
Research Article
A Structure-Driven Method for Information Retrieval-Based
Software Change Impact Analysis

Yun He ,1,2 Tong Li ,1,2 Wei Wang ,1,2 Wei Lan ,1 and Xiang Li 1

1Software School, Yunnan University, Kunming, Yunnan, China
2Key Laboratory for Software Engineering of Yunnan Province, Kunming, Yunnan, China

Correspondence should be addressed to Tong Li; tli@ynu.edu.cn and Wei Wang; wangwei@ynu.edu.cn

Received 21 March 2018; Revised 8 August 2018; Accepted 3 September 2018; Published 4 October 2018

Academic Editor: Danilo Pianini

Copyright © 2018 YunHe et al.,is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An important application of information retrieval technology is software change impact analysis. Existing information retrieval-
based change impact analysis methods select a single method to transform the source code corpus into vectors in a process known
as indexing. ,e single method is chosen from two primary methods, known as the bag-of-words and word embedding models,
each having their specific advantages and disadvantages. ,e bag-of-words model records every word in the source code but
ignores contextual information in the corpus. ,e word embedding model records the contextual information but loses detail for
individual words. To address this problem, we propose a structure-driven method for information retrieval-based change impact
analysis (named SDM-CIA). SDM-CIA integrates the bag-of-words and word embedding models based on the software’s
structure. Our experiments using a standard benchmark shows that when compared with the existing methods, SDM-CIA
improves on precision performance, recall performance, F-score performance, and MRR performance by an average of 3.65%,
3.82%, 3.6%, and 10.28%, respectively. Our experiments confirm the effectiveness of SDM-CIA.

1. Introduction

,e main activities in software maintenance are modifica-
tions to software source code units [1]. ,ese modifications
are called changes. Change impact analysis (CIA) is the
process of identifying the mapping relationship between
a change request and corresponding source code units,
which makes it possible to find new and changed func-
tionality in the source code over time [2]. Programmers will
do change impact analysis prior to making any changes to
the source code [1]; then, they can decide which source code
should be modified. Wilde et al. [3] proposed the earliest
CIA method, known as software reconnaissance. After more
than 20 years of development, it has become the founda-
tional technology in many fields, including components
retrieval [4], software reuse [5], and requirements trace-
ability analysis [6].

Current CIA methods [3, 7–9] based on information
retrieval build on the hypothesis that identifiers, comments,
and string literals in the source code contain semantic

information associated with the software’s functions. In
typical use, a developer submits a query that describes the
change request in natural language. Using the semantic
similarities between the query and source code units cal-
culated by the retrieval algorithm, the algorithm identifies
the source code units that implement the change request.
,e calculation requires the transformation of both the
source code and the query into numeric vector represen-
tations. ,is process is called indexing. Indexing methods
fall into two categories: those based on the bag-of-words
model [10], and those based on the word embedding model
[11, 12]. ,e bag-of-words model is easy to perform and
completely preserves each word’s occurrence in the source
code. However, this model builds upon the premise of ex-
changeability and ignores contextual information of the
words. Other researchers [8, 13] argue that source code
contains contextual information and prove it by experiment.
,e word embedding model records contextual information
effectively but requires the setting of many parameters that
greatly influence themodel’s performance [8]. In fact, setting

Hindawi
Scientific Programming
Volume 2018, Article ID 5494209, 16 pages
https://doi.org/10.1155/2018/5494209

mailto:tli@ynu.edu.cn
mailto:wangwei@ynu.edu.cn
http://orcid.org/0000-0001-9573-7678
http://orcid.org/0000-0002-3257-213X
http://orcid.org/0000-0002-2026-5378
http://orcid.org/0000-0002-4788-5593
http://orcid.org/0000-0001-8852-5685
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/5494209

the parameters correctly requires skill and experience of the
developers. ,e word embedding model is quite sensitive to
context, but unlike traditional text data, source code
grammar is not always strict. ,us, the word embedding
model does not always describe source code accurately in the
vector space. Existing CIA methods use a single indexing
method, either bag-of-words or word embedding with their
respective strengths and weaknesses, and do not accurately
describe the similarity between source code units and query.

To solve this problem, we propose a structure-driven
method for information retrieval-based change impact
analysis (SDM-CIA). SDM-CIA is a textual CIA method
based on information retrieval technology. SDM-CIA in-
tegrates the bag-of-words model and word embedding
model based on the software’s structure.

,e main contributions of this paper are as follows:

(1) We propose the SDM-CIA, which integrates two
different indexing models in the IR-based change
impact analysis process. SDM-CIA’s integration
process relies upon the degree of cohesion and
coupling of the source code’s structure. By using the
complementary advantages of both indexing methods,
it achieves better performance than existing algorithms
that use a single method.

(2) We verify by experiment that the structure in-
formation of software source code can help estimate
the performance of a CIA method.

Our paper has the following structure. Section 2 provides
background information on existing methods and related
works. Section 3 describes our proposed SDM-CIA method.
Section 4 describes our evaluation and results from using
SDM-CIA against five open-source packages. In Section 5,
we discuss the applicability of SDM-CIA, present the con-
clusions of our work, and provide directions for further
study.

2. Background

Existing CIA technologies fall into four categories [2]: static
[14, 15], dynamic [16, 17], textual [18, 19], and hybrid
[20, 21].

Static methods analyze structural information, such as
control or data flow dependencies, to point programmers to
potentially relevant code [22].

Dynamic methods examine a software system’s execu-
tion, and they are often needed to record the execution traces
of software [2].

Textual methods make use of pattern matching [23],
information retrieval (IR) [7, 8], or natural language pro-
cessing (NLP) [19]. Pattern matching is the act of checking
a given sequence of source code for the presence of the
constituents of some pattern, usually involving a textual
search of source code [2]. IR techniques are essentially
statistical methods [2]; they need users to submit a query that
describes the change request by text. IR techniques trans-
form the source code texts and query text to vectors, then
calculate the similarities between source code texts and
query (change request) in vector space. Users can decide

which source code is really related to the query based on the
similarities. NLP approaches can also exploit a query, but
they analyze the parts of speech of the words used in source
code [2].

Some researchers [20, 21] combine two or more types of
methods because this allows them to realize better CIA
performance than either technique alone; these kinds of
methods are called hybrid methods. For instance, we can
use static and textual methods to help determine which
execution traces are useful when using dynamic methods
[21, 24].

,e textual method is the dominant method because
of its usability and low overhead [25]. In recent years,
developments in machine learning and deep learning
have advanced research into information retrieval. With
those developments, information retrieval-based
methods have become the focus of current research
into CIA technology [7].

2.1. Information Retrieval-Based Change Impact Analysis.
As shown in Figure 1, the process of CIA using information
retrieval consists of three general steps: preprocessing,
indexing, and calculating similarity.

