
Research Article
Novel Methods Generated by Genetic Programming for the
Guillotine-Cutting Problem

Vittorio Bertolini,1 Carlos Rey,1 Mauricio Sepulveda,2 and Victor Parada 1

1Informatics Engineering Department, University of Santiago of Chile, Santiago, Chile
2Informatics Engineering Department, San Sebastián University, Santiago, Chile

Correspondence should be addressed to Victor Parada; victor.parada@usach.cl

Received 25 January 2018; Revised 2 August 2018; Accepted 7 August 2018; Published 2 September 2018

Academic Editor: Emiliano Tramontana

Copyright © 2018 Vittorio Bertolini et al. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

New constructive algorithms for the two-dimensional guillotine-cutting problem are presented. (e algorithms were produced
from elemental algorithmic components using evolutionary computation. A subset of the components was selected from
a previously existing constructive algorithm. (e algorithms’ evolution and testing process used a set of 46 instances from the
literature. (e structure of three new algorithms is described, and the results are compared with those of an existing constructive
algorithm for the problem. Several of the new algorithms are competitive with respect to a state-of-the-art constructive algorithm.
A subset of novel instructions, which are responsible for the majority of the new algorithms’ good performances, has also
been found.

1. Introduction

Various industrial processes exist in which the raw material
must be cut into smaller sections that must be assembled to
produce the final product, as in the case of cutting plastics,
glass, paper, and metals [1–3]. A typical case occurs in the
wooden board cutting industry that requires efficient
techniques to minimize the loss of material in furniture
manufacturing. A piece of furniture is manufactured from
rectangular pieces of wood cut from rectangular wooden
plates by a saw which allows an end-to-end cutting of the
plate [4, 5]. In turn, Park et al. [6] describe the situation that
occurs during the manufacturing and cutting of glass. In
such a case, a continuously produced sheet of glass is cut into
large sheets, which in turn are cut into smaller rectangular
pieces according to the customer requirements. (e cut is
made according to an optimal cutting pattern that mini-
mizes wasted glass. (ese kinds of processes generated
a family of stock cutting problems, which aim at determining
the best method of using raw materials [7].

Often approached from a combinatorial optimization
perspective, cutting problems represent an intellectual
challenge because of the computational difficulty that arises

when attempting to solve them [8]. A particular case is the
constrained two-dimensional guillotine-cutting problem
studied in this paper, which focuses on cutting rectangular
plates [9, 10].

(e statement of the problem considers a rectangular
plate of length L and widthW that must be cut into a set ofm
small rectangular pieces p1, p2,. . ., pm of sizes wi and li and
area si � wi · li such that wi ≤W and li ≤ L for every i ∈P�

{1,2,. . .,m}. A limit bi> 0∀ i ∈P that corresponds to the
number of times that piece i, with profit vi > 0, can be cut
from the rectangular plate is considered. A cutting pattern is
a feasible configuration of pieces to be cut from the plate.(e
geometric feasibility of the cutting pattern considers that (i)
all cuts must be of the guillotine type, (ii) there should be no
overlap among the pieces that constitute the pattern, and
(iii) the pieces must be positioned in a fixed orientation.
Defining xi ∈Z+

0 as the number of times that a piece of type i
is found in a pattern, the problem lies in determining
a cutting pattern with a maximum value z � 􏽐ivixi such that
0≤ xi≤ bi, ∀ i ∈P. Following the commonly used notation
[11, 12], the problem corresponds to the constrained
weighted version (CW_TDC). Conversely, following the
classification of Wäscher et al. [7], this case corresponds to

Hindawi
Scientific Programming
Volume 2018, Article ID 6971827, 13 pages
https://doi.org/10.1155/2018/6971827

mailto:victor.parada@usach.cl
http://orcid.org/0000-0002-8649-5694
https://doi.org/10.1155/2018/6971827

a two-dimensional, rectangular, single large object place-
ment problem.

(e problem has been studied not only for its impact on
the optimization of raw material use in industrial processes
but also for the computational difficulty that arises when
attempting to solve it by exact methods. (ree initial ap-
proaches that are based on the dynamic programming
formulation (DPF) have generated these impacts [13]: the
solution space formulation using graphs (GF), which pro-
duces search methods based on trees [14, 15], and the
constructive approach (CF), which allows combining rect-
angles in an increasing manner while retaining the feasibility
of the guillotine cuts [16]. (ese fundamental methods have
also been improved by incorporating changes that allow
optimal solution searching to be performed with a better
computational performance [17–21]. (e most efficient
results have been achieved with a hybridization of the
fundamental ideas, and thus, search methods based on trees
have been designed using the hybridization of GF with DPF,
which have allowed solving for small- and medium-sized
instances of the problem [10, 22–25].

For large instances of the problem, the heuristic com-
binations are more complex. Álvarez-Valdés et al. [9]
combine constructive procedures that allow for the de-
termination of the upper bounds with path relinking, and
they use the GRASP and tabu search [26] metaheuristics as
base algorithms. (e authors also present a constructive
algorithm (CONS) whereby at each iteration, a new piece is
assigned over a rectangle that is dynamically updated.
Conversely, Morabito et al. [27] generated a hybrid search
strategy by combining depth-first searching with hill
climbing. A third hybridization level is incorporated into the
method by combining it with an algorithm that solves the
problem using a sequence of one-dimensional knapsack
subproblems [28]. Hybridization between simulated
annealing and evolutionary algorithms, considering both GF
and CF approaches, has also been explored numerically to
solve different sized problems [29].

During the last four decades of research on the
CW_TDC problem, researchers have performed computa-
tional studies of some specific hybridizations of the existing
methods to obtain better performance in terms of both the
computational time and the quality of the obtained solution.
However, other potential hybridizations have not been
explored. (is paper proposes that the exploration of those
methods can be accelerated with the support of evolutionary
computation, specifically using the same ideas that support
genetic programming [30, 31]. (is discipline allows the
step-by-step combination of complex structures by fol-
lowing the principles of Darwinian evolution. By combining
the elemental components of a constructive algorithm to
solve the CW_TDC problem with some components spe-
cifically generated for this problem, novel and new algo-
rithms can be produced and analyzed to discover sets of
instructions having some logic that may give rise to new
algorithmic ideas. In this paper, we describe the performance
of a set of created algorithms that are compared with two
known heuristics for the problem, estimating their simi-
larities and relative computational designs. A subset of the

elemental algorithmic components was selected from the
constructive algorithm CONS, aiming to produce other
similar algorithms following the same idea.

