
Scientific Programming 20 (2012) 151–180 151
DOI 10.3233/SPR-2012-0340
IOS Press

Solving PDEs with Intrepid

P. Bochev a,∗, H.C. Edwards b, R.C. Kirby c, K. Peterson a and D. Ridzal d

a Department of Numerical Analysis and Applications, Sandia National Laboratories∗∗, Albuquerque, NM, USA
b Department of Multiphysics Simulation Technologies, Sandia National Laboratories, Albuquerque, NM, USA
c Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, USA
d Optimization and Uncertainty Quantification Department, Sandia National Laboratories, Albuquerque, NM, USA

Abstract. Intrepid is a Trilinos package for advanced discretizations of Partial Differential Equations (PDEs). The package
provides a comprehensive set of tools for local, cell-based construction of a wide range of numerical methods for PDEs. This
paper describes the mathematical ideas and software design principles incorporated in the package. We also provide representative
examples showcasing the use of Intrepid both in the context of numerical PDEs and the more general context of data analysis.

Keywords: Compatible discretizations, finite element method, partial differential equations, software design

1. Introduction

Intrepid is a Trilinos package for advanced dis-
cretizations of Partial Differential Equations (PDEs).
The package provides a comprehensive set of tools for
local, cell-based construction of a wide range of nu-
merical methods for PDEs. This paper describes the
mathematical ideas and software design principles in-
corporated in the package. We also provide represen-
tative examples showcasing the use of Intrepid both in
the context of numerical PDEs and the more general
context of data analysis.

The mathematical roots of Intrepid are in the ab-
stract framework for compatible discretizations [6].
This framework prompted a reevaluation of traditional
software designs for PDE discretizations, which usu-
ally target a single discretization paradigm such as Fi-
nite Element Methods (FEM), Finite Volume Methods
(FVM) or Finite Difference Methods (FDM). Intrepid
aims to translate these mathematical similarities into
software-based similarities.

Finding software abstractions that unify these dis-
parate families of methods differentiates Intrepid from

*Corresponding author: P. Bochev, Department of Numerical
Analysis and Applications, Sandia National Laboratories, Mail Stop
1320, Albuquerque 87185-1320, NM, USA. E-mail: pbboche@
sandia.gov.

**Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned sub-
sidiary of Lockheed Martin Corporation, for the US Department of
Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

existing PDE software. Software packages such as
Chombo (seesar.lbl.gov/anag/chombo), Overture
(computation.llnl.gov/casc/Overture) and ClawPack
(www.clawpack.org) target FDM and FVM on adaptive
block structured meshes, whereas deal.ii (www.dealii.
org), HERMES (hpfem.org/hermes), Sundance (www.
math.ttu.edu/~kelong/Sundance/html/), MFEM (code.
google.com/p/mfem), FEMSTER [13], EMSolve [43]
and FEniCS (www.fenicsproject.org) support primarily
FEM, based on weak variational forms of the PDEs.

Additionally, such packages attempt to integrate the
entire user experience, providing tools for meshes,
global assembly and interfaces to linear algebra. Some
packages, such as FEniCS and Sundance, even pro-
vide an embedded description language of weak forms
and automate the construction of stiffness matrices.
Intrepid expresses a much lower level of abstrac-
tion, targeting the elementwise aspects of discretiza-
tion via stateless methods on flat data structures.
Existing large-scale application codes, such as the mul-
tiphysics simulation environments Drekar [36] and Al-
bany [31], currently use Intrepid, but one could also en-
vision Intrepid as a back-end for FEniCS or Sundance.
As such, Intrepid represents a kind of middleware be-
tween higher-level software architecture and lower-
level numerics that provides basis functions, transfor-
mations, and integration to diverse client codes.

We organize the paper as follows. Section 2 briefly
reviews the key mathematical concepts incorporated in
Intrepid. Section 3 explains the basic design principles
adopted by Intrepid, and Section 4 explains the struc-
ture of the package. Section 5 contains examples of

1058-9244/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

152 P. Bochev et al. / Solving PDEs with Intrepid

computational patterns arising in the discretization of
differential operators. The paper concludes with a brief
summary of additional capabilities and future direc-
tions in Section 6.

2. Mathematical foundations of Intrepid

PDEs are ubiquitous in mathematical modelings of
natural phenomena. As a result, predictive computa-
tional simulations in many science and engineering
fields require stable and accurate numerical solution
of PDEs. Discretization translates PDEs into algebraic
models that can be solved on computers and repre-
sents a key juncture in this task. Inevitably, discretiza-
tion leads to information losses about the mathematical
structure of the original problem.

Compatible discretizations transform PDEs into al-
gebraic equations that mimic their fundamental struc-
tural properties. This is especially relevant for multi-
physics problems where unphysical modes from one
component may cause instability in the other compo-
nents. To achieve compatibility, FEM, FVM and FDM
follow different paths, reflecting their distinct mathe-
matical roots.

FEM are variational methods that approximate
spaces rather than (weak) PDE equations. For lin-
ear PDE’s inf–sup conditions ensure the existence of
bounded solution operators [2,9], and govern compati-
bility of FEM. For non-linear PDEs compatibility con-
ditions can be inferred from the linearized equations
under some additional assumptions [10,20]. FVM re-
place PDEs by integral equations expressing equilib-
riums of global quantities on arbitrary subdomains of
the problem domain. Restriction of these equilibrium
relations to a finite number of subdomains (the finite
volumes) yields the discretization. Application of the
Stokes theorem to derive the equilibrium relations is
key to the compatibility of FVM [30,39]. Finally, FDM
approximate directly the differential operators in the
PDE. Physically motivated locations of variables on
the grid ensure the compatibility of these methods [21,
34,45].

However, in spite of their differences, compatible
FEM, FVM and FDM tend to produce discrete prob-
lems with strikingly similar properties. This observa-
tion led to the discovery of a common trait that un-
derwrites compatible FEM, FVM and FDM, namely
the notion of a “discrete vector calculus” structure, i.e.,
mutually consistent operations for integration and dif-

ferentiation, which obey vector calculus identities and
theorems [1,6,8,34].

The existence of such a common trait across dif-
ferent discretizations motivates the development of the
Intrepid package. Intrepid aims to provide a common
API for mesh-based discretization methods, which en-
ables virtually unlimited extensibility of the package to
new FEM, FVM and FDM formulations. To this end,
the abstract framework in [6] guides Intrepid’s API
design. This section reviews the key concepts of the
framework and how they influence the development of
Intrepid. While the abstract framework is rooted in the
notions of exterior differential calculus [18], we note
that a knowledge thereof is not required to understand
and use Intrepid. For example, a familiarity with finite
element texts such as [17] is sufficient to master In-
trepid’s FEM functionality.

2.1. Exterior calculus

For brevity, we restrict attention to bounded, simply
connected regions Ω in three-dimensions. The symbol
Λk(Ω), k = 0, 1, 2, 3, stands for smooth differential k-
forms, or simply forms, x �→ ω(x) ∈ Λk(TxΩ), where
TxΩ is the tangent manifold to Ω at x. We recall the
wedge product ∧ : Λk(Ω) × Λl(Ω) �→ Λk+l(Ω) and the
exterior derivative d : Λk(Ω) �→ Λk+1(Ω). The relation
dd = 0 gives rise to the exact sequence

R −→ Λ0 d−→ Λ1 d−→ Λ2 d−→ Λ3 −→ 0, (1)

called DeRham complex. Assuming that Ω is a Rie-
mannian manifold, the metric structure gives rise
to an inner product (·, ·) on Λk(Ω) and an adjoint
d∗ : Λk+1 �→ Λk, viz.:

(dω, η) = (ω, d∗η). (2)

The completion of Λk(Ω) with respect to the inner
product is the Hilbert space of square integrable dif-
ferential forms Λk(L2, Ω). We also have the Sobolev
spaces Λk(d, Ω) = {ω ∈ Λk(L2, Ω) | dω ∈ Λk+1(L2,
Ω).

The DeRham complex (1) and its dual relative to d∗

are exterior calculus notions that can encode the struc-
ture of a large class of PDEs composed from d, d∗, and
their higher-order products such as dd∗ and d∗d. Con-
sequently, building finite-dimensional “exterior calcu-
lus” structures for FEM, FVM and FDM is now the
standard approach to design and analyze compatible
discretization methods for PDEs [1,6,30,43].

P. Bochev et al. / Solving PDEs with Intrepid 153

2.2. Discrete exterior calculus

The algebraic topology framework for compatible
discretizations [6] provides discrete “exterior calcu-
lus”, which includes the classes of FEM [8,42], FVM
[29] and FDM [34] as particular cases.

Interpretation of the grid and the data as chain and
cochain complexes, respectively, is essential for the
construction of the discrete exterior calculus structures
in the framework. Specifically, we consider computa-
tional grids Ωh consisting of 0-cells (nodes), 1-cells
(edges), 2-cells (faces) and 3-cells (volumes). Formal
linear combinations of k-cells are called k-chains [15].
The sets of k-chains forming Ωh are denoted by Ck.
We will assume1 that Ωh is such that the collection
{C0, C1, C2, C3} is a chain complex, i.e., for any c ∈
Ck, ∂kc ∈ Ck−1, where ∂k : Ck �→ Ck−1 is the bound-
ary operator on k-chains [12]. Together with the iden-
tity ∂k ∂k+1 = 0 this gives rise to the exact sequence

0 ←− C0
∂1←− C1

∂2←− C2
∂3←− C3 ←− 0. (3)

The dual of Ck, i.e., the space of all bounded lin-
ear functionals Ck �→ R, is denoted by Ck. The ele-
ments of Ck are called co-chains and the duality pair-
ing between chains and cochains is 〈·, · 〉. The identity
〈∂ck+1, ck 〉 = 〈ck+1, δck 〉 defines an adjoint δ : Ck �→
Ck+1 of ∂, called coboundary. It satisfies δk+1δk = 0
and gives rise to the exact sequence

R −→ C0 δ0−→ C1 δ1−→ C2 δ2−→ C3 −→ 0. (4)

The chain and cochain complexes represent the
mesh and the data structures, respectively, in our
framework. Two basic operators define the rest of the
structures necessary for a self-consistent discrete exte-
rior calculus. The reduction operator R : Λk(d, Ω) �→
Ck translates forms to cochains and is given by the
DeRham map

〈Rω, ck 〉 =
∫

ck

ω.

The DeRham map establishes discrete representation
of k-forms in terms of global quantities associated with
the chain complex (the computational grid). It has the
important Commuting Diagram Property (CDP) Rd =
δR. The reconstruction operator I : Ck �→ Λk(L2, Ω)

1This assumption can be easily satisfied for most grids, including
grids with hanging nodes, by representing k-cells that have hanging
nodes as unions of k-cells.

translates cochains back to forms. The range of this op-
erator is a finite-dimensional subspace of Λk(L2, Ω).
When the range of I is in the Sobolev space Λk(d, Ω)
we call I conforming. We denote Λk

h(I , Ω) = range(I)
and call it discrete space associated with I . Let
dim Ck = Nk and {ei} be the canonical basis of R

Nk .
Because Ck ∼= R

Nk and Λk
h(I , Ω) ∼= Ck, it fol-

lows that {ei} is a basis of Ck and {I ei} is a basis
of Λk

h(I , Ω). For obvious reasons we refer to the latter
as the canonical basis of the discrete space. Therefore,
a reconstruction operator I also gives rise to a notion
of a functional basis for any discretization.

There are many possible ways to define I , however,
to obtain an accurate and self-consistent discrete exte-
rior calculus, I must satisfy

RI = I and I R = I + O(hr), (5)

where h is average cell size in the chain complex and
r is a positive integer. In other words a “good” recon-
struction operator I is a right inverse and approximate
left inverse of the reduction operator.

Discrete operations. The exactness of (4) implies
that δ is a compatible approximation of the exterior
derivative d, i.e., it provides a discrete gradient, curl
and divergence, which satisfy the standard vector cal-
culus identities ∇ × ∇ = 0 and ∇ · ∇× = 0. The dis-
cretization of d∗ requires an inner product on cochains.
We define this inner product using the reconstruction
operator and the inner product on Λk:

(a, b)Ck := (Ia, Ib).

The identity (δ∗a, b)Ck = (a, δb)Ck+1 defines the ad-
joint δ∗ : Ck+1 �→ Ck. This operator satisfies δ∗δ∗ =
0 and so it provides a second set of compatible dis-
cretizations for grad, curl and div. Using δ and δ∗ one
can obtain compatible discretizations of further differ-
ential operators such as the discrete Hodge Laplacian
Δk : Ck �→ Ck, Δk = δδ∗ + δ∗δ. For additional opera-
tions such as discrete integral and exterior product we
refer to [6].

Mimetic properties. To sum it up, our abstract frame-
work comprises of a computational domain, repre-
sented by a chain complex {C0, C1, C2, C3}, discrete
fields, represented by a cochain complex {C0, C1, C2,
C3}, reduction and reconstruction operators, and no-
tions of a discrete inner product on cochains, inte-
gral, derivative, adjoint derivative, and wedge prod-
uct, to name a few. The framework represents a self-

154 P. Bochev et al. / Solving PDEs with Intrepid

consistent discrete exterior calculus structure. Some of
its key mimetic properties are as follows:

(1) Exactness: δδ = δ∗δ∗ = 0.
(2) A discrete Stokes theorem: 〈δck−1, ck 〉 = 〈ck−1,

∂ck 〉.
(3) A discrete Hodge decomposition: a = δb+δ∗c+

h for a ∈ Ck, where δh = δ∗h = 0.

For proofs and further properties we refer to [6].

Application of the framework to API design. One of
the key conclusions in [6] is that for a large class
of compatible discretizations the distinctions between
FEM, FVM or FDM result from specific implementa-
tions of I , i.e., the choice of the reconstruction oper-
ator defines the method. Figure 1 shows examples of

reconstruction operators corresponding to compatible
FVM, FDM and FEM, which yield numerical methods
with very similar properties.

