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High-level programming is one of the critical building blocks of the effective use of software-defined networking (SDN). Existing
solutions, however, either (1) cannot utilize the state-of-the-art switches with flow table pipelining, a key technique to prevent flow
rule set explosion or (2) force programmers to manually organize and manage hardware flow table pipelines, which is time-
consuming and error-prone. This paper presents a high-level SDN programming framework to address these issues. The
framework can automatically (1) generate rule sets for heterogeneous switches with different flow table pipelining designs and (2)
update installed rules when the network state changes. As a result, the framework can not only generate efficient rule sets for
switches but also provide programmers a centralized, intuitive, and hence easy-to-use programming API. Experiments show that
the framework can generate compact rule sets that are 29-116 times smaller than those generated by other open-source SDN
controllers. Besides, the framework is 5 times faster to recover from network link failures in comparison to other controllers.

1. Introduction

Software-defined networking (SDN) brings the appeal to
manage complex networks more efficiently by shielding low-
level details (e.g., setting up flow tables and handling net-
work events such as link failures). In recent years, SDN is
becoming more commonplace in scenarios such as high-
performance computing and data centers [1-4].

To that end, a major research direction of SDN is to
provide more sophisticated SDN programming interfaces,
which we refer to as high-level SDN programming APIs. By
using these APIs, SDN programmers can manage an SDN
network in a centralized, intuitive, and hence easy-to-use
manner [5-7]. The basic idea of existing programming APIs
is to compile SDN programs statically and then to generate a
specific flow table scheme for each network switch. We refer
to this approach as proactive high-level SDN programming
model [8] (henceforth simply proactive programming).
Proactive programming, however, has limitations. Specifi-
cally, to manage network switches, programmers have to
explicitly specify matching fields of each flow table, and

hence it is programmers’ responsibility to correctly handle
hardware details.

In recent years, another promising approach, reactive
high-level SDN programming model (reactive programming
henceforth), has been proposed. Reactive programming
depends on a runtime optimizer—rather than pro-
grammers—to (1) identify switch configurations when an
SDN controller starts running, (2) generate flow table
scheme for each switch, (3) and populate flow rules when
necessary. With these unique features, reactive pro-
gramming hides switch details and provides programmers a
more general and easy-to-use abstraction. A few proactive
programming systems [8, 9] have been proposed. In prac-
tice, however, we found that utilizing proactive pro-
gramming can be complex and challenging, and many
programming complexities remain. Following are two major
challenges.

Firstly, flow table pipelining is a key technique to prevent
flow rule set explosion and has been adopted by almost all of
the major SDN switch vendors. For example, recent switches
from P4 [6], Domino [10], OF-DPA [11], and POF [7] all
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support flow table pipelining. Unfortunately, existing
implementations of reactive programming (e.g., Maple [8])
only generate rule set for switches with a single flow table. As
far as we know, there is no implementation of reactive
programming that can support switches with flow table
pipelining yet. The major challenge is that to support flow
table pipelining, each single flow rule must be split into
multiple stages, and each of which is inserted into a flow
table in the pipeline. And hence, smart strategies are re-
quired in splitting rules, inserting different stages into dif-
ferent flow tables, and invalidating all stages distributed
among flow tables atomically (detailed in Section 3).

Secondly, when reactive programming is used, it is the
controller’s responsibility to automatically recalculate and
update installed flow rules when network state (such as
topology) changes. This job is nontrivial because multiple
flow tables in the pipeline must be updated atomically;
otherwise, performance issue or even security issue arises
(detailed in Section 2). Unfortunately, no existing imple-
mentation of reactive programming can handle network state
dependencies correctly and efficiently.

Overall, applying reactive programming to the state-of-
the-art switches that support flow table pipelining is quite
challenging. To the best of our knowledge, no existing work
has successfully solved the aforementioned issues. In re-
search, it remains an open question if reactive programming
can be applied to the state-of-the-art switches? And if the
answer is yes, what is the expected benefit?

This paper tries to answer the above questions by pre-
senting Maple++, the first implementation of high-level
SDN reactive programming for switches with flow table
pipelining. Maple++ is an extension of Maple [8], a classic
reactive programming model. Maple only supports switches
with single flow table. In contrast, Maple++ can support
switches with flow table pipeline designs, by addressing the
aforementioned issues. Specifically, Maple++ introduces
forwarding tree, a data structure maintained by the controller
runtime system to manage forwarding rule sets of switches
in a unified and centralized way. Each leaf in the forwarding
tree consists of routing decision, dependencies, and handler
to environment snapshots. Based on the forwarding tree, a
novel tree compression algorithm is invented to remove
redundancies. A compressed forwarding tree, which is ba-
sically a directed acyclic graph (DAG), can dramatically
reduce the number of flow rules generated. To utilize flow
table pipeline design in switches, Maple++ splits the com-
pressed forwarding tree to multiple subtrees, according to
the configuration of hardware switches. Then, a novel
mapping algorithm maps subtrees to multiple flow tables
and organizes them as a pipeline. Besides, to handle network
events such as link failures, Maple++ includes a novel
programmer-oblivious subscription/notification strategy to
efficiently handle network events. The strategy not only
provides an easy-to-use API to programmers but also helps
Maple++ runtime to efficiently and atomically update retired
flow rules. As far as we know, Maple++ is the first imple-
mentation of reactive programming for real SDN networks
including heterogeneous switches with flow table pipeline
designs (the authors emphasize that proactive programming
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and reactive programming do not exclude each other. In
practice, a system may adopt both approaches. This paper
focuses on reactive programming).

