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Handwritten character recognition (HCR) is a mainstream mobile device input method that has attracted significant research
interest. Although previous studies have delivered reasonable recognition accuracy, it remains difficult to directly embed the
advanced HCR service into mobile device software and obtain excellent but fast results. Cloud computing is a relatively new online
computational resource provider which can satisfy the elastic resource requirements of the advanced HCR service with high-
recognition accuracy. However, owing to the delay sensitivity of the character recognition service, the performance loss in the
traditional cloud virtualization technology (e.g., kernel-based virtual machine (KVM)) may impair the performance. In addition,
the improper computational resource scheduling in cloud computing impairs not only the performance but also the resource
utilization. Thus, the HCR online service is required to guarantee the performance and improve the resource utilization of the
HCR service in cloud computing. To address these problems, in this paper, we propose an HCR container as a service (HCRCaaS)
in cloud computing. We address several key contributions: (1) designing an HCR engine on the basis of deep convolution neutral
networks as a demo for an advanced HCR engine with better recognition accuracy, (2) providing an isolated lightweight runtime
environment for high performance and easy expansion, and (3) designing a greedy resource scheduling algorithm based on the
performance evaluation to optimize the resource utilization under a quality of service (QoS) guaranteeing. Experimental results
show that our system not only reduces the performance loss compared with traditional cloud computing under the advanced HCR
algorithm but also improves the resource utilization appropriately under the QoS guaranteeing. This study also provides a valuable
reference for other related studies.

1. Introduction

With the increasing number of mobile devices (e.g., smart-
phones, tablet computers, and laptops), the input method has
become one of the most important applications. Thus,
handwritten character recognition (HCR) technology, one of
the main input methods for the smartphone, has received
considerable research attention and has consequently im-
proved in quality [1, 2]. Nevertheless, some advanced HCR
algorithms are difficult to embed in mobile devices because of
their resource capacity limitations and the time complexity of
the algorithms. Furthermore, embedding bespoke HCR en-
gines into applications is resource and effort intensive, lim-
iting advanced HCR algorithm use and research by individual

enterprises. Now, cloud computing [3, 4] provides an in-
novative networking application model with supercomputing
resource capacity. This provides parallel framework to achieve
high performance and also supports cross-platform clients
[5], freeing clients from the limitations of the computational
power and resources in local devices. Furthermore, cloud
computing can always provide an elastic distributed resource
that can be dynamically allocated to meet varying computing
needs. Hence, oftfloading the HCR task to cloud computing is
an effective way to address the conflict between resource
capacity limitations and the time complexity of HCR in
mobile devices.

However, the task offloading to cloud computing also
brings a new challenge: using the pay-per-use [6, 7] model to
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adjust the resource size according to different workloads,
which may cause an impairment in the quality of service
(QoS) and resource utilization [8]. Especially for the delay
sensitivity of HCR tasks, the complexity distribution ar-
chitecture in cloud computing (e.g., Hadoop and Spark) is
insufficient. In addition, the key technologies of cloud
computing (e.g., computational resource virtualization and
resource scheduling) are also important elements that im-
pact the performance.

With these in mind, here, we propose an HCR container
as a service (HCRCaaS) based on QoS guarantee policy,
which not only provides an advanced HCR algorithm (e.g., a
deep convolution neutral network (DCNN) [9]) to provide
better recognition accuracy but also reduces the perfor-
mance loss with container technology for the delay-sensitive
requirement. To guarantee the QoS as well as high resource
utilization, we propose a resource scheduling algorithm
based on a performance evaluation under the resource
scheduling greedy policy. Our main contributions are as
follows:

(i) Designing an HCR engine based on DCNNs as
a demo of the advanced HCR algorithm for high-
recognition accuracy in cloud computing

(ii) Using containers to deploy the service in order to
reduce the performance loss of the virtualization
layer and easily expand the resources under dif-
ferent workloads

(iii) Designing a greedy resource scheduling algorithm
based on the performance evaluation in order to
improve resource utilization under the QoS
guaranteeing

The rest of this paper is organized as follows: The related
work is described in Section 2. The details of the overall
architecture of the system and the communication archi-
tecture are presented in Section 3. A description of the HCR
engine design and the experiments are presented in Section
4. The resource scheduling method is presented in Section 5.
Our experimental design and results compared to traditional
systems are presented in Section 6, and we conclude in
Section 7.

2. Related Work

Some new systems providing cloud computing online ma-
chine learning services have recently been introduced.
Triguero et al. [10] developed a MapReduce-based archi-
tecture to distribute functions and overcome the challenges
of classifying large datasets. Wettinger et al. [11] proposed
a new architecture that was different from the systematic
classification of DevOps artifacts to model and deploy ap-
plication topologies. Kaceniauskas et al. [12] developed
cloud software services for patient-specific computational
analyses of blood flow through the aortic valve on a private
university cloud, while Anjum et al. [13] designed a cloud-
based video analytics framework for the scalable and robust
analysis of video streams based on cloud computing. Ver-
belen et al. [14] designed and evaluated graph partitioning
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algorithms that allocated software components to machines
in the cloud. Tao et al. [15] proposed an image annotation
scheme that transmitted mobile images compressed by
Hamming-compressed sensing to the cloud. Tripathy and
Mittal [16] designed and combined kernel and possibilistic
approaches for image processing based on Hadoop, while
Xia et al. [17] introduced a short-term traffic flow fore-
casting system also based on Hadoop. Xin et al. [18]
proposed the novel “Adaptive Distributed Extreme
Learning Machine” using MapReduce for distributed
computing. Similarly, Zhang et al. [19] proposed a dis-
tributed algorithm for training the RBM model based on
MapReduce. Thus, the task offloading to a cloud computing
platform became a hot research field. To date, these pro-
posed systems have not provided appropriate resource
scheduling methods to improve the resource utilization or
to guarantee the QoS.