Because in our framework the type of the com-
patible discretization is selected through a choice of
the reconstruction operator, translation of PDEs into
structure-preserving algebraic problems assumes the
generic form in Fig. 2. In other words, our frame-
work reveals a generic discretization pattern shared by
a large class of FEM, FVM and FDM. This pattern mo-
tivates the design of Intrepid’s API.

Intrepid is designed to operate locally on cells or
batches of cells having the same topology and data
type. In order to support reconstruction operators for
a range of data types represented by k-cochains, In-

Fig. 1. Examples of three different reconstruction operators for 1-cochains, corresponding to compatible FVM, FDM and FEM. The covolume
I (leftmost plot) divides the simplex into three subsimplices by connecting the circumcenter of with its vertices. Each subsimplex is bordered
by exactly one of the edges. The covolume reconstruction operator maps the 1-cochain into a 1-form whose associated vector field is piecewise
constant on each subsimplex. Mimetic reconstruction (center plot) acts in a similar way to recover a form with a piecewise constant vector field.
The subregions are associated with the vertices, have quadrilateral shapes, and are bordered by the edges adjacent to each vertex. The finite
element reconstruction (rightmost plot) is an example of a conforming mimetic reconstruction operator. It maps the 1-cochain to a polynomial
1-form using a basis of polynomial 1-forms λi∇λj associated with the edges eij of the simplex. Here λi are the barycentric coordinates of the
simplex. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2012-0340.)

Fig. 2. In the abstract framework, the formulation of compatible FEM, FVM and FDM is a generic process in which a particular method results
from a particular choice of the reconstruction operator. The conforming reconstruction via pullback to a reference cell is typical of finite element
methods. Finite volume and finite difference schemes usually employ direct reconstruction in physical coordinates. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-2012-0340.)

P. Bochev et al. / Solving PDEs with Intrepid 155

Cell Type & shape
(0,1,2,3-chain)

Higher orders:

Arbitrary cells:

Cell Operators
Reconstruction

basis

Data Type
(0,1,2,3-cochain)

Fig. 3. Intrepid’s design enables the implementation of a generic discretization pattern that includes compatible FEM, FVM and FDM. Because
Intrepid operates locally on cells, it can also support a wider class of discretization methods, such as stabilized and discontinuous FEM as well
as spectral methods. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2012-0340.)

trepid separates cell topology from the reconstruction
process; see Fig. 3. In other words, the reconstruction
“basis” and its evaluation points are not tied to a par-
ticular cell topology.2

This design strategy allows us to “mix and match”
cell topologies with reconstruction operators and eval-
uation points and enables a virtually unlimited gener-
ation of new discretization methods from a relatively
small number of basic components.

3. Software design principles

Intrepid provides extensive numerical functionality
for basis functions, geometric transformations, and in-
tegration. These routines work on a very wide range
of cells (including simplicial and rectangular reference
cells). Intrepid does not make any assumptions about
the client code’s global discretization data structures,
e.g., the global mesh connectivity data structure or
global sparse linear system data structure.

Our goal is to provide client codes with a robust,
extensible, and reusable infrastructure of discretization
computations. Our strategy is to deliver this function-
ality through an interface consisting largely of stateless
functions that stream over large chunks of data stored
in multidimensional arrays. These arrays contain data
associated with homogeneous collections of cells, i.e.,
cells of the same type, shape, bases and cubature.

2Traditional FE for structural analysis often tie element shape to-
gether with a basis type and a set of integration points. For exam-
ple, Quad4 typically refers to the combination of (1) a quadrilateral
cell topology with (2) bilinear Lagrange reconstruction of 0-cochains
(vertex values) and (3) 2 × 2 Gauss integration rule. Intrepid decou-
ples these three notions.

The strategy for stateless functions with “flat” inter-
faces has several advantages. First, Intrepid does not
control memory and contains no specialized data struc-
tures. As such there is no hidden state information that
the client code has to be concerned with. Second, In-
trepid functions operate over batches of cells, receiv-
ing and returning data through a generalized multidi-
mensional array interface. Clients may use Intrepid’s
extensive library of basis functions and cubature rules,
or load their own basis evaluations and cubature rules
into arrays. For client codes that use multidimensional
arrays this interface eliminates the need to marshal
between specialized data structures, which can have
a significant performance penalty. Third, this array-
based interface allows calculations to be outsourced
to level-3 BLAS routines or to optimized tensor con-
traction functions. Finally, our stateless, array-based
compute-intensive functions can be easily migrated to
multicore implementations. Our focus on this particu-
lar data layout and the resulting simplification of inter-
faces and program structure (now just loops over ar-
rays) provides an example of data-driven design [32].

In fact, many of our computational functions work
at an abstraction level similar to FORTRAN-77. How-
ever, a FORTRAN implementation would require users
to explicitly (1) manage pointers to memory (with its
potential safety pitfalls), (2) create versions of func-
tions for each desired data type (no templates) and
(3) conform to a particular multidimensional data lay-
out. Our generalized multidimensional array interface
is agnostic with respect to data layout – allowing client
code to control or tailor the layout for performance.
Furthermore, most of our users architect the higher-
level portions of their code in C++, so the C++ inter-
face is appealing to avoid inter-language issues.

156 P. Bochev et al. / Solving PDEs with Intrepid

We have emphasized testing and verification in In-
trepid. We enforce strict preconditions in debug mode
and have an extensive suite of unit tests for con-
trol flow, statement, decision, condition, modified con-
dition/decision and loop coverage. We also include
higher-level tests tying together multiple functions,
such as the testing of higher-order basis functions and
numerical integration rules by solving a simple PDE
on a single cell and comparing the results to exact so-
lutions.

3.1. Multidimensional arrays

The multidimensional array (MDArray) is a funda-
mental concept for managing a wide range of numer-
ical data arising in physics-based simulations in gen-
eral and the numerical solution of PDEs in particular.
An MDArray is a collection of members of a given
scalar data type, which are identified through a multi-
index. A scalar data type is typically a fundamental
mathematical type of the computational language, e.g.,
in C or C++ the double, float, complex, or possibly
integer types. The data type can also be a sophisti-
cated C++ class that supports the standard mathemat-
ical behavior of a scalar type. For example, mathe-
matical algorithms can be augmented with automatic
differentiation capabilities through “scalar types” that
aggregate the evaluation of a mathematical expression
and selected partial derivatives of that evaluation, as
provided, e.g., by the Trilinos package Sacado [31]
(trilinos.sandia.gov/packages/sacado). The data mem-
bers of an MDArray are typically stored in a contigu-
ous block of memory. Contiguous memory is not nec-
essary to the concept of an array; however, contiguity
of member storage has proven to be essential to achieve
the best performance from modern computing archi-
tectures.

The following are typical examples of MDArrays
encountered in mesh-based numerical methods for
PDEs:

• MDArray of vertex coordinates for mesh cells
with multi-index (cell, vertex, space-dimension);

• MDArray of coordinates of reference-to-physical
cell mapping with multi-index (cell, space-dimen-
sion, coefficient);

• MDArray of values of a scalar field evaluated at a
set of points with multi-index (point);

• MDArray of values of a vector field evaluated
at a set of points with multi-index (point, space-
dimension);

• MDArray of values of a scalar finite element ba-
sis function evaluated at points with multi-index
(function, point).

We continue with a brief review of the basic MDAr-
ray notions.

Multi-indices and ordinate associations. Each mem-
ber of a multidimensional array is uniquely identi-
fied by a multi-index or ordered list of ordinates; e.g.,
(1, 3, 5) or (7, 3, 5, 1). Each ordinate of a particular
multidimensional array is associated with an entity that
arises in the numerical solution of the mathematical
problem for which the array is defined. Referring to the
examples above, an ordinate may be associated with
the axes of a Cartesian space, the number of evaluation
points for numerical integration of a cell, the number
of cells in a mesh, the number of vertices in a cell, or
the number of coefficients in a polynomial function.

Rank. The rank of a multidimensional array is the
number of ordinate-indices by which a member of the
array is referenced; e.g., the multi-index (1, 3, 5) is
rank 3 with three ordinates and (7, 5, 3, 1) is rank 4
with four ordinates. All members of a particular multi-
dimensional array are references with multi-indices of
the same rank.

Multi-dimension. The value of each ordinate index
i within a multi-index of a particular multidimen-
sional array is defined to be within a span of in-
teger values; for example, i ∈ [0, . . . , N − 1] for
zero-based indices or i ∈ [1, . . . , N] for one-based
indices. The number N is called the dimension of
the ordinate index. The multi-index of all dimensions
(N1, N2, . . . , Nk) is called the multi-dimension of the
multidimensional array. Given a multidimensional ar-
ray with multi-dimension (N1, N2, . . . , Nk) a multi-
index (i1, i2, . . . , ik) is valid when every ordinate is
within its admissible range, and out of bounds other-
wise. For example, for zero-based indices the valid in-
dices are as follows:

(0, 0, . . . , 0) � (i1, i2, . . . , ik)

< (N1, N2, . . . , Nk),

where the comparison is taken ordinate-wise.

Size. The size of a multidimensional array is the
product of its multi-dimension: N1 × N2 × · · · × Nk.
The size gives the total number of members that can be
referenced by a valid multi-index. The capacity of the
contiguous storage must be equal to or greater than the
size of the multidimensional array.

P. Bochev et al. / Solving PDEs with Intrepid 157

Multi-index mapping. A multi-index into a given ar-
ray is mapped to a unique member, or offset into the
array’s contiguous block of memory. The multi-index
mapping may be optimized for a particular architec-
ture, for brevity here we review two types of order-
ing that are currently in widespread use: (1) the lexico-
graphical order and (2) the lexicographical order with
reversed significance. For brevity we refer to the for-
mer as the natural order and the latter as the reverse
order. Each multi-index ordering induces an associated
mapping.

The natural multi-index mapping corresponds to the
natural ordering of the multi-index, i.e., the order in-
duced by comparing ordinates in the left-to-right order;
for example, (1, 6, 7) < (2, 3, 5) < (2, 3, 6). The result-
ing multi-index map for an array of size (N1, N2, N3)
has the following analytic expression:

offset = naturalMap(i1, i2, i3)

= i1 ∗ N2 ∗ N3 + i2 ∗ N3 + i3.

The reverse multi-index mapping is, as the name im-
plies, induced by the reverse ordering of the multi-
index, i.e., the order induced by comparing ordinates
in the right-to-left order. In this case, referring to
the example above, (2, 3, 5) < (2, 3, 6) < (1, 6, 7).
The resulting multi-index map for an array of size
(N1, N2, N3) has the following analytic expression:

offset = reverseMap(i1, i2, i3)

= i1 + i2 ∗ N1 + i3 ∗ N1 ∗ N2.

Reverse multi-index mapping is used in the FORTRAN
programming language.

3.1.1. MDArrays in Intrepid
Multidimensional arrays of scalar types are the only

data abstraction in Intrepid. Most C++ functions in In-
trepid are templated on the scalar and MDArray types.
An algorithm’s performance depends on its multi-
index mapping to contiguous storage. As such a multi-
index mapping is typically chosen for the best algo-
rithm performance. Currently, software projects for nu-
merical PDEs rely almost exclusively on the natural
and reverse mappings described above. However, with
the advent of new multicore and manycore architec-
tures it is likely that other mappings, optimized for
these architectures, will be required.

Intrepid assumes the natural multi-index ordering
convention for the MDArray template arguments. As a
result, client codes that adhere to the same convention

can use Intrepid through a minimal interface, which
provides the following methods:

• int rank() – returns array rank;
• int dimension(dimi) – returns the ith array dimen-

sion (dimensions are dim1, dim2, . . . , dimk);
• int size() – returns array size, i.e., dim1 ∗ dim2 ∗

· · · ∗ dimk;
• const Scalar & operator(i1, i2, . . . , ik) – const ac-

cessor using multi-index;
• Scalar & operator(i1, i2, . . . , ik) – non-const ac-

cessor using multi-index;
• const Scalar & operator[i] – const accessor using

the ordinal of the array element;
• Scalar & operator[i] – non-const accessor using

the ordinal of the array element.

The interoperability with codes that employ alterna-
tive ordering conventions requires an additional layer
which translates their multi-indices to multi-indices
with the natural order.

For example, consider a multidimensional array as-
sociated with entities A, B and C with dimensions
NA, NB and NC . Assume that this array uses the re-
verse (“FORTRAN-style”) ordering:

offset = reverseMap(iC , iB , iA)

= iC + iB ∗ NC + iA ∗ NC ∗ NB .

Note that the reverse multi-index mapping that orders
the entities C − B − A defines the same layout as
a natural multi-index mapping that orders the entities
A − B − C:

offset = naturalMap(iA, iB , iC)

= iA ∗ NB ∗ NC + iB ∗ NC + iC .

Thus the contiguous memory storage for natural and
reverse multi-index mappings is identical and interop-
erable as long as one mapping’s ordinate associations
are reversed when compared to the other mapping. In-
terfacing between Intrepid and clients that use other or-
dering conventions requires an appropriate multi-index
permutation, which maps their multi-indices to In-
trepid’s default lexicographical multi-index ordering.

In addition to the generic index and dimension nota-
tion ik and dimk Intrepid uses a naming convention for
data-specific indices and dimensions of MDArrays that
arise in mesh-based numerical methods for PDEs; see
Table 1. Table 2 shows a few MDArrays used typically
in numerical methods for PDEs.