Experiments show that rule sets generated by Maple++
are much more efficient than those generated by other SDN
controllers, in the sense that the rule sets are more compact
and consume less flow table space. For example, rule sets
generated by Maple++ are 29-116x smaller than those
generated by POX, Floodlight, and OpenDaylight, the three
most widely used open-source SDN controllers. Besides,
Maple++ is 5 times faster than other compilers to recover
from link failures. We have implemented an open source
version of Maple++ in Python. We hope this imple-
mentation could be useful for both the academia and
industry.

The rest of the paper is organized as follows: Section 2
gives a motivating example of high-level SDN programming.
Section 3 presents the design details of Maple++. We present
evaluations in Section 4, discuss related work in Section 5,
and conclude in Section 6.

2. A Motivating Example

To motivate challenges reactive programming is facing to
manage heterogeneous switches with flow table pipeline
designs, we use the following high-level SDN program.

Suppose a programmer is managing a local network by
using a policy which consists of three parts: (1) the pro-
grammer wants to define a white list of hosts, named rec-
ognizedHost. Each time when a packet comes in, if either the
source MAC address or destination MAC address does not
exist in the white list, the packet should be dropped; (2) the
programmer wants to derive the access switch of the host. If
the access switch is in “programmer-defined” list protecte-
dAP, a secure path should be used to forward the packet; (3)
otherwise, the default shortest path should be used.

This policy is conceptually simple and straightforward.
The reactive programming model allows the programmer to
use familiar programming languages (such as Java and
Python) and data structures (such as hash map and list) to
implement the policy. Figure 1 presents the code that a
programmer needs to program if he/she personally likes
Python.

Specifically, the programmer defines a dictionary, rec-
ognizedHost, to save known MAC addresses and related
access switches (Line 1 in Figure 1). And then, the pro-
grammer defines a list, protectedAP, to record the secure
access switches. Each time when a switch receives a packet
but does not know how to forward it, the switch sends a
PACKET_IN message containing the header of the packet to
the controller. The controller then invokes the onPacket
function, which retrieves the source MAC and destination
MAC addresses of the packet. If either the source MAC or
the destination MAC address does not exist in recog-
nizedHost, which is set up and maintained by another in-
dependent L2-learning program, the controller instructs the
switch to drop the packet (Lines 6-7). Otherwise, the con-
troller instructs the switch to route the packet either along a
secure path or the shortest path, by checking if one of the
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1) Map recognizedHost {key: macAddress, value: switchID}
2) List protectedAP [value: switchID]

3) def onPacket (p):

4)  sw = recognizedHost [p . srcMac]

5)  dw = recognizedHost [p . dstMac]

6) ifsw == NULL|| dw == NULL:

7) return DROP

(
(
(
(
(
(
(
(8)  elif swin protected AP or dw in protected AP:
(

9) return securePath (sw, dw)
(10)  else:
(11) return shortestPath (sw, dw)

FiGure 1: Example of reactive high-level SDN programming (se-
cure-or-shortest-forwarding).

access switches is in protectedAP. The controller finally
inserts flow rules that match on the source MAC and
destination MAC addresses. Despite its simplicity, reactive
programming has the following shortcomings:

Flow Table Explosion. Existing implementations of
reactive programming could not work efficiently. One
problem is that onPacket is generating flow rules for
single flow table, and as a result, the rule set generated
may explode. For example, the number of rules gen-
erated by program secure-or-shortest-forwarding in
Figure 1 is exponential to the number of MAC ad-
dresses (hosts) in network. In worst case, the network
consists of 2% source MAC addresses and 2*® desti-
nation MAC addresses, resulting in a rule set of about
2% entries that is far beyond the capacity of forwarding
tables in modern hardware switches (detailed in Section
3.4).

Network State Inconsistency. Another problem is that
onPacket cannot handle network state dependencies
correctly. Suppose the access switch of host A was not
in protectedAP, and as a result, packets that were sent to
or received from host A were forwarded to the shortest
path. Then, one manager manually adds the switch to
protectedAP for some security reasons. Merely forcing
subsequent flows to route through secure paths is far
from enough because rules that were inserted into
network switches also need to be removed to avoid
packets walking through unsecure links. We refer to
this situation as network state inconsistency issues.

As far as we know, no existing work focuses on
addressing these two fundamental issues in reactive pro-
gramming. Maple++ tries to implement and deploy reactive
programming in real networks, by solving the issues.

3. System Design

The objective of Maple++ is to implement reactive pro-
gramming for heterogeneous switches with different flow
table pipeline designs. Specifically, Maple++ addresses
challenges including rule set explosion and network failure
recovery.

To that end, Maple++ introduces a sophisticated SDN
controller framework shown in Figure 2. Maple++ adopts
the OpenFlow protocol to manage network switches and

provides an algorithmic policy programming API [8]. Al-
gorithmic policy API allows programmers to use familiar
programming languages (such as Java and Python) to design
programs and manage network. The core of Maple++
consists of four modules, including Runtime, Global Opti-
mization, Local Optimization, and Environment Information
Collection. When PACKET_IN messages arrive at the
controller, module Runtime retrieves packet fields, runs
programmer-defined programs, and logs network state
dependencies. Module Global Optimization is to calculate
routing decisions for the whole network and to perform
global optimizations (such as to choose the shortest routing
path). Module Local Optimization is to calculate routing
decisions for specific network switch and to perform opti-
mizations such as utilizing wildcards in flow rules for rule set
compression. The whole system consists of a single instance
of Global Optimization. In contrast, the system may have
multiple instances of Local Optimization, each of which is
assigned to a switch in network. Module Environment In-
formation Collection is to collect network information such
as network topology and the status of network devices.
Another important role of Environment Information Col-
lection module is to notify other modules by invoking
callback functions, when the environment information
changes. The remaining of this chapter introduces Maple+
+’s key functions one-by-one, from “programmer-defined”
high-level programs to rule sets generated for switches.

