
Research Article
On the Parallelization of Stream Compaction on a Low-Cost
SDC Cluster

Gregorio Bernabé and Manuel E. Acacio

Computer Engineering Department, University of Murcia, Murcia, Spain

Correspondence should be addressed to Gregorio Bernabé; gbernabe@um.es

Received 27 February 2018; Accepted 17 July 2018; Published 23 August 2018

Academic Editor: Harald Köstler

Copyright © 2018Gregorio Bernabé andManuel E. Acacio.+is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Many highly parallel algorithms usually generate large volumes of data containing both valid and invalid elements, and high-
performance solutions to the stream compaction problem reveal extremely important in such scenarios. Although parallel stream
compaction has been extensively studied in GPU-based platforms, and more recently, in the Intel Xeon Phi platform, no study has
considered yet its parallelization using a low-cost computing cluster, even when general-purpose single-board computing devices
are gaining popularity among the scientific community due to their high performance per $ and watt. In this work, we consider the
case of an extremely low-cost cluster composed by four Odroid C2 single-board computers (SDCs), showing that stream
compaction can also benefit—important speedups can be obtained—from this kind of platforms. To do so, we derive two parallel
implementations for the stream compaction problem using MPI. +en, we evaluate them considering varying number of
processes and/or SDCs, as well as different input sizes. In general, we see that unless the number of elements in the stream is too
small, the best results are obtained when eight MPI processes are distributed among the four SDCs that conform the cluster. To
add value to the obtained results, we also consider the execution of the two parallel implementations for the stream compaction
problem on a very high-performance but power-hungry 18-core Intel Xeon E5-2695 v4 multicore processor, obtaining that the
Odroid C2 SDC cluster constitutes a much more efficient alternative when both resulting execution time and required energy are
taken into account. Finally, we also implement and evaluate a parallel version of the stream split problem to store also the invalid
elements after the valid ones. Our implementation shows good scalability on the Odroid C2 SDC cluster and more compensated
computation/communication ratio when compared to the stream compaction problem.

1. Introduction

Continuous improvements in the technologies used to build
computers have recently made possible the fabrication of
extremely low-cost general-purpose single-board computing
devices. Nowadays, one can buy one of these tiny computers
for a few dollars and make it run Windows 10 or Ubuntu-
Linux operating systems [1, 2]. Among the variety of vendors
providing these single-board computers (SBCs), maybe the
most renowned ones are Raspberry Pi and Odroid. Although
the initial aim of these devices was to promote the teaching
of basic computer science in schools [3, 4] and developing
countries [5–7], recent appearance of single-board com-
puters with multicore ARMCPU chips and several gigabytes
of main memory also provides a desirable hardware

platform for the project-based learning paradigm in com-
puter science and engineering education [8–11] and have
attracted interest of a multitude of projects trying to take
advantage of their very low-cost performance ratio (i.e., for
scientific computing [12–14]) in contrast with other energy-
efficient but which are alternatives of higher cost [15].

Whereas Raspberry Pi SBCs seem to have put the focus
more on a “stand-alone” scenario, Odroid devices provide
increased processor frequency, more main memory, and
higher bandwidth Ethernet capabilities. Particularly, the
Raspberry Pi 3 model B that was launched in February 2016
features a 1.2GHz, 4-core ARMCortex-A53 CPU chip, 1GB
main memory, and a 10/100 Ethernet port. Compared with
its predecessor, the Raspberry Pi 2 model B released in
February 2015 adds wireless connectivity (2.4GHz Wi-Fi

Hindawi
Scientific Programming
Volume 2018, Article ID 2037272, 10 pages
https://doi.org/10.1155/2018/2037272

mailto:gbernabe@um.es
http://orcid.org/0000-0002-7265-3508
https://doi.org/10.1155/2018/2037272

802.11n and Bluetooth 4.1). On the contrary, the Odroid C2
sacri�ces wireless connectivity in favor of higher clock
frequencies (1.5GHz, 4-core ARM Cortex-A53 CPU chip),
larger main memory (2GB), and Gigabit Ethernet con-
nection. �ese characteristics make these particular devices
more appropriate at building high-performance low-cost
clusters able to meet the demands of some scienti�c
applications.

On the other hand, a common characteristic found in
many highly parallel algorithms is that they usually generate
large volumes of data containing both valid and invalid el-
ements. In these scenarios, high-performance solutions to the
data reduction problem are extremely important. Stream
compaction (also known as stream reduction) has been
proposed to “compact” an input streammixed with both valid
and invalid elements to a subset with only the valid elements
[16]. �is way, stream compaction is found in many appli-
cations that go from data mining and machine learning (in
order to prune invalid nodes after each parallel breadth-�rst
tree traversal step [17]) to deferred shading (to obtain the
subset of pixels whose rays intersect, which allows for better
workload balancing among the participating threads [18, 19])
or more speci�cally to speedup dosimetric computations for
radiotherapy, using Monte Carlo methods (they compacted
computations on photons that worked longer than others
[20]) and during voxelization of surfaces and solids [21].

Formally, given a list of elements i1, i2, . . . , in belonging
to the set I and a predicate function stream F : I→
true, false{ }, stream compaction divides I into valid and
invalid elements (ones that satisfy the predicate F and others
that do not) and keeps the relative order for all the valid
elements in the output (O) [18]. As shown in Algorithm 1,
the serial stream compaction of I under the predicate
function F isO � iεI ∣ F(i) � true{ }. �erefore, the outputO
simply contains all valid elements copied from the input I.
An example of the execution of Algorithm 1 can be observed
in Figure 1. �e list of input elements is composed by
numbers between 0 and 4. �e serial stream compaction
selects all elements that are not zero (assuming that zero
represents the invalid value), based on the predicate function
F, as shown in the low part of Figure 1. Although Algo-
rithm 1 is simple, the parallelization is not trivial because the
output position of each valid element cannot be obtained
until all its preceding elements have been discovered [22].