158 P. Bochev et al. / Solving PDEs with Intrepid

Table 1

Data-specific indices in Intrepid

Index type Dimension Description

Point P Number of points stored in an MDArray

Vertex V Number of nodes stored in an MDArray

(Basis) field F Number of fields stored in an MDArray

Bilinear form field L/R Number of left/right basis fields stored in an MDArray

Cell C Number of cells stored in an MDArray

Field coordinate D Space dimension

Derivative ordinal K Cardinality of the set of kth derivatives

Table 2

Typical MDArrays arising in mesh-based methods for PDEs

Rank Multi-dimension Multi-index Description

1 (P) (p) Scalar (rank 0) field evaluated at P points

2 (P, D) (p, d) Vector (rank 1) field evaluated at P points

3 (P, D, D) (p, d, d) Tensor (rank 2) field evaluated at P points

2 (F, P) (f , p) F scalar fields evaluated at P points

3 (F, P, D) (f , p, d) F vector fields evaluated at P points

4 (F, P, D, D) (f , p, d, d) F tensor fields evaluated at P points

3 (F, P, K) (f , p, k) kth derivative of F scalar fields evaluated at P points

4 (F, P, D, K) (f , p, d, k) kth derivative of F vector fields evaluated at P points

5 (F, P, D, D, K) (f , p, d, d, k) kth derivative of F tensor fields evaluated at P points

3 (C, V, D) (c, v, d) Vertex coordinates of C cells having V vertices each

3 (C, P, D) (c, p, d) Coordinates of points in C cells, P per cell

3.2. Cell topology

FEM, FVM and FDM rely on grids comprised of
D-dimensional polytopes (lines in 1D, polygons in 2D
and polyhedrons in 3D). Different disciplines refer to
the mesh polytopes as finite elements, finite volumes,
zones, or cells. In Intrepid we use the term “cell” for
any valid mesh polytope.

With every polytope (cell) we associate a default
chain complex comprised of the D-cell itself and its
0, 1, . . . , D − 1 dimensional subcells. We refer to this
complex as the cell topology. Specification of cell
topology for a given cell shape requires a choice of (lo-
cal) 0-subcell (vertex) numbering and definition of up-
ward and downward adjacency relations between the
cell and its 0, 1, . . . , D − 1 dimensional subcells. A cell
topology defines a polytope in terms of vertex connec-
tivity (e.g., line, triangle, quadrilateral, tetrahedron).
However, the cell topology does not define a specific
geometric realization of that entity, i.e., it does not as-
sociate spatial coordinates with any of the vertices or
other points potentially defined for the polytope.

A cell topology implies a topological dimension D
which is the smallest spatial dimension in which that

cell can be realized. For example, a point has D = 0,
line has D = 1, triangles and quadrilaterals have
D = 2, and tetrahedron has D = 3. Note that for some
discretizations the actual dimension of a cell may be
greater than its implied topological dimension, as in
shell elements. A cell can only be realized in a space
with dimension equal to or greater than the cell di-
mension; i.e., a tetrahedron cannot be realized in a 2D
space.

The Trilinos package Shards (trilinos.sandia.gov/
packages/shards) implements the default cell topolo-
gies that are used in Intrepid. The standard Shards
cell topologies are line, triangle, quadrilateral, hexa-
hedron, tetrahedron, wedge and pyramid. Polygon and
polyhedron are non-standard topologies. Every stan-
dard cell topology in Shards has a base version and
an extended version, whereas non-standard topologies
have only base versions. Extended cell topologies en-
able the mapping of reference cells to curvilinear cells
in physical coordinates. In some classical finite ele-
ment methods such topologies are also used as a means
of identifying degrees of freedom. Intrepid does not
support this viewpoint and enforces strict separation of
cell topology, basis and integration objects.

P. Bochev et al. / Solving PDEs with Intrepid 159

Table 3

Summary of standard Shards cell topologies

Dim. Base topology Extended topology

1 Line<> Line<3>

2 Triangle<> Triangle<6>

3 ShellTriangle<> ShellTriangle<6>

2 Quadrilateral<> Quadrilateral<8>, Quadrilateral<9>

3 ShellQuadrilateral<> ShellQuadrilateral<8>, ShellQuadrilateral<9>

3 Hexahedron<> Hexahedron<20>, Hexahedron<27>

3 Tetrahedron<> Tetrahedron<10>

3 Pyramid<> Pyramid<13>,Pyramid<14>

3 Wedge<> Wedge<15>, Wedge<18>

(a) (b) (c)

Fig. 4. (a) Base Quadrilateral<4>, (b) eight-node extended Quadrilat-
eral<8> and (c) nine-node extended Quadrilateral<9> topologies in
Shards.

(a) (b)

Fig. 5. (a) Base Hexagon<> topology and (b) edge (1-cell) number-
ing in Shards.

Table 3 summarizes the standard topologies in the
Shards package. Figure 4 illustrates a typical standard
cell topology, whereas Fig. 5 shows an example of a
non-standard hexagon topology and its 1-cell (edge)
numbering. Only a base topology is provided for this
cell.

4. Structure of Intrepid

In this section we describe the functionality of key
Intrepid classes. We distinguish two main types of
classes: (1) classes designed for the one-time tabula-

tion and subsequent reuse of mathematical fields and
(2) classes designed for the high-performance process-
ing of field data, via stream computing.

The classes of the first type are Intrepid’s Basis and
Cubature classes. Their implementations rely on ab-
stract (pure virtual) base classes to provide consis-
tent interfaces, and carry varying amounts of data. The
classes of the second type are RealSpaceTools, Array-
Tools, CellTools and FunctionSpaceTools. They are im-
plemented as collections of static methods, fully state-
less and geared toward the fast processing of data
stored in MDArrays.

Additionally, Intrepid provides an implementation
of the MDArray, called FieldContainer.

4.1. The Basis class

Using the nomenclature from Section 2, the main
purpose of the Basis class is to evaluate reconstruction
operators I at a specified set of points given inside a
cell. We recall that the abstract framework in Section 2
associates a particular discretization method with a
particular choice of a reconstruction operator acting on
cochains. Our Basis is a pure virtual class, with nearly
40 concrete implementations available as of Trilinos
10.8 (2011). As an example, our basis collection in-
cludes finite element bases of orders 1 through 10 in
H(grad), H(div) and H(curl) on triangles, quadrilat-
erals, tetrahedrons and hexahedrons. The evaluation
of fields is performed using the getValues() methods.
While a number of other routines comprise the Basis
interface, in this section we focus on the description of
the getValues() methods. Additionally, we discuss the
naming conventions behind a few concrete Basis im-
plementations.

As emphasized in Section 2, Intrepid is designed
to support a variety of PDE discretizations, including

160 P. Bochev et al. / Solving PDEs with Intrepid

Fig. 6. The reference-to-physical mapping Fκ is used commonly in
FEM and defines the pullback mechanism, see Figs 2 and 3 and Sec-
tion 4.6. We refer to the cell κ̃ in reference frame as the reference
cell, while the cell κ in physical frame is called the physical cell.

FEM, FVM, FDM and hybrids.3 FEM typically eval-
uate fields on a reference cell and employ an explicit
mapping between the reference cell and physical cells,
see Fig. 6, to define the so-called pullback mechanism.
In contrast, FVM, FDM and polygonal FEM evaluate
fields directly at points inside physical cells. For this
reason, our abstract Basis class accommodates two dis-
tinct field evaluation interfaces.

template<class Scalar, class ArrayScalar>
class Basis {
protected:

shards::CellTopology basisCellTopology_;
...

public:

virtual void getValues(ArrayScalar & outputValues,
const ArrayScalar & inputPoints,
const EOperator operatorType) const = 0;

virtual void getValues(ArrayScalar & outputValues,
const ArrayScalar & inputPoints,
const ArrayScalar & cellVertices,
const EOperator operatorType) const = 0;

...
};

We note that in both cases, the topology of the cell in
which the fields are evaluated is given by the basisCell-
Topology_ data member. In the case of methods based
on the reference-to-physical mapping, this is sufficient
to infer the spatial coordinates of cell vertices, as we
follow the reference cell convention given in Table 4.
In the second case, cell vertices are supplied as an ad-
ditional argument, and follow the multi-index conven-
tion (V, D). The H(grad) polygonal finite element basis
in Intrepid is an example of a reconstruction operator
that relies on the second field evaluation interface. We
refer to Section 6.2 for additional details about polyg-
onal FEM in Intrepid. The MDArrays inputPoints are
always indexed by (P, D), while outputValues are
MDArrays whose rank depends on the basis type and
the selected EOperator input: OPERATOR_VALUE,
OPERATOR_GRAD, OPERATOR_CURL, OPERATOR

3For an example of hybrid methods, see control-volume FEM
(CVFEM), Section 6.3.

_DIV or OPERATOR_D1 through OPERATOR_D10.4

For example, for an H(grad) finite element basis and
the input operator OPERATOR_GRAD the MDArray
outputValues is always indexed by (F, P, D), while the
operator OPERATOR_VALUE would yield the (F, P) in-
dexing.

The naming of most Intrepid’s bases follows a sim-
ple convention:

FUNCTIONSPACE_CELLTYPE_(C)OMPLETEor

(I)NCOMPLETEandORDER_FEMorFVMorFDM.

The third field requires an explanation. The keywords
(C)OMPLETE and (I)NCOMPLETE denote whether the
basis forms a complete or an incomplete polyno-
mial space, of given order. The keyword ORDER is
either a number, 1 or 2, or the letter n, in which
case the order can be set by the user. For exam-
ple, HGRAD_TRI_C2_FEM is an FE basis in H(grad),
defining a complete polynomial space of order 2 on tri-
angles – in other words: nodal, piecewise quadratic ba-
sis on triangles. Another example is HCURL_HEX_In_
FEM, an FE basis in H(curl), defining an incomplete
polynomial space of user-supplied order on hexahe-
drons – in other words: edge element5 basis of variable
order on hexahedra.

The higher-order finite element bases for simpli-
cial domains are C++ realizations of the generic ba-
sis construction procedure developed in FIAT [23] for
reference element bases. This reimplementation al-
lows Intrepid to remain pure C++ and avoid em-
bedding Python within a C++ library. The FIAT
framework, based on the Ciarlet triple [14] of a cell,
a finite-dimensional function space, and a dual ba-
sis, constructs the nodal basis from linear combina-
tions of orthogonal polynomials via a kind of general-
ized Vandermonde matrix. This approach allows con-
struction of high-order bases for the DeRham com-
plex (1) of spaces on the simplex. Basis functions for
the rectangular cell topologies rely on appropriate ten-
sor products of one-dimensional bases. In all cases,
users may specify the nodal points (e.g., equispaced
lattice points, Gauss–Lobatto and Warburton’s warp-
blend points [40]) used as degrees of freedom, which
can strongly influence the conditioning of the basis as
order increases.

4The compatibility of operators and bases follows the mathemat-
ics of Section 2 and is verified at runtime. An operator OPERA-
TOR_Dn is the nth order derivative operator, represented abstractly
as a multiset and enumerated using the lexicographical order of the
partial derivatives.

5Intrepid implements Nedelec edge bases of the first kind, see
[27,28].

P. Bochev et al. / Solving PDEs with Intrepid 161

Table 4

Geometric definitions of basic reference cells in Intrepid

Dim. Base topology Vertex coordinates

1 Line<> (−1, 0, 0), (1, 0, 0)

2 Triangle<> (0, 0, 0), (1, 0, 0), (0, 1, 0)

2 Quadrilateral<> (−1, −1, 0), (1, −1, 0), (1, 1, 0), (−1, 1, 0)

3 Tetrahedron<> (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)

3 Pyramid<> (−1, −1, 0), (1, −1, 0), (1, 1, 0), (−1, 1, 0), (0, 0, 1)

3 Wedge<> (0, 0, −1), (1, 0, −1), (0, 1, −1), (0, 0, 1), (1, 0, 1), (0, 1, 1)

3 Hexahedron<> (−1, −1, −1), (1, −1, −1), (1, 1, −1), (−1, 1, −1), (−1, −1, 1), (1, −1, 1), (1, 1, 1), (−1, 1, 1)

Note: Reference cells based on extended topologies from the Shards package are also supported. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-2012-0340.)

4.2. The Cubature class

The Cubature class provides a simple abstract inter-
face for the implementation of numerical integration
(cubature) rules in Intrepid. In addition to the abstract
interface, a variety of concrete implementations are
provided. For example, as of Trilinos 10.8 (2011), the
exact integration of polynomials of degree 20 is pos-
sible for triangles and tetrahedrons, while polynomi-
als of degree 60 can be accurately integrated on lines,
quadrilaterals and hexahedrons.

The Cubature interface is specified below. The key
method is getCubature(), which returns MDArrays
with cubature points and cubature weights, indexed by
(P, D) and (P), respectively.

template<class Scalar, class ArrayPoint, class
ArrayWeight>

class Cubature {
public:

virtual void getCubature(ArrayPoint & cubPoints,
ArrayWeight & cubWeights) const = 0;

virtual int getNumPoints() const = 0;

virtual int getDimension() const = 0;

virtual void getAccuracy(std::vector<int> &
accuracy) const = 0;

};

Examples of implementations of this interface are
the CubatureDirect and CubatureTensor classes. Cu-
batureDirect is a partial interface implementation with
concrete subclasses tied to simplicial cell topolo-
gies, such as CubatureDirectLineGauss, CubatureDi-

rectTriDefault and CubatureDirectTetDefault. Cubature-
Tensor is a full implementation of the base class, de-
signed specifically for the efficient assembly of tensor
products of arbitrary integration rules.

While the concrete Cubature implementations can
be used directly, Intrepid provides a single interface for
the construction of integration rules, called DefaultCu-
batureFactory. This factory class facilitates a vast ma-
jority of use cases for cubatures. Its create() methods
allow the user to select cubatures based only on cell
topology and the desired order of exact polynomial in-
tegration.

Teuchos::RCP<Cubature<Scalar,ArrayPoint,
ArrayWeight> >

create(const shards::CellTopology & cellTopology,
const std::vector<int> & degree);

Teuchos::RCP<Cubature<Scalar,ArrayPoint,
ArrayWeight> >

create(const shards::CellTopology & cellTopology,
int degree);

In this excerpt, the first create()6 method is specific to
tensor products of cubature rules, enabling varying de-
grees of accuracy in each component rule. The second
method enables the instantiation of direct and uniform-
degree tensor-product rules, and can be used with all
basic cell shapes.

4.3. The RealSpaceTools class

The RealSpaceTools class is responsible for basic
linear algebraic operations in R

1, R
2 and R

3, such

6We note that Teuchos::RCP is a reference-counted pointer
[5] provided by the Trilinos package Teuchos (trilinos.sandia.gov/
packages/teuchos).

