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The present paper introduces and reviews existing technology and research works in the field of scientific programming methods
and techniques in data-intensive engineering environments. More specifically, this survey aims to collect those relevant ap-
proaches that have faced the challenge of delivering more advanced and intelligent methods taking advantage of the existing large
datasets. Although existing tools and techniques have demonstrated their ability to manage complex engineering processes for the
development and operation of safety-critical systems, there is an emerging need to know how existing computational science
methods will behave to manage large amounts of data. That is why, authors review both existing open issues in the context of
engineering with special focus on scientific programming techniques and hybrid approaches. 1193 journal papers have been found
as the representative in these areas screening 935 to finally make a full review of 122. Afterwards, a comprehensive mapping
between techniques and engineering and nonengineering domains has been conducted to classify and perform a meta-analysis of
the current state of the art. As the main result of this work, a set of 10 challenges for future data-intensive engineering en-

vironments have been outlined.

1. Introduction

Digital technology fueled by software is currently embedded
in any task, activity, and process that are done in any or-
ganization or even in our daily life activities. The Digital Age
has come to stay meaning that any industry or business need
to reshape strategies (operational, social, and economic) to
become part of what is known as “the 4th Industrial Rev-
olution” or “Industry 4.0” [1]. The first step towards the
smart automation and data exchange in industrial envi-
ronments relies on the application of new techniques to
create new technology-driven business opportunities.
However, technology is not completely the focus but people:
consumers, workers, and partners. The change in the cor-
porate culture through technology is considered a corner-
stone to empower people and to drive the change and
disruption in a domain turning a traditional organization
into a leading digital entity. In this context, it is possible to

find several consultancy reports, such as the “2016 Accenture
Technology vision report” that outlines five trends to shape
this new environment. Organizations shall focus on the
creation of data-driven solutions powered by artificial in-
telligence (“Intelligent Automation”) equipping people
(“Liquid Workforce”) with the required skills to build new
execution platforms (“Platform Economy”), boosting dis-
ruption (“Predictable Disruption”), and trustworthy digital
ecosystems (“Digital Trust”).

In the frame of engineering processes and methods, the
initiatives of “Industrial Internet” or “Industrial Data
Spaces” among others are trying to define the new meth-
odologies and good practices to bring the digital age to the
industry and engineering. In this light, a set of technologies
such as Security, Big Data, Mobility, Natural Language
Processing, Deep Learning, Internet of X (things, people,
tools, everything, etc.), User Interfaces, 3D Printing, Virtual
Reality, or Cloud Computing are aimed at changing both the
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development and production environments of complex
products and services. The notion of the cyberphysical
system [2] (CPS) is currently gaining momentum to name
those engineering systems-combining technologies coming
from different disciplines such as mechanical, electrical, and
software engineering. CPSs represent the next generation of
interconnected complex critical systems in sectors such as
automotive, aerospace, railway, or medical devices in which
the combination of different engineering areas are governed
by software. The increasing complexity in the development
of such systems also implies unprecedented levels of in-
teraction between models and formalisms from the in-
ception of the system to the production, distribution,
support, and decommissioning stages.

In order to tackle the needs of new engineering envi-
ronments, collaborative engineering [3], “concept of opti-
mizing engineering processes with objectives for better product
quality, shorter lead time, more competitive cost, and higher
customer satisfaction” [4], represents a shifting paradigm
from islands of domain knowledge to an interconnected
knowledge graph of services [5], engineering processes, and
people. Methods such as requirements engineering, mod-
elling, and simulation or cosimulation to support processes
such as analysis, design, traceability, verification, validation,
or certification demand now integration and interoperability
in the development toolchain to automatically exchange
data, information, and knowledge. That is why, last times
have seen the emergence of model-based systems engi-
neering (MBSE) [6] as a complete methodology to address
the challenge of unifying the techniques, methods, and
tools to support the whole specification process of a system.
In the context of the well-known Vee life cycle model, it
means that there is “formalized application of modelling”
(http://www.incose.org/docs/default-source/delaware-valley/
mbse-overview-incose-30-july-2015.pdf?sfvrsn=0) to support
the left-hand side of this system life cycle implying that any
process, task, or activity will generate different system ar-
tifacts but all of them represented as a model. In this manner,
the current practice in the Systems Engineering discipline is
improved through the creation of a continuous and col-
laborative engineering environment easing the interaction
and communication between both tools and people.

However, there is much more at stake than the connection
of tools and people, the increasing complexity of products and
services also requires the improvement and extension of
existing techniques. In this context, scientific programming
techniques such as computational modelling and simulation,
numerical and nonnumerical algorithms, or linear pro-
gramming to name a few have been largely used and studied
[7, 8] and applied to solve complex problems in disciplines
such as natural sciences, engineering, or social sciences.
Furthermore, the exponential increase of data has created
a new complete environment in which computational sci-
entists and practitioners must concentrate [8] not only in the
formulation of hypotheses, creation of models, and execution
of experiments but also in the complexity of techniques and
combination of tools [9] to deal with large amounts of data.

Considering the current digital transformation in the
industry, the need of producing complex CPS through the
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collaboration between different engineering domains and
the increasing amounts of data, this survey looks for
summarizing the last existing studies applying scientific
programming techniques in the context of data-intensive
engineering environments.

2. Background

The development of a complex system such as CPS requires
the involvement of hundreds of engineers working with
different tools and generating thousands of system artifacts
such as requirements specifications, test cases, or models
(logical, physical, simulation, etc.). These large amounts of
data must then be integrated together to give support to
those engineering processes that require a holistic view of
a system such as traceability management or verification. In
this frame, data management techniques are becoming
a cornerstone to the proper exploitation of the underlying
data and for the successful development of the system.

Last years have also seen a large body of work in the field
of Big Data covering from the creation of tools and archi-
tectural frameworks to its application to different domains
[10-12] such as social network analysis [13], bioinformatics
[14], earth science [15], e-government [16], e-health [17, 18],
or e-tourism [19]. More specifically, in the context of en-
gineering and industry, some works have been reported [20]
by large companies such as Teradata in particular domains
such as maintenance of aircraft engines. All the work around
tries to provide a response for data-centric environments in
which it is necessary to deal with the well-known V’s of
a data ecosystem: variety, volume, velocity, and veracity. Big
Data technology has been successfully applied to deal with
the large amounts of data that are usually created during
simulation processes of complex critical systems such as
CPS. Moreover, last times have seen the emergence of a new
notion “digital twin.” A digital twin is defined as a “digital
replica of physical assets, processes and systems” that looks for
replying, in a digital environment, the same working con-
ditions than a physical environment. This approach is being
used to improve the verification and validation stages of CPS
such as smart cars. For instance, autonomous cars need to
pass certification processes in which manufacturers must
demonstrate the proper behavior of the car under certain
circumstances and consider the new artificial intelligence
capabilities. Since it is not completely possible to create
a complete digital environment for these large simulations,
there is currently a trend to design a kind of validation loop in
which real data are used to feed synthetic data. From a data
management perspective, this approach implies the need of
providing a data life cycle management process to represent,
store, access, and enrich data. After several simulations, data
gathered from car sensors under real conditions can be over
hundreds of petabytes. Similar approaches are used to validate
aircraft engines or wind turbines.

