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There are many definitions of software Technical Debt (TD) that were proposed over time. While many techniques to measure TD
emerged in recent times, there is still not a clear understanding about how different techniques compare when applied to software
projects. The goal of this paper is to shed some light on this aspect, by comparing three techniques about TD identification that
were proposed over time: (i) the Maintainability Index (MI), (ii) SIG TD models, and (iii) SQALE analysis. Considering 20 open
source Python libraries, we compare the TD measurements time series in terms of trends and evolution according to different sets
of releases (major, minor, and micro), to see if the perception of practitioners about TD evolution could be impacted. While all
methods report generally growing trends of TD over time, there are different patterns. SQALE reports more periods of steady
states compared to MI and SIG TD. MI is the method that reports more repayments of TD compared to the other methods. SIG
TD and MI are the models that show more similarity in the way TD evolves, while SQALE and MI are less similar. The im-

plications are that each method gives slightly a different perception about TD evolution.

1. Introduction

Technical Debt (TD) is a metaphor introduced by Ward
Cunningham in 1993 [1]. Cunningham compared poor
decisions and shortcuts taken during software development
to economic debt. Even though these decisions can help in
the short term, such as speeding-up development or the
release process, there is an unavoidable cost that will have to
be paid on the long term in terms of redevelopment and
increased complexity for the implementation of new fea-
tures, not to mention possible defects and failures.

The fundamental of this metaphor, however, was shaped
in the 80s, when Lehman introduced the laws of software
evolution [2]. The second law states that “as a system evolves,
its complexity increases unless work is done to maintain or
reduce it.” Even though this metaphor was coined more than
two decades ago (and almost 40 years passed since the
definition of the software laws), the significance of this topic
in the academic sphere can be observed only in the last eight
years, when the number of studies has risen significantly [3].

To this day, however, there is still no clear definition of
what exactly can be considered as TD. A vast amount of
articles and studies were published with definitions of TD
that were shaped differently [4]. Originated from the in-
dustry, the TD phenomenon has become popular first
among the agile development community. Kruchten et al.
pointed out that while the TD metaphor was mostly unused
and not given much attention for many years, the increased
interest in TD has emerged in parallel with the arrival of agile
methods, increasing the interest in TD within the industry
[4].

In general, the impact of TD can be quite relevant for
industry and open source communities [5, 6]. Many studies
found out that TD has negative financial impacts on
companies [7-9]. Every hour of a developer time used on
fixing poor design or figuring out how badly documented
code works with other modules instead of developing new
features can be considered a waste of money from the
company point of view. [10]. Much like in economics, in-
terest is present in the TD sphere as well. Cunningham
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describes the interest as “every minute spent on not-quite-
right code” [1].

The goal of the paper is to compare three main tech-
niques about TD identification that were proposed over time
for source code TD identification: (i) the Maintainability
Index (MI) (1994) which was one of the first (criticized)
attempts to measure TD and is still in use, (ii) SIG TD
models (2011) which were defined in search of proper code
metrics for TD measurement, and (iii) SQALE (2011) is a
framework that attempts to put into more practical terms the
indication from the ISO/IEC 9126 software quality standard
(recently replaced that ISO/IEC 25010:2011).

We take more of an exploratory approach with respect to
previous studies comparing TD identification approaches
(e.g., [11]); we do not look at how measurements collected
from the approaches can be compared against common
software quality metrics (useful for more explanatory
studies), rather we compare the time series derived from
different methods, looking at the results in the terms of
trends and time series similarities to see how much one
method can be comparable to another one. This evaluation
can give us some insights about the perceptions about the
amount of TD in a project that practitioners can have when
applying one method over the other. For example, con-
stantly growing trends can lead to different actions than
more gradual (or even decreasing) TD evolution trends.

The paper is structured as follows. In Section 2, we
provide the background about TD: definitions over time,
methods used to compute TD, and related studies
attempting to compare TD methods. In Section 3, we present
the three methods that are compared in the paper: MI, SIG
TD, and SQALE. In Section 4, we describe the experimental
evaluation and the results: methods, projects used, differ-
ences emerging from the application of the three methods.
Section 6 concludes the paper.