3.1. Algorithmic Policy and Northbound API of Maple++.
The northbound application programming interface (API)
of Maple++ is based on the algorithmic policy presented in
Maple [8], which allows an SDN programmer to specify how
an incoming packet is processed and how the packet should
be forwarded, by providing a general function. For example,
onPacket in Figure 1 is such a function and is invoked for
each OpenFlow PACKET_IN message. Function onPacket
takes one parameter: the header of the packet. Within the
body of onPacket, programmers can define local variables
and calculate forwarding decisions by using familiar algo-
rithms and data structures. Routing decisions may depend
on global variables (for example, recognizedHost in Figure 1)
and network environment context (for example, network
topology for calculating shortest path). These data are stored
in data stores in module Environment Information Collec-
tion, which is in charge of keeping the data in data stores up-
to-date and notifying other modules if they have registered
to some portions of the data. In Maple++, each global data
structure is a wrapper of the original data structure in ad-
dition to a callback function. The callback function is used to
register current forwarding decision to the data store. The
return value of function onPacket is a forwarding path,
which specifies how the packet should be forwarded.

3.2. High-Level Program to Global Forwarding Tree. Each
time when a packet arrives at the controller, Maple++
runtime invokes “programmer-defined” programs and
generates a forwarding decision (such as DROP, BROAD-
CAST, or a forwarding path). At the same time, Maple++
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FIGURE 2: Maple++ system components.

runtime records the essence of the decision dependencies:
packet fields accessed (source and destination MAC ad-
dresses and Ethernet type in the example program in Fig-
ure 1), global variables, and environment context accessed
(network topology to make forwarding decisions). We refer
to one such record as a global forwarding decision.

The record of forwarding decision is essence because
Maple++ runtime can utilize it to generate switch for-
warding rules which prevents subsequent packets of the
same flow from unnecessarily being sent to the controller.
This can substantially save bandwidth between the controller
and switches. For example, assume one execution of
onPacket is as follows: (1) the program reads the source
MAC address of the packet, (2) the result is 00:00:00:00:00:01
(henceforth :01 for concreteness), (3) the program then reads
the destination MAC address of the packet, (4) the result is
00:00:00:00:00:11 (henceforth :11 for concreteness), and (5)
the program calculates and decides to drop the packet be-
cause the access switch of this host is not in the white list
recognizedHost. Maple++ runtime then inserts a flow rule
with the matching fields being source and destination MAC
addresses (srcMAC == :01 && dstMAC == :11) and the
action being DROP. Then, we can infer that if the program is
again given an arbitrary packet with source and destination
MAC addresses being :01 and :11, respectively, the program
will similarly choose to drop the packet. And as a result, we
can reuse the forwarding decision of the first packet, by
inserting a flow rule in switches.

Forwarding decisions are organized as a tree in Maple++
runtime. Suppose the onPacket program runs for a while,
and packets of five different flows have arrived. In one of
these decisions, the MAC address of the arriving packet is
:01, and hence the program returns the forwarding decision
DROP. In the second trace, the MAC address of the arriving
packet is :02, which is in the protectedAP, and hence the
program returns a secure path between the source and
destination switches as forwarding decision. Similarly, as-
sume the subsequent three packets have the same source

MAC address, :03 but have different destination MAC ad-
dresses (:11,:12, and :13, respectively), Maple++ runtime will
generate three different traces, one for each of the packets.
Maple++ maintains these decisions by organizing them as a
tree shown in Figure 3. We refer to the tree as forwarding
tree. In this figure, an ellipse represents a matching field and
a rectangle an action. The label of an arrow represents the
value of the matching field. It is worth noting that an “if”
statement in high-level program generates an ellipse node
with two branches, one positive and another negative.

3.3. Global Forwarding Tree to Switch’s Forwarding Tree.
The global forwarding tree is maintained by the Global
Optimization module and is used to calculate forwarding
decisions for the whole network. And as a result, its for-
warding decision (for example, shortest path) is a list of
(switch ID, port number) pairs. To generate flow tables for a
specific switch, Maple++ needs to know the specific for-
warding decisions for each switch (for example, output port
numbers).

Fortunately, the forwarding decisions for a specific
switch can be organized as a tree, which is part of the global
forwarding tree, with the leaves being forwarding decisions
for the switch. We refer to the forwarding tree for a specific
switch as local forwarding tree. For example, global for-
warding tree shown in Figure 3 will be translated to a local
forwarding tree for switch A (Figure 4), if port I of switch A
is connected to the secure path, port 2 of switch A is con-
nected to the shortest path, and hosts with MAC addresses
:01 and :02 attach to other switches. For each switch, there is
a corresponding local forwarding tree in Maple++.

Local forwarding tree is generated and maintained by
module Local Optimization. A straightforward strategy to
generate a local forwarding tree for a specific switch is as
follows: (1) copying the global forwarding tree, (2) replacing
the actions by the switch-specific forwarding decisions, (3)
traversing the local forwarding tree and deleting branches
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Secure path

DROP Shortest path Secure path

FIGURe 3: Maple++’s global forwarding tree consisting of five
forwarding decisions.

DROP To port 2 To port 1

FIGURE 4: Maple++’s local forwarding tree for a specific switch.

that do not involve the switch, (4) and then monitoring
global forwarding tree and updating the local forwarding
tree accordingly.