Step 1: Preprocessing. ,is step includes creation of a doc-
ument for each source code unit (method) in the source code
followed by the extraction of key words from each unit to the
corresponding document, with the key words including
identifiers, comments, and string literals. Abebe et al. [26]
defined an identifier as the name of a class, attribute,
method, or parameter. Comments generally are used either
to map requirements to code or to describe the code [27].
Moreover, copyright notices in the comments are not in-
cluded among the key words. ,e algorithm then performs
word splitting, stemming, and stop-word removal on all the
documents. Word splitting divides special or combined
forms of words into individual words (e.g., “openFile” splits
into “open” and “file”). Stemming identifies different forms
of common cognate words, matching them with the same
key words (e.g., “inserting” and “inserted” are both forms of
“insert”). Stop-word removal strips meaningless words from
the corpus. Meaningless words contain no semantic
knowledge, such as “to,” “which,” “that,” and so on. After
extraction, word splitting, stemming, and stop-word re-
moval, the collection of documents formed the corpus.

Suppose we have software consisting of two classes, with
each class consisting of twomethods as shown in Figure 2. In
this example, we have four software units (methods). When
performing the extraction, we create a document for each
method in the software and extract the identifiers, com-
ments, and string literals from each method to the corre-
sponding document. After extraction, we can obtain four
documents which are shown in Figure 3(a). Words in the
Doc1 are extracted from method “OpenFile(FileName),”
Doc2 are from “CloseFile(),” Doc3 are from “DivisionOp-
eration(),” and Doc4 are from “Output().” ,en, we perform
word splitting, stemming, and stop-word removal. In this
example’s word splitting, “OpenFile” splits into “open” and

2 Scientific Programming

“�le,” “CloseFile” splits in to “close” and “�le,” and so on.

e stemming step, “named,” is stemmed to “name,” and
“division” and “divisor” are both stemmed to “divi.”
e
words “which,” “is,” and “the” are stop words, so they are
removed from the documents in the stop-word removal step.
Finally, we can obtain the corpus, which consists of four
documents as shown in Figure 3(b).

Step 2: Indexing. Indexing transforms the corpus into nu-
meric vectors, one per document.
ese vectors are called
source code vectors. When a developer submits a query
describing a change request, that query is also transformed
into a vector.

e bag-of-words model can transform the query into
a query vector directly, but the word embedding model
Doc2vec is based on a multilayer neural network, and it
divides the word and document vector layers.
ere are two
ways to transform the query into query vector for doc2vec:

(1) Treat the training query as a document, transforming
it in the document vector layer.

(2) Train each word in the query, obtaining many word
vectors in the word vector layer.
en calculate the
mean vector of the word vectors as the query vector.

Corley et al. [8] evaluated the performance of both
methods and concluded that the second approach achieves

Source
code

Extraction

Word
splitting

Stemming

Stop word
removal

Preprocessing

Corpus

Indexing
method

Query
vector Source

code
vectors

Calculating
similarity

Ranking list

Indexing

Change
request

Take top
5%–10% in

the list

CIA
result

Figure 1: Basic �ow of existing information retrieval-based change impact analysis methods.

public class FileOperation{

InputStream in = null;

public OpenFile(FileName){

in = new FileInputStream(FileName);

//Open file which is named FileName

}

public CloseFile(){

in.close();

//Close the file

}

}

public class DivisionOperation(){

float Divisor = 2.0;

float Dividend = 2.0;

float Result = 0.0;

public Division(){

Result = Dividend/ Divisor;

}

 public Output(){

System.out.println(Result);

//print the result

}

}

Figure 2: Example of software source code.

Scienti�c Programming 3

better performance.
us, we chose the second way to index
the query, calculating it as follows.

De�nition 1: Query Vector in doc2vec. For a query Q con-
sisting of multiple words, Q � w1, w2, . . . , wm{ }, where wi is
the ith word in the query. Using doc2vec to train the words
inQ, we obtain many word vectors {wv1,wv2, . . . ,wvm}. We
calculate the query vector as

qd2v �
∑mi�0wvi
m

. (1)

Suppose we want to change the software’s open �le
function to the software shown in Figure 2, we can submit
a query as “open �le.” We index its corpus and the query by
using the most basic bag-of-words model.
en, we can
obtain a matrix as shown in Table 1. Each row in the matrix
is a vector that presents the corresponding documents and
the query. Each column represents a word.
e element in
the matrix represents a word’s occurrence number in the
corresponding document. For instance, the word “open”
occurs twice in the Doc1, so the value of the �rst element in
the vector of Doc1 is 2.

Step 3: Calculating Similarity. Next, the algorithm calcu-
lates the similarity between the query vector and each
source code vector and then ranks the similarities ac-
cordingly.
e source code vector with the greatest
similarity to the query vector is the one most likely related
to the change request. Calculating the cosine distance
between each document vector and query vector, we can
get the set of similarities. Using the Sim(Doci, query)
represents the similarity between Doci vector and query
vector, and we can then obtain the similarities as follows:
Sim(Doc1, query) � 0.74, Sim(Doc2, query) � 0.39, Sim
(Doc3, query) � 0.0, and Sim(Doc4, query) � 0.0.
e Doc1
vector has the greatest similarity to the query vector, and
the document Doc1 is extracted from the method
“OpenFile(FileName).”
us, we can conclude that the
“OpenFile(FileName)” is the most likely method that
relates to our change request “open �le.”

2.2. Related Works. Marcus et al. [9] proposed the earliest
information retrieval-based change impact analysis (CIA)
method in 2004. For the �rst time, they successfully used
information retrieval technology to do change impact
analysis of software source code.
ey de�ned the most basic
process of information retrieval-based change impact
analysis as three steps, which include preprocess, indexing,
and calculating similarity. Since then, many researchers have
conducted further studies, but their works are still built on
the three-step process de�ned by Marcus et al.
is paper’s
work is also built on the basic process de�ned by Marcus
et al., but we found a better way to index and calculate the
similarity; thus, we can achieve better change impact analysis
performance.

Because indexing is the most important step in the CIA
process, researchers have spent the most time on this step.
Marcus et al. [9] used Latent Semantic Indexing (LSI).
e
lightweight LSI identi�es and eliminates the in�uence of
synonyms and reduces the dimension of the vectors at the
same time. Biggers et al. [7] used Latent Dirichlet Allocation
(LDA) to index source code, achieving better performance
on some benchmarks. However, both LSI and LDA use the
bag-of-words model, which assumes that keywords have no
context information [10].
us, exchanging the locations of
keywords does not lead to detection of the source code’s
change in function. In 2015, Corley et al. [8] introduced
doc2vec, based on the word embedding model [12], in their
CIA research and achieved better performance than the LDA
method in their tests.
e word embedding model [11, 12]
not only compresses the dimensions of the source code
vectors but also records the contextual relationships between
key words. It indexes the corpus based on the co-occurrence
relationships of key words.
e most famous example of its
performance is that it can conclude that “king-queen” is
similar to “man-woman.” Because the word embedding
method is based on a deep learning model, it requires setting
many parameters such as vector dimension, number of
training epochs, number of training windows, learning rate,
and so on. All these parameters require the user to have
background knowledge about deep learning. At the same

OpenFile FileName in
FileInputStream
FileName Open file
which is named
FileName

Division Result
Dividend Divisor

CloseFile in close
Close the File

Output System out
println Result
print the result

Doc1

Doc2

Doc3

Doc4

(a)

open file file name file
input stream file name
open file name file
name

divi result
divi divi

close file close
close file

output system print
result print result

Doc1 Doc3

Doc2

Doc4

(b)

Figure 3: Preprocessing example. (a) Documents after extraction. (b) Corpus after preprocessing.