Parallel stream compaction has been extensively studied
in GPU-based platforms [16, 18, 22–25], and more recently,
parallel implementations for the Intel Xeon Phi processor
have also been proposed [26]. In this work, we consider the
case of an extremely low-cost cluster composed by four
Odroid C2 single-board computers (SDCs), showing that
stream compaction can also bene�t—important speedups
can be obtained—from this kind of platforms. To do so, we
derive two parallel implementations for the stream com-
paction problem using MPI. �en, we evaluate them con-
sidering varying number of processes and/or SDCs, as well
as di¡erent input sizes. In general, we see that unless the
number of elements in the stream is too small, the best
results are obtained when 8 MPI processes are distributed
among the 4 SDCs that conform the cluster.

�is manuscript extends a preliminary version of this
work [27] by making the following two important additional
contributions:

(i) To highlight the importance of our study, we also
consider the execution of the two parallel imple-
mentations for the stream compaction problem on
a very high-performance but power-hungry 18-core
Intel Xeon CPU E5-2695 v4. Overall, the obtained
results show that the Odroid C2 SDC cluster con-
stitutes an appealing alternative to a traditional high-
end multicore processor in those contexts in which
both low-cost and energy e£ciency requirements are
present.

(ii) We derive a parallel version of the stream split
problem to append the invalid elements to the
output stream of the valid elements. We evaluate it
on the Odroid C2 SDC cluster, observing good re-
sults in terms of scalability that lead to important
speedups, and better balance between computa-
tion and communication requirements than in the
stream compaction problem.

�e rest of the paper is organized as follows. �e par-
allelization strategies that we have implemented and eval-
uated for the stream compaction problem in this work are
explained in Section 2. In Section 3, we give the details of the
cluster of Odroid C2 SDCs used for the evaluation, and then,
we present the experimental results. �e parallelization of
the stream split problem and results on the Odroid C2 SDCs
are exposed in Section 4. Finally, Section 5 draws some
important conclusions obtained from this work.

Input: Vector I of length n
Input: Predicate function F
Output: Vector O of valid elements
Output: nvalid: the number of valid elements

(1) nvalid � 0
(2) for i � 0 to n− 1 do
(3) if F(I[i]) then
(4) O[nvalid + +] � I[i]
(5) end if
(6) end for

ALGORITHM 1: Serial stream compaction.

3 1 2 4 4 1 3 2 4 1

Stream compaction

3 0 1 2 4 0 0 4 0 1 3 2 0 4 0 1

Figure 1: Example of serial stream compaction (zero value is used
to represent the invalid elements).

2 Scienti�c Programming

2. Parallel Stream Compaction on a Cluster of
Odroid C2 SDCs

In this section, we present the two parallelization strategies
that we have considered in this work. In both cases, we have
implemented them using MPI [28].

2.1. Parallel Stream Compaction. We have based on the
implementation proposed in the �rust library [29] to de-
velop the parallel stream compaction scheme shown in
Algorithm 2. A vector of a particular length, the predicate
function, the number of processes, and the pid of each
process are the inputs. We have divided Algorithm 2 into
four phases, namely: Validation phase (lines 4–8), Scan
phase (lines 9–12), Communication phase (lines 13–21), and
Scatter phase (lines 22–26). During the Validation phase, the
input vector (I) is examined in parallel, and taking into
consideration the predicate function, each process annotates
the validity of each of its assigned elements in array temp
(representing 1 a valid element and 0 an invalid one). �e
parallel Scan phase needs an additional array (scan) to
compute the so-called pre�x-sum [30–32], where each el-
ement is the addition of all its preceding elements excluding
itself. So, each process obtains in parallel the number of valid
elements (nvalid) in its portion of the stream. Following this,
in the Communication phase, each process, identi�ed by
a pid, sends the number of valid elements that it has found to
all the processes with higher pids. All the processes, except
the �rst one, receive the number of valid elements and
compute the position (pos) of the �rst of their valid ele-
ments. Finally, during the Scatter phase, based on the scan
and temp arrays, all valid elements are transferred from the
input array to the output one (I andO, resp.), preserving the
order in which these elements appear in the input array.

Figure 2 shows an example of an execution with four
MPI processes for a list of input elements composed by
numbers ranging between 0 and 4. In this case, the predicate
function F selects all elements that are not zero. Now, the
input vector of length 16 positions is divided among the four
MPI processes (P0, P1, P2, and P3). All the processes carry
out the Validation and Scan phases in parallel. �e position
(pos) computed by each process is shown below the vector
scan. Finally, the output O is built taking into account the
temp and scan vectors, as well as the pos, previously
computed.