It is worth noting that the architecture of local for-
warding tree is not necessarily fixed. In other words, the tree
in Figure 4 can choose stcMAC, dstMAC, or any other field
of the packet as the root of the tree, only if Maple++ can
generate the same forwarding rule set for the switch. In
practice, the architecture of a local forwarding tree depends
on the flow table pipeline design of the switch.

3.4. Compressing Forwarding Tree. One drawback of reactive
programming is that the rule set generated may suffer ex-
plosion issue, which can be demonstrated by the size of
forwarding trees. Figure 5 shows the redundancies in a
forwarding tree and the potential rule set explosion. In worst
case, node srcMAC has 2* children (2*®* MAC addresses),
each of which has 2% — 1 children (leaves), resulting in a tree
with a total number of 2% + 1 nodes.

To address the redundancy issue, Maple++ adopts a
novel compression algorithm to dramatically reduce the size
of forwarding tree. Specifically, as shown in Figure 5, many
siblings of nodes srcMAC and dstMAC are redundant in the
sense that their parents can refer to the same child and cut
the others. For example, routing decision for MAC address
pair (:01, :11) and routing decision for MAC address pair

(:01, :13) are the same, and hence these two branches can be
merged (Figure 6(a)). Similarly, routing decision for MAC
address pair (:01, *) and routing decision for MAC address
pair (:03, *) can be merged because they have the same
children set (Figure 6(b)).

The basic idea to compress a forwarding tree is to
perform a depth-first tree traversal. The algorithm starts
from the root of the tree and then recursively checks each
child. Whenever the algorithm reaches a node, it first checks
if any two children of this node are the same and merges
redundant children by keeping one child and removing
others.

Pseudocode of the compression algorithm is shown in
Algorithm 1. The algorithm starts by setting the value of field
compressed of every node in the tree. Then the algorithm
starts from the root and invokes function Compress() (Line
4), which performs a depth-first tree traversal. Each time
when a leaf is reached, the algorithm sets the compressed field
and returns (Lines 7-9). Otherwise, Compress() iterates each
child of the current node (Line 11). If any child, denoted as
child_t1 in the algorithm, has not been compressed (Line
12), Compress() first compresses this child (Line 13). Oth-
erwise, the algorithm checks if there are any other children
which (1) have been compressed and (2) has the same
children set as child child_t1 does (Line 16). If the algorithm
finds any such a child child_t2, Compress() performs
compression by (1) instructing child_t2 to point to child_t1
and then (2) deleting the node that was pointed to by
child_t2 (Lines 17-18). Finally, Compress() sets the com-
pressed field of the current node and then returns. Algorithm
Compress() basically performs a depth-first tree traversal and
compresses the size of tree by turning a tree into a DAG.
Another benefit of performing Compress() on forwarding
tree is that it is much more easier to map the resulting DAG
to a flow table pipeline (detailed in subsequent subsections).

3.5. Generating Flow Tables from Compressed Forwarding
Tree. Given a compressed forwarding tree, now we can
generate flow tables for switches with flow table pipeline
design. This consists of two steps: setting up an appropriate
pipeline and generating flow rules.

The basic idea of setting up flow table pipeline is that the
compressed forwarding tree can be divided into multiple
branches, each of which can be mapped to a dedicated flow
table to avoid rule set explosion in a single flow table. If a
branch is too large to fit for a single flow table, then we can
divide it and map its branches to multiple flow tables. In an
ideal case, given the compressed forwarding tree, each node
of the tree can be mapped to a dedicated flow table. Edges
between different nodes can be represented by the JUMP
instructions between different flow tables. Besides, we use
metadata (a 64-bit long variable in OpenFlow 1.3) to pass
information from one flow table to its subsequent tables.

For example, Figure 7 shows how we can map the
compressed forwarding tree shown in Figure 6 to multiple
flow tables. Specifically, the root of the tree (node srcMAC)
can be mapped to a dedicated flow table, Table-0. Since the
root has two branches (node pointed to by edges labeled as
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stcMAC
:01 :02 :03 :04
dstMAC dstMAC dstMAC dstMAC
11 /7:12 |13 \ :14 * 11 [:12 (13 :14 *

A 4 A 4
Action 1 Action 2| | Action 1 Action 2 Drop Action 1 Action 2| |[Action 1 Action 2 Drop

F1GURE 5: Redundancies in forwarding tree and the potential rule set explosion. In worst case, the tree consists of 2*® dstMAC nodes, each of
which has 2% -1 leaves.

srcMac
:01 :02 :03 :04
dstMAC dstMAC dstMAC dstMAC dstMAC dstMAC
:11 113 }12):14 * 11 [:12 \¢13 :14 * ﬁ/} &%:14 l*
4

Action1  Action 2 DROP Action 1| |Action2| |[Actionl| |[Action2 DROP Action 1 Action 2 Drop

(a) (b)

FiGure 6: Compressing forwarding tree. (a) Compression of the leftmost subtree of forwarding tree. (b) Recursive compression of the the
forwarding tree. Compression happens at nodes in blue color. The compressed forwarding tree is a DAG.

Parameters: ft: Forwarding Tree
(1) Procedure CompressFT(ft)
(2) for node in ft:
(3) node.compressed = false; /* Initialization. s/
(4)  Compress(ft.root);
(5)  return;
(6) def Compress(node): /+ A depth-first tree traversal. */
(7)  if type(node) == Leaf: /+ Check if node is a leaf. %/

(8) node.compressed = true;
(9) return
(10) else:
@1rn) for child_t1 in node.children: /= Find a child. =/
(12) if child_tl.compressed == false:
13) Compress(child_t1); /# Recursively compress the child. */
(14) return;
15) for child_t2 in (node.children-child_t1): /+ Find a child that is the same as child_t1. =/
(16) if child_t2.compressed and child_t1 == child_t2:
@17) child_t2 points to the same node of child_t1; /+ Remove redundancies. */
(18) node.children.delete(child_t2);
19) node.compressed = true;
(20) return

ALGORITHM 1: Algorithm to recursively compress forwarding tree.

