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Based on the 64-line lidar sensor, an object detection and classification algorithmwith both effectiveness and real time is proposed.
Firstly, a multifeature and multilayer lidar points map is used to separate the road, obstacle, and suspension object. 1en, obstacle
grids are clustered by a grid-clustering algorithm with dynamic distance threshold. After that, by combining the motion state
information of two adjacent frames, the clustering results are corrected. Finally, the SVM classifier is used to classify obstacles with
clustered object position and attitude features. 1e good accuracy and real-time performance of the algorithm are proved by
experiments, and it can meet the real-time requirements of the intelligent vehicles.

1. Introduction

Road target detection and classification is an important part
of the safe driving of unmanned vehicles, especially in
complex urban roads [1]. Amongmany kinds of sensors, due
to the high resolution and precision of 64-line lidar, it is
widely concerned by researchers and industrial developers.
Unlike vision and millimeter radar, 64-line lidar has much
bigger data amount to process which is more than 1 million
3D points per second at 10Hz frequency, so that it has strict
requirements on the real-time performance of the envi-
ronment sensing algorithm.

1ere are two types of mainstream point cloud data
processing methods. One is directly based on point cloud
processing [2, 3], and the other is based on the grid map
[4–6]. 1e former needs to process and classify every laser
point which is extremely time consuming, while the latter
one transfers 3D laser points to several 2D grid and then
classify those new generated grids which is able to dra-
matically reduce classification calculation cost. 1e tradi-
tional grid map construction method contains several types
such as mean height map [7], maximum height map, and
minimum height map [8]. However, those methods that use

single threshold are difficult to divide obstacles of different
heights and shapes [9, 10]. For example, they cannot dis-
tinguish between slopes, low obstacles, and roadside, and
they often consider hanging objects as obstacles such as
twigs above the vehicle height.

In laser points clustering, the computation cost of
existing clustering algorithm such as K-means clustering,
density clustering [11, 12], and hierarchical clustering
[13, 14] are O(m), O(m2) and O(m2 logm) which directly
relate to the point number m. 1e above clustering algo-
rithm will increase the computation time, and it is difficult
to meet the real-time requirements of unmanned vehicles.

Classification of obstacle targets around unmanned
vehicles in dynamic environments is also very important for
path planning and behavior prediction of the unmanned
vehicle. In [15], the point clouds acquired by the lidar were
projected onto the grid, clustered by the global nearest
neighbor (GNN) and for each candidate, its eigenvector was
calculated and classified by using the support vector ma-
chine (SVM) based on the radical basis function (RBF)
kernel. In [16], the vehicles and pedestrians were classified
using the Gaussian hybrid model classifier (GMM classifier).
In [17], the point cloud is projected onto a 2D grid, and the
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features of the envelope rectangular block in the grid map
are extracted and classified by RPN network. In [18], the
support vector machine is combined with the reflection
intensity probability distribution, the longitudinal height
contour distribution, and the position and attitude corre-
lation features to classify the lidar point cloud features. 1e
literature [19] combines the basic features of point cloud and
contextual semantic environment to construct the original
and extended feature vector of point cloud and use the
support vector machine for target recognition.

In this work, an object detection and classification al-
gorithm with both effectiveness and real time is proposed.
1e algorithm separates the road, obstacle, and suspension
objects by using amultifeature andmultilayer elevationmap.
1en, obstacle grids are clustered by a grid-clustering al-
gorithm with dynamic distance threshold. After that, by
combining the motion state information of two adjacent
frames, the clustering results are corrected. Finally, the SVM
classifier is used to classify obstacles with clustered object
position and attitude features.

2. Grid Map Construction

1is paper uses a multifeature multilevel height map to
abstract lidar point cloud data. 1e multifeature multilevel
height map is a variant based on multiscale height maps
which divide the surrounding space of the vehicle into three
layers. 1e first layer is the pavement layer, indicating the
road surface where the vehicle is able to travel. 1e second
layer is the obstacle layer, including various obstacles such as
vehicles, pedestrians, buildings, traffic signs, trees, and so on.
1e last layer is the suspension object layer, indicating the
obstacle whose height is greater than the vehicle’s safe height
and will not affect the vehicle’s travel but is detected by the
lidar. 1e algorithm flow is shown in Figure 1.