2. Design of Elemental
Algorithmic Components

(e algorithms are generated by genetic programming (GP),
a particular technique in the field of evolutionary compu-
tation. (e latter is an area of knowledge that refers to the
study of methods inspired by Darwinian evolution to solve
problems in science and engineering [31, 32]. In GP, the
elementary components of computer programs are gradu-
ally assembled to generate a piece of computer code that is
responsible for performing a specific task. (e pieces of code
are represented by syntactic trees. (is way of automatically
producing a computer program starts with some high-level
specifications and gradually generates the code for the
intended task. Populations evolve gradually through the
application of selection, variation, and reproduction oper-
ators, so that, population after population, the structures
become increasingly specialized in their specific task. (e
elementary components can be functions such as the typical
instructions while, if-then, or, and, among others. Also, GP
can consider specific functions for the intended task. When
algorithms are automatically generated for a combinatorial
optimization problem, such elementary components can be
ad-hoc heuristics for the problem. Figure 1 illustrates the
generation of algorithms for the CW_TDC.

Algorithms for CW_TDC are gradually built by an evo-
lutionary process. To perform this task, each algorithm is
represented as a tree of instructions, where the intermediate
nodes are high-level instructions, and leaf nodes corresponding
to problem-specific functions are entrusted to build the layout.
(e process is outlined in Figure 1. From a population P(k)

containing a fixed number of trees, the implementation of the
selection, crossover, and mutation operations generates a new
population P(k + 1). To evaluate the performance of each tree,
the fitness evaluation module uses a set of adaptation problem
instances available in the literature for the CW_TDC problem.
(e instructions are executed sequentially, traversing the tree
with an in-order, depth-first search.(e best tree found during
the evolutionary process is stored and subsequently decoded
into the corresponding pseudocode.

2.1. Basic Definitions. Several definitions are needed to
implement this approach. (e first is the definition of the
sets of high-level instructions and of problem-specific
functions for the CW_TDC problem. It is also necessary
to have sets of adaptation and testing problem instances.
Finally, a fitness function, which is responsible for guiding
the evolutionary process, is required. (e basic idea is to
generate a new algorithm from a well-known, previously
existing heuristic for a problem and from there, start an
improvement process. In this sense, we consider CONS [9],
which efficiently solves several problem instances of
CW_TDC as the reference algorithm. First, such an algo-
rithm is decomposed into its elemental components, and

2 Scientific Programming

then, other similar algorithms are created. �e new algo-
rithms are the result of the combination of those elemental
components. �e CONS constructive algorithm has a main
cycle through which, at each iteration, a new piece is
assigned over a rectangle Rk with dimensions Wk and Lk. A
guillotine-type cut generates four new, smaller external
rectangles R1

k and R
2
k or R

3
k and R

4
k, depending on whether

the cut is vertical or horizontal. �ose rectangles are stored
to be cut in the following iteration by the same logic
(Figure 2). �e process stops when it is no longer possible to
assign a piece to the stored rectangles, and these pieces are
considered as a loss of material.

�e piece chosen for assigning in a rectangle Rk is the one
that generates the maximum estimated pro�t. �is value is
calculated as the pro�t of the piece plus the sum of the pro�ts
when assigning, in decreasing order of ri � vi/si, the available
pieces in the rectangles R1

k and R
2
k or R

3
k and R

4
k. Speci�cally,

this pro�t is estimated using an algorithm BK1 to solve the
knapsack problem [33]. In this case, the elements of the
knapsack are the pieces; the weight corresponds to the area,
and the capacity corresponds to the area of each rectangle R1

k
and R2

k or R
3
k and R

4
k. A procedure BK2 is also de�ned, which,

unlike BK1, inserts the �rst piece available as many times as it
�ts in the rectangle and applies the estimates based on the
knapsack problem for spaces not occupied by the �rst piece.

In addition to BK1 and BK2, we de�ne two new pro-
cedures, namely, BK3 and BK4, to calculate the estimated

pro�t in the outer rectangles. BK3 is a variant of BK2 that
assigns available pieces to the horizontal base of the rect-
angle, in decreasing order of ri � vi/si, until there is no more
space for a piece to �t (Figure 3). �e pro�t is then estimated
using BK1 in the rectangles R1, R2, . . ., Rq, which are gen-
erated by considering a horizontal line drawn from the
widest piece already assigned.

BK4 is de�ned by locating the pieces sequentially to
di�erent rows of the rectangle, as de�ned in the work of
Co�man et al. [34], for a strip of in�nite length. In this case,
the height of each row is given by the tallest piece when
assignment takes place from the bottom left corner without
going beyond the limit Lk (Figure 4(a)). �e pieces are
assigned following the decreasing order of ri � vi/si. During
the piece-assigning process, the pieces that do not �t in the
rectangle being formed (between the height of the row and
width Wk and between the sum of the lengths of the pieces
assigned to the row and Lk) are ignored (Figure 4(b)). A new
row is created when the next piece does not �t along the
length but does �t in an upper level.

�e algorithms to be constructed must operate on three
data structures. First, a list of pieces available (LPA) stores
the pieces remaining at each stage. Second, a list of rectangles
(LR) is completed as the algorithm advances, with rectangles
Rk still to be processed. At each step, there is an active
rectangle being processed. At the beginning, the list contains
only the original rectangle. �ose rectangles in which no

P (k) P (k + 1)

fafa

Reproduction
crossover
mutation

Instance 1

Instance 2

Instance nf

fa1

fa2

fan

Fitness evaluation module

Figure 1: Evolution of algorithms.

Scienti�c Programming 3

available piece �ts are considered losses. Finally, a stack of
blocks (SB) contains blocks of pieces constructed using
vertical or horizontal joining operations either between pieces
or blocks according to the Wang heuristic [16]. Supported by
this stack, it is not necessary to assign the selected piece
immediately, as occurs with CONS, but it can be stored and
therefore joined with the other pieces, forming blocks whose
size limit is given by the processed rectangle Rk.

2.2. De�nition of Functions. �e elemental components of
the algorithms to be produced are translated into two sets of

functions. �e �rst set contains the basic instructions in
most computer languages and is de�ned with the parameters
P1 and P2 as integer variables, considering that a value
greater than 0 corresponds to the “true” logical value and
that a value equal to 0 corresponds to “false.” All functions
return true or false, and they are While (P1, P2), If�en (P1,
P2), Not (P1), And (P1, P2), Equal (P1, P2), and Or (P1, P2).