To improve the resource utilization of cloud computing,
Xia et al. [20] used a queueing model to evaluate the expected
request completion time and rejection probability of a sys-
tem. Chiang et al. [21] proposed an efficient green control
algorithm based on three queueing models. The aim of their
work was to find the proper parameters to reduce the power
consumption. Du et al. [22] used a queueing model to
analyze cloud computing resources. This model optimized
the QoS of a video online service in order to reduce the
queue length and time delay. To reduce the cost of a hybrid
cloud computing platform, Li et al. [23] proposed mini-
mizing the communication costs with an online dynamic
provision algorithm based on a queueing model. Khazaei
et al. [24] used an M/G/m/m+r queueing model to evaluate
the performance of a cloud computing online service. On the
basis of this research, they considered that the queueing
model presented the relationship between the number of
servers and the input buffer size and they could obtain
important performance metrics including the task blocking
probability and total waiting time incurred during user
requests. Bi et al. [25] considered a cloud data center as an
M/M/1/n/co queueing system. Vakilinia et al. [26] con-
sidered that the job arrival rate followed the Poisson process,
and the number of jobs in the system could be modeled as an
M/G/n/n queueing system. Furthermore, Zhang et al. [27]
used an M/G/n queueing model to present the container
service process of a Google cluster. Based on the queueing
model, the researchers evaluated the average service time.
Cao et al. [28] modeled a multicore server processor as
a queueing system with multiservers. Based on the model,
they proposed an algorithm to optimize the speed of the
cores. Feng et al. [29] considered the cloud market as a multi
M/M/1 queueing model. Maguluri and Srikant [30] pro-
posed an optimization job-scheduling algorithm to optimize
the QoS of a cloud computing service and used a queueing
model to present the cloud service process.

Based on these works, the structure of a cloud computing
service can be regarded as a queueing model. Although these
research works are useful for improving the QoS or resource
utilization of cloud computing, there are limitations in their
approaches, which ignore the resource overbooking that can
impact the performance of services as well as the resource
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utilization. This creates a large gap between the real exe-
cution behavior and the behavior initially expected.

To improve the HCR accuracy, traditional methods
including the modified quadratic discriminant function
(MQDF) [31] and the graphical lasso quadratic discriminant
function (GLQDF) [32] have successfully been used to
improve recognition accuracy. Graham used DeepCNet [33]
based on DCNNs with good effect at ICDAR 2013 [34],
which is the premier competition for document analysis and
recognition, and is a Chinese handwritten character rec-
ognition competition. Since then, different methods have
been proposed to improve character recognition, for ex-
ample, Murru and Rossini [35] proposed an original algo-
rithm to initialize the weights in a back propagation neural
net to improve character recognition training, and Tao et al.
[36] proposed a new dimension-reduction method termed
sparse discriminative information preservation (SDIP) for
Chinese character font recognition. Wang et al. [37] pro-
posed a unified framework to expand short texts based on
word embedding clustering and convolutional neural net-
works (CNNs). Zhong et al. [38] proposed the GoogLeNet
models to improve Chinese handwritten character recog-
nition accuracy. The studies [39, 40] also proposed the
DCNN-based models to obtain high handwritten character
recognition accuracy. These previous studies indicated that
DCNN-based models can achieve better recognition accu-
racy. Based on these works, we also proposed an advanced
HCR engine based on DCNN as a demo to present how the
advanced HCR cloud service is designed as a real project.

As mentioned above, although the HCR is a traditional
online machine learning service, there are some differences.
First, because of the requirements of the character input
speed, the HCR service is a delay-sensitive application,
which requires a simple system architecture. As mentioned
above, the HCR service has poor performance under the
resource capacity limitation in the mobile devices. How to
design an HCR service in cloud computing to provide higher
performance is an issue that is worth studying. Second, the
HCR service is also a recognition accuracy-sensitive appli-
cation. Thus, how to design an HCR service in cloud
computing to provide better recognition accuracy is a re-
search hotspot. We design a HCR engine based on a DCNN
model to achieve better recognition accuracy. Third, owing
to the huge number of mobile devices, how to improve the
resource utilization in cloud computing also needs to be
studied. Based on a queueing model, we design a resource
scheduling algorithm under a performance evaluation and
the greedy policy. Resource scheduling can guarantee the
QoS as well as the improvement of resource utilization. To
the best of our knowledge, this is the first work to address
these three problems when designing a high-efficiency HCR
service in a real cloud computing project.

3. System Design

3.1. Scheme of Handwritten Character Recognition Container
as a Service. Cloud computing uses virtualization technol-
ogy as a resource-sharing method to provide elastic and

configurable on-demand resources for the tenants. As
mentioned in Section 1, HCR is a common application in
mobile devices and is a resource needed to satisfy delay-
sensitive requirements. Additionally, the data for hand-
written characters are composed by point data, so the size
and dimensions of a handwritten character are small [2].
Thus, the delay of data transmission between mobile devices
and cloud computing can be overlooked. Therefore, the
delay of the recognition process becomes the main element
that impacts the performance.

However, VMs based on traditional virtualization
technology, for example, KVM, Xen, and Hyper-V, are
complete virtualization technologies with a full-guest op-
erating system (OS). They cause such high performance loss
that only a few virtual machines (VMs) can be created from
one physical machine [41]. According to [42], the time
required for creating a VM is 15 s, which makes the resource
scheduling lag behind workload changes.

Compared with VMs, containers have different archi-
tectures that are useful tools for software deployment and
packaging in differently configured environments. The
container uses the container engine instead of a Hypervisor
layer to isolate the configurable resources environment.
Thus, the container can directly run the CPU threading of
the physical machine (PM) without a virtualization layer,
and it is generally considered that a lightweight virtualiza-
tion technology is less resource consuming [43, 44]. IBM
conducted a performance test of VMs and containers [43],
and experiments showed that containers are superior to
VMs in terms of CPU, memory, and I/O performance. The
startup time of containers is expressed in milliseconds
whereas that of VMs is expressed in seconds. Furthermore,
containers have been suggested as a solution for more in-
teroperable application packing in the cloud [45]. Hence,
containers in cloud computing are more appropriate for
HCR service deployment.