2.1. Grid Point Cloud Segmentation. 1e laser points located
in the same grid are sorted according to the height from
small to large so that a list of data points is obtained. Set the
two-point interval height threshold as Ht. When the interval
between the upper point and the lower point is greater than
the interval height threshold, these two points belong to
different plane blocks. Repeat the process to traverse the
entire grid map to form all the plane blocks Pk. For each
plane block that has several laser points in the grid, it
contains five features: maximum height MaxHk, minimum
height MinHk, height mean MeanHk, intensity mean
MeanIk, and intensity variance σk. Here, maximum height,
minimum height, and height mean characterize the geo-
metric characteristics of point clouds in plane blocks, and
the other two reflect the reflection intensity characteristics of
point clouds.

2.2. Pavement Layer Detection. Unlike most algorithms
which only use height features for pavement layer seg-
mentation, height and intensity information of point cloud
are both used in this work.

2.2.1. Height Information. 1e maximum and minimum
height of the plane block is used as the pavement classifi-
cation feature. Due to the error of the lidar calibration,
a two-step approach is used to judge the ground floor.

For each plane block H, ΔH � MaxH−MinH. If
ΔH> b, this plane block is considered as an obstacle. If
ΔH< a, this plane block is considered as a pavement plane.
If a<ΔH< b, intensity characteristics will be introduced
because it is difficult to determine whether the plane block is
an obstacle or a pavement by relying solely on the height
feature. Here, a and b are threshold in which awill be smaller
and b will be larger.

2.2.2. Intensity Information. When a<ΔH< b, the block
may be a road with a steep slope or an object with a small
vertical height, so intensity information is needed for further
judgment.

1e intensity value of the lidar return is between 0 and
255. Here, we take a big amount of samples and count their
intensity values. In this work, the lidar intensity value
probability distribution curve of 200 vehicles, 200 pedes-
trians, and asphalt, cement pavement is obtained as shown in
Figure 2. It can be seen that no matter a vehicle or a pedes-
trian, its intensity variance is bigger since its surface material
and color are usually not uniform. On the other hand, the
pavement property is relatively uniform, so its intensity
distribution is relatively regular and the variance is small.
Based on this, if the intensity variance of a block is less than
the variance threshold VarIt, the block will be taken as
pavement plane otherwise it will be considered as obstacle.

2.3. Obstacle Layer and Suspension Layer Detection. After
getting all the pavement layers, it is possible to obtain the
average height HG of all the pavement layers. 1en, it is
possible to set the suspension object layer heightHF as follows:

HF � HG + HV + HS, (1)

where HV is the height of the unmanned vehicle and HS is
the artificially set height of the obstacle from the roof of the
vehicle while driving.

Hence, the plane block whose height is bigger than HF

will be considered as suspension layer while the rest is
obstacle layer.

3. Obstacle Grid Clustering

Since we have projected the lidar point cloud into the grid
map in the previous grid map construction step and obtained
the obstacle grids, here the clustering time complexity re-
duced to O(g), where g is the number of obstacle grids which
is thousand times less than the number of raw lidar points.

Due to the fixed resolution of the lidar beam angle, its
resolution will decrease as the distance increases which will
lead to decompose a distant obstacle into multiple discrete
parts and consider as multiple obstacles. To avoid this, we
combine the obstacles motion state information of two
adjacent frames to correct the spatial clustering results. 1e
clustering algorithm flow chart is shown in Figure 3.
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For different distance grid clustering in one frame, dif-
ferent distance thresholds are selected to cluster the discrete
grids. 1e grid-clustering threshold is set as NT � DT/G,
where G is the grid size and DT is the radius parameter. For
each grid, the adjacent grids in the area of (2NT − 1)×

(2NT − 1) will be considered as one obstacle object.
In radius parameter setting, Borges proposed a method

for calculating the radius parameter using distance values rk

[20], as shown in Figure 4.
Calculation formula of DT is

DT � rn−1
sin(Δφ)

sin 20∘ − Δφ( 􏼁
+ 3σr, (2)

where rn−1 is the center coordinate distance of the obstacle
grid, σr is lidar sensor measurement error, and Δφ is hor-
izontal angle resolution for lidar.

In order to further improve the accuracy of clustering,
a target association matching clustering correction-based
clustering is used. It pairs the closest obstacle blocks in the
spatial clustering results at time t− 1 and t by using four
parameters: obstacle center coordinates, direction of motion,
speed, and intensity mean.

4. Target Classification

In this work, dynamic obstacles in the road environment are
separated into four categories: motor vehicles, nonmotor
vehicles (bicycles), pedestrians, and others. Based on the
motion characteristics and geometric contour characteristics
of these four categories of obstacles, a SVM-based target
classification method is proposed, as shown in Figure 5.