Thus, data storage systems and processing frameworks
have been developed [21] demonstrating the viability of
a technology that can now be considered mature. NoSQL
data storage systems [22] based on different representation
mechanisms such as key-value stores, documents, distributed
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files, wide column stores, graphs, object databases, and tuple
stores such as Apache Hive, MongoDB, ArangoDB, Apache
Cassandra, Neo4]J, Redis, Virtuoso, or CouchDB can be found
to handle large volumes of evolving data. In the case of
processing frameworks, technology offering capabilities to
process data under different models (stream, batch, or event)
such as the Apache projects: Hadoop (and its ecosystem of
technology), Storm, Samza, Spark, or Flink can also be found.
Furthermore, most of them usually offer us not just a dis-
tributed computational model to tackle the well-known CAP
theorem [23] but a set of libraries [24] for implementing
applications on top of existing machine learning techniques
[25] (e.g., Mlib in Spark or FlinkML in Flink) or large-scale
graph processing [26] (e.g., GraphX in Spark).

This plethora of tools and technology has also generated
the development of technology and tools for the manage-
ment of Big Data infrastructures and resources such as
Apache Messos or YARN and the emergence of companies
and commercial tools such as Cloudera, MapR, Teradata, or
HortonWorks (apart from the toolsets offered by the big
software players such as Amazon, Google, IBM, Oracle, or
SAP). Moreover, Big Data technology has found in the cloud
computing area a good travelling companion [27, 28] since
the cloud provides a powerful and massive scale technology
for complex computation decreasing the cost of hardware
and software maintenance. In this sense, the current chal-
lenges rely on the automatic deployment of Big Data in-
frastructures under different topologies and technologies
keeping nonfunctional aspects such as scalability, avail-
ability, security, regulatory and legal issues, or data quality as
main drivers for research and innovation.

Once Big Data and cloud computing technology have
been briefly summarized, it is important to highlight what is
being considered one of the next big things in this area: the
combination of high-performance computing (HPC) and
Big Data technology [29]. The growing interest in this area
[30] looks for joining the efforts to shift the paradigm of
large and complex computations to a kind of Big Data
analysis problem. In this way, new computational and
programming models taking advantage of new data storage
systems and extensions in programming languages such as
R, Fortran, or Python are becoming critical to address the
objective of performing time-consuming tasks (computa-
tional complexity) over large amounts of data.

That is why, the main aim of this review is to examine the
existing works in the field of Big Data and scientific pro-
gramming in the engineering discipline. A better un-
derstanding of this new environment may potentially allow
us to address existing challenges in the new computational
models to be designed.

3. Review Protocol

As it has been previously introduced, a good number of
systematic reviews can be found in the field of Big Data
[18, 27] and specific domains such as the health sector
[17, 18, 31] the same manner, scientific programming tech-
niques have been widely studied and reviewed [7, 8]. However,

the application of Big Data technology and scientific pro-
gramming techniques to the engineering domain has not been
tully reviewed, and it is not easy to draw a comprehensive
picture of the current state of the art apart from works in
specific domains such as climate [32] or astronomy [20]. That
is why, this work aims at providing an objective, contem-
porary, and high-quality review of the existing works fol-
lowing the formal procedures for conducting systematic
reviews [31, 33]. The first step relies then on the definition of
the systematic review protocol (SRL) as follows:

(1) Research Question. The main objective of this work is
to provide a response to the following research
question:

Which are the last techniques, methods, algorithms,
architectures, and infrastructures in  scientific
programming/computing for the management, ex-
ploitation, inference, and reasoning of data in engi-
neering environments?

To formulate a researchable and significant question,
the PICO model is used to specify the different el-
ements of the query to be formulated; see Table 1
outlining the description of each PICO element.

(2) Search String. According to the PICO model and the
application of natural language processing tech-
niques to add new terms to the query, the next search
string has been formulated; see Table 2.

(3) Bibliographic Database Selection. In this case, com-
mon and large bibliographic databases in the field of
computer science have been selected as in other
previous survey works [34]:

(a) ACM Digital Library (ACM): this library com-
prises the most comprehensive collection of full-
text articles in the fields of computing and in-
formation technology. The ACM Digital Library
consists of 54 journals, 8 niche technology
magazines, 37 special interest group newsletters,
+275 conference proceedings volumes (per year),
and over 2,237,215 records in the Guide to
Computing Literature Index.

(b) IEEE Xplore Digital (IEEE): the IEEE Xplore®
digital library provides “access to the cutting-edge
journals, conference proceedings, standards, and
online educational courses that define technology
today.” “The content in IEEE Xplore comprises 195
+ journals, 800+ conferences, 6,200+ technical
standards, approximately 2,400 books, and 425+
educational courses. Approximately 20,000 new
documents are added to IEEE Xplore each month.”

(c) ScienceDirect (Elsevier): ScienceDirect “is

a leading full-text scientific database offering

science, medical, and technical (STM) journal

articles and book chapters from more than 3,800

peer-reviewed journals and over 37,000 books.

There are currently more than 11 million

articles/chapters, a content base that is growing at

a rate of almost 0.5 million additions per year.”



TaBLe 1: The PICO model applied to formulate the research
question.

PICO Description

element P

Population Engineering environments and methods
Scientific programming/computing techniques,

I . algorithms, methods, architectures, and

ntervention

infrastructures to deal with data-intensive
engineering
Comparison Performance measures, benchmarks, and datasets
New and collaborative techniques, algorithms,
architectures, infrastructures, domains, and case
studies

Outcomes

TaBLE 2: Search string including operators.

(scientific AND (programming OR computing) AND

(model OR technique OR method OR algorithms OR architecture
OR infrastructure) AND

(data OR “big data”) AND engineering)

(d) SpringerLink  (Springer):  ScienceDirect is
a leading full-text scientific database offering
science, medical, and technical (STM) journal
articles and book chapters. It comprises
12,258,260 resources consisting of a 52% of ar-
ticles, 34% of chapters, 8% of conference papers,
and 4% reference work entries.