Based on the elastic service architecture in cloud com-
puting [46], the HCR container as a service (HCRCaaS)
includes these key components:

(i) The container: the container is used for resource
isolation and lightweight virtualization running
environment configuration for the HCR service.

(ii) The host cluster (resource pool): each PM in the cluster
can be considered as the container host, which runs
daemon threading with the container engine service
to provide the container environment. The PM also
provides the resources, for example, CPU, memory,
and storage. To provide the resource scheduling
management, the Python RabbitMQ client library
[47] is run to listen to the message from the resource
management server for the resource scheduling on
demand. According to the message, the PM creates
or deletes the containers.

(iii) Registry container image storage: the container
image storage provides the server storage to store
the container image, so that the user can upload and
download the container image from the server. It is



used to provide the management of the standard
HCR container templates for batch elastic
expanding. Based on the HCR engine, we design
a standard container image based on Ubuntu OS
downloaded from the official container hub. Then,
to create the HCR container image, the docker-file is
used to build the running configuration environ-
ment and copy the engine bin file. We set the
autoexec of the engine bin file in the final docker-file
line.

(iv) The load balance server: the load balance server
schedules the data from the client devices to the
containers to build parallel computing. It is
designed to provide the reverse proxy of HCRCaa$
by using Nginx 1.9. To provide a transmission
control protocol (TCP) load balance, Nginx with the
with-stream configuration parameter is set, and the
task balance policy is weighted round robin. Since
the system containers are the same, the weight
values are equal. The server runs daemon threading
with the Python RabbitMQ client library to listen to
the message from the resource management server
for adding or removing the container from the load
balance configuration.

(v) Resource scheduling management: the resource
scheduling manager provides central resource
management in HCRCaa$S and allocates the con-
tainer to a container host. Based on the Python
framework, three software frameworks are used for
resource scheduling management design as follows:
(1) The Python Numpy library is used for the re-
source scheduling algorithm designing, (2) Web
Server Gateway Interface (WSGI) provided the
tenants with a hypertext transfer protocol (HTTP)
interface, and (3) message queueing is designed
using the RabbitMQ server software package to send
the message for creating or deleting the container
from the container hosts.

The architecture of the proposed HCR system based on
cloud computing is shown in Figure 1.

3.2. Communication Architecture. As shown in Figure 1,
there are two types of communication architecture in the
system:

(i) Service communication is responsible for trans-
mitting the handwritten character data to the con-
tainer and returning the recognition result. The
handwritten character data are time-continuous data
that are sampled by the client device, for example,
a smartphone. The client device stores the character
index dictionary, in which the character index is the
same as that in the recognition engine. The system
receives the data points from the client device and
returns the recognition result, which contains the
largest probability index of the character classifica-
tion. The client device uses the largest probability
index to provide the candidate character for users.
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(ii) Management communication provides the message
queueing-RabbitMQ service between the resource
scheduling manager and other servers. It is mainly
responsible for transmitting the message from the
tenants to the servers. Using the creation of a con-
tainer as an example, the tenant sends a message to
the resource management server. Then, the message
is transmitted to the message queueing server. The
server exchanges the message with the resource
scheduling policy to send a command message to the
target server for creating the container. After fin-
ishing the action, the target server replies with a
message to the tenant through the message queueing
server. The management communication architec-
ture is shown in Figure 2.

4. Handwritten Character Recognition
Engine Design

In recent years, DCNN has achieved excellent results in
image classification. It has a better model expression ca-
pability. A previous work [48] indicated that each layer in
DCNN can be equivalent to a special function component,
for example, the convolution layer can be considered as
a feature extraction component, the max pooling layer can
be considered as a local extremum component, and the
activation function can be considered as a nonlinear re-
gression. DCNN can extract high-order features layer by
layer, and the final fully connected layer integrates the
output features of the final convolution layer or max pooling
layer for classification. Thus, DCNN can be considered as
a multilayer and nonlinear complex model. Furthermore,
owing to the back propagation training method for the entire
model, the parameter values of each layer in DCNN can be
unitedly adjusted to make the data processing in each layer
more coordinated.

To obtain the advanced HCR model, first, we use
a comparison experiment to obtain the proper structure of
the DCNN-based model. Thus, on the basis the previous
work [33, 49], we design three DCNN-based models, which
have structures with multiple convolutional layers and fully
connected layers, in order to determine the proper structure.
Second, for the normalization, we use batch normalization
(BN) [50], which can normalize nonlinear inputs and sta-
bilize the distribution by reducing the internal covariate shift
to provide the option of using higher learning rates to ex-
pedite network convergence. For some deep networks, BN
can also effectively solve the problem of vanishing gradients.
Third, we use the gradient back propagation training ap-
proach. For parameter optimization in the training process,
when the training loss decreases, the learning rate should
decay to prevent oscillations near the best point. However,
setting a small learning rate may cause the low training speed
to fall into the local optimal solution. Thus, we set the
learning decay rate, which increases with the number of
training epochs. The learning rate can be obtained as follows:

1r(”epoch) = lrbase : lrdecay’ (1)
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where 71, is the number of training epochs, Ir,,. is the
learning rate basement value, and Irye.,, is the decay rate.

The three models use the CASTA-HWDB 1.1 dataset [2],
which has 300 sets and 1,174,364 handwritten samples, to
train on a stand-alone computer. The training dataset

\ Target servers /

includes 240 sets. We use softmax regression as the output.

The output is described as follows:
exp(@iT . x,-)

hg) (%) = —p——
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where 67 denotes the weight and bias corresponding to the
jth output, and x; is the ith input feature. The output of the
softmax regression layer can be regarded as the confidence
probability of the input handwritten characters, which be-
long to different character classes.