162 P. Bochev et al. / Solving PDEs with Intrepid

as vector addition, matrix-vector multiplications, ma-
trix transposition and inversion, and several others. It
is a stateless class, comprised only of static (again,
stateless) member functions. The computational ker-
nels supplied by RealSpaceTools are used primarily by
the class CellTools.

4.4. The ArrayTools class

The class ArrayTools is one of two computational
cores of Intrepid. It provides methods for efficient,
stream-based algebraic operations on user-defined
MDArrays, such as tensor contraction, scaling and
replication. The ArrayTools class services the high-
level class FunctionSpaceTools, and is therefore not
exposed to the end user within a typical Intrepid work-
flow. Nonetheless, it is important to discuss its design,
as it exemplifies the principles outlined in Section 3.

The ArrayTools class is a collection of stateless
methods with flat interfaces. To ensure compatibility
with generic, user-controlled data containers, it em-
ploys polymorphism based on (i) C++ templates and
(ii) the MDArray abstraction, which defines container
access. As an example, we quote the signature of the
tensor contraction method contractFieldFieldScalar(),
which is called internally when computing matrix dis-
cretizations of bilinear forms, resulting in cell mass
matrices.

template<class Scalar, class ArrayOutFields,
class ArrayInFieldsLeft,
class ArrayInFieldsRight>

static void contractFieldFieldScalar(ArrayOutFields
& outputFields,

const ArrayInFieldsLeft & leftFields,
const ArrayInFieldsRight & rightFields,
const ECompEngine compEngine,
const bool sumInto = false);

We remark that this method is templated on all its array
arguments. This facilitates a generic implementation of
the contraction, independent of the layout of user data.

...
for (int cl = 0; cl < numCells; cl++) {
for (int lbf = 0; lbf < numLeftFields; lbf++) {
for (int rbf = 0; rbf < numRightFields; rbf++) {
Scalar tmpVal(0);
for (int qp = 0; qp < numPoints; qp++) {
tmpVal += leftFields(cl, lbf, qp)*rightFields

(cl, rbf, qp);
}
outputFields(cl, lbf, rbf) = tmpVal;

}
}

}
...

While this is a commonly used implementation, en-
abled by setting the value of the ECompEngine ar-
gument to COMP_CPP, Intrepid provides optimized
implementations, for MDArrays with contiguous phys-
ical layouts, via the BLAS. For our BLAS implemen-
tations of contraction routines, set the ECompEngine
argument to COMP_BLAS.

4.5. The CellTools class

The CellTools class is the second of two computa-
tional cores of Intrepid. It provides efficient methods
for a variety of geometric operations on reference cells
and physical cells. As a rule, these methods are fully
decoupled from the notions of basis and cubature, but
may use Intrepid bases for internal computations and
may use user-supplied cubature points as evaluation
points. The methods include:

• computation of Jacobian matrices DFκ for refer-
ence-to-physical frame mappings Fκ, see Fig. 6,
their inverses DF−1

κ and determinants det(DFκ),
• application of the reference-to-physical frame

mapping Fκ and its inverse F −1
κ to points within

reference and physical cells, respectively,
• parametrization of edges and faces of reference

cells,
• computation of edge/face tangents and face nor-

mals in reference and physical frames, and
• inclusion tests for point sets in reference and

physical cells.

Similar to ArrayTools, the CellTools class is a col-
lection of stateless methods with flat interfaces, which
efficiently process user-controlled MDArrays. In con-
trast to ArrayTools, the CellTools class comprises an im-
portant part of Intrepid’s main user interface, in other
words typical Intrepid workflow involves direct calls
to the CellTools methods. As of Trilinos 10.8 (2011)
there are more than 20 such methods. We describe in
detail one that is used very often. The descriptions of
all methods, treated with similar rigor and level of de-
tail, are given in Intrepid’s documentation [22].

The setJacobian() method computes Jacobian matri-
ces of reference-to-physical frame mappings that are
commonly used in FEM.

template<class ArrayJac, class ArrayPoint,
class ArrayCell>

static void setJacobian(ArrayJac & jacobian,
const ArrayPoint & points,
const ArrayCell & cellWorkset,
const shards::CellTopology & cellTopo,
const int & whichCell = -1);

P. Bochev et al. / Solving PDEs with Intrepid 163

There are three use cases:

(i) computation of Jacobians DFκ, stored as the
jacobian(P, D, D) array, for a specified physi-
cal cell κ from the cell workset array cellWork-
set(C, V, D) on a single set of reference points
stored in the points(P, D) array;

(ii) computation of Jacobians DFκ, stored as the
jacobian(C, P, D, D) array, for all physical cells
in the cell workset array cellWorkset(C, V, D)
on a single set of reference points stored in the
points(P, D) array;

(iii) computation of Jacobians DFκ, stored as the
jacobian(C, P, D, D) array, for all physical cells
in the cell workset array cellWorkset(C, V, D) on
multiple reference point sets having the same
number of points, given by the points(C, P, D)
array.

In case (i), for a single point set and the parame-
ter whichCell set to a valid cell ordinal relative to the
cell workset, the method returns a Jacobian array such
that

jacobian(p, ·, ·) = [DFκ(points(p))]

for a fixed cell κ with index 0 � c < C − 1.

In case (ii), for a single point set and the parameter
whichCell set to −1 (default value), the method returns
a Jacobian array such that

jacobian(c, p, ·, ·) = [DFκ(points(p))]

for all cells κ with indices c = 0, . . . , C − 1.

In case (iii), for multiple sets of reference points and
the parameter whichCell set to −1 (default value), the
method returns a Jacobian array such that

jacobian(c, p, ·, ·) = [DFκ(points(c, p))]

for all cells κ with indices c = 0, . . . , C − 1.

In all of the above, a default reference-to-physical map
Fκ is assumed by Intrepid for the selected cell topol-
ogy argument cellTopo.

4.6. The FunctionSpaceTools class

The FunctionSpaceTools class combines the compu-
tational kernels provided by the ArrayTools class into
a high-level user-friendly interface with mathematical

semantics. There are four types of methods:

• transformation of fields from reference frame to
physical frame,

• computation of integral measures needed for edge,
face and cell integration,

• scalar, vector and tensor multiplication, and
• numerical integration and evaluation (interpola-

tion).

They are designed primarily for operations on finite
element subspaces of H(grad), H(div), H(curl) and
H(vol) = L2. A subset of measure computation, nu-
merical integration and multiplication routines can be
applied directly to user data, i.e., in non-FEM contexts,
such as the one described in Section 6.1. Here we focus
on the FEM use case, for which the typical workflow,
discussed in detail in Section 5, is:

Field transformation (pullback)

−→ Measure computation

−→ Multiplication

−→ Integration .

4.6.1. Field transformation (pullback)
In Ciarlet’s notation [14], given a reference cell

{κ̂, P̂ , Λ̂} with a basis {ûi}n
i=1, the basis {ui}n

i=1 of
{κ, P , Λ} is defined as follows:

ui = σiΦ∗(ûi), i = 1, . . . , n.

In this formula, {σi}n
i=1 are the field signs, with

σi = ±1, and Φ∗ is the pullback, i.e. the “change
of variables” transformation. For scalar spaces such as
H(grad) and H(vol) the field signs are always equal to
1 and can be disregarded. For vector field spaces such
as H(curl) or H(div), the field sign of a basis function
can be +1 or −1, depending on the orientation of the
physical edge or face associated with the basis func-
tion.

The form of the pullback depends on which one of
the four function spaces H(grad), H(div), H(curl) or
H(vol) is approximated. Let Fκ denote the reference-
to-physical map, let DFκ denote its Jacobian and let
Jκ = det(DFκ). Then the pullbacks are defined,
and given by the FunctionSpaceTools methods, as fol-

164 P. Bochev et al. / Solving PDEs with Intrepid

lows:

Φ∗
G : H(grad, κ̂) �→ H(grad, κ) Φ∗

G(û) = û ◦ F −1
κ { HGRAD_transform_VALUE()

Φ∗
C : H(curl, κ̂) �→ H(curl, κ) Φ∗

C (û) = ((DFκ)−T · û) ◦ F −1
κ

{
HGRAD_transform_GRAD(),
HCURL_transform_VALUE()

Φ∗
D : H(div, κ̂) �→ H(div, κ) Φ∗

D(û) = (J −1
κ DFκ · û) ◦ F −1

κ

{
HCURL_transform_CURL(),
HDIV_transform_VALUE()

Φ∗
V : H(vol, κ̂) �→ H(vol, κ) Φ∗

V (û) = (J −1
κ û) ◦ F −1

κ

{
HDIV_transform_DIV(),
HVOL_transform_VALUE().

As an example, we consider the HGRADtransform-
GRAD() method.

template<class Scalar, class ArrayTypeOut,
class ArrayTypeJac, class ArrayTypeIn>

static void HGRADtransformGRAD(ArrayTypeOut &
outVals,

const ArrayTypeJac & jacobianInverse,
const ArrayTypeIn & inVals,
const char transpose = ’T’);

This method computes the pullbacks of the gradients
of H(grad) functions,

Φ∗(∇ûf) = ((DFκ)−T · ∇ûf) ◦ F −1
κ

for points in physical cells that are images of a given
set of points in the reference cell,

{xc,p}P−1
p=0 = {Fκ(x̂p)}P−1

p=0

for all cells κ with indices c = 0, . . . , C − 1. The user-
provided array inVals(F,P,D) must contain the gradients
of the function set {ûf }F−1

f=0 at the reference points,

inVals(f , p, ·) = ∇ûf (x̂p).

If the argument transpose is set to ‘t’ or ‘T’, the user-
provided array jacobianInverse(C, P, D, D) must be an
array of inverses of Jacobians of the mapping Fκ com-
puted at the reference points,

jacobianInverse(c, p, ·, ·) = (DFκ)−1(x̂p),

otherwise, if transpose is set to ‘n’ or ‘N’, we must have

jacobianInverse(c, p, ·, ·) = (DFκ)−T(x̂p)

for all cells κ with indices c = 0, . . . , C − 1. The

method returns the array outVals(C, F, P, D) such that

outVals(c, f , p, ·)
= ((DFκ)−T · ∇ûf) ◦ F −1

κ (xc,p)

= (DFκ)−T(x̂p) · ∇ûf (x̂p)

for all cells κ with indices c = 0, . . . , C − 1.
Other field transformation methods follow a similar

pattern and are described in great detail in Intrepid’s
documentation [22]. For the application of field signs
in function spaces H(curl) and H(div), Intrepid of-
fers the applyFieldSigns(), applyLeftFieldSigns() and
applyRightFieldSigns() methods.

4.6.2. Measure computation
Integrals of finite element functions over cells,

2-subcells (faces) and 1-subcells (edges) are computed
via the change of variables from physical to reference
frame and require three types of integral measures. The
integral of a scalar function over a cell κ,

∫
κ

f (x) dx =
∫

κ̂
f (Fκ(x̂))|Jκ| dx̂,

requires the volume measure defined by the determi-
nant of the Jacobian. This measure is computed by the
computeCellMeasure() method. The integral of a scalar
function over 2-subcell c2,

∫
c2

f (x) dx =
∫

R
f (Φ(u, v))

∥∥∥∥∂Φ
∂u

× ∂Φ
∂v

∥∥∥∥ du dv,

requires the surface measure defined by the norm of the
vector product of the surface tangents. This measure
is computed by the computeFaceMeasure() method. In
this formula R is a parametrization domain for the 2-
subcell c2, in other words a reference triangle or a ref-
erence quadrilateral, while Φ is a map from R to the
physical 2-subcell c2. The integral of a scalar function

P. Bochev et al. / Solving PDEs with Intrepid 165

over a 1-subcell c1,

∫
c1

f (x) dx =
∫

R
f (Φ(s))‖Φ′ ‖ ds,

requires the arc measure defined by the norm of the arc
tangent vector. This measure is computed by the com-
puteEdgeMeasure() method. In this formula R is the
parametrization domain for the 1-subcell c1, in other
words a reference line, while Φ is a map from R to the
physical 1-subcell c1.

To enable the computation of cell measures the user
is required to provide an array containing the deter-
minants of Jacobians. For face and edge measures the
user must supply the array of Jacobian matrices, the
face or edge ordinal and the topology of the parent
cell.

template<class Scalar, class ArrayOut,
class ArrayJac, class ArrayWeights>

static void computeFaceMeasure(ArrayOut & outVals,
const ArrayJac & inJac,
const ArrayWeights & inWeights,
const int whichFace,
const shards::CellTopology & parentCell);

Finally, it is important to note that in all three cases
the measure computation is combined with a multi-
plication by the weights of the cubature rule that is
used to subsequently evaluate the integral. In other
words, the resulting measures are always weighted
measures.

4.6.3. Multiplication
The FunctionSpaceTools class provides a variety of

methods for algebraic operations on MDArrays with
user data and finite element function values. These
methods are used to ‘prepare’ such MDArrays for the
integration routines. They include

(i) scalar multiplication: scalarMultiplyDataField()
and scalarMultiplyDataData();

(ii) dot product: dotMultiplyDataField() and dotMul-
tiplyDataData();

(iii) vector (cross or outer) product: vectorMultiply-
DataField() and vectorMultiplyDataData();

(iv) tensor product: tensorMultiplyDataField() and
tensorMultiplyDataData(); and

(v) measure application: multiplyMeasure().

The separation of multiplication routines from integra-
tion is key to Intrepid’s expressiveness.

4.6.4. Integration and evaluation
Intrepid’s treatment of integration and evaluation is

quite simple – they are algebraic contractions of ex-
actly two MDArrays.

In general, integration takes the input arguments left-
Values and rightValues, indexed by cell (and, option-
ally, field) indices and point (and, optionally, dimen-
sion) indices, and contracts the point and dimension
indices. The output array outputValues retains the cell
index and any field indices from the input arrays, and
loses the point and dimension indices.

template<class Scalar, class ArrayOut,
class ArrayInLeft, class ArrayInRight>

static void integrate(ArrayOut & outputValues,
const ArrayInLeft & leftValues,
const ArrayInRight & rightValues,
const ECompEngine compEngine,
const bool sumInto = false);

In addition to the high-level routine integrate(), three
low-level methods are provided:

operatorIntegral(), functionalIntegral() and

dataIntegral().