Moreover, some aggregation services such as Google
Scholar and DBLP have also been checked with the aim of
getting those results that can be found on other sources such
as webpages or nonscientific articles. However, these ag-
gregation services can also include works that have been
published under different formats such as technical reports,
conference, and journal papers, so it is important to carefully
select the complete and most up-to-date version of the works
to avoid duplicates. That is why, during the selection pro-
cedure, works were selected removing potential duplicates to
provide a whole and unique picture of the research
landscape.

(4) Inclusion Criteria. This review collects studies that
have been published in English as a journal paper.
English has been selected as the target language
since relevant journals in these topics mainly in-
clude works to get the attraction of researchers and
practitioners at a worldwide scale. Although many
conferences and workshops in the field of data
science and engineering have emerged during the
last times generating a quite good number of pa-
pers, this review looks for works with strong
foundations as those available as journal papers. In
the case of the timeframe, a range of 5years
(2012-2017) has been defined to include relevant
and up-to-date papers. Furthermore, a special at-
tention has been paid to remove duplicate studies or
extensions that can appear in several publications
keeping in that case the most complete and up-to-
date version of the work.
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In terms of the contents, studies to be included in the
review shall contain information about the scientific pro-
gramming methods, Big Data technologies, and datasets (if
any) that have been used. Since a huge amount of works
(thousands) can be found in the field of Big Data tech-
nologies, only those papers related to scientific pro-
gramming techniques shall be selected. However, in some
cases, such as the use of hybrid approaches between scientific
programming and artificial intelligence implies the need of
extending the scope to explore other possibilities that
may have impact in the current state of the art of scientific
programming for data-intensive engineering environments.

In the same manner, novel techniques applied to other
domains such as earth sciences, biology, meteorology,
or social sciences may be included to check whether
such works represent progress regarding the current
techniques.

As a result of the application of the inclusion criteria,
Figure 1 shows the number of papers published per year
and database (Figure 2). According to the trendline, there is
increasing interest in the creation of know-how around
these techniques, methods and technologies having in the
last 5years an increment of a 56% of the number of
published papers just in journals what indicates a rising
demand of new techniques to take advantage of all the
technology and approaches that are currently available. In
the case of the databases, Springer is becoming a key player
promoting the research and innovation in the data science
and engineering areas, Figures 3 and 4 also shows the
distribution of papers per year and database. However, the
type of search engine in each database may have impact in
the number of articles that are returned as the result
explaining the big difference between Springer and the rest
of publishers.

(5) Selection Procedure. Those papers fulfilling the in-
clusion criteria are summarized in a spreadsheet
including the main facts of each work. The proposed
approach seeks for ensuring that papers suitable for
review must first pass a quality check. More spe-
cifically, the identifier, title, abstract, keywords,
conclusions, methods, technology, measures, scope,
and domain are extracted to create a table of met-
ainformation that serve us to present the information
to two different experts to decide whether the work is
finally selected for review or not. To do so, a quan-
titative value is assigned to each entry being that: 1:
applicable; 0.5: unknown; 0: not applicable. This
approach allows us to accomplish with the two-fold
objective of having a qualitative and quantitative
selection procedure and follow the guidelines
established in the PRISMA model [35].

As aresult, Figure 5 depicts the number of works that
have been identified after searching in the database
(1193), the number of works that have been screened
successfully (935) and excluded (258), the number of
works selected for quality assessment (322) and, finally,
the number of works that have been included in the
review (114).
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FiGure 4: Distribution of the number of selected papers per
database.

(6) Evaluation Procedure and Data Extraction Strategy.
In this step, the selected papers are evaluated
according to a Likert-scale 1-6 being 1 applicable but
not fully representative for the scientific pro-
gramming community and 6 applicable and fully
representative. In this way, it is possible to create
a sort of the selected papers to finally select those
which are beyond a value of 4. In this manner, only
papers beyond the average are then evaluated. To
provide a proper classification and mapping of the
works, the topics covered by the works are organized
in broader themes. This classification looks for or-
ganizing the works providing a comprehensive view
of the existing state of the art. In case of a work that
can be applied to different domains, it is classified as
a general domain work.

(7) Synthesis of Data and Analysis of Results. The syn-
thesis of findings in different studies is hard to draw
since many factors can affect a data-intensive envi-
ronment. In this work, after passing the qualitative
and quantitative evaluation, we have realized that
the best approach is to group the different works
according to themes relevant to a specific field. In this
manner, we have selected, following a typical Big Data
architecture [36], the next dimensions: infrastructure,
software technique/method, and application domain.
All data generated during this review are publicly
available in the following repository: https://github.
com/catedra-rtve-uc3m/smart-public/tree/master/
papers/data-scientific-programming-review-2018.

4. Analysis of Results

In the field of data-intensive environments, it is necessary
to separate the different responsibilities and aspects of
both hardware and software components. To do so, as it
has been previously introduced, the NIST (National Insti-
tute of Standards and Technology) has published the “Big
Data Interoperability Framework [36]” allowing us to per-
fectly define and sort responsibilities and aspects of func-
tional blocks in a Big Data environment.

In this work, we take as a reference this architectural
framework simplifying and grouping works in three big
themes: hardware infrastructures, software components
being that techniques, methods, algorithms, and libraries
and applications.

In the first case, hardware resources are becoming
critical to offer high-performance computing (HPC) capa-
bilities to data-intensive environments [29]. Last times have
seen the growing interest to take advantage of new hardware
infrastructures and techniques to optimize the execution of
time-consuming applications. In this sense, the use of GPUs
(graphical processing units) is a cornerstone to accelerate
data-intensive applications being a critical component for
performing complex tasks keeping a balance between cost
and performance. More specifically, GPUs and CUDA (GPU
and a programming language) are being currently used to
train machine learning algorithms decreasing the training
time from weeks to days or even hours. The potential use of
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FiGUure 5: PRISMA flow diagram of the systematic review.

many processing cores enables algorithms to parallelize data
and processing in a real multithread environment taking
advantage of a high computing power, a large memory
bandwidth and, in general, a very low power consumption.
However, the main drawback of this type of architecture
relies on the difficulties to design and code algorithms due to
the expressivity of the language and the need of handling
interdependencies in a highly parallelized environment.

FPGAs (field-programmable gate arrays) are other type
of integrated circuit and programming language (hardware
description language, a kind of block-based language) to run
jobs repeatedly avoiding unnecessary processing cycles. It
perfectly fits to problems in which repetitive tasks must be
done several times such as pattern matching. However, the
on-the-fly configuration of a new algorithm is not flexible as
in GPUs or CPUs, and more advanced programmer toolkits
are still missing.