:01 and :03 and node pointed to by edges labeled as :02 and  a few nodes to one flow table. For example, in Figure 7, all of
:04), we can map nodes of dstMAC to Table-1 and Table-2,  the leaves are mapped to a dedicated flow table, Table-
respectively. Similarly, children of the left dstMAC node can ~ ACTION.

be mapped to a dedicated table, Table-ACTION. It is worth Map compressed forwarding tree (DAG) to flow table
noting that, to save the number of tables; Maple++ may map  pipeline is shown in Algorithm 2. It starts from the root of
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Table-0

Action 1 Action 2

FIGURE 7: Mapping compressed forwarding tree (DAG) to flow table pipeline.

(1) // global variable
2
3
4
5
(6) def GenerateSingleFT(node, metadata):

(7)  if type(node) == Leaf: /+ Check if node is a leaf. */
(8) match = metadata;

)

)
(2)
(3) Procedure GenerateFT(ft)
(4)  tableID = 0; /* Initialization. */
(5)

table, table-ACTION. =/

tableID: global variable to record the maximum tableID in pipeline.

GenerateSingleFT(ft.root, &); /+ Allocate a flow table, and generate flow rules for node. =/

priority = 0; /* Emit a rule for this leaf. The rule matches on the register values in metadata and is inserted in a specific flow

(10) emitRule (table-ACTION, match, priority, node.action);

1) return table-ACTION;

(12)  else /« childrenGroup is the set of edges pointing to the same child node in compressed forwarding tree, and childrenGroup.
groupID is a unique integer number. */

(13) for childrenGroup in getChildrenGroup(node):

(14) tableID_t = tableID;

@15) tableID = tableID + 1; /# Save the matching condition on metadata. s/

(16) metadata += “reg,,.;p = childrenGroup.groupID”; [+ Generate flow table for this child node. childTableID is the child

node’s flow tableID. */

17) childTableID = GenerateSingleFT(childrenGroup.node, metadata);

(18) for edge in childrenGroup:

19) match = (node.field: edge.value);

(20) priority = 0;

(21) action += goto childTableID; /# For each edge pointing to the child node, add a flow rule jumping to child node’s flow

table. /
(22) emitRule(tableID_t, match, priority, action);
(23) return fablelD_t;

ALGORITHM 2: Algorithm to map compressed forwarding tree (DAG) to flow table pipeline.

the tree (Line 5) and then traversals the forwarding tree and
generates flow tables for each node by invoking function
GenerateSingleFT(). For each nonleaf node (Lines 13-23),
GenerateSingleFT() iterates each childrenGroup (Line 13),
which is the set of edges pointing to the same child node in
the compressed forwarding tree. For example, for the for-
warding tree in Figure 7, edges “:01” and “:03” belong to the

same childrenGroup. In addition to edge set, childrenGroup
has two other fields: node and groupID. For each child-
renGroup, Maple++ allocates a dedicated flow table for it and
generates flow tables for this node by invoking Gen-
erateSingleFT() (Line 17). And then, for each edge in the
childrenGroup, Maple++ inserts a flow rule in the current
flow table. The flow rule matches on the field of current node



and jumps to the flow table of the child node (Line 22). For
each leaf (Line 7), a flow rule is inserted into flow table table-
ACTION (Line 10). The matching field is the accumulated
register values stored in metadata.

Generated flow table pipeline and rule sets are shown in
Table 1. For concreteness, we omit the field ingress port in the
matching field. Each table corresponds to a node in the
compressed forwarding tree and matches on a single field of
the packet. Each entry of the table corresponds to an egress
edge from the node. Suppose a packet with source and
destination MAC address pair (00:00:00:00:00:01, 00:00:00:
00:00:11) arrives at the switch, the algorithm first walks
through Table-0. Then, Algorithm 1 sets the value of reg0 to 1
in metadata which will be passed to subsequent flow tables,
and (2) jumps to flow table Table-1. Flow table Table-1 (1)
matches on the destination MAC address of the packet, (2)
sets the value of regl in metadata to 1, and then (3) jumps to
flow table Table-ACTION. Table-ACTION matches on the
metadata of the packet.

3.6. Handle Network Events. In SDN programming, it is still
quite challenging to correctly and efficiently handle state
dependencies. Take code in Figure 1 as an example. Suppose
the access switch of host A was not in protectedAP, and
hence packets that were sent to or received from host A were
forwarded to the shortest path. Then, one manager manually
adds the switch to protectedAP for some security reasons.
Merely forcing subsequent flows to route through secure
paths is far from enough because rules that were inserted
into the switch before the manager adding the switch to
protectedAP also need to be removed.

Typically, there are two approaches in handling state
dependencies. (1) A naive approach is to simply flush flow
tables by removing all of the rules installed whenever net-
work state changes. This approach is intuitive and easy to
implement. However, it is inefficient because it probably
causes false-positive issues and leads to unnecessary re-
executions to generate flow rules. (2) Another approach is
to provide subscription APIs to programmers to allow them
to enable state dependent programming. For example,
whenever a program accesses environment data (for ex-
ample, network topology or global variables), it needs to
register to the data store. Then, whenever the data changes,
system runtime will rerun the program and update retired
flow rules automatically. Since the program can register to a
very specific portion of the data accessed, this approach can
accurately remove affected flow rules without touching
others. This approach is efficient. However, it is hard to use
because it is the programmers’ responsibility to handle the
complexity of identifying dependent data and subscribing to
data store.