Computational patterns for integration are presented in
detail in Sections 5.1 and 5.2.

Similar to integration, evaluation takes two input ar-
guments. The array inCoeffs is indexed by a cell index
and a field index, while the input array inFields addi-
tionally includes a point index and, optionally, one or
two dimension indices. Evaluation contracts away the
field index. In other words, the output array outPoint-
Vals retains the cell index and the point (and dimen-
sion) indices, and loses the field index.

template<class Scalar, class ArrayOutPointVals,
class ArrayInCoeffs, class ArrayInFields>

static void evaluate(ArrayOutPointVals &
outPointVals,

const ArrayInCoeffs & inCoeffs,
const ArrayInFields & inFields);

A computational pattern for evaluation is presented in
detail in Section 5.3.

4.7. The FieldContainer class

Intrepid’s FieldContainer class provides an imple-
mentation of the MDArray abstraction – as such, its
user interface is defined in Section 3.1. The primary
purpose of FieldContainer is to enable efficient devel-
opment and testing of Intrepid’s functionality. In other

166 P. Bochev et al. / Solving PDEs with Intrepid

words, it is first and foremost a tool for Intrepid de-
velopers. Nonetheless, the FieldContainer class can be
used in high-performance application codes that do not
provide their own MDArray implementation.

A FieldContainer object is a lexicographically or-
dered container that stores a multi-indexed scalar quan-
tity: the rightmost index changes first and the leftmost
index changes last. FieldContainer can be viewed as
a dynamic multidimensional array whose values can
be accessed in two ways: by their multi-index or by
their enumeration, using an overloaded [] operator. The
enumeration of a value gives the sequential order of
the multi-indexed value in the container. The number
of indices, i.e., the rank of the container is unlimited.
For containers with ranks up to five many of the meth-
ods are optimized for faster execution. An overloaded
() operator is also provided for low-rank containers
to allow element access by multi-index without hav-
ing to create an auxiliary ordinal array for the multi-
index.

The FieldContainer class offers some convenience
features such as the ability to resize and reshape Field-
Container objects at runtime. The Trilinos package
Shards provides an implementation of the MDArray
whose dimensions are set through template arguments
at compile time. The Shards MDArray enables strong
typing of the MDArray object but does not allow it to
be reshaped or resized at runtime.

Finally, we note that the FieldContainer objects are
stored contiguously in memory. For this reason, they
can be used safely and efficiently with the COMP_
BLAS computational engine accessible through the
FunctionSpaceTools interface methods.

5. Examples of computational patterns

Section 4 describes an extensive range of computa-
tional tools with very flexible interfaces. With the help
of these tools a user can implement a variety of dis-
cretization and non-discretization tasks. In most cases,
implementation of these tasks follows a generic pat-
tern that is independent of, e.g., cell shape, integration
order or basis type. In this section we examine three
typical computational patterns in Intrepid.

5.1. Building a finite element operator

Finite element methods assemble discretization ma-
trices (“finite element operators”) for PDEs from
element-wise contributions. Computation of these

element-wise contributions is the first example of a
generic computational pattern in Intrepid. We focus on
finite element operators for second-order self-adjoint
differential operators such as div(grad), curl(curl) and
grad(div). However, with minor modifications the
computational pattern extends to other PDEs, such
as non-symmetric advection–diffusion equations. For
self-adjoint differential operators contributions from
element κs to the global finite element matrix have the
generic form

As
lr =

∫
κs

Lφl(x)Lφr(x) dx, (6)

where {φi}n
i=1 are basis functions, and L is a linear

differential operator.
In a standard finite element setting the basis func-

tions are defined on a reference cell κ̂ and their val-
ues and derivatives are transformed to physical coor-
dinates using an appropriate pullback transform Φ∗;
see Section 4.6.1. As a result, the integral (6) be-
comes

As
lr =

∫
κs

σlσr(Φ∗(L̂φ̂l))(x)(Φ∗(L̂φ̂r))(x) dx,

(7)

where σi = ±1 are field signs. These are required for
vector spaces such as H(curl) and H(div) where the
orientation of the physical edge or face may be differ-
ent from the orientation of the reference edge or face.
In the case of H(grad) or H(vol) spaces the signs are
always equal to one.

From Section 4.6.1 it follows that the pullback has
the form

Φ∗ = T (L̂φ̂i) ◦ F −1,

where T is a transformation that can depend on the Ja-
cobian DF of the reference-to-physical map, and/or its
determinant, J . After a change of variables to refer-
ence domain, i.e., application of F −1, the integral in
(7) assumes the form

As
lr =

∫
κ̂

σlσr(T (L̂φ̂l)(x̂))(T (L̂φ̂r)(x̂))J(x̂) dx̂.

(8)

The approximation of (8) using a cubature rule with cu-
bature points {x̂p}nPt

p=1 and weights {ωp}nPt
p=1 produces

P. Bochev et al. / Solving PDEs with Intrepid 167

Fig. 7. Intrepid assembly pattern for second-order elliptic operators. Here we abbreviate CellTools and FunctionSpaceTools by CT and
FST, respectively. FST::applyTransform denotes a pullback operation defined in Section 4.6.1. FST::applyL/RFieldSigns denotes the meth-
ods FST::applyLeftFieldSigns() and FST::applyRightFieldSigns(), respectively. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-2012-0340.)

the algebraic formula

As
lr ≈

nPt∑
p=1

σlσr(T (L̂φ̂l)(x̂p))(T (L̂φ̂r)(x̂p))

× J(x̂p)ωp. (9)

This formula represents the contraction of several
multi-indexed scalar quantities along the dimension
of the cubature point, i.e., it is ideally suited for the
MDArray philosophy of Intrepid. The Basis, Cubature,
CellTools, and FunctionSpaceTools classes in Section 4
contain methods to compute MDArrays corresponding
to the multi-indexed scalars in (9). Figure 7 shows the
generic Intrepid assembly pattern using these methods.
An important trait of this pattern is its invariance with
respect to cell topology, cubature order, or basis func-
tion type.

For a concrete example, consider building an
H(grad) stiffness matrix from a nodal element with ba-
sis {Ni}. The element contributions from κs to this op-
erator are

As
lr =

∫
κs

∇Nl(x) · ∇Nr(x) dx, (10)

and the transformation T is the transpose inverse Jaco-

bian DF−T . As a result (9) specializes to

As
lr ≈

nPt∑
p=1

(DF−T ∇̂N̂l(x̂p))(DF−T ∇̂N̂r(x̂p))

× J(x̂p)ωp. (11)

Figure 8 shows listing of a code that implements
(11) for tetrahedral elements using the lowest-order
(piecewise linear) nodal element. The sample code
uses FieldContainer objects as the default MDArray
type. The assembly process requires the following key
steps:

(1) Choose cell topology for reference cell κ̂.
(2) Define integration rule using cubature factory

and get cubature points (x̂p) and weights (ωp).
(3) Select basis function and evaluate basis function

gradients at cubature points, ∇̂N̂l(x̂p).
(4) Calculate Jacobian (DF), its inverse (DF−1) and

determinant (J).
(5) Transform basis function gradients to physical

space, DF−T ∇̂N̂i(x̂p).
(6) Calculate cell measure, J(x̂p)ωp.
(7) Multiply transformed basis function gradients by

cell measure, DF−T ∇̂N̂r(x̂p)J(x̂p)ωp.
(8) Integrate quantities from steps 5 and 7 to obtain

the cell stiffness matrix in Eq. (11).

168 P. Bochev et al. / Solving PDEs with Intrepid

1 // Step 1. Define cell topology and get dimensions
2 shards::CellTopology cellType(shards::getCellTopologyData<shards::Tetrahedron<4> >());
3 int numNodesPerCell = cellType.getNodeCount();
4 int spaceDim = cellType.getDimension();
5

6 // Step 2. Select numerical integration rule and get points and weights on reference cell
7 Intrepid ::DefaultCubatureFactory<double> cubFactory;
8 int cubDegree = 2;
9 Teuchos::RCP<Intrepid::Cubature<double> > cellCub = cubFactory.create(cellType, cubDegree);

10 int numCubPoints = cellCub->getNumPoints();
11 Intrepid ::FieldContainer<double> cubPoints(numCubPoints, spaceDim);
12 Intrepid ::FieldContainer<double> cubWeights(numCubPoints);
13 cellCub->getCubature(cubPoints, cubWeights);
14

15 // Step 3. Select basis and evaluate gradients at cubature points
16 Intrepid ::Basis_HGRAD_TET_C1_FEM<double,Intrepid::FieldContainer<double> > HGradBasis;
17 int numFields = HGradBasis.getCardinality();
18 Intrepid ::FieldContainer<double> basisGrads(numFields,numCubPoints, spaceDim);
19 HGradBasis.getValues(basisGrads, cubPoints,Intrepid::OPERATOR_GRAD);
20

21 // Step 4. Calculate Jacobian , inverse , and determinant for cell workset
22 Intrepid ::FieldContainer<double> worksetJacobian(worksetSize, numCubPoints, spaceDim,
23 spaceDim);
24 Intrepid ::FieldContainer<double> worksetJacobInv(worksetSize, numCubPoints, spaceDim,
25 spaceDim);
26 Intrepid ::FieldContainer<double> worksetJacobDet(worksetSize,numCubPoints);
27 Intrepid ::CellTools<double>::setJacobian(worksetJacobian, cubPoints, worksetCoords,
28 cellType);
29 Intrepid ::CellTools<double>::setJacobianInv(worksetJacobInv, worksetJacobian);
30 Intrepid ::CellTools<double>::setJacobianDet(worksetJacobDet, worksetJacobian);
31

32 // Step 5. Combine Jacobian determinant and cubature weight to get cell measure
33 Intrepid ::FieldContainer<double> worksetCubWeights(worksetSize, numCubPoints);
34 Intrepid ::FunctionSpaceTools::computeCellMeasure<double>(worksetCubWeights,
35 worksetJacobDet, cubWeights);
36

37 // Step 6. Transform basis gradients to physical frame
38 Intrepid ::FieldContainer<double> worksetBasisGrads(worksetSize, numFields,
39 numCubPoints, spaceDim);
40 Intrepid ::FunctionSpaceTools::HGRADtransformGRAD<double>(worksetBasisGrads,
41 worksetJacobInv, basisGrads);
42

43 // Step 7. Multiply transformed basis gradients by cell measure
44 Intrepid ::FieldContainer<double> worksetBasisGradsWeighted(worksetSize, numFields,
45 numCubPoints, spaceDim);
46 Intrepid ::FunctionSpaceTools::multiplyMeasure<double>(worksetBasisGradsWeighted,
47 worksetCubWeights, worksetBasisGrads);
48

49 // Step 8. Integrate to get stiffness matrices for workset cells
50 Intrepid ::FieldContainer<double> worksetStiffMatrix(worksetSize,numFields, numFields);
51 Intrepid ::FunctionSpaceTools::integrate<double>(worksetStiffMatrix,
52 worksetBasisGradsWeighted, worksetBasisGrads, Intrepid::COMP_CPP);

Fig. 8. Example code listing for the assembly of an H(grad) stiffness matrix on tetrahedral cells using linear basis functions.

The above operations are performed on a batch or
workset of physical cells and the result is a set of
operators defined on each cell in the workset. The
code in Fig. 8 references the multidimensional ar-

ray (worksetCoords) of vertex coordinates on physical
cells, which is assumed to have been filled externally.
Example code that creates a sample cell workset con-
taining a single tetrahedral cell is shown in Fig. 9. In

P. Bochev et al. / Solving PDEs with Intrepid 169

1 // Define a workset of physical cells
2 int worksetSize = 1;
3 Intrepid ::FieldContainer<double> worksetCoords(worksetSize, numNodesPerCell, spaceDim);
4 worksetCoords(0, 0, 0) = 0.0; worksetCoords(0, 0, 1) = 0.0; worksetCoords(0, 0,2) = 0.0;
5 worksetCoords(0, 1, 0) = 0.5; worksetCoords(0, 1, 1) = 0.0; worksetCoords(0, 1,2) = 0.0;
6 worksetCoords(0,2, 0) = 0.0; worksetCoords(0,2, 1) = 0.5; worksetCoords(0,2,2) = 0.0;
7 worksetCoords(0,3, 0) = 0.0; worksetCoords(0,3, 1) = 0.0; worksetCoords(0,3,2) = 0.5;

Fig. 9. Example code listing to define a workset with a single tetrahedral cell.

most practical applications, the physical cell coordi-
nates will be provided by the client code. Once the in-
dividual cell operators are built they may be scattered
to the appropriate locations in a global operator ma-
trix. Note that the client code will also coordinate the
scattering operation.

To illustrate the flexibility of the operator assembly
framework, consider changing the example in Fig. 8
to the assembly of an H(grad) stiffness matrix on a
set of hexahedral cells using the lowest-order (trilinear)
nodal basis. The assembly on a different cell topology
only requires changes in step 1 and 2. In particular the
definition of the reference cell topology on line 2 must
be changed to

1 shards::CellTopology
2 cellType(shards::getCellTopologyData
3 <shards::Hexahedron<8> >());

and the definition of the first order H(grad) basis func-
tion on line 16 must be changed to

1 Intrepid ::Basis_HGRAD_HEX_C1_FEM<double,
2 Intrepid ::FieldContainer<double> > HGradBasis;

The code that defines the cubature rule in step 2 may be
reused since the cubature factory automatically selects
the correct cubature rule based on the cell topology and
degree.