Multiprocessor architectures are hardware infrastructures
based on the use of several CPUs in the same computer
system (commonly a super computer). According to the well-
known Flyinn’s taxonomy, multiprocessors-based systems lay
on different configurations depending on how data are input
and processed. Shared memory and message passing are also
typical synchronization mechanisms of these computer sys-
tems that usually present symmetry in the type of CPUs and
a set of primitives to easily process data, e.g., vectors.

Finally, grid computing represents a set of geo-
graphically distributed computer resources that are
combined to reach a common goal. Several configurations
and processing schemes can be found in each node for
processing different jobs and workloads. To manage a grid
computing system, a general-purpose middleware is used
to synchronize both data sharing and job processing what

is considered critical in a data-intensive environment
where a data management strategy is required to organize,
store, and share data items across the grid computing
system.

As a final remark, parallelization and distribution are
again general approaches [12] for improving performance
while executing time-consuming tasks. This situation is
also applicable to data-intensive environments where the
combination of large amounts of data and complex cal-
culations require new strategies and configurations to avoid
the bottlenecks produced by the need of synchronizing
data.

Secondly, techniques, methods, and algorithms for sci-
entific computation are generally complex implying the need
of optimization techniques to avoid recomputation. When
large amounts of data meet this type of techniques, this
situation is becoming critical since complexity is increased
due to the processing of large inputs and intermediate results
(e.g., cosimulation in engineering). That is why, it is possible
to find combination of different techniques trying to tackle
the problem of implementing a technique while keeping
a reasonable balance between time and cost.

In this sense, after screening existing works, a plethora
of techniques and methods was found trying to provide
innovative ways of solving existing problems. With the aim
of grouping and sorting them adequately, a first classifi-
cation was made according to the 2012 ACM Computing
Classification System at different levels of granularity. To
do so, techniques and methods were grouped under general
themes trying to make a comprehensive and clear dis-
tinction between the type of problem and the technique
and/or method. In some cases, it was not completely
possible to make such clear distinction since the same
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biology. Any problem that can be modeled as
a network is a good candidate to apply graph theory
techniques understanding how the network is built

technique can be applied to solve a huge set of problems
(e.g., deep learning).

(i) Artificial intelligence (AI): nowadays, artificial

intelligence techniques are spread to solve a huge
variety of problems from space observation to
autonomous driving. Robotics, medicine, and
many other domains are being affected by Al in
which more computational power and a change of
the people mindset is still required. This category
technique tries to equip machines with intelligence
to be able to perceive its environment and take
actions reaching specific goals. Some techniques
such as deep learning, fuzzy logic, gene pro-
gramming, neural networks, or planning methods
fall in this category. Although AI techniques can
directly be applied to solve particular problems, in
the context of this review, they are usually com-
bined with other techniques to optimize the res-
olution of a more complex problem.

(ii) Computation architecture: as it has been pre-

viously introduced, a hardware setting may have
a critical impact in terms of time and costs. Instead
of lowering the configuration to a hardware level,
software-defined architectures and methods are
used to provide a virtual infrastructure that
practitioners can easily use and configure. In-
frastructure customization, scheduling techniques,
and high-level design of workflows can be found as
abstract methods to manage complex hardware
settings.

(iii) Computation model: a computational model can

be defined as the formal model that is applied to
solve a complex system. In this case, the compu-
tational models that have been selected refer to the
different strategies to manage, synchronize, and
process data and tasks. To do so, event calculus,
message passing interface (MPI), parallel pro-
gramming, query distribution, and stream pro-
cessing are the main models that have been found
in the review.

(iv) Computational science: complex problems may

require the collaboration of different disciplines to
provide innovative solutions. Computational sci-
ence, and more specifically its application to the
engineering domain, is the core of this review. The
use of models, simulations, and many other
techniques such as Euler models or statistical
methods are widely spread to understand and
model the behavior of complex systems such as
those that can be found in engineering. However, it
seems that the combination of these techniques
under different hardware settings and software
models is being a trend that must be systematically
observed and evaluated.

(v) Graph theory: last times have seen an increasing use

of graph theory to model problems in domains such
as social network analysis, telecommunications, or

and to infer new relationships through the ex-
ploitation of the underlying knowledge coded in the
different nodes, relationships, and layers. Multi-
layered and multimode networks are a common
logical representation for relational data that can be
used to perform tasks of structural analysis [37] or
relational learning [38]. It is also well known that
techniques and methods in this domain [39] are
usually complex and time-consuming. That is why,
new data-intensive environments may require
taking advantage of techniques such as complex
network analysis or automata, but they will also
require a good number of computational resources.

(vi) Engineering: building on the notions presented in

computational science, the different disciplines in
engineering make intensive use of formal models,
simulations, and numerical and nonnumerical
methods for building complex systems. In this
case, methods such as finite elements and simu-
lation have been identified as critical techniques
already available in the literature as candidates to
make use of data-intensive environments.

(vii) Machine learning: it is considered a brand of ar-

tificial intelligence and defined as a set of tech-
niques to equip machines with intelligence in
changing environments. Basically, a model is built
through a training method that it is then evaluated
in the testing phase. Large amounts of data directly
impact the performance of both phases, so it is
possible to find libraries that can work stand-alone
(e.g., Weka, Python, and Scikit) or in a distributed
environment (e.g., Spark Mlib). Machine learning
techniques based on unsupervised and supervised
learning methods are commonly applied to solve
multiple problems in classification, computer vi-
sion, data mining, natural language processing and
text mining, sentiment analysis, opinion mining,
speech systems, pattern recognition, or question
answering to name just a few. Once a model is
created using a concrete technique, it can easily be
used to perform predictive and prescriptive anal-
ysis processes. Potential applications of the tech-
niques falling in this category range from social
network, medicine, or biology to logistics or
manufacturing. In this review, Bayesian machine
learning, data mining, information fusion, pattern
recognition, predictive models, support vector
machines, and regression models have been found
as representatives and popular types of problems
and techniques in machine learning for engi-
neering in combination with other scientific pro-
gramming mechanisms.

(viii) Mathematics and applied mathematics: the use of

strong theoretical foundations is critical to build
complex systems such as those in engineering.



Mathematics (in this review, mainly Algebra) and,
more specifically, applied mathematics offer use of
a set of formal methods in science, engineering,
computer science, and industry to solve practical
problems. Gradient descent optimization, integer
linear programming, linear algebra/solvers, linear
and nonlinear programming, matrix calculation,
numerical methods, and symbolic execution rep-
resent a set of common types of problems and
techniques widely studied and applied to the sci-
entific programming area.

(ix) Programming techniques: programming as a prac-
tice represents the main driver of implementation of
a system after the analysis and design processes.
Different programming techniques can be found to
optimize the development of algorithms and take
advantage of the different programming language
primitives. In this sense, constraint programming,
cube computation, dynamic programming, domain
specific languages (DSL), and stochastic pro-
gramming have been found as representative pro-
gramming techniques in a scientific environment to
take the most data and perform tasks such as
analysis or data quality checking.