Based on the two existing approaches, Maple++ makes a
trade-off between efficiency and easy-to-use features by
utilizing a programmer-oblivious subscription/notification
strategy. Specifically, Maple++ runtime adopts a normal
subscription/notification strategy. Based on that, Maple++
provides (1) wrapper data structures which include original
data structures in addition to implicit subscription functions
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and (2) wrapper function calls which include original
function calls and implicit subscription functions. As a
result, in Maple++, programmers use wrapper functions and
data structures to program without subscribing to data store.
It is the Maple++ runtime’s responsibility to automatically
register generated flow rules to the data accessed. At the
same time, module Environment Information Collection is in
charge of receiving network events, classifying them, and
notifying different modules to rerun and to update retired
flow rules.

4. Experiments

In this section, we demonstrate that Maple++ improves end-
to-end performance and programming experience over
existing SDN controllers by (1) generating compact for-
warding rules for the state-of-the-art switches with flow table
pipeline designs and (2) updating retired forwarding rules
automatically. Maple++ is currently implemented as a
component of Ryu [12]. We chose Ryu because it is
component-based and open source. It is worth noting that
Maple++ can also be implemented on top of other con-
trollers. Our implementation of Maple++ consists of 1100
lines of Python code. For components such as OpenFlow 1.3
implementation, Maple++ reuses the implementation in
Ryu.

4.1. Experiment Setup. We run controllers on a Dell R730
server. The server is equipped with two Intel Xeon E5-2609
processors, each of which consists of 8 CPU cores running at
maximum speed of 1.7 GHz. Each CPU core has one 32 kB
L1 data cache, one 32 kB L1 instruction cache, and a 256 kB
L2 cache. All of the 8 cores on the same die share one L3
cache of 20 MB. The two processors are connected through
two QPI links of 6.4 GT/s. The server uses 128 GB DDR4
memory. The server runs an Ubuntu 16.04 system with 64-
bit Linux kernel version 4.4.0.

For comparison experiments (Sections 4.2 and 4.3), we
evaluate all controllers by using Open vSwitch (OVS) with
OpenFlow version 1.3.4. For experiments to measure Maple
++’s performance (Section 4.4), we use two HP ProCurve
5412z switches.

4.2. Effect of Utilizing Flow Table Pipelines. In this subsection,
we compare the rule set generated by Maple++ against those
generated by other controllers to highlight the effect of
utilizing state-of-the-art flow table pipeline designs in
switches. We chose four widely used controllers, including
OpenDaylight (ODL), Floodlight, Maple, and POX. ODL
and Floodlight are industry-developed open-source con-
trollers that form the basis of commercial systems, while
Maple and POX are academic systems.

We run SDN program secure-or-shortest-forwarding
(shown in Figure 1) on every controller. We choose this
program because it is straightforward and can be imple-
mented on every controller with minor modifications. In
experiments, we perform an all-to-all ping among the hosts.
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TaBLE 1: Flow table corresponding to forwarding tree shown in Figure 7.

Pri Match Action

0 srcMac = :01 reg0 = 1; goto Table-1;

0 srcMac = :03 reg0 = 1; goto Table-1;
Table-0 0 srcMac = :02 reg0 = 2; goto Table-2;

0 srcMac = :04 reg0 = 2; goto Table-2;

0 Otherwise Punt

0 dstMac = :11 regl = 1; goto Table-ACTION;

0 dstMac = :13 regl = 1; goto Table-ACTION;
Table-1 0 dstMac = :12 regl = 2; goto Table-ACTION;

0 dstMac = :14 regl = 2; goto Table-ACTION;

0 Otherwise Punt
Table-2 0 Otherwise reg2 = 1; goto Table-ACTION

0 regl == 1 && regl == 1; Actionl

0 reg0 == 1 && regl == 2; Action2
Table-ACTION 0 reg0) == 2 && reg2 == 1; Drop

0 Otherwise Punt

We then record the round-trip time (RTT) of each ping and
then count OpenFlow rules installed in the switch.

Table 2 lists the number of hosts simulated (column #
Hosts), number of flow tables used (column # Tables Used),
number of rules generated (column # Rules), and median
ping RTT (column Med. RTT(ms)) for each controller. The
number of hosts is fixed to 80, which is adequate to simulate
the use case of a small enterprise network. We observe that
when 80 hosts are used, Maple++ generates only 162 rules,
which is 29-116 times smaller than the rules generated by
other controllers.

The rule compression in Maple++ is due to the utili-
zation of hardware flow table pipeline. Column # Tables Used
shows that Maple++ utilizes up to 12 hardware flow tables to
build a sophisticated pipeline, which fundamentally prevents
rule set explosion. Theoretically, Maple++ generates ap-
proximately 2 * H rules. In contrast, each other controller
generates approximately H? rules.

Column Med. RTT presents the round-trip time of each
controller. It is worth noting that the median RTT of Maple+
+ does not improve in this experiment because only 80 hosts
are simulated, and hence the generated rule sets can reside in
hardware flow tables even if a single flow table is used.
However, as the number of hosts increases, rule sets gen-
erated by other controllers may explode and hence must be
evicted from the hardware flow tables frequently, resulting in
an extremely large RTT. We demonstrate this in the next
experiment.