To demonstrate that the DCNN-based methods can
achieve better recognition accuracy, we use the ICDAR 2013
competition dataset [34] to conduct the experiment. We not
only compared the proposed three models with the tradi-
tional methods [2, 51, 52] but also compared them with
other DCNN-based methods [34, 38-40]. The comparison
results are listed in Table 1. The Number 1-3 models are the
proposed models and the others are the comparison models.

From Table 1, the results clearly show that the DCNN-
based methods outperform the traditional methods, and the
proposed Number 3 model can achieve the best result.
Furthermore, to demonstrate that model Number 3 in Ta-
ble 1 can fit the HCR best, based on model Number 3 in
Table 1, we test models with different structures, for ex-
ample, the structure with one added and removed con-
volutional layer, structure with one added and removed max
pooling layer, and structure with one added and removed
fully connected layer.

As shown in Table 2, the recognition accuracies of the
different numbers of layers in the DCNN-based models are
lower than that of the original DCNN-based model
(i.e., Number 3 model in Table 1). This demonstrates that the
Number 3 model in Table 1 is the proper structure for 3,755
classes of Chinese handwritten character recognition.

Some previous studies, for example, fisher vector-based
method [53, 54], defensive distillation DCNN [55], dis-
criminative spatiality embedded dictionary learning-based
representation (DSEDR) [56], data-augmentation [57], ro-
bust and sparse fuzzy K-Means with capped [, —norm
(RSFKM) [58], and GA-Bayes [59], have made the prom-
inent achievements in the text classification. In addition,
note that the 3,755 categories only contain Chinese hand-
written samples. Thus, we compare the three proposed
models with these previous methods using the MNIST
dataset [60], which contains 10 classes of digit handwritten
samples, as shown in Table 3.

In Table 3, the results clearly show that the proposed
models can also achieve comparable results that are greater
than 99% under the digit handwritten dataset. To test the
Latin handwritten recognition, we also use the EMNIST
letters dataset [61], which contains 26 balanced classes of
Latin handwritten samples, to conduct the experiment. The
classified number of output layers of the proposed models is
modified to 26. The experiment results are listed in Table 4.

From the results in Table 4, the proposed model also
achieves a recognition accuracy of 93% or above in the Latin
handwritten dataset. The Number 3 model can achieve the
best results.

Although DCNN-based models outperform the tradi-
tional methods, compared with the performance of PMs,
they have a serious response delay for mobile devices be-
cause of the high time complexity. We use the Number 3
model with the best result in Table 1 to compare the average
processing time for a single handwritten sample between
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a mobile device and PM. Loop unrolling is a well-known and
efficient strategy to improve speed, especially for large loops.
In addition, the BLAS library has been shown to be an ef-
ficient way for CPU-based implementation of CNNs. We
also use these configuration optimization methods, for ex-
ample, the BLAS library, loop unrolling, and GPU, to obtain
the comparison performance results. The comparison results
for a Huawei MATE 7 mobile device and Caffee [63] deep
learning framework in PM are listed in Table 5.

From Table 5, HCR service has a serious delay in mobile
devices. The motivation of this paper is to design HCR
service based on cloud computing. To deploy the most
accurate parallel handwritten character recognition service
on HCRCaaS, we select the model (Number 3) with the best
results in Table 1 as the advance HCR model demo. Based on
the model, we used the method with Loop unrolling + BLAS
LIB in Table 5 to and combine the model with a TCP in-
terface library to design a feed-forward DCNN-based HCR
engine. Since the handwritten data cannot guarantee the
same number of data points, they cannot be directly used as
input data. Therefore, before the data are inputted to the
HCR engine, the system connects the sample point data over
time to form a handwritten picture for the input of the
DCNN model. The feed-forward DCNN structure is shown
in Figure 3.

After compiling the recognition engine using C++ in
a Caffe deep learning framework, we deployed it to the
container and built the container as a container image for
expansion on demand.

5. Resource Scheduling Algorithm

As mentioned above, the containers, which are a lightweight
virtualization technology, share their host resources, for
example, CPU, in the same host. Owing to the resource
capacity limitation of the PM, if the total number of con-
tainers is lower than the number of the physical CPU cores,
each container can use one isolated core. However, if there
are too many containers in a single container host, con-
tainers must share these CPU cores, resulting in resource
overbooking and degraded performance. However, resource
overbooking means that a PM achieves higher resource
utilization. Thus, the resource scheduling method needs to
achieve a trade-off between resource utilization and per-
formance. Based on the architecture shown in Figure 1, we
consider that the HCR service should follow the “first come-
first served” (FCFS) principle, which means that each
container can be regarded with an M/M/1 queueing model
as

A(t) = Ar(®)

P
Ucore»  if the number of containers < the numer of cores in one PM,
i (1) =
Ushares  1f the number of containers > the numer of cores in one PM,

(3)

where A (t) and A, (¢) are the total arrival intensity and the
arrival intensity of the ith container following the Poisson
distribution, and the expected number of task arrivals is
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TaBLE 1: Structure, recognition accuracy, and hyperparameter settings of three proposed DCNN-based models and other comparison
models: each proposed DCNN-based model contains 1 input layer, multiconvolutional layers, multimax pooling layers, and 1 fully

connected layer.

Index Model structure

Accuracy (%) Hyper parameters

96 x 96-80C3 x 3-MP2 x 2-160C2 x 2-MP2 x
1 2-240C2 x 2-MP2 x 2-320C2 x 2-MP2 x 2-400C2 x
2-MP2 x 2-480C1 x 1-512FC-3755
96 x 96-100C3 x 3-MP2 x 2-200C2 x 2-MP2 x
2 2-300C2 x 2-MP2 x 2-400C2 x 2-MP2 x
2-500C2 x 2-600C1 x 1-512FC-3755
96 X 96-96C3 x 3-MP3 x 3-128C3 x 3-MP3 x
3-160C3 x 3-MP3 x 3-256C3 x 3-256C3 x