2. Background

2.1. TD Definitions over Time. One of the widely spread
definitions of TD is from McConnell in 2008: “A design or
construction approach that’s expedient in the short term but
that creates a technical context in which the same work will
cost more to do later than it would cost to do now (including
increased cost over time)” [12]. However, even if his tax-
onomy of TD is often used in scientific papers or tech blogs,
there are still some points of conflicts within the community.
The most discussed point is unintentional debt described by
McConnell as “a design approach that just turns out to be
error-prone or a junior programmer just writes bad code.”
This was criticized among others by Martin [13] and backed
up by Norton [14].

Martin describes TD as short-term engineering trade-
offs or suboptimal designs which are appropriate in
schedule-driven projects, as long as the benefit of the in-
debtedness, for example, the early release, drives the business
to repay the debt in the future [13]. Even Cunningham later
noted that the original definition of TD was meant to contain
design decisions and not the quality of the code, noting that
“the ability to pay back debt [...] depends upon you writing
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code that is clean enough to be able to refactor as you come
to understand your problem” [15]. Contrary to Martin’s and
Norton’s beliefs, many members of the development com-
munity think that bad and legacy code and old technologies
are part of TD too. Fowler [16] and Atwood [17] both
mention the terms “quick, dirty, and messy” when referring
to TD definitions from Cunningham and Martin.

In the research context, there were many interpretations
of TD as well. Guo et al. presented TD as “incomplete,
immature, or inadequate artifact in the software development
lifecycle” [18]. Theodoropoulos proposed a new, broader
definition of TD: “technical debt is any gap within the
technology infrastructure or its implementation which has a
material impact on the required level of quality” [19]. Gat
proposed an even more extensive definition of TD: “quality
issues in the code other than function/feature completeness”
divided into intrinsic and extrinsic quality issues [20].
Sterling also agrees that functionality or feature complete-
ness has to be excluded from the TD definition because even
infested with TD, the application should meet a minimum
standard of satisfaction for its users [21].

Even though there are many different interpretations of
the TD metaphor in the academic publications, there seems
to be a consensus that even a bad code should be considered
as TD. Curtis implies that TD should be considered as
everything that is “must-fix” from the point of view of the
software company. The TD metaphor has its limits,
however. It was noted that, since it was coined more than
two decades ago, it is not sufficient enough when modern
development techniques, such as agile or extreme pro-
gramming (XP), are used [22]. In these techniques, the
product is purposely delivered unfinished, but the TD
incurred by this approach is controlled and often repaid in
the next iteration.

One of the most important shortcomings of TD defi-
nitions is the fact that there is yet to be a unified mea-
surement unit [23]. It is generally complex to quantify most
of the forms of TD. Due to complexity of the TD concept,
attempts to classify TD and the creation of holistic frame-
works emerged over time. Tom et al. [9] divide technical debt
into several categories: code debt, design and architectural
debt, environment debt (connected to the hardware software
ecosystem), knowledge distribution and documentation debt,
and testing debt. TD identification techniques proposed over
time generally look at either one of the aspect of combi-
nation of several aspects into one framework for mea-
surement. As evident from the categories, different metrics
need to be considered for each of the categories.

The most common way to quantify source code TD is to
track code TD, such as code smells [24] or similar con-
structions that do not follow conventions and best practices
of a given language. If we exclude code-level debt from TD,
the quantification of TD becomes much harder, for example,
at the architectural level [25].

2.2. Analogy between TD and Financial Debt. At the basis of
the software TD popularity, there is the analogy between TD
and financial debt [9].
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2.2.1. Monetary Cost. TD has generally a negative financial
impact on companies [7-9]. Costs of fixing poor design or
badly documented code can be considered a waste of money
from a company point of view. These costs can be also
indirect, such as the negative effect on the morale of the team
[10].