�e second set contains speci�c functions for the
CW_TDC problem that are su�cient to allow for the re-
construction of the reference algorithm. Figure 5 depicts the
function’s mode of operation. It shows a rectangle Rk re-
ceiving a block and therefore giving rise to two new

Wk

Lk

R1

Rq

R2
R3

l1 l2 l3 l4

w3

Figure 3: Rectangles for evaluating BK3: R1, R2, R3, and Rq.

Lk

Wk

R1
k

R2
k

wi

li

(a)

Wk

R4
k

wi

li

Lk

R3
k

(b)

Figure 2: (a) Vertical and (b) horizontal cuts.

Lk

Wk

h

(a)

Lk

Wk

(b)

Figure 4: Geometry to obtain the upper bound BK4 in rectangle Rk. (a) Completed and (b) in process.

4 Scienti�c Programming

rectangles to be placed in LR. Functions selecting a piece
from LPA to be combined with the already existing blocks in
SB are also sketched. (e following variables are necessary:

(i) OP: this variable stores the order of the pieces used
in the BKi procedures. (e default value is Val-
Standard_v/s, indicating that a decreasing order ri �

vi/si must be used.
(ii) BKj: this variable stores the BKi procedure to be

used. (e default value is ValStandard_BK1, in-
dicating that BK1 must be used.

(iii) Rk: this variable stores the mechanism for selecting
the next rectangle Rk to be assigned to LR. (e
default value is ValueStandard_BK, indicating that
the estimator indicated in BKj must be used.

(iv) SU: this variable indicates that the horizontal or
vertical joining process for the next piece to be
placed in SB must be stopped.

(en, the following specific functions are defined:

(i) Add-p(): a function that inserts the available piece
into SB that maximizes the estimated profit using
BK1 over the active rectangle Rk. (e function
returns the piece number.

(ii) Cut(): this function assigns a block from SB to the
active rectangle Rk and deletes it from LR. Two
rectangles are generated, either R1

k and R2
k in the

horizontal case or R3
k and R4

k in the vertical case
(Figure 2). (e pair of rectangles that generates the
largest estimated profit using BK1 is selected. (e
selected rectangles are stored in LR. (en, a new
rectangle Rk in LR is activated, which corresponds
to the rectangle with the largest estimated profit,
using BK1 with the available pieces. (e function
always returns 1 (true).

(iii) BK2(): a function that acts as a flag to indicate that,
in the next execution of the Cut or Add-p functions
(whichever occurs first), the indicator BK2 must be
used. It always returns 2 (true).

(iv) MINWL_WASTE(): this function acts as a flag to
indicate that, in the next Cut() execution, the
rectangle Rk with the smallest area must be selected.
It returns 1 (false) or 2 (true) if there is a rectangle
Rk.

Based on the set of functions and variables OP, BKj, Rk,
and SU, the CONS algorithm can be reconstructed as in
Algorithm 1.

To provide greater variability for algorithm construction,
new specific functions are generated based on the following
four strategies:

(a) Provide greater freedom to join a piece with a block
in the SB, according to the horizontal or vertical
construction method. With this strategy, the pieces
can be assigned as they are selected, and they can also
be joined, forming a block to be assigned later.

(b) Establish the order in which the pieces must be
inserted in the active rectangle to estimate the profits
from using BK1, BK2, BK3, and BK4.

(c) Establish a selection criterion of the next rectangle Rk
to be assigned.

(d) Define sensors that deliver online information about
the characteristics of the problem at any instant of
the process.

(e new specific functions are as follows:

(i) UnionWithTop(): a function that selects a piece
identical to the last one entered into SB and joins it
using a horizontal or vertical combination with the
block at the top of SB. (e function selects the
combination that generates the smallest internal
loss. In addition, it returns the number of the
selected piece; otherwise, it returns 0 (false).

(ii) IfPieceRep(P1, P2): a function that acts as a sensor
to estimate the average number of times that the
available pieces fit in the rectangle Rk. If this av-
erage is greater than 2, it performs P1; otherwise, it
performs P2. It returns the value of the parameter
that was executed.

(iii) IfCorrelation(P1, P2): a function that acts as
a sensor that correlates the values of vi and si of the
available pieces that fit in Rk. If the pieces are
correlated by a value> 0.7, then P1 is performed;
otherwise, P2 is performed. (e correlation index
ranges from 0 to 1, with 1 indicating that the
variables are completely correlated. (e correla-
tion is calculated as follows: covariance / (standard
deviation vi ∗ standard deviation si). (e function
returns the value of the executed parameter.

(iv) IfBigPiece(P1, P2): a function that acts as a sensor to
estimate the size of the available pieces. If at least
50% of the available pieces have an area greater
than one-eighth of the plate, then P1 is performed;
otherwise, P2 is performed. (e function returns
the value of the executed parameter.

(v) BK3(): a function that acts as a flag to indicate that,
in the next execution of the Cut or Add-p function

LPA SB Rk

Rk
1

Rk
2

LR

Add(); UnionWithTop()

Cut()

Figure 5: Function operations on the lists LPA, SB, and LR.

Scientific Programming 5

(whichever occurs first), the indicator BK3 must be
used. (e function always returns 3 (true).

(vi) BK4(): a function that acts as a flag to indicate that,
in the next execution of the Cut or Add-p function
(whichever occurs first), the indicator BK4 must be
used. (e function always returns 4 (true).

(vii) StopUnion(): a function that acts as a flag and that
can stop the automatic horizontal-vertical joining
that occurs in SB when a piece is inserted into the
nextAdd-p execution.(e function returns 1 (true).

(viii) DescendingArea(): a function indicating that the
list to be used in the next execution of a BKi es-
timator must use the pieces in order from greatest
to smallest areas. (is function returns 2 (true).

(ix) AscendingArea(): a function indicating that the list
to be used in the next execution of a BKi estimator
must use the pieces in order from smallest to
greatest areas. (is function returns 2 (true).

(x) DescendingProp(): a function indicating that the
list to be used during the next execution of a BKi
estimator must use the pieces in order from longest
to shortest length, as long as the length is greater
than the width. If not, the piece is considered to be
rotated 90 degrees. (is function returns 3 (true).

(xi) AscendingProp(): a function indicating that the list
to be used during the next execution of a BKi es-
timator must use the pieces in order from shortest
to longest length, as long as the length is greater
than the width. If not, the piece is considered to be
rotated 90 degrees. (is function returns 4 (true).

(xii) DescendingLength(): a function indicating that the
list to be used during the next execution of a BKi
estimator must use the pieces in order from longest
to shortest length. (is function returns 5 (true).