2.2. ParallelWork-E�cient StreamCompaction. In [26], it is
presented a work-e£cient stream compaction algorithm
aimed at improving the computing complexity of the parallel
stream compaction that was shown in Algorithm 2. Again,
using MPI, we have developed the parallel version of this
work-e£cient stream compaction and we show it in Al-
gorithm 3. Now, during the Validation phase (lines 5–10),
each process saves the validity of each element on the array
scan and stores the number of valid elements on the vector
V. �erefore, the additional array of integers (temp) needed
in Algorithm 2 is no longer necessary. In the Communi-
cation phase (lines 11–26), all processes except the �rst one

send the number of valid elements to the �rst process (that
with pid 0), which executes the inclusive pre�x-sum on
vector V [31], where each element is the addition of all its
preceding elements including itself. �en, each position of
the array V is sent back to the corresponding process.
Following this, each process executes the Scan phase (lines

Input: Vector I of length n
Input: Predicate function F
Input: Number of processes p
Input: pid of process
Output: Vector O of valid elements
Output: nvalid: the number of valid elements
Output: pos: position to write

(1) nvalid � 0
(2) tamp � n/p
(3) scan[0 : (tamp− 1)] � 0
(4) for i � 0 to tamp− 1 in parallel do
(5) if F(I[i]) then
(6) temp[i] � 1
(7) end if
(8) end for
(9) for i � 0 to tamp− 1 in parallel do
(10) scan[i] � scan[i− 1] + temp[i− 1]
(11) end for
(12) nvalid � scan[tamp− 1] + temp[tamp− 1]
(13) for i � pid to p− 1 in parallel do
(14) Send nvalid to process [i + 1]
(15) end for
(16) if pid> 0 then
(17) for i � 0 to pid in parallel do
(18) Receive nvalid[i]
(19) pos � pos + nvalid[i]
(20) end for
(21) end if
(22) for i � 0 to tamp− 1 in parallel do
(23) if temp[i] then
(24) O[pos + scan[i]] � I[i]
(25) end if
(26) end for

ALGORITHM 2: Parallel stream compaction.

I

temp

scan

O 3 1 2 4 4 1 3 2 4 1

P2

3 850

P1P0 P3

0 1 1 2 0 1 1 1 0 0 1 2 0 0 1 1

1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1

3 0 1 2 4 0 0 4 0 1 3 2 0 4 0 1

Figure 2: Example of parallel stream compaction.

Scienti�c Programming 3

27–30) on its own segment independently, based on the
shifting value received previously. Finally, in the Scatter
phase (lines 31–35), the validity of each element is rechecked
by evaluating two consecutive positions of the scan array,
obtaining the output array (O) with the valid elements from
the input array (I).

Figure 3 illustrates an example for a list of elements
ranging between 0 and 4 and the predicate function F that
selects all elements that are not zero for an execution of four
MPI processes. As in the previous example, 4 input elements
are assigned to each MPI process and the Validation phase is
applied producing directly the validity of each element on
vector scan together with the number of valid elements that
each process �nds out.�e latter is stored on vectorV. �en,
the process P0 executes the inclusive pre�x-sum on vectorV
and sends back the output to the rest of the processes as is
indicated by the arrows in Figure 3. Finally, each process

enters the Scan and Scatter phases taking into account the
corresponding shifting value calculated by P0.

3. Experiments

We have built a cluster which is composed by four Odroid
C2 nodes. Each node contains a 1.5GHz quad-core 64-bit
ARM Cortex-A53 CPU and 2GB of RAM memory. All the
nodes are interconnected through a Gigabit Ethernet switch.
�e operating system installed on each node is Ubuntu
16.04.02 LTS. In this cluster, we have installedMPICH (v3.2)
as the MPI library implementation.

We have executed and measured the two parallelization
strategies for stream compaction presented in Section 2 on
this cluster. �e baseline for all the comparisons is the se-
quential version of Algorithm 2 without the Communication
phase. Moreover, we have con�gured di¡erent parallel ex-
ecution scenarios for the two parallel versions of the stream
compaction problem explained before. We consider parallel
executions with 2, 4, 8, and 16MPI processes, running on the
sameOdroid C2 board or di¡erent boards (up to 4).We have
chosen several input data sizes for our tests. In particular, we
consider input arrays with 1M, 8M, 32M, and 64M integer
elements ranging between 0 and 4. �e predicate function in
all cases determines as valid all numbers that are not zero.
�e 64M input set is the largest con�guration that we could
run taking into account the 2 GiB limit that the Odroid SDC
imposes.

3.1. Execution Time Results. Figures 4(a), 4(b), 5(a), and 5(b)
show the execution times (in milliseconds) that are observed
for input data sizes of 1M, 8M, 32M, and 64M elements,
respectively. For all these �gures, from left to right, we �rst
present the result obtained for the sequential version (Se-
quential), and then we show the results for the parallel stream
compaction (Compaction) and parallel work-e£cient stream
compaction (Compaction-Shifted) parallelization strategies,
respectively. For each one of them, we consider 2, 4, and 8

Input: Vector I of length n
Input: Predicate function F
Input: Number of processes p
Input: pid of process
Output: Vector O of valid elements
Output: nvalid: the number of valid elements

(1) nvalid � 0
(2) tamp � n/p
(3) scan[0 : (tamp− 1)] � 0
(4) V[0 : (t− 1)] � 0
(5) for i � 0 to tamp− 1 in parallel do
(6) if F(I[i]) then
(7) scan[i] � 1
(8) V[pid] � V[pid] + 1
(9) end if
(10) end for
(11) if pid> 0 then
(12) Send V[pid] to process pid 0
(13) end if
(14) if pid �� 0 then
(15) for i � 1 to npid do
(16) ReceiveV[i]
(17) V[i] � V[i] + V[i− 1]
(18) end for
(19) for i � 1 to npid do
(20) Send V[i− 1] to process pid i
(21) end for
(22) nvalid � V[p− 1]
(23) end if
(24) if pid> 0 then
(25) Receive V[pid− 1]
(26) end if
(27) scan[0] � scan[0] + V[pid− 1]
(28) for i � 0 to tamp− 1 in parallel do
(29) scan[i] � scan[i− 1] + scan[i]
(30) end for
(31) for i � 0 to tamp− 1 in parallel do
(32) if scan[i]! � scan[i− 1] then
(33) O[scan[i− 1]] � I[i]
(34) end if
(35) end for

ALGORITHM 3: Parallel work-e£cient stream compaction.