4 Scienti�c Programming

time, the syntax and format of source code differ greatly
from natural language texts. In a source code corpus, co-
occurrence relationships between key words do not neces-
sarily mean the words are similar, which is different from
words in natural language.,us, the word embeddingmodel
has limitations that arise from describing similarities be-
tween source code based solely on the co-occurrence re-
lationships of key words.

Marcus and Biggers’ studies [7, 9] are based on a single
bag-of-words indexing model, and Corley’s research [8] is
based on a single word embedding indexing model. Each
uses a single indexing method, but different indexing
methods have specific advantages and disadvantages in
performance. ,ese differences mean that current methods
do not accurately describe differences between source code
units, which limits the performance of software change
impact analysis. ,us, our work in this paper is that we
combined two different kinds of indexing methods in SDM-
CIA; this combination can eliminate some limitations that
are brought about by a single indexing method. SDM-CIA
can then achieve better performance than these CIA
methods with the same input and preprocessing.

2.3. Bag-of-Words and Word Embedding Models

2.3.1. Bag-of-Words Model. ,e bag-of-words model is
a simplifying indexing method using information retrieval
(IR) [10]. In this model, text (such as a sentence or a doc-
ument) is represented as an unordered collection of words,
disregarding grammar, and even word order. ,e bag-of-
wordsmodel generates long, sparse vectors like [1, 0, 2, 0, . . .,
0, 0, 1], where each dimension represents the frequency of
a word in the corpus. ,e vectors record only the frequency
of key words without any context information.

For example, if we want to index two sentences, we
proceed as follows:

(a) Clicking the “open” button can open a file.
(b) Clicking the “close” button can close the file.

,ere are eight total distinct words in these two sen-
tences, and we can build a dictionary for these two sentences:

{“clicking”: 1, “the”: 2, “open”: 3, “button”: 4, “can”: 5,
“a”: 6, “file”: 7, “close”: 8}.

Using the indexes of the dictionary, each sentence is
represented by an eight-dimensional vector:

(a) [1, 1, 2, 1, 1, 1, 1, 0],
(b) [1, 2, 0, 1, 1, 0, 1, 2],

where each dimension represents the frequency of
a word in the sentences. ,is vector representation does not
preserve the order of the words in the original sentences.

,ere are three typical bag-of-words models in IR
technologies: Term Frequency-Inverse Document Fre-
quency (TF-IDF), Latent Semantic Indexing (LSI) [28], and
Latent Dirichlet Allocation (LDA) [29]. In SDM-CIA, we
chose TF-IDF as the bag-of-words model. TF-IDF is the
most basic bag-of-words method. TF-IDF performs no di-
mensional reduction, recording the maximum number of
key word occurrences when indexing. Other bag-of-words
models, such as LSI and LDA, are all built on the basis of TF-
IDF, and they all reduce the dimension of vectors in a very
low range. ,e dimensional reduction may lead to some
individual words’ information being lost. ,erefore, we
chose TF-IDF in SDM-CIA.

TF-IDF is an indexing model that is intended to reflect
how important a word is to a document in a collection or
corpus. It is a term-weighting scheme, and it can assign
a weight to each element in the bag-of-word matrix. It is the
product of two statistics, term frequency and inverse doc-
ument frequency. Term frequency is the number of times
a given term appears in the document. In general, it is di-
vided by the length of the document:

tfi,j �
ni,j

dj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (2)

where ni,j is the number of occurrences of the term i in the
document j, and |dj| is the total number of terms in the
document j. Inverse document frequency indicates the
general importance of the term i in the collection:

idfi � log
|D|

| d : i ∈ d{ }|
, (3)

where |D| is the number of documents in the collection,
while the denominator is the number of documents that
contain the term i. In this way, we can find the TF-IDF
weight as follows:

(tf− idf)i,j � tfi,j ∗ idfi. (4)

At last, every element in the bag-of-word matrix will be
multiplied by corresponding (tf− idf)i,j.

2.3.2. Word Embedding Model. ,e word embedding model
generates short real-value vectors like [0.723, 0.051, . . .,
0.231 0.321, 0.4231, 0.448], which record the co-occurrence
relationships between words mapped in a low-dimensional
space to describe the corpus [12]. ,e transformation

Table 1: Matrix after indexing example corpus.

Open File Name Input Stream Close Divi Result Output System Print
Doc1 vector 2 6 4 1 1 0 0 0 0 0 0
Doc2 vector 0 2 0 0 0 3 0 0 0 0 0
Doc3 vector 0 0 0 0 0 0 3 1 0 0 0
Doc4 vector 0 0 0 0 0 0 0 2 1 1 2
Query vector 1 1 0 0 0 0 0 0 0 0 0

Scientific Programming 5

preserves context at the expense of information about many
independent key words, which is lost.

Word embedding models include, e.g., word2vec [11],
doc2vc [12], and autoencoder [30]. Doc2vec is a new word
embedding method using deep learning technology [8]. It is
currently the most popular indexing model in natural
language processing and text information retrieval research.
In addition, researchers [8] have already verified the ef-
fectiveness of doc2vec in IR-based CIA. ,erefore, we chose
doc2vec in SDM-CIA.

doc2vec is a word embedding model based on a multi-
stage neural network, consisting of several hidden layers in
addition to single input and output layers. ,e input layer
consists of an ordered sequence of identifiers extracted from
the code. ,e multiple hidden layers serve to capture the
context for each encountered term, representing the com-
plex patterns of term contexts occurring in the corpus. ,e
output layer consists of a vector for each term, which has
been shown to carry semantic meaning [8]. doc2vec can
transform a paragraph or a document to vectors, and it is
based on the word2vec model, which can transform words
into vectors [12]. We can use doc2vec to transform the
documents of the corpus to vectors. ,e transformation
preserves context, but it will lose the information of many
individual words in the corpus.

3. Proposed Approach

In this section, we present our proposed structure-driven
method for information retrieval-based change impact
analysis (SDM-CIA). As shown in Figure 4, the black boxes
highlight the main differences between our SDM-CIA and
traditional IR-based CIA methods. Preprocessing is un-
changed. ,e differences are in the indexing and calculation
of similarity steps.

IR-based CIA methods rely on quantifying the semantic
similarity between source code units and a query. ,e
indexing process transforms the source code and queries
into vectors, and the distance in the vector space determines
the similarity. As mentioned previously, individual indexing
methods have strengths and weaknesses. Our goal is to
integrate both methods to achieve better performance.

3.1. Module Structure. Some researchers [31, 32] have
proven that the linear combination of distances in multiple
vector spaces is still a distance. For a given source code
vectormi and query vector q, the distance (similarity) can be
described as the linear combination of distances in different
spaces and calculated as follows:

d mi, q(􏼁 � 􏽘

p

k�1
ωk · dk mi, q(􏼁. (5)

In this formula, dk(mi, q) is the distance betweenmi and
q in the (different) vector space k, and ωk is the corre-
sponding weight. ,e most important problem is finding
the appropriate weight ωk, which is difficult to calculate
directly. Consequently, we turn the problem to calculating

the optimal structure of the vector space, which is what we
mean by the term structure-driven.