(xiii) DescendingWidth(): a function indicating that the
list to be used during the next execution of a BKi
estimator must use the pieces in order from greatest
to smallest width. (is function returns 6 (true).

(xiv) UPDOWN_PROP(): a function indicating that the
list to be used during the next execution of a BKi
estimator must use a decreasing ranking of the
pieces for profit versus area vi/si. (is is the default
value. (is function returns 3 (true).

(xv) MAXWL_WASTE(): this function acts as a flag,
which indicates that, in the nextCut() execution, the
rectangle Rkwith the largest areamust be selected. It
returns 1 (false) or 2 (true) if there is a rectangle Rk.

2.3. Evolution and Evaluation of the Algorithms. For the
evolution and evaluation of algorithms, 46 instances of
problem CW_TDC were used (Table 1) [9, 11, 35]. (e
instances are classified into three groups. (e first group
(GT1) has 12 instances for the evolution stage, and the
second and third groups (GT2 and GT3) are used for the
evaluation stage. Both groups have 14 and 20 instances,

respectively. (e criterion used to separate them is to divide
the total area of the plate by the sum of the areas of all the
available pieces (including the ones that are repeated). Each
group has the following instances:

(i) GT1: “2s,” “Hchl4s,” “CHL2s,” “CHL5s,” “Hchl3s,”
“OF1,” “OF2,” “Hchl5s,” “A5,” “A4,” “Hchl6s,” and
“STS4S.”

(ii) GT2: “CHL6,” “CHL1s,” “APT34,” “CHL7,” “A3,”
“Hchl7s,” “APT35,” “APT36,” “APT30,” “Hchl2,”
“CU7,” “Hchl1,” “A2s,” and “APT38.”

(iii) GT3: “CU1,” “wang1,” “APT37,” “APT39,” “STS2s,”
“APT33,” “APT32,” “CU11,” “CU9,” “CU8,”
“CU2,” “APT31,” “CU10,” “A1s,” “CU4,” “W,” “3s,”
“CU6,” “CU5,” and “CU3.”

2.4. :e Fitness Function. (e fitness function considers
two objectives. (e first one is the quality of the algorithm
or relative error, whereby the smaller the relative error, the
greater the quality. (e second criterion considers the
relative deviation of the algorithm’s number of nodes
related to an initially fixed number of nodes. Both terms
are expressed in Equation (1). (e first term is determined
by a mathematical function where ui and zi are the op-
timum values for instance i and the value obtained by the
algorithm when such an instance is solved. Additionally, n
represents the total number of instances, and α is a nu-
merical value used to give a certain priority or importance
to the different terms in the fitness function. (e second
term of the fitness function is the limit of the number of
nodes that an algorithm can have, where lt represents the
initial number of predefined nodes and la indicates the
number of nodes of the generated algorithm. (en, the
fitness function fp is the union of both terms and mea-
sures the performance of the algorithms:

fp �
α
n

􏽘

n

i�1

ui − zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

ui

+(1− α)
lt − la

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

lt
. (1)

2.5. Tools and Parameters. Performing the evolutionary
process uses an adaptation of the platform originally de-
veloped to implement the GP application GPC++ and
designed to evolve tree structures [36]. (e process was

(1) OP⟵ValStandard_v/s;
(2) BKj⟵ValStandard_BK1;
(3) Iter⟵ 0;
(4) While Iter< n Do
(5) Iter⟵ Iter+ 1;
(6) Rk⟵MinArea(); MINWL_WASTE();
(7) Var⟵Cut (OP, BKj, Rk);
(8) Var1⟵Add(OP, BKj);
(9) Return Waste();

ALGORITHM 1: CONS algorithm.

6 Scientific Programming

performed using Windows 7 on a computer with a 2.5GHz
i5 processor and 8GB RAM.

A population size of 1000 individuals and 100 genera-
tions was used, and the crossover and mutation probabilities
were set at 85% and 5%, respectively. (e “ramped half-and-
half” method was used to create the initial population, with
a controlled initial tree size that could later grow to a height
of 13.(e selection of the fittest individual was performed by
a tournament. (e mutations used were “swap mutation”
and “shrink mutation” [32], and the crossover was per-
formed by exchanging tree branches.

3. Results

(e experiment is made up of two parts: the evolution
process and the evaluation process. In the first process, the
new algorithms face the GT1 set of instances, and the ex-
periment is repeated 30 times to select the best algorithm of
each execution. With the selected 30 algorithms, the second
process follows, which is divided into two parts: First, the
algorithms are evaluated with the GT2 set of instances and
later, with GT3.

3.1.Convergence. In the 30 executions of the experiment, the
convergence curve shows that the individuals of each gen-
eration systematically converge until reaching an average
error of between 2 and 4%. (e graph in Figure 6 shows the
convergence of each of the 30 executions considering
a population of 1000 individuals per generation and with
a total of 100 generations. In general, it is observed that the
fitness values for generation 1 begin with values ranging
between approximately 104 and 110%, gradually decreasing
until the algorithms reach fitness between 14 and 18%.
During the first generations, the error is over 100% because
the fitness function also considers the number of nodes, and
during those generations, there are algorithms that do not
assign any piece and that have different number of nodes
than in the initial configuration.

3.2. Algorithm Generation. (e best resulting algorithm of
each of the executions is selected. Table 2 shows the details of
the best algorithms found. (e first column indicates the
name of the best algorithm of the corresponding execution;
it is denoted using the letter A followed by a number in-
dicating the number of the execution from which it comes
from. (e second column indicates the algorithm’s average
fitness with the 12 instances of GT1. (e third column
represents the average error. (e fourth and fifth columns
indicate the best and worst errors found by the algorithm in
one of the 12 GT1 instances. (e sixth column shows the
standard deviation, and the seventh, eighth, and ninth
columns show the number of hits (instances where the al-
gorithm finds the optimum solution), the number of nodes,
and the height of the algorithm. Finally, the last column
shows the computation time each execution required.

Of the 30 selected algorithms, 16 reach optimum values
for at least one instance. Consequently, the best error value is
0.00. In general, all the algorithms are capable of

determining a near optimum solution for some of the 12
instances. (is is evidenced by the best error value of 0.60%.
In contrast, an error of 14.85% found as a worst error av-
erage shows that all the algorithms face some difficulty with
at least one of the instances. (e lowest error average is
found in execution 12 at approximately 3.96%, and the
lowest fitness average is also found in algorithm 12 at 3.49%.
(e required computer time for evolution is 8.19 minutes for
execution 5, and the greatest time is 10.99 minutes for
execution 13. (e average fitness is 5.22%, and the best
average is 5.93%.