10 0 1 1 1scan 1 1 0 0 0 11 1 01

I 2 13 0 10 4 0 23 1 00 4 0 4

P0 P1 P3

V

P2

P023 2 3

scan

O 14 3 1 2 4 1 3 2 4

10853

108 9 91 3 1 2 4 4 4 5 8 5 6 7

Figure 3: Example of parallel work-e£cient stream compaction.

4 Scienti�c Programming

MPI processes running on oneOdroid C2 board (2P-1C2, 4P-
1C2, and 8P-1C2, resp.) and on 2Odroid C2 boards, having 1,
2, and 4 MPI processes per board in each case (2P-2C2, 4P-
2C2, and 8P-2C2, resp.), and �nally 2, 4, 8, and 16 MPI
processes running on 4 Odroid C2 boards, having 1, 2, or 4
processes per board as appropriate (2P-4C2, 4P-4C2, 8P-4C2,
and 16P-4C2, resp.).

From Figure 4(a), we can see that the two proposed
parallelization strategies for the stream compaction problem

obtain noticeable speedups when they are executed on
a single Odroid C2 board with 2 or 4 MPI processes with
regard to the sequential version. However, the executions on
di¡erent Odroid C2 boards show negative outcomes from
the performance point of view when the size of the input
array is excessively small (1M elements). What makes
the di¡erences is that in the �rst case, all communications
take place on the same board and, therefore, can be per-
formed with low latency. Contrarily, what happens when

0

50

100

150

200

250

300

350

400
Ti

m
e (

m
ill

ise
co

nd
s)

Compaction Compaction-
Shi�ed

Sequential

Versions

2P-1C2
4P-1C2
8P-1C2
2P-2C2

4P-2C2
8P-2C2
2P-4C2
4P-4C2

8P-4C2
16P-4C2
Sequential

(a)

Compaction Compaction-
Shi�ed

Sequential

Versions

0

50

100

150

200

250

300

350

400

450

Ti
m

e (
m

ill
ise

co
nd

s)

2P-1C2
4P-1C2
8P-1C2
2P-2C2

4P-2C2
8P-2C2
2P-4C2
4P-4C2

8P-4C2
16P-4C2
Sequential

(b)

Figure 4: Execution times (milliseconds) for stream compaction: (a) 1M elements and (b) 8M elements.

0

200

400

600

800

1000

Ti
m

e (
m

ill
ise

co
nd

s)

Compaction Compaction-
Shi�ed

Sequential

Versions

2P-1C2
4P-1C2
8P-1C2
2P-2C2

4P-2C2
8P-2C2
2P-4C2
4P-4C2

8P-4C2
16P-4C2
Sequential

(a)

0

500

1000

1500

2000

2500

Compaction Compaction-
Shi�ed

Sequential

Versions

Ti
m

e (
m

ill
ise

co
nd

s)

2P-1C2
4P-1C2
8P-1C2
2P-2C2

4P-2C2
8P-2C2
2P-4C2
4P-4C2

8P-4C2
16P-4C2
Sequential

(b)

Figure 5: Execution times (milliseconds) for stream compaction: (a) 32M elements and (b) 64M elements.

Scienti�c Programming 5

communications involve several Odroid C2 boards? In this
case, the time required for communication does not com-
pensate the small processing time that is needed to obtain the
stream compaction for such a small number of elements (the
communication time constitutes between 65% and 92% of
the execution time). Moreover, the executions on a single
Odroid C2 SDC with 8 MPI processes (2 MPI processes per
core) also show negative speedups, revealing (as expected)
that a configuration with more than one MPI process per
core increments the communications, which represents up
to 58% of the total time, and potentially slows computations.

Taking a closer look at the results for one Odroid C2
board and 1M input size, we see that the speedups of the
parallel stream compaction strategy for 2 and 4 MPI pro-
cesses are 1.68 and 1.64, respectively. Similarly, the work-
efficient stream compaction parallelization strategy obtains
speedups of 2.25 and 1.63 for 2 and 4 MPI processes, re-
spectively. +erefore, in both cases, fewer MPI processes,
and therefore, less amount of communications among
several processes, bring the best results. +ese two parallel
versions do not scale due to the small computation/
communication ratio that they exhibit (approximately 4
and 2 for 2 and 4 processes for both proposals), which
decreases as the number of processes grows.

In general, from Figures 4(b), 5(a), and 5(b), we can see
that as the input data size increases, so it does the speedups
obtained by the two parallelization strategies analyzed in this
work when more cores are involved. +e exception is the
configuration with 16 processes running on 4 Odroid C2
boards (4 processes per board), which reaches lower
speedups than that with 8 processes running on 4 Odroid C2
boards (2 processes per board).