Once the hardware settings and the main methods,
techniques, and algorithms at a software level have been
presented, a set of tentative application domains can be
outlined. In this light, the review has found two main
directions: (1) engineering domains such as Aerospace,
Automotive, Civil engineering, Cyberphysical systems,
Feature engineering, Industrial applications, Iron mining,
Manufacturing or Nuclear domain, and (2) other domains
such as Earth science, Geometry, Image analysis, Internet
of things, Medicine, Scientific research, Social Sciences, or
Spatial modelling.

All these domains share some common characteristics
and needs strong mathematical foundations to govern the
different systems, processing of large amounts of data, ap-
plication of methods, techniques, and models such as
simulation and, in general, criticality (they are considered
safety-critical or life-critical systems; a failure can imply
death or serious injury to people and severe damage to
equipment or environment). That is why, the emerging use
of innovative hardware architectures and exploitation of
data must be controlled by strict requirements that make
scientific programming techniques even more important
than in any other application domain.

4.1. Hardware Infrastructure for Data-Intensive Engineering
Environments. The previous section has introduced the
main hardware settings for data-intensive environments. In
Table 3, a mapping between the hardware architectures and
the different software-based techniques is presented.

The use of GPUs (and CUDA) [41-50, 54-56, 58, 60] is
a widely accepted hardware setting for providing a hardware
infrastructure to process large amounts of data regardless of
the type of software technique. In this manner, the review
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has found 18 out of 24 (75%) works in this field. GPUs
clearly represent a major step to optimize the execution of
complex tasks iterating over data. Here, the possibility of
reducing the number of repetitions in terms of data pro-
cessing becomes relevant and can be critical for some time-
restricted domains in which it is necessary to make decisions
in near real-time. More specifically, GPUs are mainly used to
solve linear algebra problems [54-56] or to perform large-
scale matrix calculations [54-56, 58]. These are common
problems in the field of engineering.

Other alternatives for large-scale computational in-
frastructures seem to be the traditional environments for
parallel (FPGA and multiprocessor systems) and distributed
computing. In the first case, the works that the review has
found in the field of FPGAs [53] are not very representative
(just 1 out of 24) while multiprocessor architecture works
[40, 51, 57, 59] are still relevant (4 out of 24). Although
FPGAs represent a powerful alternative to GPUs, the lack of
(1) abstraction to code programs and (2) of a kind of hot-
deployment method makes this alternative not very at-
tractive for data science and engineering.

In the case of multiprocessor architectures, they repre-
sent the traditional powerful and expensive data processing
centers for high-performance computation that are available
in large research institutions. As it has been introduced in
the first section, the research efforts [29] to merge Big Data
and HPC are becoming popular to take advantage of existing
large-scale computational infrastructures. Moreover, mul-
tiprocessor architectures also provide high-level APIs (ap-
plication programming interfaces) that allow researchers
and practitioners to easily configure, deploy, and run
computing-intensive tasks. Finally, grid computing ap-
proaches [52] that have been widely spread for the de-
ployment of cost-effective Big Data frameworks are not yet
a popular option for scientific computation of large amounts
of data.

4.2. Software Methods and Techniques for Data-Intensive
Engineering Environments. To present the meta-analysis
of the works regarding the typology of techniques and
domains, Table 4 groups the different works making
a mapping between the type of technique and its application
domain. According to this table, AI techniques are the most
prominent methods, representing the 21.43% of the
reviewed works, to tackle problems in different sectors what
is completely aligned to new perspectives open by the In-
dustry 4.0 and digitalization processes.

Mathematics and applied mathematics methods still
represent a 16.07% of the existing works bringing formal
foundations for the computation of large amounts of data
applying techniques such as integer linear programming,
linear algebra, or symbolic execution. This situation makes
sense since engineering domains are based on modelling
physical systems using mathematics; so the existence and
generation of more data only reinforces the need of im-
proving the performance of existing methods to deal with
more and greater amounts of data. This situation also affects
computation architectures, trying to improve infrastructure



Scientific Programming

TaBLE 3: Mapping between methods/models/techniques and hardware domains.

GPU FPGA

Multiprocessor

Grid computing

Artificial intelligence

Deep learning
Fuzzy logic
Gene programming
General techniques
Neural networks
Planning

Computational architecture

Infrastructure
Scheduling techniques
Workflow

[40]

Computation model

Event calculus
MPI
Parallel programming
Query distribution
Stream processing

(41, 42]

[43]

Computational science

Euler models
Scientific computation
Statistical methods

([44], p. 2)

Graph theory

Automata
Complex network analysis

Engineering

Finite elements
Simulation

(45]
(46, 47]

Machine learning

Bayesian machine learning
Data mining
Information fusion
Pattern recognition
Predictive models
Support vector machines
Regression model

(48]

(49, 50]

(53]

(52]

Mathematics and applied mathematics

Gradient descent search
Integer linear programming
Linear algebra/solvers
Linear programming
Matrix calculation
Nonlinear programming
Numerical methods
Symbolic execution

[54-56]

(54-56, 58]

(571

(59]

Programming techniques

Constraint programming
Cube computation
Dynamic programming
DSL
Stochastic programming

[60]

TaBLE 4: Mapping between methods/models/techniques and domains including aggregated percentages.

General application to engineering

Engineering

Nonengineering Aggregated (%)

Artificial intelligence
Computational architecture
Computation model
Computational science
Graph theory

Engineering methods
Machine learning
Mathematics and applied mathematics
Programming techniques
General software application
Aggregated (%)

(62, 63] (1.79%)
(86-88] (2.68%)
[96-98] (3.57%)

[104] (0.89%)

[37, 108-117] (9.82%)
(96, 120-124] (5.36%)
(125, 126] (1.79%)
(62, 88, 131-136] (7.14%)
[74, 114, 122, 145-147] (5.36%)
(89, 115, 150-153] (5.36%)
43.75%

[64-73] (8.93%)

(89-95] (6.25%)

[99-101] (2.68%)
(85, 105, 106] (2.68%)

[127] (0.89%)
(70, 137-141] (5.36%)
(69, 148] (1.79%)

28.57%

[74-85] (10.71%)
[90-95] (5.36%)
[102, 103] (1.79%)
[107] (0.89%)
[118, 119] (1.79%)

[128-130] (2.68%)
[141-144] (3.57%)
[149] (0.89%)

27.68%

21.43%
14.29%
8.04%
4.46%
11.61%
5.36%
5.36%
16.07%
8.04%
5.36%
100/100%
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settings via software-defined systems. Works in this area
represent around 14.29% of the selected articles and, in
general, they look for easing the creation of large software-
defined infrastructures and APIs that can be used by the
previous areas of Al and Mathematics and Applied
Mathematics.