We aim for high cohesion and low coupling as our most
basic structural principle when we are organizing the
software source code modules. Source code within the same
module should have high cohesion, but source code in
different modules should have low coupling. If software
source code is strictly organized by the principle of high
cohesion and low coupling, then we can consider that it to
have good structure. Well-structured software should have
the following two characteristics. First, the source code in the
same unit implements the same single function, and this
source code should have common keywords in identifiers,
comments, and string literals. Second, source code in dif-
ferent units implements different functions, and this source
code should have different keywords in identifiers, com-
ments, and string literals. ,us, the best similarity (distance)
calculation method should accord with this structural
principle. In the IR-based CIA method, similarity (distance)
is calculated in vector space, and all the source code units are
transformed to vectors in vector space. In this way, the
distribution of source code vectors in vector space should
also reflect the source code units’ structure. When we are
evaluating the distribution of source code vectors, we can use
the Internal Distance and External Distance.

In order to clearly introduce the SDM-CIA method, we
need to introduce several definitions, as follows:

Definition 2: Module. In software with source code organized
by good structure, a module is a set of source code units
performing related functions. A software system consists of
many modules. For example, in an object-oriented software
system, each class is a module consisting of multiple
methods, each of which is a source code unit.

Definition 3: Internal Distance. Given a software system with
source code units distributed among different modules, after
indexing all the source code units in the indexing space, we
can calculate the internal distance “interDis” between
modules using the following formulas:

interDis � 􏽘
m

j�1
ModuleDis modulej􏼐 􏼑,

ModuleDis modelj􏼐 􏼑 �

􏽐
n
l<hd codej,l, codej,h􏼐 􏼑

C2
n

, n> 2,

d codej,1, codej,2􏼐 􏼑, n � 2,

1, n � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where m is the total number of modules (classes) in the
software; ModuleDis(modulej) calculates the mean dis-
tance between the source code units in the modulej;
d(codej,l, codej,h) is the distance between the lth source code
unit and hth source code unit in module j; and h≤ n; and C2

n

is the combination formula. A combination is an unordered

6 Scientific Programming

collection of distinct elements, usually of a prescribed size
and taken from a given set, with C2

n � n!/[2!(n− 2)!]. C
2
n

calculates the total number of distances between each
pair of the n total source code units in the module j.
Generally, if a module consists of more than two source
code units, then we have n> 2. However, if there are
some modules that consist of two or one source code
units, namely n� 2, we use d(codej,1, codej,2) to replace
∑nl< hd(codej,l, codej,h)/C

2
n in the formula. If n� 1, we use 1

to replace ∑nl< hd(codej,l, codej,h)/C
2
n in the formula.

De�nition 4: External Distance. For a system consisting of
many source code units belonging to di¥erent modules, after
indexing all the source code units in the indexing space, we
calculate the external distance between modules as

exterDis � ∑
m

j< i
d ceni, cenj(), (7)

wherem is the total number of modules in the software; ceni
is the center vector of module i calculated as
ceni � (1/n)∑

n
j�1codei,j; codei,j represents the jth source

code unit in themodule i; and n is the number of source code
units in the module i.

Figure 5 is a graphical representation of De�nitions 1, 2,
3, and 4, using a software system with two modules. In the
case of an object-oriented system, each module is a class,
with dots representing the methods in module 1 and the
cross stars representing the methods in module 2.
e
dotted line within the module 2 boundary represents the
distance between two methods of module 2. We calculate
the distance between each pair of methods in the module 2
and then the mean of all the distances.
e mean of dis-
tances is the internal distance of module 2.
e square and

triangle represent the center vectors of module 1 and
module 2, respectively.
e distance between the triangle
and the square is the external distance of these two
modules.

3.2. Structure-DrivenMethod for InformationRetrieval-Based
Software Change Impact Analysis. Consider a software
system consisting of two classes (modules), with each class
consisting of many methods (source code units). We create
a document for each source code unit in the software and
then extract the key words from each source code unit to the
corresponding document.
ese documents make up
the corpus of this software.
en we apply two
di¥erent models to index the corpus, calling them indexing
model 1 and indexing model 2.
e resulting two-
dimensional source code vectors are distributed as shown
in Figures 6(a) and 6(b) and denoted as indexing space 1 and
indexing space 2. In this example, the distribution in
indexing space 1 is more regular than in indexing space 2.

e source code vectors in indexing space 1 closely align
with the software’s structure, with source code units for each
module cleanly separated. In contrast, the distribution of
source code vectors in indexing space 2 is chaotic, with
a large overlap between the source code vectors of the two
modules. In this situation, we see that the indexing space 1
better describes the software’s source code than indexing
space 2, which indicates that indexing model 1 is more
suitable for this software’s source code.
us, when con-
sidering the distances in these two indexing spaces, we
should give more weight ω1 to d1(mi, q) in space 1 and less
weight ω2 to d2(mi, q) in space 2. In this manner, we can use
the internal distance and external distance of modules to
calculate the weight ωk in the linear combination formula.

Source code

Extraction

Word
splitting

Stemming

Stop
word

removal

Preprocessing

Corpus

Bag-of-words
model

Query
vector 1

Ranking list

Calculating
similarity

Indexing

Cosine

Word
embedding

model

Souce code
vectors 1

Source code
vectors 2

Query
vector 2

Cosine

Integration

Change
request

Take top
5%–10% in

the list

CIA
result

Figure 4: Structure-driven method for information retrieval-based software change impact analysis.

Scienti�c Programming 7

us, we propose a structure-driven method for IR-
based CIA. We �rst calculate the linear combination
weight based on the degree of consistency between the
vectors distribution in the indexing spaces and the software
source code’s structure.
en, we calculate the similarity
between source code units and a query based on the linear
combination formula. We calculate the degree of consis-
tency using the internal distance and external distance of
modules in the software source code.

Wemeasure the software’s cohesion and coupling degree
using the internal and external distances according to the
formula

Dis �
exterDis
interDis

, (8)

where exterDis and interDis are the external and internal
distances, respectively. After indexing the source code
corpus, we calculate the source code vectors’ Dis. Larger

values of Dis correspond to better descriptions of the corpus.

us, if the vectors generated by indexing model 1 have
a larger Dis than those generated by indexing model 2, we
consider indexing model 1 preferable to indexing model 2.

us, when integrating the similarities (distances) calculated
by the two indexing models, we make ω1 larger than ω2.
Because the linear combination of distances is a relative
weighting, the weighting ωk needs to satisfy the constraint

∑
p

k�1
ωk � 1. (9)

Based on the preceding ideas, we propose the SDM-CIA
method as follows. After preprocessing, we use the bag-of-
words model and the word embedding model to index the
corpus and query separately. After that, we calculate the
similarities between the query vector and source code vectors
in the two indexing spaces. We use Sim1 and Sim2 to denote

�e external distance between two module

�e distance between two source code in module 1

Module 1

Module 2

Source code in module 1

Source code in module 2

Center of module 1

Center of module 2

Figure 5: Graphical representation of module distances.

Module 1
Module 2

Source code in module 1

Source code in module 2

(a)

Module 1
Module 2

Source code in module 1

Source code in module 2

(b)

Figure 6: Source code distribution in di¥erent indexing spaces. (a) Source code distribution in indexing space 1. (b) Source code dis-
tribution in indexing space 2.