2.2.2. Interest and Principal. As in the financial context, the
concept of interest is also present within TD definition. In
the context of software development, Cunningham describes
the interest as “every minute spent on not-quite-right code”
[1]. Camden extends this definition by adding the needs of
repayments of the established debt (e.g., paying the prin-
cipal, that is, the amount borrowed) [26]. In the software
context, additional effort needs to be made to work around
the TD debt within a project. This extra effort is the interest
that has to be paid.

Edith Tom points out that one of the forms of the interest
costs is also a decrease in the developers’ productivity, and it
can lead to accumulation of more debt in the form of slower
development speed [9]. Some authors, such as Ries, report
that not all debts are equal. The interest rates are different
based on whether the code will be in use.

2.2.3. Repayment and Withdrawal. Repayment of TD can be
interpreted as refactoring the previous source code solu-
tions. Short-term debt can (and should) be repaid easily,
preferably in an early next release. However, it is much easier
to incur TD unintentionally rather than consciously and
“much harder to track and manage after it has been incurred”
[12]. Similar to the financial context, McConnell suggests a
theory of credit ratings, which can be associated with the
withdrawal of TD. He describes a team’s credit ranking as “a
team’s ability to pay off technical debt after it has been in-
curred” [12]. This ability might take into account various
factors, most notably if the development velocity started to
decrease as a consequence of the TD evolution. Based on the
variety of the repayments, different forms of TD can be
defined. One of the examples is about the visibility of TD
(e.g., because of the size of the debt compared to the whole
system sizing) and therefore it can require extra work to
recognize the needs of repayments [12].

2.2.4. Bankruptcy. Stockpiling of TD can eventually lead to
bankruptcy. Contrary to the financial bankruptcy, in soft-
ware development, bankruptcy means that any further de-
velopment is not possible anymore and a complete code
rewriting is necessary. The point when it is necessary to file
for bankruptcy can vary in different projects and by different
developers. As it is common in the TD phenomenon,
bankruptcy is defined differently among the experts. An
application can be considered bankrupted when “the cost of
improving the existing code in an application may indeed be
greater than the cost of rewriting it” [27]. On the contrary,
Hilton describes bankruptcy as the moment when “you will
either suspend all feature development to pay down all of
your debt at once, or you will have to rewrite the entire

application” [28]. Tom et al. describes the bankruptcy as the
point in SW development “when tactical, incremental, and
inadvertent forms of technical debt (which do not have a
view to the long term) are left unmanaged without any
controls in place” [9]. Even though the exact point of
bankruptcy is defined differently, all of these theories have
something in common. The worst consequence of the
bankruptcy is the necessity to rewrite whole software, which
essentially stops any further development and causes the loss
of even more time and money.

2.2.5. Leverage. Leverage is one of the reasons of deliberate
and conscious TD inclusion into the codebase. The time
saved on development can lead to earlier releases, which can
be crucial, for example, for start-ups. A certain amount of
TD does not have to be necessarily considered a bad thing
when managed well and constrained to specific limits.
McConnell notes that it is necessary to manage TD at a
reasonable level since it can slow down development velocity
in the future. Because of this reason, companies have to
invest time in managing and paying down TD rather than
accumulating TD [12]. A similar idea was mentioned by
Fowler: “you need to deliver before you reach the design
payoft line to give you any chance of making a gain on your
debt... even below the line, you have to trade-off the value
you get from early delivery against the interest payments and
principal pay-down that you'll incur” [16].

3. Three Metrics for Measuring TD

Many methods emerged for TD identification [29-33]. In
this paper, we focus on three alternative methods that were
used over time for TD identification: (i) the Maintainability
Index (MI), (i) SIG TD models, and (iii) SQALE analysis.
There are multiple reasons for the selection of these
methods. On one side, these are popular methods that were
proposed over time, but no comparison was performed yet.
On the other side, these methods (or adaptations) are all
metrics-based so they assume similar effort in the collection
of the necessary data. Furthermore, they are available in code
editors and can currently be used by practitioners, so a
comparison can be useful to understand the differences,
being the Maintainability Index one of the first models to be
proposed.