Graph techniques (11.61%), computational models
(8.04%), and programming techniques (8.04%) represent the
midclass methods in this classification. It is especially rel-
evant to highlight the number of works that have emerged in
the field of complex network analysis. Historically, large
graph processing was a very time- and resource-consuming
task that was preventing the broad use of these techniques.
Currently and since new hardware infrastructures and APIs
are available for scientific computation of large graphs, these
techniques have gained momentum and they are being
applied to different domains such as social network analysis,
telecommunications, or biology.

Finally, the last section of the classification includes very
specific works in the areas of Machine learning (5.36%),
Engineering methods (5.36%), and Computational science
(4.46%) that could be classified in other broader areas, but
they represent concrete and representative works for data-
intensive engineering environments.

On the other hand, selected works can be aligned to their
scope in the different domains. In this sense, it has been found
that techniques that can be applied to engineering (but not
directly designed for engineering) represent a 43.75% what
means that existing papers are reporting works to offer
general-purpose solutions instead of solving specific prob-
lems. This is also a trend in the digitalization [61] in which one
of the main cornerstones is the delivery of platforms
(“Platform Economy”) that can be extended and enable
people to build new things on top of a baseline technology. In
the case of Engineering, the selected works represent a 28.57%
focusing on specific engineering problems that are now facing
some new data landscape where existing techniques must be
reshaped to offer new possibilities and more integrated and
smart engineering methods. Finally, the review has also in-
cluded a 27.68% of works in other domains to demonstrate
that scientific computation and data are also an open issue in
the other science-oriented domains. The two major conclu-
sions of this meta-analysis are as follows:

(1) Engineering is not being indifferent to data-driven
innovations. Assuming that more data will imply
more knowledge, engineering methods are trying to
find new opportunities in a data world to become
more optimized and accurate.

(2) Hybrid approaches mixing existing techniques such
as computational science and mathematics (de-
terministic) and Al techniques (probabilistic) are an
emerging research area to optimize the use and
exploitation of data.

In both cases, hardware- and software-defined in-
frastructures will play a key role to provide a physical or
virtual environment to run complex tasks consuming and
generating large amounts of data (e.g., simulations).

Scientific Programming

Once a whole picture of the techniques and methods in
use for engineering has been depicted, it is necessary to
identify and align existing research to specific engineering
domains. To do so, Table 5 shows a mapping between the
different methods and techniques and its application to the
engineering domains.

Here, the development and operation of safety-critical
systems implies an implicit need of managing data, in-
formation and knowledge that is generated by the different
engineering teams. In this light, it is necessary to emphasize
the research advances in Aerospace [105, 137, 138, 150] and
Automotive [64, 65, 72, 89, 139] engineering. In both cases,
the “one-size fits all” is again not true. Although formal
methods are completely necessary to model this kind of
complex systems, it is also necessary to combine different
techniques that can shift the current practice in systems
engineering. Existing engineering processes such as re-
quirements engineering, modelling, simulation, co-
simulation, traceability, or verification and validation are
now completely impacted by an interconnected data-
driven environment in which interoperability, collabora-
tion, and continuous integration of system components are
completely necessary.

Civil engineering [66, 67, 151], Industrial applications
[148], Iron Mining [70], Manufacturing [73] Nuclear do-
main [143] works are also relevant in terms of using a huge
up-to-date variety of techniques to exploit data that are
continuously being generated by tools, applications, sensors,
and people.

Finally, other rising sectors completely fueled by data
such as CPS [71] or Feature Engineering [127] represent the
update of classical engineering disciplines in aerospace,
automotive, or robotics. As a final remark, general purpose
engineering techniques have been also reported
[68, 69, 99-101, 106, 140, 152, 154], making use of data,
scientific programming techniques, and hybrid approaches.

On the other hand, as it has been previously introduced,
the present work also looks for reviewing the impact of new
techniques and methods in other nonengineering domains
(Table 6). Earth science [78, 79, 84, 102, 149] is a common
domain in which large amounts of data are generated by
satellites and other data sources that must be processed to
provide services such as environmental management and
control, urban planning, and so on.

Scientific programming techniques are becoming even
more relevant to Geometry [77, 80, 118, 130] paving the way
to solve complex problems in areas such as civil engineering,
physics, or architecture. In the case of image analysis
[75,76, 81, 144], it is possible to find techniques that are now
gaining popularity for equipping smart cars with autono-
mous driving capabilities, identifying people, assisting
physicians in medical diagnosis and surgery, or drone field
monitoring with object recognition capabilities. More spe-
cifically, Medicine [74, 115, 128, 129] is taking advantage of
scientific programming techniques and data for improving
its processes of health monitoring and prevention. Social
sciences [83] or Spatial modelling [94, 103] are also offering
new capabilities such as social network analysis or simu-
lation through the application of existing scientific
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programming techniques over large datasets. Finally, this
review has also found a good number of works in the field of
scientific research [82, 90-93, 95, 107, 141] providing
foundations for analysis and exploitation of data for other
domains.

4.3. Additional Remarks about Benchmarking and Datasets.
As it has been reviewed in the previous sections, a good
number of hardware configurations and software frameworks
to deal with large amounts of data in different domains can be
found. However, it is also relevant to briefly introduce the
notion of benchmarking for large-scale data systems as
a method to evaluate this huge variety of tools and methods.
In general, benchmarking comprises three main stages [156]:
workload generation, input data or ingestion, and calculation
of performance metrics. Benchmarking has been also widely
studied [156, 157] in the field of Big Data systems and the
main players in the industry [158] such as TPC (“Transaction
Processing Performance Council”), SPEC (“the Standard
Performance Evaluation Corporation”) or CLDS (“Center
for Large-scale Data System Research”) have published
different types of benchmarks that usually fall into three
categories: microbenchmarks, functional benchmarks, or
genre-specific benchmarks. The Yahoo! Cloud Serving
Benchmark (YCSB) Framework, the AMP Lab Big Data
Benchmark, BigBench [158], BigDataBench [159], Big-
Frame [160], CloudRank-D [161], or GridMix are some of
the benchmarks that have been evaluated in [157] apart
from others [157, 162] directly designed for Hadoop-based
infrastructures such as HiBench, MRBench, MapReduce-
BenchmarkSuite (MRBS), Pavlo’s Benchmark, or PigMix.
Benchmarking is therefore a key process to ensure the
capabilities of the different hardware settings and software
frameworks in comparison with others.

