance is only
4.68 GB/s, which is considerably less than the theoreti-
cally attainable peak memory throughput of 102 GB/s.
Consequently, the observed gains in computational ef-
ficiency are considerably reduced as shown in Ta-
ble 6. It can be observed that the efficiency for SP
is diminished by an order of magnitude. If the ker-
nel was memory-bound with a memory throughput of
4.68 GB/s, the performance for SP and DP computa-
tions would be 28.66 and 42.12 Gflop/s, respectively,
as compared to 536.78 and 51.48 Gflop/s observed for
the optimized kernel. This is why the performance of
SP computations is more severely affected than that of
DP computations. Moreover, it can be observed that
a non-coalesced memory access pattern can render an
otherwise compute-bound kernel, memory-bound thus
drastically degrading its performance.

In order to ensure coalesced memory access and
improve the memory throughput, a non-conventional
data-structure has been utilized for the GPU imple-
mentation, as shown in Fig. 9. Each thread accesses
two contiguous memory locations to store its sam-
ple of the displacement and the velocity of the sys-
tem for current time; successive threads utilize succes-
sive memory locations to store their respective sam-
ples. As the time-marching progresses, the entire ac-
cess pattern is shifted towards the right by a stride
of 2Ns. Thus, memory coalescing is ensured for the
entire time-marching scheme. The memory-only per-
formance of the optimized GPU implementation is
76.4 GB/s, which is considerably better compared to
the earlier 4.68 GB/s.

Table 6

Unoptimized gains in computational efficiency for Example 4

No. of samples SMC SGS SGM

SP DP SP DP

1 0.29 0.34 0.07 1.17 0.24

10 1.82 1.26 0.71 0.69 0.39

100 2.26 9.37 5.33 4.15 2.34

1000 4.49 94.03 51.20 20.94 11.40

10,000 6.54 142.60 111.60 21.80 17.06

50,000 7.07 145.74 120.69 20.61 17.07

100,000 7.33 147.72 122.35 20.15 16.69

Fig. 9. Data-structure used for GPU implementation of Example 4.

This example demonstrates the second implementa-
tion approach where a completely new GPU kernel has
been implemented and demonstrates the best gains in
computational efficiency among all the examples pre-
sented herein.

3.5. Example 5

In the final example, Gauss–Hermite quadrature has
been utilized to compute the expected value of a func-
tion of N standard, normally distributed random vari-
ables. The function to be integrated is given by:

g(q) = qTq. (16)

Both the CPU and the GPU implementations first eval-
uate the integrand at the quadrature points in paral-
lel, and then perform a parallel sum-reduction to com-
pute the approximate expected value. OpenMP [24]
has been utilized for the multi-core CPU implementa-
tion. Four Gauss points (Na = 4) in each dimension
were utilized for the quadrature.

Table 7 shows the gains in computational efficiency
obtained for this example. For the largest considered
problem size, the GPU implementation shows gains
in computational efficiency of about 50 times and
30 times for SP and DP computations, respectively,
when compared to the single-core CPU implementa-
tion. Compared to the multi-core CPU implementation,
the corresponding gains in computational efficiency
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Table 7

Gains in computational efficiency for Example 5

No. of dimensions SMC SGS SGM

SP DP SP DP

6 0.01 1.17 1.34 403.89 149.89

7 0.02 3.42 4.13 368.69 259.41

8 0.04 15.01 8.60 345.59 204.16

9 0.16 33.76 25.07 116.11 153.53

10 1.71 39.31 37.02 19.43 21.70

11 2.74 49.44 34.00 19.23 12.41

12 4.46 56.12 27.31 14.71 6.13

13 4.75 56.59 28.90 11.76 6.08

14 5.92 54.48 27.98 10.68 4.72

15 6.16 54.43 28.11 9.60 4.56

are about 10 and 5 times, respectively for SP and DP
computations. While the gains in computational effi-
ciency shown by the GPU implementation compared to
multi-core CPU implementation is not as great as those
of the previous examples, it should be noted that for
smaller dimensions, the multi-core CPU implementa-
tion is computationally much inferior to the single-core
CPU implementation while the GPU implementation
offers reasonable efficiency gains.

The GPU implementation consists of two kernels.
The first kernel evaluates the integrand at the quadra-
ture points and performs a parallel sum-reduction on
the data to compute the expected value. However,
the parallel reduction can only be performed within a
thread-block due to the fact that threads from differ-
ent thread-blocks cannot communicate with each other.
Therefore, a second GPU kernel is required, which
performs the parallel sum-reduction on the data recur-
sively until the data can fit within one thread-block and
the approximate expected value can be computed.

The first kernel consumes about 99% of the total
computational time and thus governs the performance
of the GPU implementation. It achieves a memory
throughput of only 0.83 GB/s due to conditional access
of the global memory by the threads. The CGMA ratio
changes with the number of dimensions in the first ker-
nel because as the number of dimensions increase, the
number of arithmetic operations increase considerably
while the number of global memory accesses increase
only slightly.

Each thread is utilized to compute the value of the
integrand at one mesh-point. Since a tensor-product
multi-dimensional quadrature is being performed, the
abscissas and the weights at each mesh-point are com-
puted as the combination of appropriate abscissas and
weights of the corresponding one-dimensional quadra-

Fig. 10. Mesh decomposition into parallel threads for Example 5.

ture rule. In order to avoid conditional statements
based on the thread-index to determine which abscissas
and weights are to be utilized for each function evalu-
ation, the thread-indices are converted into length-N ,
base-Na bit-strings, using the first few required ASCII
characters. These bit-values can be directly cast into
integers that index the abscissas and the weights of the
one-dimensional quadrature rule required to compute
the abscissa and the weight at a particular mesh-point
of the N -dimensional space. The function values, now
being computed, are stored in a shared-memory array
within each thread-block, which is utilized towards the
end of the first kernel to perform a preliminary parallel
sum-reduction.