3 3-MP3 x 3-384C3 x 3-384C3 x 3-MP3 x
3-1024FC-3755

4 CNN-Fujitsu [34]

5 ART-CNN [34]

6 HCCR-Gradient-GoogLeNet [38]

7 HCCR-Ensemble-GoogLeNet [38]

8 Multi-CNN voting [39]

9 R-CNN-voting [40]

10 ATR-CNN voting [40]

11 MQDE-THU [51]

12 MQDE-HIT [52]

13 DLQDF [2]

minBatch =128, iterNum = 300,000 dropout

95.12 (fc)=0.5, Irp,e = 0.1
Irgecqy: reducing 0.1 every 70,000 iterations
minBatch =128, iterNum = 300,000 dropout
95.80 (fc)=0.5, Iy, = 0.1
Irgecqy: reducing 0.1 every 70,000 iterations
minBatch = 128, iterNum = 300,000 dropout
97.30 (fc) =0.5, Irp,ee = 0.1
Irgecqy: reducing 0.1 every 70,000 iterations
94.77 —
95.04 —
96.28 —
96.64 —
96.79 —
95.55 —
96.06 —
92.56 —
92.61 —
92.72 —

Settings for input layer (“Input”) are given in rows, which present size of input picture (“size x size”). Settings for each convolutional layer (“Conv”) are given
in rows, which show number of output feature maps and receptive field size (“numCsize x size”). Settings of max pooling (MP) are specified by type and kernel
size (“Mpsize x size”). Settings of fully connected (FC) are specified by dimensionality (“FCdimensionality”).

TaBLE 2: Comparison results in different number layers based on Number 3 model.

Index Model structure Accuracy (%)

1 96 X 96-96C3 x 3-MP3 x 3-128C3 x 3-MP3 x 3-160C3 x 3-MP3 x 3-256C3 x 3-256C3 x 3-MP3 x 96.88
3-384C3 x 3-384C3 x 3-384C3 x 3-MP3 x 3-1024FC-3755 (added one conv layer) ’

2 96 X 96-96C3 x 3-MP3 x 3-128C3 x 3-MP3 x 3-160C3 x 3-MP3 x 3-256C3 x 3-256C3 x 3-MP3 x 96.72
3-384C3 x 3-384C3 x 3-MP3 x 3-MP3 x 3-1024FC-3755 (added one MP layer) ’

3 96 X 96-96C3 x 3-MP3 x 3-128C3 x 3-MP3 x 3-160C3 x 3-MP3 x 3-256C3 x 3-256C3 x 3-MP3 x 96.69
3-384C3 x 3-384C3 x 3-MP3 x 3-1024FC-2048FC-3755 (added one FC layer) ’

4 96 X 96-96C3 x 3-MP3 x 3-128C3 x 3-MP3 x 3-160C3 x 3-MP3 x 3-256C3 x 3-256C3 x 3-MP3 x 96.74
3-384C3 x 3-MP3 x 3-1024FC-3755 (removed one conv layer) '

5 96 X 96-96C3 x 3-MP3 x 3-128C3 x 3-MP3 x 3-160C3 x 3-MP3 x 3-256C3 x 3-256C3 x 3-MP3 x 96.77
3-384C3 x 3-384C3 x 3-1024FC-3755 (removed one MP layer) ’

6 96 x 96-96C3 x 3-MP3 x 3-128C3 x 3-MP3 x 3-160C3 x 3-MP3 x 3-256C3 x 3-256C3 x 3-MP3 x 96.56

3-384C3 x 3-384C3 x 3-MP3 x 3-3755 (removed one FC layer)

equal to A; (t)during time ¢. The load balance server uses the
round-robin policy to allocate the task to each container;
thus, the arrival intensity of each container is A, () = Ay (¢)/k
when there are k containers in the system. The service rate
u; (t), which is the number of tasks be processed in time t,
can be divided into two types: (1) when the number of
containers is lower than the number of PM CPU cores, y; (t)
is equal to the service rate of each CPU core; (2) when the
number of containers is higher than the number of CPU
cores, more than one container will share the same core
service rate, and y; (t) will be lower than that of each core.

The average length of M/M/1 queue can be calculated as

A; (t)

L= [/‘i (1) -\ (t)].

4)

The expected wait time W () can easily be found using
Little’s formula, which is defined as

L) 1
IRACERTGENG)

Note that W (s) is also the average processing time, and
we consider W (s) as the QoS and performance metric.
More important, from Equations (4) and (5), it can be seen
that a poor service rate p, (t) will cause a worse service
quality according to the M/M/1 queueing model.

According to a different number of containers in the
same PM, we test the average processing time of each sample
(T,yg) to obtain a relative performance function. The system
performance for different numbers of containers in the same
PM is listed in Table 6.

W, (t) (5)
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TaBLE 3: Comparison results in MNIST dataset.

Index Model structure

Accuracy (%) Hyper-parameters

96 x 96-80C3 x 3-MP2 x 2-160C2 x 2-MP2 x

minBatch =64, iterNum = 9,400 dropout

1 2-240C2 x 2-MP2 x 2-320C2 x 2-MP2 x 99.12 (fc) =0.5, Irp,e. = 0.01
2-400C2 x 2-MP2 x 2-480C1 x 1-512FC-10 Irgecqy: reducing 0.1 every 3 epochs
96 x 96-100C3 x 3-MP2 x 2-200C2 x minBatch =64, iterNum = 9,400 dropout
2 2-MP2 x 2-300C2 x 2-MP2 x 2-400C2 x 99.32 (fc) = 0.5, Iry,,, = 0.01
2-MP2 x 2-500C2 x 2-600C1 x 1-512FC-10 Irgecqy: reducing 0.1 every 3 epochs
96 X 96-96C3 x 3-MP3 x 3-128C3 x 99.56 minBatch = 64, iterNum = 9,400 dropout
3 3-MP3 x 3-160C3 x 3-MP3 x 3-256C3 x : (fc) = 0.5, Ir,,,, = 0.01
3-256C3 x 3-MP3 x 3-384C3 x 3-384C3 x Ir . reducine 0.1 everv 3 epochs
3-MP3 x 3-1024FC-10 decay’ g0l cvery S ep
4 Fisher vector-based method 99.66 —
Defensive distillation DCNN (transfer temperatures
5 . 99.05 —
is 20)
6 DSEDR 99.26 —
Data-augmentation CNN (5000 training samples per
7 class) (ELASTIC, SMOTE, DBSMOTE) About (99.60, 99.70, 99.70) -
Data-augmentation CSVM (5000 training samples
8 per class) (ELASTIC, SMOTE, DBSMOTE) About (89.80, 99.80, 99.80) -
Data-augmentation CLEM (5000 training samples
? per class) (ELASTIC, SMOTE, DBSMOTE) About (99.60, 99.80, 99.80) -
10 RSFKM 59.48 —
11 GA-bayes (2K2K MNIST) 56.83 —
TaBLE 4: Comparison results in EMNIST dataset.
Index Model structure Accuracy (%) Hyper parameters