For another example consider changing the order of
the basis function, which is also straightforward using
this framework. If a second order nodal basis function
is desired in place of a first order basis function the
only changes required are in step 2 where a higher de-
gree cubature rule must be chosen and in step 3 where
the basis function is selected. In particular line 8 should
be changed to

1 int cubDegree = 4;

and line 16 should be changed to

1 Intrepid ::Basis_HGRAD_TET_C2_FEM<double,
2 Intrepid ::FieldContainer<double> > HGradBasis;

This flexibility in the design of Intrepid allows users
to easily mix and match different basis functions, cell
topologies, and cubature rules without rewriting signif-
icant parts of their code.

5.2. Building a finite element functional

Equation residuals and right hand sides in PDE dis-
cretizations are examples of discrete functionals. Finite
element methods assemble such functionals from local
element contributions. The computation of these con-
tributions is the second example of a generic compu-
tational pattern in Intrepid. The element contribution
from κs to a finite element functional has the general
form

fs
i =

∫
κs

f (x)Lφi(x) dx, (12)

where f (x) is a given scalar or vector function. Assum-
ing the basis, pullback, and cubature notation from the
previous section, the algebraic formula

fs
i ≈

nPt∑
p=1

f (F (x̂p))σi(T (L̂φ̂i)(x̂p))J(x̂p)ωp (13)

gives the approximation of the finite element func-
tional (12).

For a concrete example consider the task of com-
puting the finite element functional corresponding to
the right-hand side in the weak Galerkin formulation
of the Poisson equation −∇ · ∇u = f . A finite ele-
ment discretization using H(grad) basis functions will
lead to a global linear system Aklul = fk where ul
are the nodal coefficients, Akl are the components of
the stiffness matrix, and fk are the components of the
right-hand side vector. The element contributions from

170 P. Bochev et al. / Solving PDEs with Intrepid

element κs to the right-hand side vector are generated
from the functional

fs
i ≈

nPt∑
p=1

f (F (x̂p))N̂i(x̂p)J(x̂p)ωp. (14)

The assembly of this functional using Intrepid is sim-
ilar to that of the finite element operator and includes
the following steps:

(1) Choose cell topology for reference cell κ̂.
(2) Define integration rule using cubature factory

and get cubature points (x̂p) and weights (ωp).
(3) Select basis function and evaluate basis function

values at cubature points, N̂i(x̂p).
(4) Calculate Jacobian (DF) and determinant (J).
(5) Transform basis function values to physical

space, N̂i(x̂p).
(6) Calculate cell measure, J(x̂p)ωp.
(7) Multiply transformed basis function gradients by

cell measure, N̂i(x̂p)J(x̂p)ωp.
(8) Map cubature points to physical space, xp =

F (x̂p).
(9) Get source function at cubature points, f (xp).

(10) Integrate source function against basis function
to obtain final cell contributions to right-hand
side vector in Eq. (14).

These steps are illustrated in the code listing in
Fig. 10. This code includes an additional piece of In-
trepid functionality in Step 8 where the mapToPhysi-
calFrame() method of the CellTools class is used to get
cubature point coordinates in a physical cell. Note that
the code assumes that a method called getRHSData()
has been defined by the user to get the source function
value at the cubature points. As in the previous exam-
ple, any changes in the basis and cell topology are eas-
ily implemented without changing the overall flow of
the assembly procedure.

5.3. Evaluation of finite element fields

Given a set of basis functions {φi}n
i=1 on a cell, a fi-

nite element function on this cell is a linear combina-
tion of the basis functions:

uh =
n∑

i=1

uiφi(x). (15)

The meaning of the coefficients {ui}n
i=1 depends on

the basis. For nodal H(grad) basis functions ui corre-

spond to the values of the function at the element ver-
tices. For H(curl) and H(div) bases the coefficients can
be edge circulations and face fluxes, respectively.

If the basis function is defined on a reference cell as
was assumed in the previous examples then the finite
element field may be written as

uh(x) =
n∑

i=1

uiσiΦ∗(φ̂i)(x)

=
n∑

i=1

uiσiT (φ̂i) ◦ F −1(x). (16)

Consider an example of evaluating a finite element
field using an H(div) basis {ϕi}. In this case Φ∗(ϕ̂) =
J −1DFϕ̂ ◦ F −1 and the finite element field has the
form

uh(x) =
n∑

i=1

uiσiJ
−1DFϕ̂i ◦ F −1(x). (17)

If we would like to evaluate the divergence of the field
as well, the expression we need to compute is (see Sec-
tion 4.6.1)

∇ · uh(x) =
n∑

i=1

uiσiJ
−1 ∇̂ · ϕ̂i ◦ F −1(x). (18)

Note that the H(div) basis functions are vectors and
the field signs (σi) must be included to correctly trans-
form between the reference cell and the physical cell.
In summary, evaluation of finite element fields involves
the following steps:

(1) Choose cell topology for reference cell κ̂.
(2) Define evaluation points {xp} in cell κ.
(3) Map the evaluation points to reference element,

x̂p = F −1(xp).
(4) Select basis function and evaluate basis function

values at evaluation points, ϕ̂i(x̂p).
(5) Calculate Jacobian (DF) and determinant (J).
(6) Transform basis function values to physical

space, J −1DFϕ̂i(x̂p).
(7) Apply field signs to transformed basic function

values, σiJ
−1DFϕ̂i(x̂p).

(8) Evaluate finite element field uh =
∑n

i=1 uiσi

× J −1DFϕ̂i(x̂).

Figure 11 shows an example code to compute the
values of a finite element vector field and its divergence
using H(div) basis functions. The code listing refers to

P. Bochev et al. / Solving PDEs with Intrepid 171

1 // Step 1. Define cell topology and get dimensions
2 shards::CellTopology cellType(shards::getCellTopologyData<shards::Tetrahedron<4> >());
3 int numNodesPerCell = cellType.getNodeCount();
4 int spaceDim = cellType.getDimension();
5

6 // Step 2. Select numerical integration rule and get points and weights on reference cell
7 Intrepid ::DefaultCubatureFactory<double> cubFactory;
8 int cubDegree = 2;
9 Teuchos::RCP<Intrepid::Cubature<double> > cellCub = cubFactory.create(cellType, cubDegree);

10 int numCubPoints = cellCub->getNumPoints();
11 Intrepid ::FieldContainer<double> cubPoints(numCubPoints, spaceDim);
12 Intrepid ::FieldContainer<double> cubWeights(numCubPoints);
13 cellCub->getCubature(cubPoints, cubWeights);
14

15 // Step 3. Select basis and evaluate values at cubature points
16 Intrepid ::Basis_HGRAD_TET_C1_FEM<double,Intrepid::FieldContainer<double> > HGradBasis;
17 int numFields = HGradBasis.getCardinality();
18 Intrepid ::FieldContainer<double> basisValues(numFields,numCubPoints);
19 HGradBasis.getValues(basisValues, cubPoints,Intrepid::OPERATOR_VALUE);
20

21 // Step 4. Calculate Jacobian and determinant for cell workset
22 Intrepid ::FieldContainer<double> worksetJacobian(worksetSize, numCubPoints, spaceDim,
23 spaceDim);
24 Intrepid ::FieldContainer<double> worksetJacobDet(worksetSize,numCubPoints);
25 Intrepid ::CellTools<double>::setJacobian(worksetJacobian, cubPoints, worksetCoords,
26 cellType);
27 Intrepid ::CellTools<double>::setJacobianDet(worksetJacobDet, worksetJacobian);
28

29 // Step 5. Combine Jacobian determinant and cubature weight to get cell measure,
30 Intrepid ::FieldContainer<double> worksetCubWeights(worksetSize, numCubPoints);
31 Intrepid ::FunctionSpaceTools::computeCellMeasure<double>(worksetCubWeights,
32 worksetJacobDet, cubWeights);
33

34 // Step 6. Transform basis values to physical frame
35 Intrepid ::FieldContainer<double> worksetBasisValues(worksetSize, numFields,
36 numCubPoints);
37 Intrepid ::FunctionSpaceTools::HGRADtransformVALUE<double>(worksetBasisValues, basisValues);
38

39 // Step 7. Multiply transformed basis values by cell measure
40 Intrepid ::FieldContainer<double> worksetBasisValuesWeighted(worksetSize, numFields,
41 numCubPoints);
42 Intrepid ::FunctionSpaceTools::multiplyMeasure<double>(worksetBasisValuesWeighted,
43 worksetCubWeights, worksetBasisValues);
44

45 // Step 8. Map cubature points to physical space
46 Intrepid ::FieldContainer<double> worksetCubPoints(worksetSize, numCubPoints, spaceDim);
47 Intrepid ::CellTools<double>::mapToPhysicalFrame(worksetCubPoints, cubPoints,
48 worksetCoords, cellType);
49

50 // Step 9. Get source term (RHS) data at cubature points
51 Intrepid ::FieldContainer<double> worksetRHSData(worksetSize, numCubPoints);
52 getRHSData(worksetRHSData, worksetCubPoints);
53

54 // Step 10. Integrate to get right hand side vector for workset cells
55 Intrepid ::FieldContainer<double> worksetRHSVector(worksetSize, numFields);
56 Intrepid ::FunctionSpaceTools::integrate<double>(worksetRHSVector, worksetRHSData,
57 worksetBasisValuesWeighted, Intrepid::COMP_CPP);

Fig. 10. Example code listing for the assembly of an H(grad) functional on tetrahedral cells using linear basis functions. We note that the call to
HGRADtransformVALUE above invokes a simple copy of the reference basis values to the workset array.

172 P. Bochev et al. / Solving PDEs with Intrepid

1 // Step 1. Define cell topology and get dimensions
2 shards::CellTopology cellType(shards::getCellTopologyData<shards::Hexahedron<8> >());
3 int numNodesPerCell = cellType.getNodeCount();
4 int numFacesPerCell = cellType.getSideCount();
5 int spaceDim = cellType.getDimension();
6

7 // Step 2. Define evaluation points (here use cell centers)
8 int numEvalPoints = 1;
9 Intrepid ::FieldContainer<double> evalPoints(numEvalPoints, spaceDim);

10 evalPoints (0, 0)=0.0; evalPoints(0, 1)=0.0; evalPoints(0,2)=0.0;
11

12 // Step 3. Select basis and evaluate values and divergence at evaluation points
13 Intrepid ::Basis_HDIV_HEX_I1_FEM<double,Intrepid::FieldContainer<double> > HDivBasis;
14 int numFields = HDivBasis.getCardinality();
15 Intrepid ::FieldContainer<double> basisValues(numFields, numEvalPoints, spaceDim);
16 Intrepid ::FieldContainer<double> basisDivs(numFields, numEvalPoints);
17 HDivBasis.getValues(basisValues, evalPoints, Intrepid::OPERATOR_VALUE);
18 HDivBasis.getValues(basisDivs, evalPoints, Intrepid::OPERATOR_DIV);
19

20 // Step 4. Calculate Jacobian and determinant for cell workset
21 Intrepid ::FieldContainer<double> worksetJacobian(worksetSize, numEvalPoints, spaceDim,
22 spaceDim);
23 Intrepid ::FieldContainer<double> worksetJacobDet(worksetSize,numEvalPoints);
24 Intrepid ::CellTools<double>::setJacobian(worksetJacobian, evalPoints, worksetCoords,
25 cellType);
26 Intrepid ::CellTools<double>::setJacobianDet(worksetJacobDet, worksetJacobian);
27

28 // Step 5. Transform basis values and divergence to physical frame
29 Intrepid ::FieldContainer<double> worksetBasisValues(worksetSize, numFields,
30 numEvalPoints, spaceDim);
31 Intrepid ::FieldContainer<double> worksetBasisDivs(worksetSize, numFields,
32 numEvalPoints);
33 Intrepid ::FunctionSpaceTools::HDIVtransformVALUE<double>(worksetBasisValues,
34 worksetJacobian, worksetJacobDet, basisValues);
35 Intrepid ::FunctionSpaceTools::HDIVtransformDIV<double>(worksetBasisDivs,
36 worksetJacobDet, basisDivs);
37

38 // Step 6. Apply field signs
39 Intrepid ::FunctionSpaceTools::applyFieldSigns<double>(worksetBasisValues,
40 worksetFaceSigns);
41 Intrepid ::FunctionSpaceTools::applyFieldSigns<double>(worksetBasisDivs,
42 worksetFaceSigns);
43

44 // Step 7. Evaluate finite element field and its divergence at evaluation points
45 Intrepid ::FieldContainer<double> worksetu(worksetSize, numEvalPoints, spaceDim);
46 Intrepid ::FieldContainer<double> worksetdivu(worksetSize, numEvalPoints);
47 Intrepid ::FunctionSpaceTools::evaluate<double>(worksetu, uCoefficients,
48 worksetBasisValues);
49 Intrepid ::FunctionSpaceTools::evaluate<double>(worksetdivu, uCoefficients,
50 worksetBasisDivs);

Fig. 11. Example code listing for the evaluation of a finite element field and its divergence using lowest-order H(div) basis functions.

the arrays uCoefficients and worksetFaceSigns that are
both sized by (worksetSize, numFacesPerCell). These
arrays contain the coefficients of the basis function
used to generate the finite element field and the signs
(±1) that describe the orientation of the physical cell
face compared with the orientation of the reference cell

face. If the faces have the same orientation the sign
is +1.

In this example the single evaluation point on each
hexahedral cell is its center xC = F (0, 0, 0), i.e., the
image of the center x̂C = (0, 0, 0) of the reference
Hexahedron [−1, 1]3. Because the pre-image of xC is

P. Bochev et al. / Solving PDEs with Intrepid 173

known, we can skip step 3 and directly define the eval-
uation point on the reference element; see line 10 in
Fig. 11. In general, the preimages x̂p of the evalua-
tion points are not know in advance. The method map-
ToReferenceFrame() of the CellTools class implements
the action of F −1 for all standard finite element topolo-
gies defined in Shards.

6. Additional capabilities and future directions

The design of Intrepid allows for unprecedented
flexibility and extensibility of its core functionality by
new cell topologies, integration rules, basis definitions,
and discretization methods. In this section we briefly
review some recent uses of Intrepid, which illustrate
this trait.