3.1. Maintainability Index (MI). At the International Con-
ference on Software maintenance, in 1992, Oman and
Hagemeister introduced an article, which collected 60
metrics for gauging software maintainability [34]. Several of
these metrics were hard to compute, mainly because most of
them required either historical or subjective data. Their goal
was to come up with the minimal set of easily computed
requirements, based on which it would be possible to predict
software maintainability. In the refined and published ar-
ticle, in 1994, they introduced the Maintainability Index
(MI) [35].

To find a simple, applicable model which is generic
enough for a wide range of software, a series of 50 statistical



regression tests were used. Out of 3 models which were
tested on additional test suite (along with another ques-
tionnaire), a four-metric polynomial based on Halstead
Volume, McCabe Cyclomatic complexity, Lines of Code,
and Lines of Comments was chosen as a Maintainability
Index. The original formula of MI was defined as follows:

MI =171 -5.2In(HV) - 0.23(CC) - 16.2In(LoC)

(1)
+0.99 (CMT),
where HV is an average Halstead Volume per module, CC is
an average Cyclomatic Complexity per module, LoC is
average lines of code per module, and CMT is average lines
of comments per module.

Despite the popularity of the Maintainability Index, it is
still viewed as a controversial metric. It is criticized for
various reasons, such as a not clear explanation of the
formula, the usage of averages per file, using the same
formula from 1994, and possibly some ambiguous con-
nection from the results to specific source code metrics [36].

However, a derivative formula of MI is still used in some
popular code editors (e.g., Microsoft Visual Studio), so it is
relatively easy to be adopted by practitioners to detect TD in
their projects. In our analysis, we use it as one of the baseline
metrics for the comparison, to see how such metric com-
pares with more recent metrics.

In the experimental evaluation, we used the derivative
formula adopted in Microsoft Visual Studio, which gives the
MI a range (0, 100), compared with the original 171 to an
unbounded negative number, of difficult interpretability:

MI = max| 0, 100

171
(2)

3.2. SIG TD Models. The Software Improvement Group
(SIG) defined, in 2011, a model which quantifies TD based
on an estimation of repair effort and estimation of mainte-
nance effort, which provides a clear picture about the cost of
repair, its benefits, and the expected payback period [33].
The model is based on the SIG maintainability model and
computes the technical debt and interest based on the
empirically defined values and metrics.

The SIG maintainability model was created based on a
set of minimal requirements based on the limitations of
other metrics such as the Maintainability Index [37]. The
model maps system characteristics (taken from ISO 9126)
onto source code properties. Each source code property can
be evaluated by easily obtainable, language-independent
metrics:

Volume: lines of code or man years via function points.

Complexity: McCabe’s cyclomatic complexity per unit.
A unit is the smallest independently executable and
testable subset of code for a given language.

Duplication: percentage of repeated blocks of code
(over six lines long).

Unit size: lines of code per unit.

171 - 5.2In (HV) - 0.23 (CC) - 16.21n (LoC)
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Unit testing: unit test coverage or number of assert
statements.

Each of these metrics is graded on a 5 point scale based
on their values [37]. To get the overall grade of system
characteristics, we have to compute the rounded average of
source code properties mapped to the particular system
characteristic. For example, to get the grade of analysability,
we need to get the average value out of volume, duplication,
unit size, and unit testing (see Table 1).

This model uses the grading scale of the SIG main-
tainability model. It proposes the overall grade of the project
as an average of the system characteristics. The unit of
maintainability is a “star,” so if the average value of system
characteristics is for example 5, they refer to it as a 5-star
project.

Quantifying TD of the project is performed in several
steps and requires a calculation of three different variables:
rebuild value (RV), rework fraction (RF), and repair effort
(RE).

Rebuild value is defined as an estimate of the effort (in
man-months) that needs to be spent to rebuild a system
using particular technology. To calculate this value, the
following formula is used:

RV =SS x TF, (3)

where SS is System Size in Lines of Code and TF is a
Technology Factor, which is a constant that represents
language productivity factor [38, 39].

Rework Fraction is defined as an estimate of % of LoC to
be changed in order to improve the quality by one level. The
values of the RF in between two quality levels are empirically
defined [33].