8 Scienti�c Programming

the similarities in the bag-of-words and word embedding
indexing spaces, respectively. ,us, Sim1 � s11,􏼈 s12, . . . , s1n}

and Sim2 � s21, s22, . . . , s1n􏼈 􏼉, where S1p represents the similarity
between query vector and the pth source code vector in the
bag-of-words indexing space, and S2p represents the similarity
between query vector and the pth source code vector in the
word embedding indexing space. We use D1 and D2 to
represent the source code vectors in the bag-of-words and
word embedding indexing spaces, respectively. All source
code units are divided into k modules by the structure of the
software itself, so D1 � module11,􏼈 module12, . . . , module1k}

and D2 � module21, module22, . . . ,􏼈 module2k}, where module1p
represents all the source code vectors for the pth module in the
bag-of-words indexing space, and module2p represents all the
source code vectors for the pth module in the word embedding
indexing space. Algorithm 1 presents the similarity calcula-
tion algorithm of the SDM-CIA method.

Step 1. Lines 1 and 2 of the algorithm calculate the internal
distances in the two indexing spaces separately, and this step
uses the Internal Distance formula in Definition 3.

Step 2. Lines 3 and 4 calculate the external distances likewise.
,is step uses the External Distance formula in Definition 4;
and cen1

i is the center vector of module1i , and cen2
i is the

center vector of module2i .

Step 3. Line 5 calculates the linear combination weight ωk

based on the internal distances and external distances.

Step 4. Lines 6, calculates the final similarities (distance)
based on the linear combination formula.

Finally, we use the similarities to rank the source code
units.,e source code unit with the maximum similarity has
the greatest possibility mapping to the change request.

4. Case Study

We designed a case study to evaluate the effectiveness of our
approach. In particular, we wanted to obtain answers to the
following research questions (RQs).

(1) RQ1: Does our approach achieve better performance
than the existing IR-based CIA methods based on
a single indexing model?

(2) RQ2: Can we predict the performance of the CIA
method based on the internal and external distances
of the vectors in the indexing space?

To answer RQ1, we need to compare our approach’s
performance with existing methods. As introduced in
Section 2.2, three typical indexing methods have been used
in CIA studies. ,e representative CIA studies corre-
sponding to these three indexing methods are the word
embedding model doc2vec published by Corley et al. [8], the
bag-of-words LDAmodel published by Biggers et al. [7], and
the bag-of-words LSI model published by Marcus et al. [9].
,ese three studies were all the first time the corresponding
indexing method was used in IR-based CIA, and they all

used the same preprocessing technologies. ,us, we com-
pared our approach with these three IR-based CIA methods
based on three single indexing models.

4.1. Experimental Systems. To guarantee the objectivity of
the case study, we used the software maintenance tasks
benchmark published by Poshyvanyk [2] for testing. Table 2
presents details of the benchmark, which consists of five
software products and their related changes. Each software
package in the benchmark may have multiple changes, and
each change corresponds to several software units. For
example, we were able to modify the file function and edit
function in the same version update of the jEdit. ,ere are
two changes in this updated version. Modifying the file
function may require modifying two or three methods, and
modifying the edit function may require modifying even
more methods. All the changes exist in each product’s of-
ficial issue tracking system. Each change has an ID number
and two components:

(1) Description: a natural language description of the
change request, which we used as a query

(2) Gold set: a record of the source code units actually
related to the change request, which we use to verify
the results of our method

,e evaluation of our approach requires the source
code to be of high quality according to the following
requirements:

(1) ,e source code should have good semantic
meaning, i.e., the key words in the source codes are
meaningful. Meaningless vocabulary refers to un-
conventional words with no clear meaning, such as
single letters, variables, or method names like “c2,”
“m2,” and so on. We counted the number of
meaningless words in each software package’s source
code. As shown in Table 1, the proportion of
meaningless words within the total is 4.56% to 7.43%.
,us, more than ninety percent of the key words in
the source code have good semantic meaning. We
conclude that the source code in the benchmark is of
high quality.

(2) ,e source code should be organized according to
the principle of high cohesion and low coupling.
Special teams manage changes to the benchmark
products, which ensures the quality of the source
code structure. If the structures of the products in the
benchmark are of high quality, the answer to RQ2
will be affirmative. ,us, we can indirectly confirm
the quality of the products’ software structures with
the answer to RQ2.

4.2. PerformanceMetric. We also need a measure to evaluate
our method’s performance.

Many researchers [2, 21, 33] have used precision and
recall as metrics to evaluate CIA performance.,ese metrics
calculate the fraction of relevant elements generated by an
approach. ,ey are defined as

Scientific Programming 9

precision �
Dc ∩Dr

Dr
∗ 100%,

recall �
Dc ∩Dr

Dc
∗ 100%,

(10)

where Dc is the set of all correct source code documents
related to the change request, and Dr is the set of source code
documents retrieved by the CIA method. When calculating
the precision and recall metrics, we use the top 5% of the
source code documents from the result ranking list as the
CIA results. However, since precision and recall are re-
ciprocal, they are unable to reflect the comprehensive
performance of a CIA technique [2]. ,us, we also employ
the F-score to measure the performance. F-score is the
harmonic average of the precision and recall, where an
F-score reaches its best value at 1 (perfect precision and
recall) and worst at 0. F-score is defined as

F− score � 2∗
precesion∗ recall
precision + recall

∗100%. (11)

At the same time, CIA is essentially information re-
trieval, so we use an information retrieval metric to evaluate
performance. Similar to related studies [8, 33, 34], we use the
rank of the first relevant document as the measure of ef-
fectiveness. ,e rank represents the number of source code
entities a developer would have to view before reaching
a relevant one. A MRR reaches its best value at 1 and its
worst at 0. ,e Mean Reciprocal Rank (MRR) is defined as

MRR �
1

|Q|
􏽘

|Q|

i�1

1
ei

, (12)

where Q is the set of queries and ei is the effectiveness
measure for a given query Qi. Larger MRR values indicate
better performance.

For the sake of generality, we use all four metrics to
evaluate the performance of our approach in the case study.

4.3. Evaluation Process

(1) Preprocessing. ,e preprocessing was the same as the
existing IR-based CIA methods, including extraction,
word splitting, word stemming, and stop-word removal.

(2) Indexing. We perform TF-IDF and doc2vec to
indexing the corpus, respectively. We generated the
source code vectors in the two indexing spaces. Dtfidf
represents the vectors in the TF-IDF indexing space,
and Dd2v represents the vectors in the doc2vec
indexing space.,en, we need to performTF-IDF and
doc2vec indexing of the query as well. It is important
to note that when we were performing the doc2vec to
index the query, we used the method in Definition 1.
After indexing the query with both TF-IDF and
doc2vec, we have two query vectors qtfidf and qd2v.

(3) Similarity Calculation. Calculating the cosine dis-
tance between qtfidf and each vector in Dtfidf, we
obtain the similarities set Simtfidf. Calculating the
cosine distance between qd2v and each vector in the
Dd2v, we obtain the similarities set Simd2v. We cal-
culate and rank the final similarities as given in
Algorithm 1. We used the gold sets to verify the
performance and recorded the results.