The first example discusses a use case in visual-
ization, where Intrepid replaces a vorticity computa-
tion based on spherical harmonics by a finite element
approximation. In this use case, Intrepid’s “middle-
ware” characteristic makes its integration into a non-
PDE centric application very appealing. The second
example showcases extensions that enable finite ele-
ment assembly in physical space, i.e., without the use
of a reference cell. This allows for efficient imple-
mentations of FEM on polygonal cells; we note that
a similar mechanism can be used in FVM and FDM.
The third example features a hybrid FVM/FEM dis-
cretization. It highlights Intrepid’s flexibility in provid-
ing the software tools that are beyond the traditional
FEM, FVM and FDM. The fourth example summa-
rizes extensions that enable the solution of PDEs with
random inputs. Here, an adaptive stochastic colloca-
tion capability is built on an extended set of cubature
rules.

6.1. Visualization of ultra-large climate data sets

In the field of climate research the existing tools
and algorithms are not sufficient to process and vi-
sualize the large amounts of data generated from
codes and observations efficiently. Often the final
visualization is less computationally expensive than
the calculations that must be performed on the data
before it can be visualized. This may involve in-
terpolating data onto another grid or computing de-
rived quantities from the data. To improve perfor-
mance in data analysis and visualization, Intrepid
tools are being leveraged for the computational en-
gine in the Parallel Climate Analysis Library (ParCAL)

(trac.mcs.anl.gov/projects/parvis). For a given set of
function values on a grid, Intrepid contains all the
necessary tools to obtain function approximations at
points in a cell for use in interpolation and for comput-
ing derived quantities.

One example use case is to compute the vor-
ticity of a vector velocity field on a latitude (φ)–
longitude (λ) grid. In one widely-used analysis tool,
NCL (www.ncl.ucar.edu), this computation is done us-
ing a spherical harmonic representation. The drawback
of this method is that the approximation is global and
requires data that cover the entire Earth. In contrast,
Intrepid can perform the same computation using lo-
cal basis functions for a data set that is regional or
global.

The method that Intrepid uses to compute the vortic-
ity begins with an approximation of the velocity field
over a cell using nodal basis functions (Ni) and nodal
velocity values (vi)

v(λ, φ) ≈
∑

i

Ni(λ, φ)vi. (19)

Approximate values of the gradient v = (u, v), can be
determined using the gradients of the basis functions
as

∇u(λ, φ) ≈
∑

i

ui∇Ni(λ, φ),

(20)
∇v(λ, φ) ≈

∑
i

vi∇Ni(λ, φ).

The procedures in steps 3–5 of the stiffness matrix as-
sembly discussed in Section 5 are used to obtain the
gradients of the shape functions, ∇Ni, and the Func-
tionSpaceTools::evaluate() method is used to obtain the
gradients of the velocity components. Once the gradi-
ents are obtained, the vorticity or divergence can be
computed by combining partial derivatives and met-
ric terms for vorticity in physical space as shown in
Eq. (21), where r is the radius of the Earth.

vorticity =
1

r cos φ

∂v

∂λ
− 1

r

∂u

∂φ
+

u

r
tan φ. (21)

This approach is easily parallelizable and generates
a vorticity field that is quite similar to that com-
puted with NCL using spherical harmonics as shown
in Fig. 12.

174 P. Bochev et al. / Solving PDEs with Intrepid

Fig. 12. Vorticity plotted with NCL and computed using (a) local cell approach with Intrepid and (b) spherical harmonics using the NCL function
uv2vrG_wrap. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2012-0340.)

6.2. Polygonal elements

The solution of PDEs on polygonal cells is attractive
in multiple contexts. Such cells provide greater flexi-
bility in the meshing of complex geometries and can
serve as “glue” between conventional elements. Polyg-
onal cells are attractive for material design [16], multi-
material calculations [24], and arbitrary Lagrangian–
Eulerian methods for meshes whose connectivity may
change [25,26].

Currently Intrepid supports H(grad) finite elements
on arbitrary convex polygons [38]. The class Ba-
sis_HGRAD_POLY_C1_FEM implements polygonal
basis functions φi with the following properties:

• Partition of unity:
∑n

i=1 φi(x) = 1.
• Interpolatory basis: for any vertex vj of a polygon

κ: φi(vj) = δij .
• Linear completeness:

∑n
i=1 φi(x)xi = x.

• The basis functions φi ∈ C∞(κ) and their restric-
tion to ∂κ are C0, piecewise linear functions.

The implementation of this class follows the length and
area metric approach of [35]. Given a convex polygon
κ let ai be the area of triangle formed by vertex vi and
its adjacent two vertices and rjk(x) be the area of tri-
angle formed by vertices vj and vk with point x. The
rational function

φi(x) =
wi(x)∑n

j=1 wj(x)
,

where wi are the weight functions

wi(x) = ai

∏
jk �=i

rjk(x),

defines the basis function associated with vertex vi of
the polygon κ. The evaluation of these basis functions
requires the vertex coordinates of the polygonal cell.
For this reason, the class Basis_HGRAD_POLY_C1_
FEM uses the second field evaluation interface of
the Basis class, in which the vertex coordinates of
the cell are one of the input arguments; see Sec-
tion 4.

template<class Scalar, class ArrayScalar>
class Basis_HGRAD_POLY_C1_FEM:

public Basis<Scalar, ArrayScalar> {
...

public:
...
Basis_HGRAD_POLY_C1_FEM(const shards::

CellTopology& cellTopology);

void getValues(ArrayScalar& outputValues,
const ArrayScalar& inputPoints,
const ArrayScalar& cellVertices,
const EOperator operatorType);

...
};

The computation of OPERATOR_GRAD for the ba-
sis functions uses Sacado for automatic differentiation.
Figure 13 shows typical polygonal basis functions and
their gradient fields.

The class CubaturePolygon generates integration
points on polygonal cells in physical coordinates. Con-
sequently, this class requires access to the vertex coor-
dinates of the polygon. To this end, the CubaturePoly-
gon constructor has an additional MDArray argument
to pass the cell vertices.

P. Bochev et al. / Solving PDEs with Intrepid 175

template<class Scalar,
class ArrayPoint=FieldContainer<Scalar>,
class ArrayWeight=ArrayPoint>

class CubaturePolygon : public Intrepid::Cubature
<Scalar,ArrayPoint,ArrayWeight> {

...
public:
...
CubaturePolygon(const shards::CellTopology&

cellTopology,
const ArrayPoint& cellVertices,
int degree);

void getCubature(ArrayPoint& cubPoints,
ArrayWeight& cubWeights) const;

...
};

The getCubature() method first triangulates the poly-
gon using its centroid. Subsequently, it uses a Cu-
batureDirectTriDefault object to generate integration
points on a reference triangle. Finally, these points are
mapped individually to the physical triangles forming
the triangulation of the polygonal cell; see Fig. 13.

6.3. Control volume finite element method

Consider the scalar advection–diffusion equation

∂u

∂t
− ∇ · (μ∇u − bu) = f in Ω and

(22)
u = 0 on ∂Ω,

where μ is diffusion coefficient and b is velocity field.
The control volume finite element method (CVFEM)
[4] for (22) is a hybrid spatial discretization method
that combines finite element representation of the dis-
crete solution with definition of the discrete equations
through integration of the conservative form of the
governing equations on dual volumes Ci, associated
with the vertices vi of the finite element mesh. Left
plot in Fig. 14 shows the geometry of a typical con-
trol volume on an unstructured quadrilateral grid. Let
{φi} be an H(grad)-conforming basis and assume that
(22) has been discretized in time using the implicit Eu-
ler scheme with time step Δt. Let uo

h denote the finite
element solution at the old time step. Application of

Fig. 13. The two left plots show representative Intrepid polygonal basis functions and their gradient fields. The right plot shows cubature points
generated by the CubaturePolygon class. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2012-0340.)

Fig. 14. (Left plot) Unstructured primal grid with typical control volume (Ci) for the CVFEM. (Right plot) CVFEM assembly requires computa-
tion of volume and surface integrals on subdomains of the finite element defined by its intersection with the control volumes. (Colors are visible
in the online version of the article; http://dx.doi.org/10.3233/SPR-2012-0340.)

176 P. Bochev et al. / Solving PDEs with Intrepid

CVFEM to the semidiscrete in time equation yields an
algebraic system with matrix and right-hand side given
by

Aij =
∫

Ci

φj dV − Δt

∫
∂Ċi

(μ∇φj − bφj) · n dS,

(23)

fi = Δt

∫
Ci

f dS +
∫

Ci

uo
h dV ,

respectively. Assembly of “operator” and “functional”
elements Aij and fi requires integration over the con-
trol volumes and their boundaries. Because each con-
trol volume intersects one or more elements, Aij and
fi can be assembled from element contributions Ar

ij
and fr

i computed on element Kr. Assume that Kr has
vertices vi, vj , vk and vl; see Fig. 14. The control vol-
umes associated with the vertices are Ci, Cj , Ck and
Cl. Their intersections with Kr yield the element sub-
domains (sub-control volumes) Cr

i , Cr
j , Cr

k and Cr
l ,

respectively. The element contributions from Kr are

Ar
ij =

∫
Cr

i

φj dV − Δt

∫
∂Ċr

i

(μ∇φj − bφj) · n dS,

(24)

fr
i = Δt

∫
Cr

i

f dS +
∫

Cr
i

uo
h dV ,

respectively. From (24) we see that computation of the
element contributions Ar

ij and fr
i is completely local to

Kr, i.e., it does not require any information about the
neighbors of Kr. This means that the CVFEM assem-
bly naturally fits the standard Intrepid workflow where
operations are carried on per cell basis on unrelated
cells stored in cell worksets.

CVFEM assembly requires several additional steps
that are not present in conventional FEM codes:

(1) Find the center br of element Kr.
(2) Compute unit normals to the segments of the sub-

control volume boundaries ∂Cr
i , ∂Cr

j , ∂Cr
k and

∂Cr
l .

(3) Compute the measures of sub-control volumes
Cr

i , Cr
j , Cr

k and Cr
l .

(4) Compute the measures of the sub-control volume
boundaries ∂Cr

i , ∂Cr
j , ∂Cr

k and ∂Cr
l .

(5) Define cubature points on the sub-control vol-
umes and their boundaries.

The methods in CellTools and FunctionSpaceTools
classes provide all the necessary functionality to carry
out these steps. We have implemented a CVFEM for
(22) on quadrilateral grids for which the sub-control

volumes Cr
i , Cr

j , Cr
k and Cr

l are also quadrilaterals.
We store their coordinates in FieldContainer objects:

// container for coordinates of subcontrol volume nodes
int numNodesPerSubCV = 4;
FieldContainer<double> subCVNodes(numNodesPerElem,

numNodesPerSubCV, spaceDim);

The computation of, e.g., sub-control volume measures
in step 3 uses the standard Jacobian methods from Cell-
Tools:

// calculate Jacobian and determinant for each subCV
// (Cell type is set to quad for subCV)
CellTools::setJacobian(subCVJacobian, evalPoint,

subCVNodes, cellType);
CellTools::setJacobianDet(subCVJacobDet, subCVJacobian);
...
subCVArea(ielem,inode)=4.0*subCVJacobDet(inode, 0);
...

The implementation of the remaining steps above uses
similarly the standard Intrepid functionality.

6.4. Adaptive stochastic collocation

The solution of PDEs with random input data is criti-
cal to the quantification of uncertainty in national secu-
rity applications, energy and climate research, and en-
gineering design. The challenge in solving such PDEs
is in the potentially large number of random fields
that enter the equations. For example, a determinis-
tic advection–diffusion equation in two spatial dimen-
sions may be extended to the stochastic PDE

−ε(γ, x)Δu(γ, x) + V(γ, x) · ∇u(γ, x)

= z(γ, x), γ ∈ Γ, x ∈ D, (25a)

u(γ, x) = d(γ, x), γ ∈ Γ, x ∈ ∂DD, (25b)

∇u(γ, x) · n

= g(γ, x), γ ∈ Γ, x ∈ ∂DN , (25c)

where the PDE solution u(γ, x) and the input fields
ε(γ, x) (diffusion), V(γ, x) (advection), z(γ, x) (source
field), d(γ, x) (Dirichlet boundary field) and g(γ, x)
(Neumann boundary field) are random fields that de-
pend on the points x in a physical domain D ⊂ R

2 and
the points γ in a probability space Γ ⊂ R

M ; here ∂DD
denotes the Dirichlet boundary, ∂DN denotes the Neu-
mann boundary. In this particular case, if one random
variable is used to represent each input field, the total

P. Bochev et al. / Solving PDEs with Intrepid 177

dimension of the problem is seven (two spatial and five
stochastic variables). As the stochastic dimension M
increases, the discretization and subsequent solution of
the PDE quickly become computationally intractable –
unless special structure is (a) present and (b) can be
exploited computationally.

Intrepid implements one such structure-exploiting
discretization of the stochastic variables, called sto-
chastic collocation. Unlike Monte-Carlo methods that
are rooted in probability theory and often exhibit slow
convergence for problems of type (25), stochastic col-
location is based on approximation theory and ex-
ploits PDE regularity to accelerate convergence [3,
41,44]. Stochastic collocation interpolates the random
PDE variables on a set of integration points in high-
dimensional spaces. For this reason, Intrepid’s Cuba-
ture classes are its proper building blocks.

To support stochastic collocation, Intrepid adds a
variety of one-dimensional cubature rules, based on
John Burkardt’s work [11], provided by the Cubature-
LineSorted class. The available line cubatures, selected
via the rule parameter, include Gauss–Chebyshev,
Clenshaw–Curtis, Fejer, Gauss–Legendre, Gauss–
Patterson, composite trapezoidal, Gauss–Hermite,
Hermite–Genz–Keister and Gauss–Laguerre rules.
A constructor for the CubatureLineSorted class is
given below.

CubatureLineSorted(int degree = 0,
EIntrepidBurkardt rule = BURK_CLENSHAWCURTIS,

bool isNormalized = false);

Tensor-products of the one-dimensional cubatures can
be built using the CubatureTensorSorted class.