Finally, the Repair Effort is calculated by the multipli-
cation of the Rework Fraction and Repair Effort. It is
possible to multiply it by Refactoring Adjustments (RA)
metric, which shows external, context-specific aspects of the
project, which represent a discount in the overall technical
debt of the project:

RE = RF x RV x RA. (4)

3.3. SQALE. Software QuALity Enhancement (SQALE)
focuses on the operationalization of the ISO 9126 Software
Quality standard, by several code metrics that are attached to
the taxonomy defined in ISO 9126 [31]. Mimicking the ISO
9126 standard, SQALE has a first level defining the char-
acteristics (e.g., testability), further subcharacteristics (e.g.,
unit testing testability), and further source code level re-
quirements. An example characteristic can be testability, that
is how much testable is the system, that can be divided into
integration testing testability and unit testing testability
subcharacteristic. Source code requirements could be, for
example, a coupling between objects (CBO) metric <7 and
the number of parameters in a module call (NOP) <6.
Figure 1 gives an example of the association between quality
characteristics and subcharacteristics and code metrics. At
the end, the source code requirements are then mapped to
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TaBLE 1: Mapping matrix of the SIG model, example of analysability (adapted from Heitlager et al. [37]).

Source code properties

Volume Complexity per unit Duplication Unit size Unit testing
Maintainability X b'e X
Analysability
Changeability X
Stability X
Testability X X X
Level 1 Level 2
~ G 2 . Source code
Characteristic Subcharacteristic .
requlrement
Reusability -
| Portability | B
| T Understandability ]
Readability ]
Securif e
| il | Fault tolerance |_\—| Switch statements have a “default” condition |
X Architecture-related reliability ]
| Efficiency | o
Resource-related reliability ]
| Changeabilit | . Synchroniation-related reliability | B INalassiipn men =iyt ol s fafement |
B i Statement-related reliability No assignment “=” within “while” statement
| Reliability Logic-related reliability H Invariant iteration index |
Data-related reliability
Uesitillisy Integration Testing Tesability |—/_| Compling bt el HCROL - |
Unit Testing Tesability |_/—| Number of parameters in a module call (NOP) < 6 |

FIGURE 1: SQALE. Example of metrics related to software quality characteristics.

remediation indexes that translate in the time/effort required
to fix the issues. The aggregation of all the characteristics
gives the overall TD.

For calculation of TD, SQALE can be used by computing
the so-called Remediation Cost (RC), which represents the
cost to fix the violations to the rules that have been defined
for each category [40]:

Y rueeffortToFix (violations . )

RC =
8 [hr/day]

(5)

For SQALE, we adopted the SonarQube implementa-
tion: a default set of rules was used, which is claimed to be the

best-practice, minimum set of rules to assess the technical
debt.

4. Experimental Evaluation

For the definition of the experimental evaluation, we defined
the following goal: to analyze technical debt evaluation
techniques (MI, SQALE, and SIG TD) for the purpose of
comparing their similarity with respect to the trends and

evolution of the measurements from the point of view of
practitioners aiming at measuring TD.
The goal was refined into three main research questions

(RQs):

RQI: are the trends of the measurements provided by
the three methods comparable? Metric: Pearson cor-
relation between trends in time series.

RQ2: how are trends of TD comparable across different
release types? Metric: comparison of trends by release
type.

RQ3: how much can one method be used to forecast
another one? Metric: Granger causality between time
series.