More specifically, Figure 4(b) shows the results seen for
8M elements. In this case, the two proposed parallelization
strategies obtain significant speedups when executed on
a single Odroid C2 board with 2, 4, or 8 MPI processes with
regard to the sequential version. Additionally, the scalability
is good for 2 and 4MPI processes obtaining 1.69 and 2.06 for
the parallel stream compaction strategy and 2.14 and 2.74 for
the parallel work-efficient stream compaction approach.
+erefore, for medium input data sizes, the computation/
communication ratio is appropriate (approximately 100 and
7 for 2 and 4 processes). Although the two parallelization
strategies also achieve gains for the configuration (8P-1C2)
with 2 processes per core on a single Odroid C2 (speedups of
1.44 and 1.31, resp.), these speedups are (as expected) lower
than those of the (4P-1C2) case. It is clear that the fact that
there are twice the number of MPI processes than the total
number of cores available introduces extra scheduling
overhead and causes worse use of cores’ resources (such as
caches). On the other hand, the executions on different
Odroid C2 SDCs (except for 8P-4C2 and 16P-4C2) present
important speedups and good scalability for 2, 4, and 8 MPI
processes for the two proposed parallelization strategies.
+us, the increment in the number of processes per Odroid
C2 implies a suitable operation of the Odroid C2 cluster,
where the communication latency among the different
boards of the cluster does not ballast performance. In the 8P-
4C2 case is where the performance differences between the

two parallelization strategies start appearing. Whereas the
most efficient strategy (namely, Compaction-Shifted) ach-
ieves the highest speedup for this configuration, the other
one cannot improve over the results reached by 4P-4C2
demonstrating its more limited scalability for medium-sized
workloads. Finally, the large number of processes involved
in 16P-4C2 results in excessively small computation/
communication ratios, which is the reason for the nega-
tive outcomes observed in both cases (the fraction of time
due to communications reaches 87%).

As we can observe in Figures 5(a) and 5(b), having
higher input data sizes for the two parallel stream com-
paction strategies results in significant gains in all the
configurations. For both input data sizes, both Compaction
and Compaction-Shifted obtain speedups that are close to
that observed for the 8M element case when executed on
a single Odroid C2 SDC with 2, 4, or 8 MPI processes.
However, the resulting speedups become even more im-
portant as the number of involved cores grows. Moreover,
they scale nicely for 2, 4, and 8 MPI processes, achieving
their highest values for 8 MPI processes running on 4
Odroid C2 SDCs (5.10 and 5.06 for the parallel stream
compaction and input data sizes of 32M and 64M, resp., and
6.96 and 7.04 for the parallel work-efficient stream com-
paction and input data sizes of 32M and 64M, resp.). It is also
worth noting that even for these large input sizes, the results
reached for the 16P-4C2 configuration are worse than those
of the 8P-4C2 in both cases. Now the differences between
them become narrower as input data sizes increase.

3.2. Energy Efficiency Results. To give readers a more
complete view that can help put our results in context, we
also consider the case of executing the parallel stream
compaction and parallel work-efficient stream compaction
approaches described in Sections 2.1 and 2.2, respectively, on
a conventional, high-performance multicore processor. In
particular, we have considered the case of a state-of-the-art
Intel® Xeon® E5-2695 v4 multicore processor running at
2.10GHz. Particularly, the Intel Xeon multicore processor
has 18 cores, and its price is approximately 8× that of the
complete cluster. We have a dual-socket configuration.

+e comparison between the 4 Odroid C2 cluster and the
Intel Xeon is done by taking into consideration the execution
times of each version on every platform and the reported
thermal design power (TDP) measures in each case (16W
for the Odroid C2 and 120W for Intel Xeon processor). We
have measured the energy consumption using RAPL [33] in
the Intel Xeon processor. Although for the 1M input data
size resulting watts are lesser than 120, this TDP is overcome
in the rest of input data sizes. +erefore, we have used the
TDP as an average measure of the energy consumption.

Figures 6 and 7 show total energy consumption (in
joules) for parallel stream compaction and parallel work-
efficient stream compaction, respectively. Again, results for
input data sizes of 1M, 8M, 32M, and 64M elements are
reported. In both figures, we show the results for 2, 4, 8, and
16 MPI processes running on 4 Odroid C2 boards (having 1,
2, or 4 processes per board as appropriate (2P-OC2, 4P-OC2,

6 Scientific Programming

8P-OC2, and 16P-OC2, resp.)) and running on the Intel
Xeon using 2, 4, 8, and 16 cores (2P-Xeon, 4P-Xeon, 8P-
Xeon, and 16P-Xeon, resp.).

In the �gures, we can see that the trend observed for
the low-cost SDC cluster does not keep in the case of the
Intel Xeon, and the best results in this case are obtained for
16 cores. �e fact that, in this case, all communications
occur on the same chip signi�cantly reduces the overhead
of involving a larger number of cores in the computation.
�is is also evidenced by the fact that speedups are obtained
even for the small problem sizes. However, even when
the computational power of the Intel Xeon is much greater
than the one of the Odroid C2 clusters, the very large TDP of
the Intel Xeon ballasts its results when energy e£ciency is

also considered. Particularly, the best results for the Odroid
C2 cluster (obtained when 2 processes run on 4 boards)
clearly outperform those achieved when 16 processes are
executed using 2 Intel Xeon chips, demonstrating that the
Odroid C2 SDC cluster constitutes an appealing alternative
to a traditional high-end multicore processor in those
contexts in which both low-cost and energy e£ciency re-
quirements are found.

4. Extension to Stream Split

�ere are some applications, for example, a radix sort [34] or
random forest-based data classi�ers [35], in which it is

0

5

10

15

20

25

30

Ex
ec

ut
io

n
tim

e ×
 T

D
P

(jo
ul

es
)

8M 32M 64M1M
Input sizes

2P-OC2
2P-Xeon
4P-OC2

4P-Xeon
8P-OC2
8P-Xeon

16P-OC2
16P-Xeon

Figure 6: Execution time×TDP for parallel stream compaction for
the 4 Odroid C2 cluster and Intel Xeon processor.