96 x 96-80C3 x 3-MP2 x 2-160C2 x 2-MP2 x

minBatch = 64, iterNum = 109,060

1 2-240C2 x 2-MP2 x 2-320C2 x 2-MP2 x 93.00 Dropout (fc) =0.5, Iy, = 0.01
2-400C2 x 2-MP2 x 2-480C1 x 1-512FC-26 I gecqy: reducing 0.1 every 3 epochs
96 % 96-100C3 x 3-MP2 x 2-200C2 x 2-MP2 x minBatch =64 iterNum = 109,060
2 2-300C2 x 2-MP2 x 2-400C2 x 2-MP2 x 93.00 Dropout (fc) =0.5, Iy, = 0.01
2-500C2 x 2-600C1 x 1-512FC-26 Irgecay: reducing 0.1 every 3 epochs
96 X 96-96C3 x 3-MP3 x 3-128C3 x 3-MP3 x minBatch = 64, iterNum = 109,060
3 3-160C3 x 3-MP3 x 3-256C3 x 3-256C3 X 95.40 Dropout (fc) =0.5, Ir,,,, = 0.01
3-MP3 x 3-384C3 x 3-384C3 x 3-MP3 x ' Ite : reducine 0.1 every 3 epoch
3-1024FC-26 decay’ § 5.1 evety 3 epochs
4 OPIUM-based method [61, 62] 85.27 —
TaBLE 5: Delay comparison results for mobile devices and PMs.
Index Platform Method Average processing time (s)
1 Huawei MATE 7 Direct calculation 8.2
2 Huawei MATE 7 BLAS LIB + GPU 0.1
3 PM Direct calculation 1.368
4 PM Loop unrolling + BLAS LIB 0.0211

When the PM is overbooked, the containers in the same
PM will share CPU resources. We consider that there is
a linear relationship between the service rate of each con-
tainer yg,,.. and the number of containers k as

1
[Tog = (O]

Based on Table 6, we obtain a linear performance
degradation relationship function using order-1 linear

(6)

Hshare =

differential equations and the least squares method. The
fitting effect and the R-squared metric are shown in Figure 4.

The linear performance degradation relationship func-
tion is calculated as

T g = 0.0022 - k —0.001. 7)
The R-squared value is 0.998, meaning that Equation (7)

describes the relationship between the performance and the
number of the containers well. On the basis of this
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Ficure 3: Feed-forward DCNN structure of Number 3 model in Table 1.

knowledge, we propose a greedy performance evaluation
(GPE) resource scheduling algorithm to evaluate the per-
formance of each container in the same PM. Taking the
resource overbooking into consideration, the algorithm
finds the proper PM to place the containers to guarantee the
QoS and improve the resource utilization under the greedy
policy. The resource scheduling is trigged by the tenant or
load balance server under QoS monitoring. The pseudocode
for the GPE algorithm is shown in Algorithm 1.

6. Experiments and Analysis

To demonstrate the efficiency, we design a HCRCaaS$ pro-
totype system. The experimental system is composed of
seven nodes including one controller server, one load bal-
ance server, one image storage server, and four container
hosts. The software configurations of each node are listed in
Table 7, and the hardware configurations of the nodes are
listed in Table 8.

Furthermore, a stand-alone server is also built with the
same hardware and software specifications as the container
host for a comparison experiment. We perform a series of
experiments to evaluate system performance and resource
utilization. We consider that the processing time is the key
metric of the HCR service. The longer the processing time,
the lower the performance.

6.1. Performance Comparison between Stand-Alone Server,
Container, and KVM. Similar to the previous work [64], to
demonstrate the efficiency of the HCR delay-sensitive ser-
vice under the container, the objective of this experiment is
to obtain a performance loss (i.e., processing time delay)

comparison between KVM and the container. We test the
stand-alone server without virtualization technology as the
standard of the highest performance. The experiment is
conducted using 32,768 samples from CASIA-HWDB [2]
for testing the performance of the HCR service in different
environments. The processing times of the HCR engine in
the container, KVM, and stand-alone server are shown in
Figure 5.

It can be seen from Figure 5 that the processing time of
the stand-alone server is the shortest, which shows that the
stand-alone server performs best. The processing time delay
ratio between the container and the stand-alone server, that
is, (718.628 —673.520)/673.520 = 6.69%, is smaller than that
between KVM and the stand-alone server, that is,
(749.864 — 673.520)/673.520 = 11.33%. 'This is because
KVM is a large and complex software process. Each KVM
has its own virtualization hardware resources including
CPU, memory, and NIC. Furthermore, KVM must run its
own guest operating system to provide a software envi-
ronment; therefore, the architecture itself results in per-
formance loss. However, the container is a lightweight
virtualization based on a Linux container (LXC) that can
directly exploit the container host’s hardware resources
including its CPU and memory. Furthermore, it does not
run the guest operating system to provide the running
environment. It can be considered a useful tool to provide
different isolated configurations in the stand-alone server.
Thus, the container can outperform KVM. Owing to the
delay sensitivity of the HCR service, the container can reduce
the response delay for providing high resilience and agile
computation service quality. This demonstrates that the
container can achieve higher performance than KVM in
cloud computing.
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TaBLE 6: Performance for different numbers of containers.