4.1. Datasets. The tested packages were randomly selected
from the list of 5000 most popular Python libraries (https://
hugovk.github.io/top-pypi-packages/, manuscript submit-
ted to ACM). However, we defined some criteria due to the
metrics that needed to be computed and the implementation
steps necessary for the analysis:


https://hugovk.github.io/top-pypi-packages/
https://hugovk.github.io/top-pypi-packages/

Repository on GitHub to be mined

At least 5 releases published in the repository in Python
3

Traditional major.minor.micro release notation
Packaged via setup tool library

Possibility to run unit tests via setup.py command

While almost all selected packages had their repos-
itory on GitHub, some, especially less popular packages
had too few release versions available. Furthermore, if
the selected library was written solely in Python 2.x
version, it was not considered, as the analysis was
implemented in Python 3.6 and the incompatibilities
could affect the results. Similarly, the vast majority of the
packages used standard Major.Minor.Micro release no-
tation. However, according to Python Enhancement
Proposal (PEP) 481, date-based release segments are also
permitted [41]. For simplicity and unified versioning,
such libraries were omitted from the list of possible
candidate projects. Overall, 20 projects were selected: P1.
Blinker, P2. Colorama, P3. CSVKit, P4. Dateparser, P5.
Decorator, P6. Deprecation, P7. Grip, P8. 1ISODate, P9.
JmesPath, P10. KeyRing, P11. McCabe, P12 Pyasn, P13.
PyFlakes, P14.PythonlSO3166, Pl15. TinyCSS2, PI6.
Yamllint, P17.Yapf, P18. Fakeredis, P19. influxdb-python,
and P20. pylint (the full list can also be found in Table 2,
and in [42]). These are all Python libraries that are used
to provide functionalities to other applications, such as
csvkit, useful to provide support for management of csv
formats.

4.2. Rationale and Methods. To compare the three methods,
we look at the time series of all the measures collected by all
the three methods. For each of the projects, we implemented
the method for analysis, we aggregated all measures by
release dates, and built time series of each metric that we
used as baseline for running the analyses. As each of the TD
identification methods has different scales that can be dif-
ficult to directly compare, we look at the trends and time
series behaviours resulting from the application of all the
methods.

We define a time series as T, consisting of data points of
TD at each release time R={r,,r,...,r,}, as
T ={t,,t,5-..>t,,}. An example of the time series for the
three methods considered can be seen in Figure 2, where we
plotted releases and TD measurements for the xmllint
project. As can be seen, the MI measure is an inverse of the
other measures, as is giving an indication of the main-
tainability of the project (the lower the worse), while the
other methods give indication of TD accumulating (the
higher the worse). For the other parts of the analysis, to
compare the time series, we reversed the MI index, to make it
comparable to the other approaches (e.g., for the correlation
of the trends). For RQI trends of measurements, we com-
pute TD’s A measurements between two releases for each of
the projects.

For release r;, ATD is defined as follows:
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ATD”' — (tr1,1 B trl) . (6)
(tpoy +t0)/2

We then compute the Pearson correlations between all
the points of each of the compared methods. Results of the
ATD,; for each of the time series are also shown in an
aggregated form in boxplots. Given all the changes in trends
of TD measurements, the comparison of boxplots can
showcase the differences in trends between the three TD
identification methods.

For RQ2, we delve into the trends for the different types
of project releases: major (e.g., 0.7.3, 1.0.0, 2.0.0), minor (e.g.,
0.7.3,0.8.0, 0.9.0), and micro (e.g., 0.9.0, 0.9.1, 0.9.2) releases,
looking at whether considering different type of releases can
have an impact on the results given by all the methods. To
answer this research questions, we look at TD’s AT as in-
creasing trends, A| as decreasing trends, and A0 in periods
between releases in which TD did not change, where ATD,,
is categorized in one of the categories:

ATDT, if ATD,;>0,
ATD ={ ATD|, if ATD,, <0, (7)
ATD—-, otherwise.

For RQ3, we look at how much one of the three methods
can be used to forecast the results from another method.

We take into account time series of the measurements
from the three methods (MI, SIG TD, and SQALE), and we
compute Granger causality between methods in pairs.

Granger causality test, first proposed in 1969 by Clive
Granger, is a statistical hypothesis test which is used to
determine whether a time series can be used to predict other
time series values [43]. More precisely, we can report that T'1
“Granger causes” T2, if the lags of T1 (ie,
T1,.,,T1,.,,T1,5,...) can provide predictive capability
over T2 beyond what allowed by considering the own lags of
T2.