0

5

10

15

20

25

30

Ex
ec

ut
io

n
tim

e ×
 T

D
P

(jo
ul

es
)

8M 32M 64M1M
Input sizes

2P-OC2
2P-Xeon
4P-OC2
4P-Xeon

8P-OC2
8P-Xeon
16P-OC2
16P-Xeon

Figure 7: Execution time×TDP for parallel work-e£cient stream
compaction in 4 Odroid C2 boards and Intel Xeon.

Input: Vector I of length n
Input: Predicate function F
Input: Number of processes p
Input: pid of process
Output: Vector O of valid elements
Output: nvalid: the number of valid elements

(1) nvalid � 0
(2) tamp � n/p
(3) scan[0 : (tamp− 1)] � 0
(4) V[0 : (t− 1)] � 0
(5) for i � 0 to tamp− 1 in parallel do
(6) if F(I[i]) then
(7) scan[i] � 1
(8) V[pid] � V[pid] + 1
(9) end if
(10) end for
(11) if pid> 0 then
(12) Send V[pid] to process pid 0
(13) end if
(14) if pid �� 0 then
(15) for i � 1 to npid do
(16) ReceiveV[i]
(17) V[i] � V[i] + V[i− 1]
(18) end for
(19) for i � 1 to npid do
(20) Send V[i− 1] to process pid i
(21) end for
(22) nvalid � V[p− 1]
(23) Send nvalid to all processes
(24) end if
(25) if pid> 0 then
(26) Receive V[pid− 1]
(27) Receive nvalid
(28) end if
(29) scan[0] � scan[0] + V[pid− 1]
(30) for i � 0 to tamp− 1 in parallel do
(31) scan[i] � scan[i− 1] + scan[i]
(32) end for
(33) for i � 0 to tamp− 1 in parallel do
(34) if scan[i]! � scan[i− 1] then
(35) O[scan[i− 1]] � I[i]
(36) else
(37) O[nvalid + (i− scan[i− 1])] � I[i]
(38) end if
(39) end for

ALGORITHM 4: Parallel stream split.

Scienti�c Programming 7

needed to append the invalid elements to the end of the
output stream with the valid elements. �is is the so-called
stream split problem. In this work, we have also developed
a parallel solution to the stream split problem and we present
it in Algorithm 4. �e stream split algorithm is very much
like the parallel work-e£cient stream compaction version
presented in Algorithm 3. �e main di¡erences are that now
the �rst process must send the number of valid elements to
all the processes with higher pids (line 23), the di¡erent
processes (except the �rst one) receive the number of valid
elements (line 27), and if an element is invalid, it would be

stored after the valid elements plus an o¡set given by
i− scan[i− 1], as we can observe in lines 36–37.

Figures 8(a), 8(b), 9(a), and 9(b) show the execution
times (in milliseconds) that are observed for input data sizes
of 1M, 8M, 32M, and 64M elements, respectively. For all
these �gures, from left to right, we �rst present the results
obtained for the sequential version (Sequential), and then we
show the results for the parallel stream split (Split). For each
one of them, we consider 2, 4, and 8 MPI processes running
on one Odroid C2 board (2P-1C2, 4P-1C2, and 8P-1C2,
resp.) and on 2 Odroid C2 boards, having 1, 2, and 4 MPI

0

50

100

150

200

250

300

350

400
Ti

m
e (

m
ill

ise
co

nd
s)

SplitSequential
Versions

2P-1C2
4P-1C2
8P-1C2
2P-2C2

4P-2C2
8P-2C2
2P-4C2
4P-4C2

8P-4C2
16P-4C2
Sequential

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Ti
m

e (
m

ill
ise

co
nd

s)

SplitSequential
Versions

2P-1C2
4P-1C2
8P-1C2
2P-2C2

4P-2C2
8P-2C2
2P-4C2
4P-4C2

8P-4C2
16P-4C2
Sequential

(b)

Figure 8: Execution times (milliseconds) for stream split: (a) 1M elements and (b) 8M elements.

0

200

400

600

800

1000

Ti
m

e (
m

ill
ise

co
nd

s)

SplitSequential
Versions

2P-1C2
4P-1C2
8P-1C2
2P-2C2

4P-2C2
8P-2C2
2P-4C2
4P-4C2

8P-4C2
16P-4C2
Sequential

(a)

 0

 500

 1000

 1500

 2000

 2500

Ti
m

e (
m

ill
ise

co
nd

s)

SplitSequential
Versions

2P-1C2
4P-1C2
8P-1C2
2P-2C2

4P-2C2
8P-2C2
2P-4C2
4P-4C2

8P-4C2
16P-4C2
Sequential

(b)

Figure 9: Execution times (milliseconds) for stream split: (a) 32M elements and (b) 64M elements.

8 Scienti�c Programming

processes per board in each case (2P-2C2, 4P-2C2, and
8P-2C2, resp.), and finally 2, 4, 8, and 16 MPI processes
running on 4 Odroid C2 boards, having 1, 2, or 4 processes
per board as appropriate (2P-4C2, 4P-4C2, 8P-4C2, and
16P-4C2, resp.).

In general, from Figures 8(a), 8(b), 9(a), and 9(b), we can
see that the trend observed for the different input sizes is very
similar to that already explained for the Compaction and
Compaction-Shifted proposals except for the configuration
with 16 processes running on 4 Odroid C2 boards (4 pro-
cesses per board) and input sizes from 8M to 64M elements,
which reaches higher speedups than the rest of configura-
tions and that those observed in the two previous ap-
proaches. Speedups of 4.74, 6.66, and 8.36 with regard to the
sequential version are achieved for 8M elements, 32M ele-
ments, and 64M elements, respectively. Now, the increase in
computation due to the storage of the invalid elements
compensates the communication requirements and signif-
icant speedups are obtained.