4.1.TargetFeature. Since the information data of each obstacle
are saved as a box model, the feature is also extracted from the
box model. For each target box model, it has several groups of
features listed as follows: (1) point X, point Y, point Z, and
alpha which are the position and attitude features of the target;
(2) length, width, height, and delta which are the contour
features of the target. Here, alpha is the relative observation
angle with the range of (−π, π), as shown in Figure 6.

4.2. SVMClassifier. 1is work chooses the SVM classifier for
obstacle classification which is good for small sample and
nonlinear sample classification problems.
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Figure 2: Probability distribution map of typical object return point intensity.
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In order to solve the nonlinear classification problem,
the SVM classifier uses the kernel function to map
the low-dimensional space classification problem to the

high-dimensional feature space to construct a linear
function for classification. 1e radial basis kernel function
(RBF) is used:

K(x, y) � exp −c|x−y|
2

􏼐 􏼑. (3)

5. Experiment and Analysis

5.1. Clustering Experiment and Analysis. 1e clustering al-
gorithm is compared with the eight-connected clustering
algorithm under fixed distance threshold and density-based
spatial clustering of applications with noise (DBSCAN)
algorithm. We use these three methods to carry out ex-
periments on 200 target vehicles in the road environment.
1rough the experimental analysis, the clustering accuracy
rate of the obstacle targets is shown in Table 1. Partition-
based methods, such as k-means, need to know the number
of clusters in advance, so they are not suitable for unmanned
vehicles and we do not include them in the comparison. 1e
average time taken by this algorithm is about 15ms.

A set of intuitive comparisons are shown in Figure 7.
Figure 7(a) shows the effect of the proposed clustering al-
gorithm, Figure 7(b) is that of eight-connected clustering
algorithm, and Figure 7(c) is that of DBSCAN. It can be seen
that, in far distance, the eight-connected clustering algo-
rithm marks one object incorrectly as multiple objects and
the DBSCAN is a little better than that while our method still
works well.
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5.2. Classification Experiment andAnalysis. 1is experiment
used the software developed by Professor Lin Chih-Jen of
Taiwan University—LIBSVM [21]. In addition, the KITTI
data set and the BDD100K are used for classification testing
[22, 23]. Overall, there are 5217 samples containing 4091
vehicle samples, 417 bicycling samples, 573 pedestrian
samples, and 136 other samples. Here, we take about 70% of
the total number of samples as training samples and the rest
as test samples. 1rough the grid optimization algorithm,
the parameter penalty factor C � 246, the parameter
c � 0.012065, and the optimal recognition rate is 88.31%, as
shown in Table 2.

A group of classification experiments is shown in Fig-
ure 8. Green, yellow, and red boxes mean vehicle, bicycle,
and pedestrian, respectively, and the overall classification
time is 10ms per frame.

6. Conclusion

Focusing on the difficulty of the large data of 64-line
lidar which affect the real-time performance of unmanned
vehicle, an object detection and classification algorithm
with both effectiveness and real time is proposed. 1e
algorithm separates the road, obstacle, and suspension by
using a multifeature and multilayer elevation map. 1en,

(a) (b) (c)

(d)

Figure 7: Clustering experiment. (a) Our method. (b) Eight-connected clustering. (c) DBSCAN. (d) Corresponding visual image.

Table 1: Clustering algorithms comparison.

Target distance (m) Eight-connected clustering algorithm accuracy (%) DBSCAN accuracy (%) Our method accuracy (%)
0–20 73.4 78.3 92.6
20–40 64.9 70.1 86.7
40–80 41.5 52.9 69.3
80–150 18.6 21.4 36.3

Table 2: Classification test result statistics.

Overall Vehicle Bicycle Pedestrians
Sample number 1566 1228 126 172
Correct classification
number 1383 1172 71 138

Classification rate 88.31% 95.44% 56.35% 80.23%
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a grid-clustering algorithm based on dynamic distance
threshold is used to cluster the obstacles, and the clustering
results are corrected by combining the motion state in-
formation of two adjacent frames. Finally, SVM is used to
classify obstacles. 1e experimental results show that the
algorithm has good obstacle detection and classification
accuracy and better real-time performance to meet the real-
time requirements of unmanned autonomous vehicles
while driving on the road. During the experiment, it was
also found that the detection rate of bicycles and pedes-
trians is relatively low. 1is may be because the lidar can
only scan a small part of pedestrians and bicycles far from
the autonomous vehicle, and some of these parts are often
filtered by the filtering algorithm or the features we use do
not distinguish pedestrians and bicycles very well. So, in the
future work, we will improve the filtering algorithm so that
more obstacle information will be acquired and new fea-
tures, such as speed, will be added to better distinguish
pedestrians and bicycles.
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