To make stochastic collocation computationally
tractable in high dimensions, Intrepid provides an im-
plementation of classic sparse grids [37], which gen-
erate sets of integration points that are small in size
yet feature good polynomial accuracy. In addition, a
dimension-adaptive framework [19] for stochastic col-
location is available.

Classic sparse grids are built using the buildSparse-
Grid() method of the AdaptiveSparseGrid class.

AdaptiveSparseGrid<Scalar, Vector>::buildSparseGrid(
CubatureTensorSorted<Scalar> & output,

// Cubature Points /Weights
int dimension, // Dimension of Stochastic Space
int maxlevel, // Maximum Sparse Grid Level
std::vector<EIntrepidBurkardt> rule1D,

// 1D Cubature Rules
std::vector<EIntrepidGrowth> growth1D,

// 1D Growth Rules
bool isNormalized); // Normalize Weights?

A variety of growth rules are supported and include
slow linear, moderate linear, slow exponential, moder-
ate exponential and full exponential growth [11], cho-
sen via the growth1D parameter.

Dimension-adaptive sparse grids can be realized us-
ing one of several refine_grid() methods.

template<class Scalar, class UserVector>
class AdaptiveSparseGrid {
public:
...
static Scalar refine_grid(
typename std::multimap<Scalar,std::vector<int> >

& activeIndex, // active (new) grid indices
std::set<std::vector<int> > & oldIndex,

// previous set of indices
UserVector & integralValue,

// vector of integral values
CubatureTensorSorted<Scalar> & cubRule,

// sparse grid points and weights
Scalar globalErrorIndicator ,

// error indicator for adaptivity
AdaptiveSparseGridInterface <Scalar,UserVector>
& problem_data // user −implemented ASG interface

);
...
};

The input parameter problem_data is a user-supplied
object that implements the abstract class Adaptive-

SparseGridInterface. This object defines the methods
for the evaluation of, e.g., stochastic integrands and er-
ror indicators. Other methods, such as eval_cubature()

come with default implementations (in this case a sim-
ple summation of integrand values multiplied by the
weights), but can be overloaded with user-defined im-
plementations.

template<class Scalar, class UserVector>
class AdaptiveSparseGridInterface {
...

public:
virtual void eval_integrand(UserVector & output,

std::vector<Scalar> & input) = 0;

virtual void eval_cubature(UserVector & output,
CubatureTensorSorted<Scalar> & cubRule);

virtual Scalar error_indicator(UserVector & input)
= 0;

virtual bool max_level(std::vector<int> index);
...

178 P. Bochev et al. / Solving PDEs with Intrepid

Fig. 15. Left to right: observed state (measurements); standard deviation of optimal state; optimal control (sources), i.e., the result of source
inversion. In this example the stochastic variables govern (1) the Dirichlet boundary condition (posed on the left boundary of the domain), (2) the
amplitude of the advection field and (3) the angle of the advection field with respect to the outward facing normal on the left boundary. The random
variables are distributed uniformly on [−1, 1]3. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2012-0340.)

Given these building blocks, an adaptive sparse grid
algorithm may be implemented as follows.

double adaptSG(Vector<double> & value,
std::multimap<double,std::vector<int> > &

activeIndex,
std::set<std::vector<int> > & oldIndex,
AdaptiveSparseGridInterface <double,

StdVector<double> > & problem_data,
CubatureTensorSorted<double> & cubRule,
double TOL)

{
// Construct container for adapted rule
int dimension = problem_data.getDimension();
std::vector<int> index(dimension, 1);

// Initialize global error indicator
double eta = 1.0;

// Initialize active index set
activeIndex. insert(std::pair<double,

std::vector<int>>(eta,index));

// Perform adaptation
while (eta > TOL) {

eta = AdaptiveSparseGrid<double,Vector<double>>::
refine_grid(

activeIndex, oldIndex, value, cubRule, eta,
problem_data);

}
cubRule.normalize();
return eta;

}

Intrepid’s adaptive stochastic collocation capability
has been used to solve optimal design and inverse prob-
lems governed by PDEs with random inputs. Con-
sider the stochastic PDE (25) with z(γ, x) = z(x),
ε(γ, x) = ε and g(γ, x) = 0. Let ud denote a set of
given discrete measurements of the state u(γ, x) and
let {x1, . . . , xN } denote the locations of the measure-

ments. We solve the source inversion problem

min
u, z

1
2

N∑
i=1

E
[

|u(·, xi) − ud(xi)|2] +
α

2
‖z‖2

subject to the PDE (25). We note that in this setting
z plays the role of a (deterministic) control variable
whose optimal value reveals the locations and ampli-
tudes of sources that generate the measurements ud.
The results of source inversion for a problem with three
stochastic dimensions (random Dirichlet condition, ad-
vection amplitude and advection angle) are shown in
Fig. 15.

Acknowledgements

Crucial support for the research in advanced dis-
cretization methods, which prompted the inception of
Intrepid, has been provided by the ASCR program of
DoE’s Office of Science. Further research and devel-
opment of the package was supported in part by the
ASCR and the ASC program of the NNSA.

Our work benefited tremendously from formal and
informal discussions with Eric Cyr, Roger Pawlowski,
Kevin Long and Jake Ostien, among others. Our sum-
mer students M. Keegan, N. Roberts, J. Lai, D. Kouri
and C. Beni bravely adopted Intrepid for their research
projects and flushed a number of bugs from the pack-
age. They also contributed to the further development
of the package and successfully applied it to challeng-
ing problems such as Discontinuous Petrov–Galerkin
methods [33], discontinuous least-squares finite ele-
ment methods [7] and adaptive stochastic collocation
methods, among others.

R.C. Kirby acknowledges support from a contract
from Sandia National Laboratories and NSF Award
1117794.

P. Bochev et al. / Solving PDEs with Intrepid 179

References

[1] D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior
calculus, homological techniques, and applications, Acta Num.
15 (2006), 1–155.

[2] A. Aziz (ed.), The Mathematical Foundations of the Finite El-
ement Method with Applications to Partial Differential Equa-
tions, Academic Press, New York, 1972.

[3] I. Babuška, F. Nobile and R. Tempone, A stochastic collocation
method for elliptic partial differential equations with random
input data, SIAM Rev. 52 (2010), 317–355.

[4] B. Baliga and S. Patankar, New finite element formulation
for convection–diffusion problems, Numer. Heat Transfer 3
(1980), 393–409.

[5] R.A. Bartlett, Teuchos::RCP beginner’s guide, Technical Re-
port SAND2004-3268, Sandia National Laboratories, 2004.

[6] P. Bochev and M. Hyman, Principles of compatible discretiza-
tions, in: Compatible Discretizations, Proceedings of IMA Hot
Topics Workshop on Compatible Discretizations, D.N. Arnold,
P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov, eds,
IMA Volumes in Mathematics and Its Applications, Vol. 142,
Springer, New York, 2006, pp. 89–120.

[7] P. Bochev, J. Lai and L. Olson, A locally conservative, dis-
continuous least-squares finite element method for the stokes
equations, Int. J. Numer. Methods Fluids (2012), to appear.

[8] A. Bossavit, Whitney forms: a class of finite elements for three-
dimensional computations in electromagnetism, IEEE Proc.
135 (1988), 493–500.

[9] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element
Methods, Springer, Berlin, 1991.

[10] F. Brezzi, J. Rappaz and P.A. Raviart, Finite-dimensional ap-
proximation of nonlinear problems, Numer. Math. 36 (1980),
1–25.

[11] J. Burkardt, 1D quadrature rules for sparse grids, Technical re-
port, Interdisciplinary Center for Applied Mathematics and In-
formation Technology Department, Virginia Tech, 2010.

[12] S.S. Cairns, Introductory Topology, Ronald Press, New York,
1961.

[13] P. Castillo, R. Rieben and D. White, FEMSTER: an object-
oriented class library of high-order discrete differential forms,
ACM Trans. Math. Software 31 (2005), 425–457.

[14] P. Ciarlet, The Finite Element Method for Elliptic Prob-
lems, SIAM Classics in Applied Mathematics, Vol. 40, SIAM,
Philadelphia, PA, 2002.

[15] A. Dezin, Multidimensional Analysis and Discrete Models,
CRC Press, Boca Raton, FL, 1995.

[16] A.R. Diaz and A. Benard, Designing materials with prescribed
elastic properties using polygonal cells, Int. J. Numer. Methods
Eng. 57 (2003), 301–314.

[17] A. Ern and J.-L. Guermond, Theory and Practice of Finite El-
ements, Applied Mathematical Sciences, Vol. 159, Springer,
New York, 2004.

[18] H. Flanders, Differential Forms with Applications to the Phys-
ical Sciences, Dover, New York, 1989.

[19] T. Gerstner and M. Griebel, Dimension-adaptive tensor-
product quadrature, Computing 71 (2003), 65–87.

[20] V. Girault and P. Raviart, Finite Element Methods for Navier–
Stokes Equations, Springer, Berlin, 1986.

[21] F.H. Harlow, The particle-in-cell computing method for fluid
dynamics, in: Methods in Computational Physics, B. Alder,

S. Fernbach and M. Rotenberg, eds, Vol. 3, Academic Press,
New York, 1964.

[22] Intrepid user guide, October 2011, available at: http://trilinos.
sandia.gov/packages/intrepid/documentation.html.

[23] R.C. Kirby, FIAT: a new paradigm for computing finite ele-
ment basis functions, ACM Trans. Math. Software 30 (2004),
502–516.

[24] M. Kucharik, J. Breil, S. Galera, P.-H. Maire, M. Berndt and
M. Shashkov, Hybrid remap for multi-material ALE, Comput.
Fluids 46(1) (2012), 293–297.

[25] M. Kucharik and M. Shashkov, Extension of efficient, swept-
integration-based conservative remapping method for meshes
with changing connectivity, Int. J. Numer. Methods Fluids 56
(2008), 1359–1365.

[26] R. Loubere and M.J. Shashkov, A subcell remapping method
on staggered polygonal grids for arbitrary Lagrangian–
Eulerian methods, J. Comput. Phys. 209 (2005), 105–138.

[27] J.C. Nedelec, Mixed finite elements in r3, Numer. Math. 35
(1980), 315–341.

[28] J.C. Nedelec, A new family of mixed finite elements in r3,
Numer. Math. 50 (1986), 57–81.

[29] R. Nicolaides, Direct discretization of planar div–curl prob-
lems, SIAM J. Numer. Anal. 29 (1992), 32–56.

[30] R. Nicolaides and K. Trapp, Covolume discretizations of
differential forms, in: Compatible Discretizations, Proceed-
ings of IMA Hot Topics Workshop on Compatible Discretiza-
tions, D.N. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and
M. Shashkov, eds, IMA Volumes in Mathematics and Its Ap-
plications, Vol. 142, Springer, New York, 2006, pp. 161–172.

[31] R.P. Pawlowski, E.T. Phipps and A.G. Salinger, Automat-
ing embedded analysis capabilities and managing software
complexity in multiphysics simulation, Part I: Template-based
generic programming, Sci. Program. 20 (2012), 197–219 (this
issue).

[32] E.S. Raymond, The Art of UNIX Programming, Addison-
Wesley, Reading, MA, 2004.

[33] N. Roberts, D. Ridzal, P. Bochev, L. Demkowicz, K. Peter-
son and C. Siefert, Application of a discontinuous Petrov–
Galerkin method to the Stokes equations, in: Computer Science
Research Institute Summer Proceedings, E. Cyr and S. Collis,
eds, Sandia National Laboratories, Albuquerque, NM, 2010,
pp. 32–46.

[34] M. Shashkov, Conservative Finite Difference Methods on Gen-
eral Grids, CRC Press, Boca Raton, FL, 1995.

[35] D. Shepard, A two-dimensional interpolation function for
irregularly-spaced data, in: Proceedings of the 23rd ACM Na-
tional Conference, ACM, New York, NY, 1968, pp. 517–524.

[36] T.M. Smith, J.N. Shadid, R.P. Pawlowski, E.C. Cyr and
P.D. Weber, Reactor core sub-assembly simulations using
a stabilized finite element method, in: Proc. 14th Inter-
national Topical Meeting on Nuclear Reactor Thermalhy-
draulics, Toronto, ON, Canada, 2011.

[37] S.A. Smoljak, Quadrature and interpolation formulae on tensor
products of certain function classes, Sov. Math. Dokl. 4 (1963),
240–243.

[38] N. Sukumar and E. Malsch, Recent advances in the construc-
tion of polygonal finite element interpolants, Arch. Comput.
Methods Eng. 13 (2006), 129–163.

[39] F.L. Teixeira and W.C. Chew, Lattice electromagnetic theory
from a topological viewpoint, J. Math. Phys. 40 (1999), 169–
187.

180 P. Bochev et al. / Solving PDEs with Intrepid

[40] T. Warburton, An explicit construction of interpolation nodes
on the simplex, J. Eng. Math. 56 (2006), 247–262.

[41] C. Webster, Sparse grid stochastic collocation techniques for
the numerical solution of partial differential equations with
random input data, PhD thesis, Department of Mathematics
and School of Computational Science, Florida State Univer-
sity, Tallahassee, FL, 2007.

[42] J.S.V. Welij, Calculation of eddy currents in terms of H on
hexahedra, IEEE Trans. Magnetics 21 (1985), 2239–2241.

[43] D.A. White, J.M. Koning and R.N. Rieben, Development and
application of compatible discretizations of maxwell’s equa-

tions, in: Compatible Spatial Discretizations, D.N. Arnold,
P.B. Bochev, R.B. Lehoucq, R.A. Nicolaides and M. Shashkov,
eds, IMA Volumes in Mathematics and Its Applications,
Vol. 142, Springer, New York, 2006, pp. 209–234.

[44] D. Xiu and J.S. Hesthaven, High-order collocation methods for
differential equations with random inputs, SIAM J. Sci. Com-
put. 27 (2005), 1118–1139.

[45] K.S. Yee, Numerical solution of initial boundary value prob-
lems involving Maxwell’s equations in isotropic media, IEEE
Trans. Ant. Prop. 14 (1966), 302–307.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