More specifically, the scalability is good for 2, 4, and 8
MPI processes running on 2 Odroid C2 boards, obtaining
1.52, 1.75, and 2.08 for the parallel stream split approach for
8M elements. +erefore, for medium input data sizes, the
computation/communication ratio is appropriate. On the
same way, the scalability is suitable for 2, 4, and 8 MPI
processes for higher input data sizes. For example, for 64M
elements, the speedups achieved are 2.25, 3.63, and 4.52 for
2, 4, and 8 MPI processes executing on 2 Odroid C2 boards.
Moreover, the scalability is good for 2, 4, 8, and 16 MPI
processes running on 4 Odroid C2 boards, obtaining 1.47,
2.76, 3.47, and 4.74 for medium input sizes, whereas gains
for big input sizes are very similar, and achieving, for in-
stance, 2.25, 4.39, 7.02, and 8.36 for 64M elements.

5. Conclusions

In this work, we have studied the parallelization of the
stream compaction problem on a low-cost cluster of
single-board computers. Particularly, we have configured
the low-cost cluster from 4 Odroid C2 SDCs which are
interconnected using a typical Gigabit Ethernet switch.
We have implemented two parallel versions for the stream
compaction problem using MPI. +en, we evaluate them
considering varying number of processes and/or SDCs, as
well as different input sizes. In general, we see that when
the number of elements in the stream is too small, the most
important benefits are observed when all participating
processes are in the same Odroid board. In this case, the
low computation/communication ratio for small number
of input elements cannot make up for the overhead
entailed by the inter-SDC communications. As the
number of elements in the input stream increases, so it
does the number of processes that can participate in
parallel executions, and important speedups are reached.
Overall, the best results are reached when eight MPI
processes are distributed among the four SDCs that
conform the cluster. In this case, speedups of 5.10 and
7.04 are obtained for the Compaction and Compaction-
Shifted strategies, respectively, for the larger problem size

considered in this work (input data size of 64M). More-
over, to add value to the obtained results, we also consider
the execution of the two parallel implementations for the
stream compaction problem on a very high-performance
but power-hungry 18-core Intel Xeon E5-2695 v4 mul-
ticore processor, obtaining that the Odroid C2 SDC
cluster constitutes a much more efficient alternative when
both resulting execution time and required energy are
taken into account. Finally, the parallelization of the
stream split problem is implemented and evaluated on the
Odroid C2 SDC cluster. In this case, for input data sizes
starting from 8M elements, important speedups are
achieved and the computation/communication is more
equilibrated due to the storage of the invalid elements. In
summary, the best results are obtained for the configu-
ration of 16 MPI processes running on 4 Odroid C2
boards. In this case, speedups of 6.66 and 8.36 are reached
for input data sizes of 32 and 64M elements, respectively.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is work was supported by the Spanish MINECO and
by European Commission FEDER funds, under Grant
TIN2015-66972-C5-3-R.

References

[1] P. Membrey and D. Hows, Learn Raspberry Pi 2 with Linux
and Windows 10, Apress, New York City, NY, USA, 2nd
edition, 2015.

[2] M. Richardson and S. Wallace, Getting Started with Raspberry
Pi, O’Reilly Media, Inc., Sebastopol, CA, USA, 2012.

[3] A. Hague, G. Hastings, M. Klling et al., /e Raspberry Pi
Education Manual Version 1.0, Creative Commons License,
Computing at School, London, UK, 2012.

[4] M. Kolling, “Educational programming on the raspberry Pi,”
Electronics, vol. 5, no. 3, p. 33, 2016.

[5] R. Heeks and A. Robinson, “Ultra-low-cost computing and
developing countries,” Communications of the ACM, vol. 56,
no. 8, pp. 22–24, 2013.

[6] M. Ali, J. H. A. Vlaskamp, N. N. Eddin, B. Falconer, and
C. Oram, “Technical development and socioeconomic im-
plications of the Raspberry Pi as a learning tool in developing
countries,” in Proceedings of the 2013 5th Computer Science
and Electronic Engineering Conference (CEEC), pp. 103–108,
Colchester, UK, September 2013.

[7] M. Srinivasan, B. Anand, A. A. Venus et al., “Greeneducomp:
low cost green computing system for education in rural India:
a scheme for sustainable development through education,” in
Proceedings of the Global Humanitarian Technology Confer-
ence (GHTC 2013), IEEE, pp. 102–107, San Jose, CA, USA,
October 2013.

Scientific Programming 9

[8] X. Zhong and Y. Liang, “Raspberry Pi: an effective vehicle in
teaching the internet of things in computer science and en-
gineering,” Electronics, vol. 5, no. 3, p. 56, 2016.

[9] R. F. Bruce, J. D. Brock, and S. L. Reiser, “Make space for the
Pi,” in Proceedings of the SoutheastCon, 2015, pp. 1–6, Fort
Lauderdale, FL, USA, April 2015.

[10] K. McCullen, “Teaching embedded systems using the rasp-
berry pi and sense hat,” Journal of College Science Teaching,
vol. 32, no. 6, pp. 200–202, 2017.