3.3. Algorithm Evaluation. (e generated algorithms are
robust, and they do not over specialize. To demonstrate this,
an evaluation process of the best algorithms found was used.
(is process consists of evaluating the 30 best algorithms in
instances different from those used in their creation.
(erefore, groups of instances GT2 and GT3 were used.
Table 3 shows the evaluation results of the 30 algorithms
with instances of group GT2. Considering that the number
of instances used is greater and that these instances have
more combinations, better results are observed compared to
the results in the evolution process. Regarding the lower
fitness average, there are seven executions under 4.00%, in
contrast to the case of evolution that has only two. (e
highest fitness average value increased by approximately
2.00%, specifically, from 6.52% to 8.33%. (e same effect is
observed in the error average. In the column that shows the
number of hits, it is observed that no algorithm found an
optimum value. (e computer time required to solve the 14
instances of group GT2 is between 11.0 and 30.0 seconds for
each algorithm.

(e produced algorithms present similar computational
performances in the evolution and evaluation stages. (e
instances used to evaluate the algorithms present greater
flexibility in terms of the ratio area of the plate/area of the
pieces. Table 4 shows the evaluation results of the 30 al-
gorithms with instances of group GT3. An improvement in
the results is observed compared to the evolution of the
instances of group GT1 and the evaluation with instances of
group GT2. (e lowest fitness average is 2.14%, while the
greatest is 5.37%. As observed in the table, the new algo-
rithms find at least one optimum solution for an instance.
However, the computer time required by the algorithms
increases.

(e size of the algorithms tends to stabilize at the initially
predefined size. (ere is an indirect evolution of the size of
an algorithm during its evolutionary construction toward
the predefined size, as specified in Equation (1). Specifically,
this effect is supervised by the second term of the fitness
function. Table 2 shows that the 30 best algorithms found the
same number of initially defined nodes. In other words, the
evolutionary process converges toward a search region
where algorithms of the desired size are found. However, the
distribution of nodes in the tree is varied.

Results in Table 2 suggest that is possible to inspect
algorithms of a given size by simply fixing the parameter
value in the fitness function. (us, the search for algorithms

Scientific Programming 7

may focus on desired regions that may be identified be-
forehand, considering the sizes of the heuristics that already
exist for the problem at hand. An example is algorithm A13
in Table 2, with 13 nodes and a height of 4, which has
a fitness average of 3.66% for a total of 46 instances where
their performance was measured. Figure 7 shows the A13
algorithm’s tree representation that stands out in both stages
of evolution and evaluation. (e main characteristic of A13
is its left branch, which has an instruction While that
generates a constructive cycle as long as one of the available
pieces fits into the plate. (e Cut terminal begins when the
first piece is assigned, and it divides the initial plate,

obtaining two new smaller plates. (en, the Add-p terminal
that selects the first or second plate is executed and generates
the unions based on an estimator BKi. (e constructive cycle
repeats until it meets the finishing criteria.

(e found algorithms follow a constructive and an
improvement logic. All the generated algorithms have at
least one cycle, and within them, they build solutions from
an initial plate until no other piece fits in the plate. (e
algorithms represented in Figure 8 were selected because
they were among the five best algorithms of the experiment.
Algorithms A4 and A14 have a while cycle composed of a set
of functions and terminals, among which Add-p and Cut are

1.0

0.8

0.6

0.4

0.2

0.0

Fi
tn

es
s (

FP
)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6

Run 7
Run 8
Run 9
Run 10
Run 11
Run 12

Run 13
Run 14
Run 15
Run 16
Run 17
Run 18

Run 19
Run 20
Run 21
Run 22
Run 23
Run 24

Run 25
Run 26
Run 27
Run 28
Run 29
Run 30

Convergence curve

Generations

Figure 6: Convergence for the 30 runs.

Table 1: Testing instances.

Number of
instances Instances Reference

14 OF1, OF2, W, CU1, CU2, CU3, CU4, CU5, CU6,
CU7, CU8, CU9, CU10, CU11 Fayard et al. [11]

14 STS2, STS4, A1s, A2s, STS2s, STS4s, CHL1s, CHL2s,
A3, A4, A5, CHL5, CHL6, CHL7 Cung et al. [35]

5 Hchl3s, Hchl4s, Hchl5s, Hchl6s, Hchl7s Álvarez-Valdés et al. [9]

9 APT30, APT31, APT32, APT33, APT34, APT35,
APT36, APT37, APT38, APT39 Álvarez-Valdés et al. [9]

4 2s, wang1, wang2, wang3 Others

8 Scientific Programming

Table 3: Evaluation of algorithms with instances from group GT2.

Algorithm Avg. fitness (%) Avg. error (%) Best error (%) Worst error (%) SD (%) Hits Time (s)
A1 8.33 9.35 2.34 16.12 4.43 0 21.0
A2 3.53 3.97 1.47 8.14 2.20 0 20.0
A3 6.04 6.80 3.08 16.12 3.46 0 18.0
A4 3.51 3.94 0.88 7.24 2.43 0 17.0
A5 4.43 4.95 1.41 13.89 3.54 0 25.0
A6 5.64 6.34 1.32 18.53 4.61 0 23.0
A7 4.53 5.09 1.01 11.76 2.85 0 15.0
A8 5.64 6.34 1.32 18.53 4.61 0 14.0
A9 6.04 6.80 3.08 16.12 3.46 0 17.0
A10 7.15 8.03 3.09 16.12 4.11 0 15.0
A11 4.29 4.83 1.32 11.76 2.94 0 13.0
A12 4.56 5.12 1.07 18.53 4.57 0 11.0
A13 4.32 4.84 1.38 12.20 3.24 0 19.0
A14 3.61 4.06 1.59 8.14 2.08 0 20.0
A15 3.55 4.00 1.21 12.20 3.26 0 22.0
A16 4.29 4.83 1.32 11.76 2.94 0 27.0
A17 6.00 6.73 1.64 18.50 4.71 0 21.0
A18 6.04 6.80 3.08 16.12 3.46 0 22.0
A19 8.33 9.35 2.34 16.12 4.43 0 27.0
A20 5.73 6.46 1.64 16.12 4.03 0 26.0
A21 6.04 6.80 3.08 16.12 3.46 0 20.0
A22 6.30 7.07 1.64 18.50 4.70 0 19.0
A23 3.89 4.38 1.83 8.97 2.18 0 20.0
A24 6.04 6.80 3.08 16.12 3.46 0 24.0

Table 2: Best algorithm of each of the 30 runs.