The null hypothesis is that T2 does not Granger-cause
the time series of T1. We adopted the standard SSR-based F
test. If the probability value is less than 0.05, it can be
concluded that T2 Granger-causes T1.

4.3. Results

4.3.1. RQI: Are the Trends of the Measurements Provided by
the Three Methods Comparable? To compare TD over time
between different techniques, the Pearson correlation was
used. The bivariate Pearson correlation measures the
strength and direction (-1.0, +1.0) of linear relationships
between pairs of variables.

Figure 3 reports the boxplots of the correlation between
the trends for each release (ATD,;). Each datapoint in the
boxplot constitutes the correlation for one project. The three
boxplots propose the comparison SQALE-SIG (median:
0.74), SQALE-MI (median: 0.57), and SIG-MI (median:
0.67).

The figure shows that SQALE and MI are the least
comparable methods, having the highest number of negative
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TaBLE 2: Python software projects analyzed (LoCS = Line of Code Statements and TC = Test Coverage refer to the latest release).
Project URL LoCS TC (%) Releases
P1. blinker https://pypi.org/project/blinker 874 28 0.8-1.4
P2. colorama https://pypi.org/project/colorama 1471 59 0.3.3-0.4.1
P3. csvkit https://pypi.org/project/csvkit 2 906 87 0.8.0-1.0.4
P4. dateparser https://pypi.org/project/dateparser 3339 81 0.3.0-0.6.0
P5. decorator https://pypi.org/project/decorator 2758 88 4.2.0-4.3.2
P6. deprecation https://pypi.org/project/deprecation 1083 100 1.0.1-2.0.6
P7. grip https://pypi.org/project/grip 1763 30 3.0.0-4.5.2
P8. ISODate https://pypi.org/project/isodate 2 794 94 0.4.9-0.6.0
P9. jmespath https://pypi.org/project/jmespath 1714 72 0.0.1-0.9.4
P10. keyring https://pypi.org/project/keyring 2242 56 1.0-19.0.1
P11. McCabe https://pypi.org/project/mccabe 641 79 0.1-0.6.1
P12 pyasnl https://pypi.org/project/pyasnl 10 014 82 0.2.3-0.4.5
P13. pyflakes https://pypi.org/project/pyflakes 8732 93 0.7.3-2.1.1
P14. pythonISO3166 https://pypi.org/project/iso3166 380 56 0.1-1.0
P15. tinyCSS2 https://pypi.org/project/tinycss2 2 796 99 0.1-1.0.2
P16. yamllint https://pypi.org/project/yamllint 3541 98 0.6.0-1.15.0
P17. yapf https://pypi.org/project/yapf 5357 96 0.1.4-0.9.0
P18. fakeredis https://pypi.org/project/fakeredis 8 395 97 0.4.2-1.2.1
P19. influxdb-python https://pypi.org/project/influxdb 9217 85 0.1.13-5.2.3
P20. pylint https://pypi.org/project/pylint 28 669 90 1.7.0-2.4.4
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FiGure 2: Example of plotted TD time series (ML, SIG, and SQALE) for the yamllint python library. (a) ML, (b) SIG TD, and (c) SQALE.

correlation and much wider variability than the other
models compared. SQALE and SIG and SIG and MI showed
similar distributions of the correlations, slightly in favor of
SIG and MI, which have less negative correlations and also

lower variance. To look if such differences are statistically
significant, we run Wilcoxon Signed-Rank Tests and paired
difference tests to evaluate the mean rank differences for the
correlations. The difference is not statistically significant for
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SQALE-MI vs. SIG-MI (p value 0.2801, p=>0.05, and two-
tailed) and not significant for SQALE-SIG vs. SQALE-MI (p
value 0.496, p>0.05, and two-tailed).