To highlight the benefit of flow table pipelining in
avoiding flow table explosion, we compare Maple++ with
other controllers by varying the number of hosts in the
network. Since Maple, ODL, and POX all have similar trends
as Floodlight, we only show the results of Floodlight and
Maple++ in Figure 8 for concreteness. Notice that the scale
of the horizontal axis of Figure 8 is logarithmic. Figure 8
shows that, as the number of hosts in the system increases
linearly, the number of flow rules generated by Maple++ also
increases linearly from about 40 to 462 as the number of
hosts increases from 20 to 320. In contrast, the number of
rules generated by Floodlight reaches 100,000, which is too

large to be deployed in a real switch. It is worth noting that,
in this experiment, we use Open vSwitch which is software-
based and hence its capacity is “unlimited.” For production
hardware, however, the size of flow tables is limited. For
example, the HP 5612z] switch can only support 1,500
hardware rules and 64,000 rules in total. That means if a
programmer wants to achieve a good performance, the
number of OpenFlow rules generated by the controller must
be less than 1.5 K. Otherwise, the forwarding performance of
the switch deteriorates sharply.

4.3. Fast Repair of System State Changes. We now evaluate
the effectiveness of Maple++ in recovering from system state
changes. Specifically, this experiment focuses on network
failure, which is unexpected, critical, and hard to handle. We
evaluate controllers using three topologies: “Linear,”
“Square,” and “FatTree” [16]. The Linear topology consists of
4 switches. The Square topology is a small cyclic topology
with 4 switches. The FatTree topology consists of 20 switches
and two hosts per edge switch, with k = 4.

In the experiment, we remove one link from the network
to simulate a link failure. We then measure the time to
complete pings between all hosts. For Maple++, once the
Environment Information Collection model receives the link
failure message, it immediately notifies Maple++ runtime
system which in turn reruns “programmer-defined” func-
tions registered to data store. In contrast, for other con-
trollers, programmers need to implement a function which
is responsible for cleaning up retired rules and installing new
ones. Besides, for ODL and POX, all of the forwarding rules
must be manually removed because there is no way to
identify the affected flow rules. Since Maple has the similar
trend as Floodlight, we only show the results of Floodlight.
Similarly, since ODL has the similar trend as POX, we only
show the results of POX.

Figure 9 shows that Maple++ provides substantial im-
provement in the recovery from link failures in all topol-
ogies. Specifically, the mean time to complete an all-to-all
ping after a link failure in Maple++ is 0.72 seconds, 1.55
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TaBLE 2: End-to-end performance comparison and number of rules generated for SDN program secure-or-shortest-forwarding.

Controller # hosts # tables used # rules Med. RTT (ms)
Maple [8] 80 1 5120 3.1
POX [13] 80 1 18827 8.0
Floodlight [14] 80 1 5332 3.0
OpenDaylight [15] 80 1 4692 1.7
Maple++ 80 12 162 2.2

105 than Floodlight is that Maple++ has to update multiple flow

10% |

103 -

Number of rules generated

102 |

20 40 80 160 320
Number of hosts

mm Maple++
mm Floodlight

FiGgure 8: Total number of OpenFlow rules generated (horizontal
axis is logarithmic.).

10

Time (seconds)

FatTree

Linear Square

Network topology

mm Maple++
mm Floodlight
mm POX

FIGURE 9: Time to repair all-to-all connectively after a link failure.

seconds, and 2.03 seconds, for the three topologies. The
result is competitive to Floodlight and is much better than
controllers based on POX and ODL. POX and ODL perform
poor because they flush the flow table upon receiving the link
failure message, which causes false-positive issues and forces
the controller to recompute for every flow rules. It is worth
noting that the reason Maple++ does not perform better

tables due to its flow table pipeline design. This bottleneck
can be removed by allowing Maple++ to recompute and
update multiple flow tables in parallel. We left this opti-
mization as a future work.

4.4. Maple++ in Real Network. In this subsection, we deploy
Maple++ in a real network, show the flow tables generated,
and discuss lessons we have learned. A simplified topology of
this network is shown in Figure 10. The local network
consists of two normal switches (Switch I and Switch 3) and
two HP 5012zl OpenFlow switches (Switch 2 and Switch 4).
All of the four switches are connected through 1 Gbps links.
The link between Switch 2 and Switch 4 and the link between
Switch 1 and Switch 4 are secure paths. However other links
are not secure because it may exist as malicious switches in
between these links. We assume Switch 1 is in the secureAP
list, while other switches are not. Each switch is connected by
two hosts. For example, Switch 1 connects to two hosts, Host
I and Host 2. The IP addresses of these two hosts are
“10.0.0.1” and “10.0.0.2,” respectively. To simplify the
specification, we assume the MAC addresses of Host I and
Host 2 are “00:00:00:00:00:01” (shorted as :01) and “00:00:00:
00:00:02” (shorted as :02), respectively. Besides, we assume
that the MAC addresses of hosts with green check mark are
in the recognizedHost. Packets from other hosts should be
dropped.

To demonstrate how Maple++ works, we deploy the se-
cure-or-shortest-forwarding program shown in Figure 1 and
choose Switch 2 as an example. For concreteness, we omit the
field ingress point in the matching field. Initially, the flow
tables of this switch are empty. Then, the first time when Host
3 wants to connect to Host 6, a PACKET_IN message is sent
from the switch to the controller, which in turn invokes the
secure-or-shortest-forwarding program and then inserts a rule
into the switch to instruct the switch to block subsequent
packets because Host 6 has not been recognized. Similarly, the
first time when Host 3 and Host 5 want to connect to each
other, the controller invokes the secure-or-shortest-forwarding
program and then inserts rules to switch 2 and switch 3 to
allow connections to go through the shortest path. In contrast,
if Host 3 wants to connect to Host I, the routing path must be
Switch 2 < —> Switch 4 < — > Switch 1 because Switch 1 is in
the secureAP, and hence all connections involving hosts
behind Switch 1 must be routed through the secure path.