Algorithm Avg. fitness (%) Avg. error (%) Best error (%) Worst error (%) SD (%) No. of hits No. of nodes Tree height Time (s)
A1 6.52 7.40 0.00 15.22 5.17 1 13 4 553.00
A2 4.69 5.33 1.36 20.75 5.42 0 13 4 560.82
A3 5.84 6.63 0.00 14.37 4.36 1 13 3 592.03
A4 4.38 4.96 2.02 18.29 4.51 0 13 3 532.11
A5 5.18 5.89 0.86 10.57 3.67 0 13 5 491.15
A6 5.85 6.66 1.36 12.93 3.73 0 13 3 595.45
A7 4.28 4.85 1.36 10.74 2.91 0 13 4 564.03
A8 5.85 6.66 1.36 12.93 3.73 0 13 4 599.26
A9 5.84 6.63 0.00 14.37 4.36 1 13 4 603.54
A10 4.63 5.26 0.00 11.64 3.79 1 13 4 600.85
A11 5.19 5.91 1.36 14.96 3.65 0 13 3 511.67
A12 3.49 3.96 0.00 9.83 2.63 1 13 3 556.78
A13 4.50 5.14 0.00 13.87 3.98 1 13 4 659.11
A14 3.92 4.45 0.75 10.23 3.09 0 13 4 597.02
A15 5.63 6.41 1.31 20.75 6.47 0 13 6 596.93
A16 4.64 5.28 0.75 13.17 3.40 0 13 4 518.51
A17 6.15 6.98 0.86 17.77 5.19 0 13 3 607.99
A18 5.84 6.63 0.00 14.37 4.36 1 13 3 607.98
A19 6.34 7.20 0.00 14.82 4.62 1 13 4 591.04
A20 5.03 5.70 0.00 12.52 4.02 1 13 5 618.95
A21 5.84 6.63 0.00 14.37 4.36 1 13 4 596.01
A22 5.59 6.37 1.36 13.14 4.16 0 13 5 592.75
A23 5.09 5.81 0.00 17.95 4.85 1 13 4 598.61
A24 5.84 6.63 0.00 14.37 4.36 1 13 4 580.30
A25 4.23 4.80 0.00 14.48 4.26 1 13 5 648.99
A26 5.15 5.86 0.00 17.95 4.62 1 13 4 516.53
A27 5.84 6.63 0.00 14.37 4.36 1 13 4 602.66
A28 4.38 4.96 2.02 18.29 4.51 0 13 4 587.45
A29 4.69 5.33 1.36 20.75 5.42 0 13 5 549.60
A30 6.25 7.11 0.00 15.81 4.82 1 13 4 573.66
Average 5.22 5.93 0.60 14.85 4.29 0.5 13 4 580.16

Scientific Programming 9

Table 3: Continued.

Algorithm Avg. �tness (%) Avg. error (%) Best error (%) Worst error (%) SD (%) Hits Time (s)
A25 5.13 5.78 2.00 16.12 3.55 0 15.0
A26 6.06 6.81 3.08 16.12 3.38 0 25.0
A27 6.04 6.80 3.08 16.12 3.46 0 19.0
A28 3.51 3.94 0.88 7.24 2.43 0 17.0
A29 3.53 3.97 1.47 8.14 2.20 0 14.0
A30 5.99 6.73 1.32 18.53 4.94 0 15.0
Average 5.27 5.92 1.90 14.20 3.50 0 19.0

AND

AND

BK4 BK4

WHILE

ADD-P

OR

BK2OR

IF-THEN

CUT

A13

MAXWL-WASTE

MINWL-WASTE

Figure 7: Tree of the algorithm from run 13.

AND

AND

AND AND

NOT

IfPleaseRep

NOT

WHILE

WHILE

BK3

BK3

BK2 CUT BK3

BK3

EQUAL

ADD-PBK2 TRUECUT

IF-THEN

IF-THEN

IF-THEN

UPDOWN-PROP

A4

A14

ADD-P

MINWL-WASTE

Figure 8: Tree instructions for algorithms A4, A13, and A14.

10 Scienti�c Programming

focused on the logical constructive steps. Add-p is in charge
of joining blocks and Cut and of assigning them to the plate,
repeating this process until the plate is completed.

(e algorithms assemble the location of the pieces using
the criteria of best fit. (is behavior is found specifically in
the BKi estimators because each estimator has a different
criteria to fit pieces. If the default BK1 estimator is not useful
for fitting pieces, then it is possible for the algorithm to use
a different estimator in one of its tree’s branches. Moreover,
there is another way to use the best piece, based on the
ordered lists that offer the best possible fit, using different
methods of sorting the pieces during the selection. (ese
methods may be from largest to smallest or from smallest to
largest, considering its own criterion that indicates the type
of sorting applied (width, length, area, etc.). A clear example
is algorithm A4 of Figure 8, which has a Cut terminal in its
left branch with a BK2 estimator and an Add-p terminal and
two BK3 terminals in its right branch.

(e found algorithms are a generalization of good
existing heuristics for this problem. (e CONS heuristic is
the fundamental base of the generated algorithms. (e al-
gorithms find a solution that begins with the greatest loss
and gradually decreases as pieces are assigned to the solu-
tion. Figure 8 provides two examples that show that the Add-
p and Cut terminals, which are part of the CONS heuristic,

the base for the algorithms to solve the instances. Both
algorithms show such terminals, and they are generally
preceded by the function while, which produces repetition
a number of times until the algorithms reach the optimum or
nearly optimum result.

Constructive cycles prevail in the found algorithms. In
most of the analyzed algorithms, there are cycles that try to find
a possible solution using estimators and piece lists. Always
connected by a While cycle, Add-p and Cut prioritize the
construction of blocks to find the solution, as can be observed
in the right branch of algorithm A14 presented in Figure 8.
(is branch, with only seven nodes, executes a number of
combinations to solve the problem. Because the While is the
base of the branch, the algorithm ensures that the execution is
repeated in the other six nodes until the stop criterion is
reached. (ere are two And functions in the other six nodes,
leaving the last four nodes (Add-p with BK2 and Cut with BK3
with While) as the base of the constructive cycles.