[11] C. Williams and S. Kurkovsky, “Raspberry Pi creativity:
a student-driven approach to teaching software design pat-
terns,” in Proceedings of the 2017 IEEE Frontiers in Education
Conference (FIE), pp. 1–9, Indianapolis, IN, USA, October
2017.

[12] D. Abdurachmanov, P. Elmer, G. Eulisse, and S. Muzaffar,
“Initial explorations of ARM processors for scientific com-
puting,” Journal of Physics: Conference Series, vol. 523, no. 1,
article 12009, 2014.

[13] E. L. Padoin, L. L. Pilla, M. Castro, F. Z. Boito,
P. O. A. Navaux, and J. F. Mhaut, “Performance/energy trade-
off in scientific computing: the case of arm big.little and intel
sandy bridge,” IET Computers and Digital Techniques, vol. 9,
no. 1, pp. 27–35, 2015.

[14] A. Pajankar, Raspberry Pi Supercomputing and Scientific
Programming, Apress, New York City, NY, USA, 2017.

[15] D. Cesini, E. Corni, A. Falabella et al., “Power-efficient
computing: experiences from the COSA project,” Scientific
Programming, vol. 2017, Article ID 7206595, 14 pages, 2017.

[16] D. Roger, U. Assarsson, and N. Holzschuch, “Efficient stream
reduction on the GPU,” in Proceedings of the Workshop on
General Purpose Processing on Graphics Processing Units,
Boston, MA, USA, 2007.

[17] B. Ren, T. Poutanen, T. Mytkowicz, W. Schulte, G. Agrawal,
and J. R. Larus, “SIMD parallelization of applications that
traverse irregular data structures,” in Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pp. 1–10, Shenzhen, China, February
2013.

[18] J. Hoberock, V. Lu, Y. Jia, and J. C. Hart, “Stream compaction
for deferred shading,” in Proceedings of the Conference on
High Performance Graphics, HPG’09, ACM, pp. 173–180, New
York, NY, USA, 2009.

[19] K. Garanzha, S. Premoze, A. Bely, and V. A. Galaktionov,
“Grid-based SAH BVH construction on a GPU,” Visual
Computer, vol. 27, no. 6–8, pp. 697–706, 2011.

[20] S. Hissoiny, B. Ozell, H. Bouchard, and P. Desprs,
“GPUMCD: a new GPU-oriented Monte Carlo dose calcu-
lation platform,” Medical Physics, vol. 38, no. 2, pp. 754–764,
2011.

[21] M. Schwarz and H.-P. Seidel, “Fast parallel surface and solid
voxelization on GPUs,” ACM Transactions on Graphics,
vol. 29, no. 6, p. 1, 2010.

[22] A. Pirjan, “Solutions for optimizing the stream compaction
algorithmic function using the compute unified device
architecture,” Journal of Information Systems and Operations
Management, vol. 5, no. 2, pp. 456–477, 2011.

[23] D. Horn, “Stream reduction operation for GPGPU applica-
tions,” GPU Gems, vol. 2, pp. 573–589, 2005.

[24] S. Sengupta, A. E. Lefohn, and J. D. Owens, “A work-efficient
step-efficient prefix sum algorithm,” in Proceedings of the
Workshop on Edge Computing Using New Commodity
Architectures, Chapel Hill, NC, USA, 2006.

[25] D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll, and
B. Spencer, “InKCompact, InKernel stream compaction, and

its application to MultiKernel data visualization on Gen-
eralPurpose GPUs,” Computer Graphics Forum, vol. 32, no. 6,
pp. 178–188, 2013.

[26] Q. Sun, C. Yang, C. Wu, and L. F. Liu, “Fast parallel stream
compaction for IA-based multi/many-core processors,” in
Proceedings of the 16th IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing, Cartagena, Colombia,
May 2016.

[27] G. Bernabé and M. E. Acacio, “Efficient parallel stream
compaction on a extremely low-cost SDC cluster,” in Pro-
ceedings of the 17th International Conference on Computa-
tional and Mathematical Methods in Science and Engineering,
CMMSE, pp. 304–315, Trieste, Italy, July 2017.

[28] W. Gropp, E. Lusk, and A. Skjellum, Using MPI, MIT Press,
Cambridge, MA, USA, 2nd edition, 1999.

[29] Nvidia, “+rust,” 2015, http://docs.nvidia.com/cuda/thrust.
[30] G. E. Blelloch, “Scans as primitive parallel operations,” IEEE

Transactions on Computers, vol. 38, no. 11, pp. 1526–1538,
1989.

[31] G. E. Blelloch, “Prefix sums and their applications,” Tech. Rep.
CMU-CS-90–190, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, USA, 1990.

[32] W. D. Hillis and G. L. Steele Jr., “Data parallel algorithms,”
Communications of the ACM, vol. 29, no. 12, pp. 1170–1183,
1986.

[33] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring
energy consumption for short code paths using RAPL,” ACM
SIGMETRICS Performance Evaluation Review, vol. 40, no. 3,
pp. 13–17, 2012.

[34] M. Billeter, O. Olsson, and U. Assarsson, “Efficient stream
compaction on wide simd many-core architectures,” in
Proceedings of the Conference on High Performance Graphics,
HPG’09, pp. 159–166, ACM, New York, NY, USA, 2009.

[35] B. Ren, T. Poutanen, T. Mytkowicz, W. Schulte, G. Agrawal,
and J. R. Larus, “Simd parallelization of applications that
traverse irregular data structures,” in Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), CGO’13, pp. 1–10, IEEE Computer
Society, Washington, DC, USA, 2013.

10 Scientific Programming

http://docs.nvidia.com/cuda/thrust

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