The flow tables produced by Maple++ for Switch 2 are
shown in Table 3. Table 3 shows that Maple++ utilizes four
flow tables in Switch 2. Specifically, Table-0 is used to match
on source MAC address. For each host in the network, a flow
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Switch 2
dpid: 02

1P:10.0.0.3
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1P: 10.0.0.1 1P: 10.0.0.2 1P: 10.0.0.8 1P: 10.0.0.7
MAC: 00:00:00:00:00:01  MAC: 00:00:00:00:00:02 MAC: 00:00:00:00:00:08 MAC: 00:00:00:00:00:07

Switch 1 Secure

dpid: 01

//Shortest

Switch 4
dpid: 04

Switch 3

1P: 10.0.0.4 1P:10.0.0.5 1P: 10.0.0.6

MAC: 00:00:00:00:00:03 MAC: 00:00:00:00:00:04 MAC: 00:00:00:00:00:05 MAC: 00:00:00:00:00:06

FiGure 10: Topology of the testbed network. Hosts with green checkmarks are in the recognizedHost, and switch 1 is in the secureAP list.

TaBLE 3: Flow table pipeline and forwarding rules generated by Maple++ for Switch 2. For concreteness, MAC address 00:00:00:00:00:xx is

represented as :xx in the table.

Pri Match Action
srcMac = (:03-:04) reg0 = 1; goto Table-1
Table-0 srcMac = (:01-:02) reg0 = 2; goto Table-2
srcMac = (:05-:08) reg0 = 2; goto Table-2
Otherwise Punt
dstMac = (:01-:02) regl = 1; goto Table-ACTION
dstMac = :03 regl = 2; goto Table-ACTION
dstMac = :04 regl = 3; goto Table-ACTION
Table-1 dstMac = :05 regl = 4; goto Table-ACTION
dstMac = :06 regl = 5; goto Table-ACTION
dstMac = (:07-:08) regl = 6; goto Table-ACTION
Otherwise Punt
dstMac = :03 reg2 = 1; goto Table-ACTION
Table-2 dstMac = :04 reg2 = 2; goto Table-ACTION

Otherwise Punt

Table-ACTION

[=NeleleleBel-Nel- i =l=R=l l=lellellelellolol ol el

regd == 1 && regl == 1

To port 3 (secure path)

reg0 == 1 && regl == To port 0

reg0 == 1 && regl == To port 1

reg0 == 1 && regl == To port 2 (shortest path)

regl == 1 && regl == DROP

reg0 == 1 && regl == 6 To port 2 (shortest path)

regl == 2 && reg2 ==1 To port 0

reg0 == 2 && reg2 == 2 To port 1
Otherwise Punt
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rule is added into Table-0. In practice, after compressing the
forwarding tree, a flow rule can correspond to a group of
MAC addresses. For example, the first flow rule in Table-0
can match packets from both Host 3 and Host 4. The first rule
instructs the switch to set the value of reg0 to 1 in metadata
and then jumps to Table-1 to process the destination MAC
addresses of incoming packets. The second rule instructs the
switch to set the value of reg0 to 2 in metadata and then
jumps to Table-1. Similarly, Table-1 checks the destination
MAC address of the packet, logs the routing decision on
metadata by setting the value of field regl, and then jumps to
Table-ACTION. Table-ACTION checks the values in met-
adata and then takes actions.

Table 3 shows that the size of Table-0, Table-1, and Table-
2 increases linearly with the number of hosts in the network.
The size of Tuble-ACTION increases linearly with the
number of policies defined by programmers, which is
typically a constant number. Overall, the number of rules
generated by Maple++ is linear, which makes Maple++ a
practical SDN controller by preventing rule set explosion.

5. Related Work

The importance of flow table pipelining has motivated re-
searchers to provide corresponding high-level programming
languages. For example, in [17], a typed programming
language called Concurrent NetCore is proposed to specify
flow tables. P4 [6] and POF [7] provide forwarding models
with configurable flow table pipeline and programmable
parsers. Jose et al. [6] study algorithms for mapping flow
table designs to particular target switches [18, 19]. These
languages, however, require programmers to explicitly
specify low-level details of flow tables.

Another type of high-level programming is reactive
programming [8, 20] which allows a controller to auto-
matically identify switch configuration, generate flow tables,
and populate flow rules. Maple [8] is a classic imple-
mentation of reactive programming. However, Maple is
designed for switches with single flow table. Maple++ is an
extension of Maple and supports flow table pipelining
switches by addressing inherent issues in Maple.

Another trend in supporting heterogeneous switches is
by providing a uniform API to controllers. For example,
MACSAD [21, 22] aims at hiding data plane programming
complexity by using P4 programming language while
keeping the flexible data plane portability. TableVisor
[23, 24], by providing a transparent proxy layer, allows
pipeline processing and enables the extension of hardware
flow table sizes using multiple hardware switches. These
works focus on the switch side, whereas Maple++ focuses on
the programming language.

6. Conclusion and Future Work

This paper explores an efficient and programmer-friendly
SDN programming framework for state-of-the-art switches
with flow table pipeline designs. We present novel tech-
niques to compress the rule sets and to map them to flow
table pipelines and show that the generated rule sets are
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highly compact on a variety of benchmarks using both
simulated and real network workloads. This work can be
optimized, for example, by utilizing priority numbers in
generating rules.

Data Availability

Projects POX, Floodlight, and OpenDaylight, which are used
to support the findings of this study, can be found at https://
github.com/noxrepo/pox, http://floodlight.openflowhub.
org/, and http://www.opendaylight.org, respectively. Source
code of Maple and Maple++ are currently under embargo
while the research findings are commercialized. Requests for
the source code, 12 months after publication of this article,
will be considered by the corresponding author.
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