(e cycles in the algorithms operate as instruction
compacters. (e resulting algorithms are capable of re-
peating the process a great number of times, which are not
always the same, using few code lines. In this way, a great
number of operations are conducted, but instructions are
compacted in small and easy to understand branches. An
example appears in Figure 8, where the three algorithms

Table 4: Evaluation of algorithms with instances from group GT3.

Algorithm Avg. fitness (%) Avg. error (%) Best error (%) Worst error (%) SD (%) No. of hits Time (s)
A1 5.09 5.71 0 12.86 3.91 1 48.0
A2 2.32 2.60 0 5.56 1.33 1 44.0
A3 4.22 4.74 0 8.96 2.93 1 51.0
A4 3.33 3.74 0 11.58 2.61 1 41.0
A5 4.03 4.52 0 10.12 2.74 1 44.0
A6 3.02 3.39 0 8.23 2.31 1 46.0
A7 3.41 3.83 0 8.34 2.14 1 45.0
A8 3.02 3.39 0 8.23 2.31 1 42.0
A9 4.22 4.74 0 8.96 2.93 1 40.0
A10 4.21 4.73 0 11.85 3.13 1 39.0
A11 2.66 2.99 0 6.96 1.82 1 50.0
A12 3.70 4.15 0 20.42 4.41 1 49.0
A13 2.14 2.41 0 7.80 1.74 1 48.0
A14 2.68 3.01 0 8.23 2.09 1 41.0
A15 2.31 2.59 0 7.80 2.01 1 43.0
A16 2.66 2.99 0 6.96 1.82 1 42.0
A17 5.37 6.03 0 15.73 4.14 1 51.0
A18 4.22 4.74 0 8.96 2.93 1 42.0
A19 5.09 5.71 0 12.86 3.91 1 43.0
A20 4.43 4.97 0 13.20 3.43 1 38.0
A21 4.22 4.74 0 8.96 2.93 1 45.0
A22 5.37 6.03 0 15.73 4.14 1 42.0
A23 2.43 2.73 0 6.96 1.76 1 45.0
A24 4.22 4.74 0 8.96 2.93 1 48.0
A25 3.52 3.96 0 8.96 2.80 1 43.0
A26 4.22 4.74 0 8.96 2.93 1 50.0
A27 4.22 4.74 0 8.96 2.93 1 51.0
A28 3.33 3.74 0 11.58 2.61 1 51.0
A29 2.32 2.60 0 5.56 1.33 1 42.0
A30 3.02 3.39 0 8.23 2.31 1 46.0
Average 3.63 4.08 0 9.89 2.71 1 45.0

Scientific Programming 11

have 13 nodes each and are able to solve instances that
involve from 10 pieces to over 50 pieces without the need to
use more than one While cycle in their structure.

Several algorithms obtained are competitive with respect
to a state-of-the-art constructive algorithm. Table 5 shows
a summary of the results obtained by CONS, GRASP, and
TABU algorithms presented in Álvarez-Valdés et al. [9] for
instances GT2 and GT3. It is observed that for “Avg. error
(%),” the four evolved constructive algorithms A2, A14, A15,
and A29 have a lower value than the value generated by
CONS algorithm for both groups of data GT2 and GT3.
Additionally, algorithms A4, A23, and A28 have a lower
value only with instances in GT2; meanwhile, algorithms A6,
A8, A11, A13, A16, A23, and A30 have better performance
with instances in GT3. Also, the new algorithms find at least
one optimal solution for instances in GT3 compared with
none optimal solution found by CONS. GRASP and TABU
algorithms are more effective since they obtain a lower
average error. With respect to the running time required by
CONS, it is lower than the average of the running time
required by the new algorithms.

4. Conclusion

(is paper describes a computational model and experiment
that allowed for the generation of algorithms to solve a set of
instances of the guillotine-cutting problem. (e generated
algorithms were decoded from tree structures that were
evolved with a computational tool based on GP. (e
functions that constitute the basic components of the
produced algorithms were deduced by identifying the basic
components of an existing algorithm. Other functions in-
spired by the geometric and algorithmic solutions of the
problem were added to provide greater variability in the
algorithm search. (e best 30 algorithms were identified and
tested with 46 representative instances of the problem. (e
average error of the algorithms varied between 3.00 and
5.00%. (e generated algorithms are able to find better
results by working on instances with more possible com-
binations among their pieces. (e computational results are
similar between instances of different combinatory degrees.

Data Availability

(e data set used in this paper is very common in the field of
cutting problems and can be obtained from a public web site:
http://people.brunel.ac.uk/∼mastjjb/jeb/info.html.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is research was partially funded by the Complex Engi-
neering Systems Institute (ICM-FIC: P05-004-F, CONICYT:
FB0816).

References

[1] R. N. Morabito and L. Belluzzo, “Optimizing the cutting of
wood fibre plates in the hardboard industry,” European Journal
of Operational Research, vol. 183, no. 3, pp. 1405–1420, 2007.

[2] S. C. Poltroniere, K. C. Poldi, F. M. B. Toledo, and
M. N. Arenales, “A coupling cutting stock-lot sizing problem
in the paper industry,” Annals of Operations Research,
vol. 157, no. 1, pp. 91–104, 2008.

[3] K. Matsumoto, S. Umetani, and H. Nagamochi, “On the one-
dimensional stock cutting problem in the paper tube in-
dustry,” Journal of Scheduling, vol. 14, no. 3, pp. 281–290, 2011.

[4] E. Malaguti, R. Durán, and P. Toth, “Approaches to real world
two-dimensional cutting problems,” Omega, vol. 47, pp. 99–
115, 2014.

[5] O. Oliveira, D. Gamboa, and P. Fernandes, “An information
system for the furniture industry to optimize the cutting
process and the waste generated,” Procedia Computer Science,
vol. 100, pp. 711–716, 2016.

[6] K.-T. Park, J.-H. Ryu, H.-K. Lee, and I.-B. Lee, “Development
of a heuristic algorithm for cutting stock problems in flat glass
production processes,” Journal of Chemical Engineering of
Japan, vol. 45, no. 3, pp. 219–227, 2012.

[7] G. Wäscher, H. HauBner, and H. Schumann, “An improved
typology of cutting and packing problems,” European Journal
of Operational Research, vol. 183, no. 3, pp. 1109–1130, 2007.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability.
A Guide to the:eory of NP-Completeness: A Series of Books in
the Mathematical Sciences, WH Freeman and Company, San
Francisco, CA, USA, 1979.

[9] R. Álvarez-Valdés, A. Parajon, and J. M. Tamarit, “A tabu
search algorithm for large-scale guillotine (un)constrained
two-dimensional cutting problems,” Computers & Operations
Research, vol. 29, no. 7, pp. 925–947, 2002.