4.4. Experimental Results. Figure 7 presents the compre-
hensive results for SDM-CIA and the baseline techniques
with different values of precision and recall metrics. Figure 8
presents the results using the F-score metrics. Figure 9
presents the results using the MRR metrics. We discuss
these results further below.

Input: Sim1, Sim2, D1, D2
Output: Final similarities set Simint

(1) interDis1 � 􏽐
m
j�1ModuleDis(module1j)

(2) interDis2 � 􏽐
m
j�1ModuleDis(module2j)

(3) exterDis1 � 􏽐
m
j<id(cen1

i , cen1
j)

(4) exterDis2 � 􏽐
m
j<id(cen2

i , cen2
j)

(5) ω1 � ((exterDis1/interDis1)/((exterDis1/interDis1) + (exterDis2/interDis2))),
ω2 � ((exterDis2/interDis2)/((exterDis1/interDis1) + (exterDis2/interDis2))),

(6) Simint � ω1∗ Sim1 + ω2∗ Sim2
(7) Return Simint

ALGORITHM 1: Similarity calculation algorithm of SDM-CIA method.

Table 2: Benchmark.

Software
Information

Version Methods Modules Changes Corpus Number of meaningless words Meaningless words (%)
JabRef 2.6 4604 532 39 286271 17771 6.21
jEdit 4.3 6413 1031 150 330705 21599 6.53
muCommander 0.85 8187 975 92 400120 18242 4.56
ArgoUML 0.22 11000 729 91 521463 28135 5.40
Eclipse 3.0 121216 6641 45 7602447 565124 7.43

10 Scientific Programming

0

Precision
Recall

10

20

30

40

50
JabRef

Pr
ec

isi
on

 &
 re

ca
ll

(%
)

LS
I

LD
A

TF
ID

F

Method
D

oc
2v

ec

O
ur

ap
pr

oa
ch

(a)

Precision
Recall

jEdit

Pr
ec

isi
on

 &
 re

ca
ll

(%
)

0

10

20

30

40

50

60

70

LS
I

LD
A

TF
ID

F

Method

D
oc

2v
ec

O
ur

ap
pr

oa
ch

(b)

muCommander

Pr
ec

isi
on

 &
 re

ca
ll

(%
)

0

10

20

30

40

50

60

Precision
Recall

LS
I

LD
A

TF
ID

F

Method

D
oc

2v
ec

O
ur

ap
pr

oa
ch

(c)

ArgoUML

Precision
Recall

Pr
ec

isi
on

 &
 re

ca
ll

(%
)

0

10

20

30

40

50

LS
I

LD
A

TF
ID

F

Method

D
oc

2v
ec

O
ur

ap
pr

oa
ch

(d)

Eclipse

Precision
Recall

Pr
ec

isi
on

 &
 re

ca
ll

(%
)

0

10

20

30

40

50

LS
I

LD
A

TF
ID

F

Method

D
oc

2v
ec

O
ur

ap
pr

oa
ch

(e)

Figure 7: Recall and precision performance with different methods. (a) Recall and precision on JabRef. (b) Recall and precision on jEdit. (c)
Recall and precision muCommander. (d) Recall and precision on ArgoUML. (e) Recall and precision on Eclipse.

Scientific Programming 11

0.0

JabRef

LS
I

LD
A

TF
ID

F

Method

D
oc

2v
ec

O
ur

ap
pr

oa
ch

0.5

1.0

1.5

F-
Sc

or
e (

%
)

2.0

2.5

(a)

jEdit

0.0

0.5

1.0

1.5

2.0

LS
I

LD
A

TF
ID

F

Method

D
oc

2v
ec

O
ur

ap
pr

oa
ch

F-
Sc

or
e (

%
)

(b)

muCommander

F-
Sc

or
e (

%
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

LS
I

LD
A

TF
ID

F

Method

D
oc

2v
ec

O
ur

ap
pr

oa
ch

(c)

ArgoUML

0.0

0.4

0.6

0.8

1.0

1.2

0.2

LS
I

LD
A

TF
ID

F

Method
D

oc
2v

ec

O
ur

ap
pr

oa
ch

F-
Sc

or
e (

%
)

(d)

Eclipse

F-
Sc

or
e (

%
)

0.000

0.005

0.010

0.015

0.025

0.020

0.030

0.035

LS
I

LD
A

TF
ID

F

Method

D
oc

2v
ec

O
ur

ap
pr

oa
ch

(e)

Figure 8: F-score performance with different methods. (a) F-score on JabRef. (b) F-score on jEdit. (c) F-score on muCommander. (d) F-
score on ArgoUML. (e) F-score on Eclipse.

12 Scientific Programming

0.00

LS
I

LD
A

TF
ID

F

Method

JabRef

D
oc

2v
ec

O
ur

ap
pr

oa
ch

0.05

0.10

0.15

M
RR

0.20

0.25

(a)

jEdit

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

LS
I

LD
A

TF
ID

F

Method

D
oc

2v
ec

O
ur

ap
pr

oa
ch

M
RR

(b)

muCommander

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

LS
I

LD
A

TF
ID

F

Method

D
oc

2v
ec

O
ur

ap
pr

oa
ch

M
RR

(c)

ArgoUML

0.00

0.02

0.04

0.06

0.08

0.10

LS
I

LD
A

TF
ID

F

Method
D

oc
2v

ec

O
ur

ap
pr

oa
ch

M
RR

(d)

Eclipse

0.00

0.01

0.03

0.04

0.02

LS
I

LD
A

TF
ID

F

Method

D
oc

2v
ec

O
ur

ap
pr

oa
ch

M
RR

(e)

Figure 9: MRR performance with different methods. (a) MRR performance on JabRef. (b) MRR performance on jEdit. (c) MRR per-
formance on muCommander. (d) MRR performance on ArgoUML. (e) MRR performance on Eclipse.

Scientific Programming 13

In Figures 7–9, LSI denotes the method of Marcus et al.
[9], LDA denotes the method of Biggers et al. [7], and
Doc2vec denotes the method of Corley et al. [8]. We now
return to RQ1.

4.4.1. Discussion of RQ1. Figures 7(a)–7(e) show that our
approach obtains better precision and recall performance
against the JabRef, jEdit, muCommander, and ArgoUML
projects, achieving an average 3.65% precision improvement
and an average 3.82% recall improvement compared to the
least effective approach. In the case of Eclipse, our perfor-
mance was the same as the method from Corley et al. [16].
,is is because when calculating the precision and recall
metrics, our algorithm uses only the top 5% of the source
code documents from the ranking list as the CIA result [14].
With about 120,000 methods in Eclipse’s source code, the
top 5% equates to about 6,000 source code units. Because
only a few source code units are actually related to each
change request, the large number of source code units in the
results makes the difference in the precision and recall
measurements negligible.