Number of containers 1 2 4 8 10 12 14 16 32 64 128
Ty (8) 0.021 0.021 0.022 0.022 0.023 0.026 0.027 0.032 0.069 0.136 0.276
0.3 than that of the cores, overbooking results in more than one
2 025 " container sharing the same core, degraded container per-
~ formance, and, thus, only a slow increase in cloud

£ 02 Sl performance.
g Tyyg = 0.0022 - k- 0.001 Furthermore, when the number of containers is much
s 01> N higher than that of the cores, there is serious resource
£ o1 P overbooking and degradation of overall system performance
Ed 7 Rquare = 0.998 to guarantee the QoS. Therefore, the processing time in-
z 005 I creases when the number of containers is greater than 32.
E_ 0 : : : : : : Overall, performance can be improved by increasing the
2040 60 80 100 120 140 number of containers when resource overbooking is not
-0.05

The number of containers in the same PM

F1GURE 4: Fitting effect and R-squared metric.

6.2. Performance Comparison between HCRCaaS$ and Stand-
Alone Server. The performance of a stand-alone server and
HCRCaaS$ (i.e., 16 containers in HCRCaaS) is compared
under the same hardware specification. The processing time
is tested for different numbers of samples from 128 to
131,072. The processing time of HCR is measured from the
data arriving at the load balance server to when the test client
receives the result. The results of the performance testing are
shown in Figure 6 and Table 9.

In Figure 6 and Table 9, the red line denotes the pro-
cessing time of HCRCaaS, and the blue line denotes the
processing time using a stand-alone server. When the
number of samples is lower than 128 (a light workload), the
HCR engine can completely process these data in a short
period. Owing to the load balance server in HCRCaaS, the
processing time of HCRCaa$ is shorter than that of the
stand-alone server. However, when the number of samples
increases and the workload becomes large, the processing
time increases dramatically in the stand-alone server but not
when using HCRCaaS. For example, when the number of
samples increases from 128 to 512, the processing time in the
stand-alone server increases by 9.589 s, while it increases by
0.5331s in HCRCaaS. Furthermore, the processing time
comparison ration between the stand-alone server and
HCRCaaS is 2920.2390/193.1579 = 15.12 for 131,072 sam-
ples. The efficiency of HCR can be significantly improved
using HCRCaaS.

We also compare the processing time of 32,768 samples
in different numbers of containers in one host. The result is
shown in Figure 7. The performance increases linearly with
increasing numbers of containers when the number of
containers is lower than 8. This is because each host contains
eight cores, and each container completely occupies one
core. By contrast, when the number of containers is higher

serious, but when the system is heavily overbooked, there is
a significant degradation in system performance and hence
the need for the GPE algorithm.

6.3. Comparison of Performance with Load Balance Server and
without Load Balance Server. The load balance server is a key
component of a parallel computing system and is re-
sponsible for scheduling the HCR data to different con-
tainers. Its performance may also have an impact on the
QoS. We test the processing time of six groups of samples
from 128 to 131,072 with and without use of the load balance
server, as shown in Figure 8 and Table 10. When the number
of samples is lower than 512, the processing times with and
without the load balance server are similar. Moreover, when
the number of samples increases, the processing time with
the load balance server also increases slightly. This is because
the data size of the HCR is small, as mentioned above, and
we consider that the load balance can be regarded as an
M/M/oo queueing model. Thus, the performance loss of the
load balance service is minor. The results show that the
largest loss of performance is still very small at
(3012.1560 —2990.2390)/2990.2390 = 0.73%.

6.4. Performance Comparison between GPE and Greedy
Algorithms. To evaluate how the QoS is impacted by the
resource scheduling algorithm, we test a large workload
using the GPE algorithm and the greedy scheduling algo-
rithm, that is, each host can be in heavy resource over-
booking to achieve the highest resource utilization. We set
the average maximum waiting time to 0.032 s, the number of
users to 16, and the number of samples to 32,768. The results
are shown in Figure 9 and Table 11.

It can be seen from Figure 9 and Table 11 that the greedy
algorithm does not guarantee the QoS as the number of
containers increases. This is because the greedy algorithm
only considers the resource utilization, resulting in heavy
resource overbooking to place as many containers as
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The pseudocode of the GPE algorithm
Input:
(1) Set the current arrival number for each container A, ()

(4) The maximum waiting time W,

containers, and Trigger <0 if deleting the containers
(6) The performance relationship function T, = f (k)
(7) Output: the updating expected waiting time W (t)

Step 1:

If trigger <0

Find the jth host which has the minimum containers
Setk; =k;—1
Re-calculate A, (t) = A, (t)/(Z?zlkj)

IfW, (6 <W,,.,
Deleting a container in jth container host
Go to Step 3
Else
Set j=j+1
Repeat Step 1
End If
Step 2:
If trigger >0

Find the jth host which has the maximum containers
Setk; =k;+1
Re-calculate A, (t) = A, (t)/(z;;lkj)
Calculate the W () in jth container host from (3)-(7)
W, (5)<W,,.,

Creating a container in jth container host

Go to Step 3
Else
Set j=j+1
Repeat Step 2
End If
End If

(2) The number of containers in each container host [k, k,, ..
(3) The number of CPU cores of the container hosts [C;,C,,..

.,k,], and n is the number of hosts in the system
5C,l

(5) The container scheduling trigger command Trigger, where Trigger > 0 if launching the new containers, Trigger = 0 if keeping the

Sorting the index jth of the container hosts with the number of the containers in on-descender order

Calculate the W of the containers in jth container host from (3)-(7)

Sorting the index jth of the container host with the number of the containers in on-ascender order

Step 3: Updating [k, k,,...,k,] and adding or deleting the container in the load balance server.

ALGORITHM 1: GPE algorithm.

TABLE 7: Software configurations.