Finally, it is also convenient to point out the possibility of
accessing large datasets (open, free, and commercial) for
computational and research purposes. These large datasets are
usually managed by public institutions such as the European
Data Portal (https://www.europeandataportal.eu/) (European
Union), the Data.gov initiative (https://catalog.data.gov/
dataset) (U.S. General Services Administration), research
centers such as “Institute for Data Intensive Engineering and
Science” (http://idies.jhu.edu/research/) (John Hopkins Uni-
versity), or large research projects such as Big Data Europe
(https://www.big-data-europe.cu/). However, one of the best
options to search and find high-quality datasets (license,
provider, size, domain, etc.) is the use of some aggregating
service such as the Amazon AWS Public Dataset Program,
Google Public Data Explorer, or the most recent Google
Dataset Search (https://toolbox.google.com/datasetsearch)
(September 2018) that indexes any dataset published under
a schema.org description. Kaggle (https://www.kaggle.com/
datasets) and services organizing data-based competi-
tions are also a good alternative to find complete and high-
quality datasets. As a final type of data source, public APIs
such as those from large social networks (e.g., Twitter,
Linkedin, or Facebook) or specific sites such as GeoNames
can also be used to access a good amount of data
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under some restrictions (depending on the API terms of
service).

5. Answer to the Research Question and
Future Challenges

The main objective of this systematic review was to provide
a comprehensive and clear answer to the following question:

Which are the last techniques, methods, algorithms, ar-
chitectures, infrastructures in scientific programming/
computing for the management, exploitation, inference,
and reasoning of data in engineering environments?

According to the results provided in the previous section
and the meta-analysis, it is possible to define the different
techniques, methods, algorithms, architectures, and infra-
structures that are currently in use for scientific pro-
gramming in data-intensive engineering environments.
More specifically, in terms of hardware infrastructures,
systems based on GPUs are now the main type of hardware
setting to run complex and time-consuming tasks. Other
alternatives such as FPGAs, multiprocessor architectures, or
grid computing are being used for solving specific problems.
However, the main drawback of FPGAs lies on the need of
higher levels of abstraction to ease the development and
deployment of complex problems. In the case of multi-
processor architectures, they are becoming popular since
there is an effort to merge Big Data and HPC, but there is not
yet so much works reporting relevant works in this area.
Finally, grid computing represents a good option for Big
Data problems where distribution is a key factor. However,
when complex computational tasks must be executed, it does
not seem to be a good option due to the need of syn-
chronizing processes and data. In terms of architectures,
there are also a good number of works looking for creating
software-defined infrastructures easing the configuration
and management of computational resources. In this sense,
research works in the field of workflow management rep-
resent a trend to manage both the data life cycle and the
execution of complex tasks.

On the other hand, scientific programming techniques
and computational science methods such as integer linear
programming, linear algebra/solvers, linear programming,
matrix calculation, nonlinear programming, numerical
methods or symbolic execution are being challenged by
a complete new data environment in which large datasets of
information are available. However, all these techniques
have strong theoretical foundations that will be necessary to
tackle problems in engineering. Moreover, programming
techniques such as constraint and stochastic programming
seem to be a good option to implement existing formal
models in engineering.

This review has also identified that graph-based tech-
niques, mainly complex network analysis, are becoming
popular since a good number of problems can be repre-
sented as a set of nodes and relationships that can then be
analyzed using graph theory. Considering that graph
analysis techniques are based on matrix calculations, the
possibility of having high-performance scientific methods
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and infrastructures to execute such operations is being a key
enabler for this type of analysis.

A relevant outcome of this review comes with the
identification of AI and machine learning techniques as
a counterpart of traditional scientific programming tech-
niques. In the era of the 4th industrial revolution, the
possibility of equipping not just machines but existing
software techniques with intelligence is becoming a reality.
These techniques are used to prepare the input of existing
methods, to optimize the creation of computational models,
and to learn and provide feedback on existing scientific
programming techniques depending on the output. Al-
though not every process, task, or engineering method is
expected to include Al techniques, the review outlines the
current trend of merging deterministic and probabilistic
approaches. However, the use of Al is still under discussion
since the impact of Al in engineering processes such as
certification or assurance of safety-critical systems is com-
pletely open, e.g., autonomous driving.

Finally, the main engineering domains affected by huge
amounts of data are Aerospace and Automotive. In these
safety-critical sectors, engineering claims for innovative
methods to enable collaboration between processes, people,
and tools. The development and operation of a complex
system cannot be anymore a set of orchestrated tasks via
documents but a data-driven choreography in which each
party can easily exchange, understand, and exploit data and
information generated by others.

5.1. Future Challenges. Data-driven systems are already
a reality ready to use. Big Data technologies and tools are
enough mature and continuously improved and extended to
cover all the stages of the data life cycle management. Ca-
pabilities for data ingestion, cleaning, representation, stor-
age, processing models, and visualization are also available
as stand-alone applications or as a part of a Big Data suite.
Many use cases have successfully applied Big Data tech-
nology to solve problems in different sectors such as mar-
keting, social network analysis, medicine, finances, and so
on. However, a paradigm shift requires some efforts
[163, 164] in the following topics:

(1) A reference and standardized architecture is nec-
essary to have a separation of concerns between the
different functional blocks. The standardization
work in [36] represents a first step towards the
harmonization of Big Data platforms.

(2) A clear definition of interfaces to exchange data
between data acquisition processes, data storage
techniques, data analysis methods, and data visu-
alization models is completely necessary.

(3) A set of storage technologies to represent informa-
tion depending on its nature. A data platform must
support different types of logical representations
such as documents, key/values, graphs, or tables.

(4) A set of mechanisms to transport (and transform)
data between different functional blocks, for in-
stance, between the data storage and analysis layers.
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(5) An interface to provide data analysis as a service.
Since problems to be solved and data may have
different nature and objectives, it is necessary to
avoid a kind of vendor lock-in problem and support
a huge variety of technologies to be able to run
diverse data analysis processes. Thus, it is possible to
take the most of the existing libraries and tech-
nologies, e.g., libraries in R, Python, or Matlab.
Here, it is also important to remark again that “no
one size fits all” and hybrid approaches for ana-
Iytical processes may be considered for the next
generation of Big Data platforms.

(6) A set of processing mechanisms that can minimize
the consumption of resources (in-memory, parallel,
and distributed) maximizing the possibilities of
processing data under different paradigms (event,
stream, and batch) and analyzing data with different
methods and techniques (AI, machine learning,
scientific programming techniques, or complex
network analysis) are also required.

(7) A management console to monitor the status of the
platform and the possibility of creating data-
oriented workflows (like the traditional method-
ologies in business process management but fo-
cusing on data). Data-intensive environments must
take advantage of last technologies in cloud com-
puting and enable users and practitioners to easily
develop and deploy more complex techniques for
the different phases and activities of the data life
cycle.