This idea is illustrated in Fig. 10. A mesh is shown
with N = 3 and Na = 2. The tensor-product abscis-
sas and the corresponding weights are shown near each
mesh-point. Thread index is also shown in Fig. 10; this
index is utilized to evaluate the function at that partic-
ular mesh-point. The mesh-points are assigned to the
threads in a way that a length-3, base-2 bit-string of the
thread index can be utilized to determine the combina-
tion of the one-dimensional quadrature rule abscissas
and weights, required for the tensor-product quadrature
rule. It can be seen that these bit-strings, 010 = (000)2,
110 = (001)2, 210 = (010)2, etc., represent the com-
bination of the abscissas and the weights exactly, and
conditional statements can be avoided.

Although the CGMA ratio increases with the num-
ber of dimensions, 20 for 6 dimensions to 47 for 15
dimensions, rendering the implementation compute-
bound for larger dimensions, the observed perfor-
mance is only 50.61 Gflop/s for SP and 24.26 Gflop/s
for DP computations. There are two primary sources
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of the sub-optimal performance of the GPU implemen-
tation of this example: (i) the presence of a large num-
ber of thread synchronization points within the thread-
blocks and (ii) the presence of conditional statements
causing divergent branches of threads. Both the syn-
chronization points and the conditional statements are
necessitated by the parallel sum-reduction.

This example also utilizes a completely new GPU
implementation, but the gains in computational per-
formance are not as great as in the previous example
due to the different nature of the problem, as discussed
above.

4. Discussion and conclusions

GPUs have rapidly expanded their influence to gen-
eral purpose computing problems and have established
themselves as competent alternatives to the traditional
CPU-based parallel computing. They offer teraflop/s
computing power within the energy and financial de-
mands of that of a usual desktop computer. A large
number of existing algorithms have already been im-
plemented on GPU to harness its enormous comput-
ing power and as a result, more and more researchers
are exploring the potential of GPU computing in their
respective fields.

This study presented GPU implementations of five
techniques frequently used in the uncertainty quantifi-
cation of dynamical and mechanical systems and pro-
vided significant evidence of the potential of the use of
GPUs in this area. The first four examples presented
implementations of static and dynamic reanalysis tech-
niques, which can be easily adapted to other analysis
procedures, such as sensitivity analysis, model valida-
tion and calibration, and design exploration and opti-
mization. The final example presented the implemen-
tation of a multi-dimensional numerical quadrature
scheme, which is utilized in many uncertainty quan-
tification procedures. These procedures include non-
intrusive methods, such as sampling strategies, deter-
ministic integration approach and sparse grid cubature,
as well as intrusive methods, such as the stochastic
Galerkin method.

It is expected that the GPU implementations pre-
sented in this study will serve as initial bases for fur-
ther developments in the use of GPUs in the field of
uncertainty quantification. The specific discussions re-
garding the GPU kernels developed for the numerical
examples are expected to (i) aid the understanding of
the performance constraints on the relevant GPU ker-

nels and (ii) provide some guidance regarding the com-
putational and the data structures to be utilized in novel
applications of GPU computing in the problems related
to uncertainty quantification.

The performance of the new algorithms was mea-
sured and compared with corresponding single- and
multi-core CPU implementations and gains in com-
putational efficiency of up to three orders of magni-
tude with respect to single-core CPU implementations
and two orders of magnitude with respect to multi-
core CPU implementations were observed. Thus, a sin-
gle GPU showed computational performance equiva-
lent to a cluster of CPUs consisting of approximately
O(102–103) cores for the analyses considered.

The gains in efficiency presented here promise to
be further increased as the NVIDIA Tesla GPU uti-
lized for this study has been superseded by the newer
Fermi GPU from NVIDIA. The Fermi offers consider-
able upgrades in performance compared to the Tesla.
It has a larger number of computational cores, larger
global and shared memory, a greater number of regis-
ters per thread, higher memory bandwidth, and greatly
increased double precision performance. More impor-
tantly, the shared memory of the Fermi can also be uti-
lized as L1 cache at the discretion of the programmer
which may help hide the memory latency to a great ex-
tent. The larger number of available registers per thread
along with the increased double precision performance
will further increase the computational performance
of Example 4, which is compute-bound and performs
poorly in double precision due to register pressure. The
increased memory bandwidth and the availability of
L1 cache will have a direct impact on the performance
of the remaining examples which are memory-bound.
The availability of a greater number of computational
cores will have a positive effect on the efficiency of
all the examples as more thread warps can be executed
concurrently. In addition, the Fermi also has error code
checking (ECC) support which improves the perfor-
mance of clusters of GPUs.

The hardware development of the GPUs and their
application in general purpose computing have formed
a complimentary pair with each of them driving the
development of the other. This trend can be clearly
observed from the hardware evolution history of the
GPUs along with the footprint of the applications
that utilize the computing power of the GPUs. It has
been shown in this study that GPUs offer considerable
advantages in uncertainty quantification problems in
computational mechanics and dynamics. While an ex-
clusive use of GPUs may not be optimal for very large
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problems, there is definitely potential for the mixed use
of CPUs and GPUs in this area. This use of heteroge-
neous computing resources in uncertainty quantifica-
tion is one thrust of future investigations in this area.
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