Operating
system

Node index Software tools

Python 2.7 + RabbitMQ
Ubuntu 14.04 + WSGI 2.7

Load balance server Ubuntu 14.04 Nginx 1.9.5+ TCP Plug-In
Image storage server Ubuntu 14.04 Docker 1.9.1
Container host 1 Ubuntu 14.04 Python 2.7 + Docker 1.9.1
Container host 2 Ubuntu 14.04 Python 2.7 + Docker 1.9.1
Container host 3 Ubuntu 14.04 Python 2.7 + Docker 1.9.1
Container host 4 Ubuntu 14.04 Python 2.7 + Docker 1.9.1

Management server

possible in the same container host. With the GPE algo-
rithm, when the number of containers is lower than 32, the
containers will be created in the same container host if the
performance can guarantee the QoS. However, when the

number of containers is higher than 32 and the maximum
number of containers in the container host is 15 to guarantee
the QoS (based on the average maximum waiting time), the
GPE algorithm tries to find a proper container host to reduce
resource overbooking. The resource scheduling strategy in
these situations is equivalent to the average resource
scheduling strategy. Therefore, the GPE algorithm can
achieve the proper trade-off between the resource allocation
balance and utilization.

6.5. Resource Utilization Evaluation and Analysis. To high-
light the resource utilization improvement, we compare and
analyze the resource utilization of the traditional PM cluster
and HCRCaaS. We define the resource utilization com-
parison ratio between HCRCaaS and the PM cluster as
follows:
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TaBLE 8: Hardware configurations.
. Memory Hard
Node index CPU (GB) disk Network
Control server Intel i7 2670 16 64 GB SSD 3 Glgablt_NICS
bonding
Load balance Intel E5 2609 64 64GB SSD 3 Gigabit-NICs
server bonding
Image storage server Intel E5 2609 32 2TB 1 Gigabit-NICs
Container host 1 Intel E5 2609 96 2TB 3 G1gab1‘F—NICs
bonding
Container host 2 Intel E5 2609 96 2TB 3 GlgablF_NICS
bonding
Container host 3 Intel E5 2609 9 2TB 3 Gigabit-NICs
bonding
Container host 4 Intel E5 2609 96 2TB 3 Gigabit-NICs bonding
800 : : : k
_ (‘uc : Zizlni)
mob €= =mE ®)
( '”p)
760 | 749,864 1
a0 | o | where #; is the number of containers in the jth container
= 18628 host, y_ is the container resource utilization, y, is each core
Q o
£ 7201 S 1 utilization of the container host, and k is the number of
e 700 hosts. When the result of Equation (8) increases, more
% 650 673520 containers are created in the cluster. If the ratio is higher
g : than 1, the number of containers is higher than that of the
& 660 PMs. Thus, the larger the result of Equation (8), the larger
640 the resource utilization. According to Section 5, we suppose
that y, ~ y.. Based on the hardware configuration, we
620 compare the resource utilization comparison ratio between
600 HCRCaaS and the PM cluster under different numbers of
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FIGURE 5: Processing time under different environments.
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FIGURE 6: Processing times of stand-alone server and HCRCaaS.

containers when the number of PMs is 4 (i.e., k=4). The
results are listed in Table 12. It is obvious that the resource
utilization improves as the number of system containers
increases.

7. Conclusion

In this paper, we designed a handwritten character recog-
nition system based on a container cloud to better utilize
handwritten character recognition technology. Using par-
allel computing and lightweight virtualization technology,
we successfully improved the system performance. To
overcome problems caused by resource overbooking, we
proposed a performance evaluation approach to evaluate the
performance of each container as the resource size changed.
Using a greedy policy, we designed a GPE algorithm to
guarantee the QoS and improve the resource utilization. Our
experiments showed that the system efficiency increased
significantly with container expansion. This system can
easily be extended to other applications, for example, text
line recognition, formula recognition, image pattern rec-
ognition, and video pattern recognition. The system can also
easily be deployed via Amazon, Rackspace, or Windows
Azure and private cloud computing platforms.

Future work will aim to improve the system in three
respects. First, we will improve the model using more features
such as HOG or SIFT to obtain more accurate recognition.
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TABLE 9: Processing times of stand-alone server and HCRCaaS.
Processing times (s)
Number of samples 128 512 2048 8192 32768 131072
Stand-alone server 3.1132 12.7022 51.2632 195.5276 687.5201 2920.2390
HCRCaa$S 0.1827 0.7158 3.1828 14.7109 52.6269 193.1579
700
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FIGURE 7: Processing time of HCRCaas$ for different numbers of containers.
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FIGURE 8: Processing times with and without load balance server.
TaBLE 10: Processing times with and without load balance server.
Processing times (s)
Number of samples 128 512 2048 8192 32768 131072
Container 3.9156 15.8902 58.1356 197.8992 718.628 2990.2390
Container + Nginx 4.0723 16.1205 58.6780 198.3204 721.231 3012.1560
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TaBLE 11: Average processing time under greedy algorithm and GPE algorithm.
The average processing times (s)
Number of containers 1 2 4 8 10 12 14 16 32 64 128
GPE algorithm 0.021 0.022 0.021 0.023 0.023 0.029 0.029 0.032 0.037 0.040 0.082
Greedy algorithm 0.021 0.021 0.021 0.022 0.023 0.027 0.027 0.032 0.071 0.142 0.281
TABLE 12: Resource utilization comparison ratio for different numbers of containers.
Resource utilization comparison ratio

Number of containers 1 2 4 8 10 12 14 16 32 64 128
C 0.25 0.5 1 2 2.5 3 35 4 8 16 32
Second, we will evaluate more models such as the long-short Acknowledgments

term memory model in order to provide more efficient and
accurate recognition. Third, we will improve the resource
scheduling method to provide an adaptive scalable method in
which the number of containers can be automatically adjusted
according to the workload. In addition, we will design
a workload prediction model for a proactive scheduling re-
source policy. This will avoid frequent tenant monitoring of
the workload and optimize the resource utilization.
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