(8) A catalogue of available hardware and software
resources. A Big Data platform must offer capa-
bilities to manage computational resources, tools,
techniques, methods, or services. Thus, the operator
can configure and build their own data-driven
system combining existing resources.

(9) A setof nonfunctional requirements. Assuming that
scalability can be easily reached through the use of
cloud computation environments, interoperability,
flexibility, and extensibility represents major non-
functional characteristics that future platforms
must include.

(10) A visualization layer or, at least, a method to ingest
data in existing visualization platforms must be
provided to easily summarize and extract meaning
of huge amounts of data.

Apart from these general-purpose directions for the
future of data-intensive environments, the engineering
domain must also reshape the current methods to develop
complex systems. Engineering is not anymore an isolated
activity of experts in some discipline (software, mechanics,
electronics, telecommunications, etc.) that produces a set of
work products that serve us to specify and build a system.

Products and services are becoming complex and that
complexity also implies the need of designing new ways
of doing engineering. Tools, applications, and people
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(engineers in this case) must collaborate and improve the
current practice in systems engineering processes through
the reuse of existing data, information, and knowledge. To
do so, data-intensive engineering environments must be
equipped with the proper tools and methods to ease pro-
cesses such as analysis, design, verification and validation,
certification, or assurance. In this light, scientific pro-
gramming techniques must also be enriched with new and
existing algorithms coming from the AI area. Hybrid ap-
proaches of techniques to solve complex problems represent
the natural evolution of scientific programming techniques
to take advantage of AI models and existing infrastructure.

5.2. Data-Intensive Engineering Environments and Scientific
Programming. The development of complex engineering
systems is challenging the current engineering discipline.
From the development life cycle to the operation and re-
tirement of an engineering product, an engineering product
is now a combination of hardware and software that must be
designed considering different engineering disciplines such
as software engineering, mechanics, telecommunications,
electronics, and so on. Furthermore, all technical processes,
perfectly describe in standards such as the ISO/IEC/IEEE
15288:2015 “Systems and software engineering—System life
cycle processes,” are now more interrelated than never. A
technical process implemented through an engineering
method requires data and information that has been gen-
erated in previous development stages enriching the current
engineering practice.

From a technical perspective, interoperability is be-
coming a cornerstone to enable collaborative engineering
environments and to provide a holistic view of the system
under development. Once data and information can be
integrated together, new analytical services can be imple-
mented to check the impact of a change, to discover traces,
or to ensure the consistency of the system. However, it is
necessary to provide common and standardized data models
and access protocols to ensure that it is possible to build an
integrated view of the system such as a repository. In this
sense, the Open Services for Lifecycle Collaboration (OSLC)
initiative applying the principles of Linked Data and REST
and the Model-Based Systems Engineering approach are two
of the main approaches to create a uniform engineering
environment relying on existing standards. Approaches such
as the OSLC Knowledge Management (KM) specification
and repository [165] or the SysML 2.0 standard are defined
under the assumption of providing standardized APIs
(application programming interfaces) to access any kind of
system artifact (in the case of OSLC KM) or model (in the
case of SysML 2.0) meaning that the exchange of system
artifacts is not anymore a single and isolated file but a kind of
service. In general, engineering environments are already
fueled by interconnected data shifting the paradigm of data
silos to a kind of industrial knowledge graph. The impact of
having an interconnected engineering environment relies on
the possibility of increasing the time to release an engi-
neering product or service meeting the evolving needs of
customers.
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In the operational environment, complex engineering
systems are an example of Internet of Things (IoT) products
in which thousands of sensors are continuously producing
data that must be processed with different goals: prediction
of failures, making decisions, etc. This environment repre-
sents a perfect match for designing and developing analytical
services. Examples of data challenges for specific disciplines
can be found in the railway sector [166], aerospace [167], or
civil engineering [168] where Big Data technologies are
mainly used to exploit data and information generated
during the operation of the system.

However, in both cases, it is possible to find some
common barriers to implement a data management strategy:
data privacy, security, and ownership. For instance, in the
automotive industry, it would be nice that the data used to
validate the behavior of an autonomous car were shared
among car manufacturers to ensure that all cars accomplish
with a minimum level of compatibility and to ease the ac-
tivity of certification bodies. Nevertheless, it seems also clear
that this will not happened since it can represent a com-
petitive advantage in a market-oriented economy. That is
why, it is completely necessary to design policies at a political
level that can ensure a proper development of new engi-
neering products and services where manufacturers must
focus on providing better user experiences under a common
baseline of data.

Finally, it is necessary to remark again that scientific
programming techniques have been widely used to solve
complex problems in different domains under several
hardware settings. The rising of Big Data technologies has
created a new data-intensive environment in which scientific
programming techniques are still relevant but facing a major
challenge: How to adapt existing techniques to deal with
large amounts of data?

In this context, scientific programming techniques can be
adapted at hardware or software (platform, technique, or
application) levels. For instance, it is possible to find again
examples of GPUs architectures [169] to improve the practice
in parallel programming for scientific programming. Cloud-
based infrastructures [170, 171] and platforms for analytics
[172] are another field of study. In the case of foundations of
scientific programming, the work in [173] reviewing the main
foundations of scientific programming techniques and the use
of pattern matching techniques in large graphs [174] are
examples of improvements and works in the scope of software
techniques. Finally, applications in coal mining [175], rec-
ommendation engines for car sharing services [176], health
risk prediction [177], text classification [178], or information
security [179] are domains in which data are continuously
being generated representing good candidates to apply sci-
entific programming techniques.

6. Conclusions

Data are currently fueling any task, activity, or process in
most industries. A Big Data ecosystem of infrastructures,
technologies, and tools is already available and ready to
tackle complex problems. Scientific programming tech-
niques are being disrupted for this mare magnum of
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technology. Complexity is not just the main driver to
compute large and complex tasks. Large amounts of data are
now used as input of complex algorithms, techniques, and
methods to generate again huge amounts of more data items
(e.g., simulation processes). These data-intensive environ-
ments strongly affect the current engineering discipline and
methods that must be reshaped to take advantage of more
and smarter data and techniques to improve both the de-
velopment and operation of complex and safety-critical
systems. That is why, the provision of new engineering
methods through the exploitation of existing resources
(infrastructure) and combination of well-known techniques
will enable the industry to build complex systems faster and
safer. However, there is also an implicit need to properly
manage and harmonize all the aspects concerning a data-
driven engineering environment. New integration platforms
(and standardized architectural frameworks) must be
designed to cover all stages of the data life cycle encouraging
people to run large-scale experiments and improve the
current practice in systems engineering.
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