As shown in Figure 8, we find that our approach is
always better than approaches using a single indexing
method according to the F-score. Figures 8(a)–8(d) show
that our method improves F-score by as much as 8.92%
(JabRef), 0.24% (jEdit), 1.59% (muCommander), and
3.83% (ArgoUML) when compared to the least effective
existing approach in each case. In the case of Eclipse, our
performance was the same as the method of Corley et al.
[8]. ,is is because when we were calculating the F-score,
we used the precision and recall as the input variables.
However, the precision and recall performance of our
approach are same as those in Corley’s method in the case
of Eclipse. ,erefore, we obtained the same F-measure
performance with Corley’s method in the case of Eclipse.
Even so, our approach still achieved an average im-
provement of 3.6% in F-score performance compared to
the least effective method using a single indexing model.

As shown in Figure 9, we found that our approach is
always better than approaches using a single indexing
method according to the Mean Reciprocal Rank (MRR).
Figures 9(a)–9(e) show that our method improves by
as much as 12.03% (JabRef), 7.56% (jEdit), 5.64%
(muCommander), 8.36% (ArgoUML), and 17.8% (eclipse)

in MRR when compared to the least effective existing
approach in each case. Our approach achieved an average
improvement of 10.28% in MRR performance improve-
ment compared to the least effective method using a single
indexing model.

SDM-CIA’s performance is not very distinctive in the
measure of precision, recall, and F-score. ,e main reason
for this is that there are five software products in our
benchmark, each consisting of thousands or tens of thou-
sands of source code units. However, for the changes in the
benchmark, there are far fewer (1–5) source code units that
are truly related to each change. When calculating the
precision, recall, and F-score, we needed to use the top 5% of
the source code units from the ranking list as the result,
because the scale of the software product in the benchmark is
too large. We take the top 5% source code units from the
ranking list, whichmay be a very large number. In particular,
when calculating the precision by the formula precision �

(Dc ∩Dr/Dr)∗ 100%, Dr will be a very large number, while
Dc ∩Dr is very small. ,is will render precision a very small
number. ,us, the difference in precision between different
approaches will be very small.

,is is also why we chose the top 5% from the ranking list
as the CIA result. Existing studies [21, 35] advise taking the
top 5%–15% from the ranking list as the CIA result. ,e
more results we collect, the smaller the precision, which will
lead to difference in performance between different methods
becoming smaller. ,erefore, we chose a minimum of 5% in
our experiment.

Compared with the precision, recall, and F-score, MRR
would be a more objective measure to evaluate the per-
formance of CIA. Many other researchers [7, 8, 33, 34] have
used MRR to evaluate the performance of their CIA ap-
proach. We also used this measure in our experiment, and
results showed that our approach achieved an average im-
provement of 10.28% in MRR performance relative to the
least effective method using a single indexing model. ,is
could represent far better performance than other methods.

4.4.2. Discussion of RQ2. Table 3 presents the performance
results from TF-IDF and doc2vec along with the weights
calculated for our own linear combination. ,e CIA per-
formance reflects the corresponding indexing model alone.
,e weight represents the cohesion and coupling degree of

Table 3: CIA performance and weight distribution.

Values
Softwares

JabRef jEdit muCommander ArgoUML Eclipse
TFIDF precision performance (%) 1.000 0.929 0.617 0.528 0.014
doc2vec precision performance (%) 0.673 0.646 0.425 0.242 0.016
TFIDF recall performance (%) 43.495 63.080 53.927 43.063 43.271
doc2vec recall performance (%) 35.409 43.364 32.870 24.167 45.905
TFIDF F-score performance (%) 1.953 1.831 1.221 1.042 0.285
doc2vec F-score performance (%) 1.323 1.273 0.839 0.479 0.320
TFIDF MRR performance 0.197 0.162 0.124 0.085 0.026
doc2vec MRR performance 0.102 0.135 0.057 0.048 0.031
TFIDF weight 0.780 0.749 0.730 0.773 0.458
doc2vec weight 0.220 0.251 0.270 0.227 0.542

14 Scientific Programming

the vectors in the corresponding indexing space. ,e CIA
performance of TF-IDF is better than doc2vec’s for JabRef,
jEdit, muCommander, and ArgoUML, so the combination
weight favors TF-IDF for these packages. However, doc2vec’s
CIA performance is better than the TF-IDF’s on Eclipse, so
the combination weight favors doc2vec in that case. ,us, we
can estimate the performance of the CIAmethod based on the
internal and external distance of the vectors in the indexing
space. From Table 3, we can see that the cohesion and
coupling degree of the source code vectors is consistent with
CIA performance. ,us, we conclude that the structures of
these software packages are all of high quality.

5. Conclusions

In this paper, we have presented a structure-driven method
for information retrieval-based change impact analysis. Our
approach integrates the bag-of-words and word embedding
models during the indexing and similarity calculation steps.
Our empirical results using a standard benchmark con-
sisting of five open-source software packages demonstrate
that our approach achieves better performance on the
precision, recall, F-score, and MRR metrics than existing
methods that use a single indexing method.

Several factors affect the validity of the results of our
empirical case study and limit our ability to generalize our
findings:

(1) We performed our case study with five Java software
systems. ,e applicability of our approach to soft-
ware written in other languages remains to be
verified.

(2) We did not discuss the influence of parameters on
the indexing methods; we used default settings.
While other studies explore parameter settings, it
was not the purpose of our own research.

(3) We evaluated our approach using only high quality
source code. Our approach may fail when used with
low-quality software.

In the future, we will develop our approach for in-
formation retrieval in related fields. Moreover, we plan to
conduct additional experiments employing a greater variety
of open-source projects to verify the universality of the
proposed approach.

Data Availability

,e software products’ source code and changes data used
to support the findings of this study have been deposited
in the SEMERU repository [2] (http://www.cs.wm.
edu/semeru/data/benchmarks/).

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is work was supported by the National Natural Science
Foundation of China under Grant nos. 61462092, 61379032,

and 61662085, the Key Project of the Natural Science
Foundation of Yunnan Province under Grant no.
2015FA014, the Data Driven Software Engineering Research
Innovation Team of Yunnan Province under Grant no.
2017HC012, the Talents Training Programme Foundation
for Light of West under Grant no. W8090311, and the
Graduate Scientific Research Innovation Foundation of
Yunnan University under Grant no. YDY17094.

References

[1] S. Y. Jiang, C. McMlillan, and R. Santelices, “Do programmers
do change impact analysis in debugging?,” Empirical Software
Engineering, vol. 22, no. 2, pp. 631–669, 2017.

[2] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature
location in source code: a taxonomy and survey,” Journal of
Software: Evolution and Process, vol. 25, no. 1, pp. 53–95,
2013.

[3] N. Wilde, J. A. Gomez, T. Gust et al., “Locating user func-
tionality in old code,” in Proceedings of 1992 IEEE Interna-
tional Conference on Software Maintenance, pp. 200–205,
Orlando, FL, USA, November 1992.

[4] W. T. Lee, S. P. Ma, and Y. Y. Tsai, “Retrieval of web service
components using UML modeling and term expansion,”
Journal of Information Science and Engineering, vol. 33, no. 1,
pp. 17–36, 2017.

[5] M. Linaresvasquez, A. Holtzhauer, and D. Poshyvanyk, “On
automatically detecting similar Android apps,” in Proceedings
of 24th International Conference on Program Comprehension,
pp. 1–10, Austin, TX, USA, May 2016.