[10] R. N. Morabito and V. Pureza, “A heuristic approach based on
dynamic programming and and/or-graph search for the con-
strained two-dimensional guillotine cutting problem,” Annals
of Operations Research, vol. 179, no. 1, pp. 297–315, 2010.

[11] D. Fayard, M. Hifi, and V. Zissimopoulos, “An efficient ap-
proach for large-scale two-dimensional guillotine cutting
stock problems,” Journal of the Operational Research Society,
vol. 49, no. 12, pp. 1270–1277, 1998.

[12] X. Song, C. B. Chu, R. Lewis, Y. Y. Nie, and J. (ompson, “A
worst case analysis of a dynamic programming-based heu-
ristic algorithm for 2D unconstrained guillotine cutting,”
European Journal of Operational Research, vol. 202, no. 2,
pp. 368–378, 2010.

[13] P. C. Gilmore and R. E. Gomory, “A linear programming
approach to the cutting stock problem-Part II,” Operations
Research, vol. 11, no. 6, pp. 863–888, 1963.

[14] A. I. Hinxman, “(e trim-loss and assortment problems:
a survey,” European Journal of Operational Research, vol. 5,
no. 1, pp. 8–18, 1980.

Table 5: Evaluation of algorithms with instances in groups GT2
and GT3.

Algorithm
Avg.

error (%)
GT2

Hits
GT2

Time
(s) GT2

Avg.
error (%)

GT3

Hits
GT3

Time
(s)
GT3

CONS 4.53 0 2.45 3.36 0 2.75
GRASP 1.63 2 142.44 0.73 7 158.4
TABU 0.34 5 1459.86 0.25 9 1730.1

12 Scientific Programming

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

[15] N. Christofides and C. Whitlock, “An algorithm for two-
dimensional cutting problems,” Operations Research, vol. 25,
no. 1, pp. 30–44, 1977.

[16] P. Y. Wang, “Two algorithms for constrained two-
dimensional cutting stock problems,” Operations Research,
vol. 31, no. 3, pp. 573–586, 1983.

[17] J. C. Herz, “Recursive computational procedure for two-
dimensional stock cutting,” IBM Journal of Research and
Development, vol. 16, no. 5, pp. 462–469, 1972.

[18] M. Hifi and V. Zissimopoulos, “Constrained two-dimensional
cutting: an improvement of Christofides andWhitlock’s exact
algorithm,” Journal of the Operational Research Society,
vol. 48, no. 3, pp. 324–331, 1997.

[19] F. Vasko, “A computational improvement to Wang’s two-
dimensional cutting stock algorithm,”Computers & Industrial
Engineering, vol. 16, no. 1, pp. 109–115, 1989.

[20] Y. Cui and X. Zhang, “Two-stage general block patterns for
the two-dimensional cutting problem,” Computers & Oper-
ations Research, vol. 34, no. 10, pp. 2882–2893, 2007.

[21] A. Lodi, M. Monaci, and E. Pietrobuoni, “Partial enumeration
algorithms for two-dimensional bin packing problem with
guillotine constraints,” Discrete Applied Mathematics,
vol. 217, pp. 40–47, 2017.

[22] N. Christofides and E. Hadjiconstantinou, “An exact algo-
rithm for orthogonal 2-D cutting problems using guillotine
cuts,” European Journal of Operational Research, vol. 83, no. 1,
pp. 21–38, 1995.

[23] J. E. Beasley, “Algorithms for unconstrained two-dimensional
guillotine cutting,” Journal of the Operational Research So-
ciety, vol. 36, no. 4, pp. 297–306, 1985.

[24] F. G. Cintra, F. K. Miyazawa, Y. Wakabayashi, and
E. C. Xavier, “Algorithms for two-dimensional cutting stock
and strip packing problems using dynamic programming and
column generation,” European Journal of Operational Re-
search, vol. 191, no. 1, pp. 61–85, 2008.

[25] Y. Chen, “A recursive algorithm for constrained two-
dimensional cutting problems,” Computational Optimiza-
tion and Applications, vol. 41, no. 3, pp. 337–348, 2007.

[26] E. Talbi, Metaheuristics: from Design to Implementation, John
Wiley and Sons, Hoboken, NJ, USA, 2009.

[27] R. N. Morabito, M. N. Arenales, and V. F. Arcaro, “An and-
or-graph approach for two-dimensional cutting problems,”
European Journal of Operational Research, vol. 58, no. 2,
pp. 263–271, 1992.

[28] M. Hifi, “(e DH/KD algorithm: a hybrid approach for
unconstrained two-dimensional cutting problems,” European
Journal of Operational Research, vol. 97, no. 1, pp. 41–52, 1997.

[29] V. Parada, R. Palma, D. Sales, and A. Gomes, “A comparative
numerical analysis for the guillotine two-dimensional cutting
problem,” Annals of Operations Research, vol. 96, no. 1–4,
pp. 245–254, 2000.

[30] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu,
and G. Lanza, Genetic Programming IV: Routine Human-
Competitive Machine Intelligence, Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2005.

[31] J. R. Koza, “Human-competitive results produced by genetic
programming,” Genetic Programming and Evolvable Ma-
chines, vol. 11, no. 3-4, pp. 251–284, 2010.

[32] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to
Genetic Programming, Lulu Enterprises UK Ltd., London, UK,
2008.

[33] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations, John Wiley & Sons, Bologna,
Italy, 1990.

[34] E. G. Coffman Jr., M. R. Garey, and D. S. Johnson, “Approxi-
mation algorithms for bin packing: a survey,” in Approximation
Algorithms for NP-Hard Problems, D. S. Hochbaum, Ed.,
pp. 46–93, PWS Publishing Co., Boston, MA, USA, 1997.

[35] V. Cung, M. Hifi, and B. Le Cun, “Constrained two-
dimensional cutting stock problems a best-first branch-
and-bound algorithm,” International Transactions in Opera-
tional Research, vol. 7, no. 3, pp. 185–210, 2000.

[36] A. Fraser and T. Weinbrenner, “Genetic programming C++
class library,” 1997, http://www0.cs.ucl.ac.uk/staff/ucacbbl/
ftp/weinbenner/gp.html.

Scientific Programming 13

http://www0.cs.ucl.ac.uk/staff/ucacbbl/ftp/weinbenner/gp.html
http://www0.cs.ucl.ac.uk/staff/ucacbbl/ftp/weinbenner/gp.html

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