[6] M. K. Hossen, H. Kagdi, and D. Poshyvanyk, “Amalgamating
source code authors, maintainers, and change proneness to
triage change requests,” in Proceedings of 22nd International
Conference on Program Comprehension, pp. 130–141,
Hyderabad, India, May 2014.

[7] L. R. Biggers, C. Bocovich, R. Capshaw, B. P. Eddy,
L. H. Etzkorn, and N. A. Kraft, “Configuring latent
Dirichlet allocation based feature location,” Empirical Soft-
ware Engineering, vol. 19, no. 3, pp. 465–500, 2014.

[8] C. S. Corley, K. Damevski, and N. A. Kraft, “Exploring the use
of deep learning for feature location,” in Proceedings of 2015
International Conference on Software Maintenance and Evo-
lution, pp. 556–560, Bremen, Germany, September-October
2015.

[9] A. Marcus, A. Sergeyev, V. Rajich et al., “An information
retrieval approach to concept location in source code,” in
Proceedings of 11th Working Conference on Reverse Engi-
neering, pp. 214–223, Delft, Netherlands, November 2004.

[10] Y. Zhang, R. Jin, and Z. H. Zhou, “Understanding bag-of-
words model: a statistical framework,” International Journal
of Machine Learning and Cybernetics, vol. 1, no. 1–4,
pp. 43–52, 2010.

[11] T. Mikolov, K. Chen, G. Corrado et al., “Efficient estimation of
word representations in vector space,” in Proceedings of In-
ternational Conference on Learning Representations, pp. 1–13,
Scottsdale, Arizona, USA, May 2013.

[12] T. Mikolov, I. Sstskever, K. Chen et al., “Distributed repre-
sentations of words and phrases and their compositionality,”
Advances in Neural Information Processing Systems, vol. 26,
pp. 3111–3119, 2013.

[13] R. S. Alsuhaibani, C. D. Newman, M. L. Collard et al.,
“Heuristic-based part-of-speech tagging of source code iden-
tifiers and comments,” in Proceedings of IEEE 5th Workshop

Scientific Programming 15

http://www.cs.wm.edu/semeru/data/benchmarks/
http://www.cs.wm.edu/semeru/data/benchmarks/

on Mining Unstructured Data (MUD), pp. 1–6, Bremen,
Germany, September 2015.

[14] S. Xu, “Modular change impact analysis for configurable
software,” in Proceedings of 2016 IEEE International Con-
ference on Software Maintenance and Evolution, pp. 468–472,
Raleigh, NC, USA, October 2016.

[15] G. Scanniello, A. Marcus, and D. Pascale, Link Analysis
Algorithms for Static Concept Location: An Empirical
Assessment, Kluwer Academic Publishers, Boston, MA, USA,
2015.

[16] S. Pugh, “Davied Binkley change impact using dynamic
history analysis,” in Proceedings of 49th ACM Technical
Symposium on Computer Science Education, p. 275, Baltimore,
MD, USA, February 2018.

[17] M. Sahu and D. P. Mohapatra, “Computing dynamic slices of
feature--oriented programs using execution trace file,” ACM
SIGSOFT Software Engineering Notes, vol. 42, no. 2, pp. 1–16,
2017.

[18] M. Borg, K. Wnuk, B. Regnell, and P. Runeson, “Supporting
change impact analysis using a recommendation system: an
industrial case study in a safety-critical context,” IEEE
Transactions on Software Engineering, vol. 43, no. 7,
pp. 675–700, 2016.

[19] J. Font and C. Cetina, “Improving feature location by
transforming the query from natural language into re-
quirements,” in Proceedings of 20th International Systems and
Software Product Line Conference, pp. 362–369, Beijing,
China, September 2016.

[20] T. Savage, M. Revelle, and D. Poshyvanyk, “FLAT 3 : feature
location and textual tracing tool,” in Proceedings of 32nd
International Conference on Software Engineering, pp. 255–
258, Cape Town, South Africa, May 2010.

[21] W. Wang, T. Li, Y. He et al., “A Hybrid approach for ripple
effect analysis of software evolution activities,” Journal of
Computer Research and Development, vol. 53, no. 3,
pp. 503–516, 2016.

[22] M. P. Robillard, “Topology analysis of software de-
pendencies,” ACM Transaction on Software Engineering
Methodology, vol. 17, no. 4, pp. 1–36, 2008.

[23] M. Petrenko, V. Rajlich, and R. Vanciu, “Partial domain
comprehension in software evolution and maintenance,” in
Proceedings of 16th IEEE International Conference on Program
Comprehension, pp. 13–22, Amsterdam, Netherlands, January
2008.

[24] B. Dit, M. Revelle, and D. Poshyvanyk, “Integrating in-
formation retrieval, execution and link analysis algorithms to
improve feature location in software,” Empirical Software
Engineering, vol. 18, no. 2, pp. 277–309, 2013.

[25] A. Panichella, B. Dit, R. Oliveto et al., “Parameterizing and
assembling IR-based solutions for SE tasks using genetic al-
gorithms,” in Proceedings of 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER),
pp. 314–325, Suita, Osaka, Japan, March 2016.

[26] S. L. Abebe, S. Haiduc, A. Marcus et al., “Analyzing the
evolution of the source code vocabulary,” in Proceedings of
13th European Conference on Software Maintenance and
Reengineering, pp. 189–198, Kaiserslautern, Germany,
2009.

[27] B. L. Vinz and L. H. Etzkorn, “A synergistic approach to
program comprehension,” in Proceedings of the 14th IEEE
International Conference on Program Comprehension
(ICPC’06), pp. 69–73, Athens, Greece, 2006.

[28] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman, “Indexing by latent semantic analysis,”

Journal of the American Society for Information Science,
vol. 41, no. 6, pp. 391–407, 1990.

[29] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent
dirichlet allocation,” Journal of Machine Learning Research,
vol. 3, pp. 993–1022, 2003.

[30] C. Y. Liou, J. C. Huang, and W. C. Yang, “Modeling word
perception using the Elman network,” Neurocomputing,
vol. 71, no. 16–18, pp. 3150–3157, 2008.

[31] Y. J. Guo, S. T. Wang, and L. Xu, “Learning a linear com-
bination of distances based on the maximum-margin theory,”
CAAI Transactions on Intelligent Systems, vol. 10, no. 6,
pp. 843–850, 2015.

[32] J. Wang, S. T. Wang, and Z. H. Deng, “A novel text clustering
algorithm based on feature weighting distance and soft
subspace learning,” Chinese Journal of Computers, vol. 35,
no. 8, pp. 1655–1665, 2012.

[33] M. Chochlov, M. English, and J. Buckley, “A historical, textual
analysis approach to feature location,” Information and
Software Technology, vol. 88, pp. 110–126, 2017.

[34] D. Poshyvanyk, Y. G. Gueheneuc, A. Marcus, G. Antoniol,
and V. Rajlich, “Feature location using probabilistic ranking
of methods based on execution scenarios and information
retrieval,” IEEE Transactions on Software Engineering, vol. 33,
no. 6, pp. 420–432, 2007.

[35] J. Xiaolin, S. Jiang, and Y. Zhang, “Advances in fault locali-
zation techniques,” Journal of Frontiers of Computer Science
and Technology, vol. 1, no. 2, pp. 139–176, 2012.

16 Scientific Programming

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