When we look at the trends on comparisons between
every two following releases (Table 3), the trend is similar
for SIG and MI (as previous correlations discussed), with a
slight difference in the falling trend. This seems to indicate
that, according to MI, TD tends to be repaid more often
than on SIG. In SQALE, however, we can observe that TD
was more stable across different releases (see Table 3). We
can further see the variability of trends of TD identification
for all projects in Figure 4. For each project, we plot the
boxplots of trends of variations of TD between every two
consecutive releases. For example, we can see that PI
blinker has only growing trends of 0 to +35% (as an outlier),
while P2 colorama has not only positive trends up to +7.5%
but also periods of negative trends down to —12.5%, in
which TD decreases. Looking at PI blinker project, we can
see that SQALE has much more variation in trends
compared to the other two methods with MI having much
lower changes in trends. Looking at the comparison, we can
see that some projects have some decreasing trends, though
these changes are rather limited, confirming that TD is
generally reported as increasing by all methods. Each
project is also rather specific, such as isodate, that reports a
large variation in terms of MI trends, while generally MI
measurements are the trends with less variations in other
projects.

RQI1 findings: considering the correlation between
trends of TD changes between releases, SIG TD and MI are
the models which show more comparability in terms of
correlation of the trends of TD changes. SQALE and SIG TD
show less similarities. Generally, SQALE and MI are the
models that show lower correlation in trends in the 20
projects considered. SQALE is also the model that shows
more stable periods of debt compared to the other methods.

4.3.2. RQ2: How Are Trends of TD Comparable across Dif-
ferent Release Types? This RQ is similar to RQ1, but in RQ2,
we look at the comparison based on the release types, that is,
if major, minor, and microreleases matter for the differences
in TD identification among the three methods.

Scientific Programming

TaBLE 3: TD trends on all releases.

ATDT (%) ATD] (%) ATD- (%)
SQALE 34.52 6.07 59.41
SIG TD 74.68 11.72 13.6
MI 57.74 20.08 22.18

Comparisons solely between major releases have
brought interesting results (Table 4), similar to the results on
all releases. Throughout all comparisons, most of major
releases caused TD to rise for each analysis. SQALE had
again the highest number of still trends and the most TD
repayments (falling trend) were recorded with MI.

The rising of TD is stronger at minor release level for
both SIG TD and SQALE, as each of the methods en-
countered the rise of rising trend compared to major releases
(see Table 5). SQALE showed a decrease in growing trends.
As in the previous cases, SQALE recorded more periods of
steady TD, and MI the most repayments of TD (to a much
larger extent than SIG TD and SQALE).

The last comparison was carried out on microreleases.
The same trends were observed also at this level: vast ma-
jority of releases inducted more TD on SIG and MI, while
considering SQALE the majority of releases did not change
TD (see Table 6). Again, MI is the method that reports more
TD repayment (21.99%).

RQ2 findings: considering major, minor, and micro-
releases, MI and SIG TD show mostly the majority of
growing trends. SQALE shows the most of TD steady states,
while MI shows much larger TD repayment periods com-
pared to the other methods. These patterns seem to be
consistent across major, minor, and micro releases. They
show that the selection of a specific method can have an
impact on the perception of the presence of technical debt in
a project.

4.3.3. RQ3: How Much Can One Method Be Used to Forecast
Another One? A time series X can be said to Granger-cause
another time series Y if the probability of correctly fore-
casting Y,,,, with t = 1,..., T, increases by including infor-
mation about X, in addition to the information included in
Y alone. In the case of the three methods reviewed, this
means that the measurements from one method (e.g.,
SQALE) can be used together with the measurements of
another method (e.g., MI), to provide better prediction of
future values of the complemented method (e.g., MI). Ag-
gregated results for all projects about Granger causality tests
can give us the indication about how much a time series
results from a TD identification technique can help in
forecasting time series from the other method.

To note that Granger causality, differently from corre-
lation, is generally an asymmetric property, that is, the fact
that, in one, the projects’ time series SQALE Granger-causes
SIG TD model does not imply that SIG TD model Granger-
causes SQALE results. For this reason, we provide all the
combinations of results with counters for how many times
the results were positive according to the F-test taking into
account all the 20 projects analyzed (Table 7).
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FIGURE 4: Variability of trends for each of the methods (SQALE, SIG TD,

and MI): y-axis represents % of changes in the measurements

between different releases (note different scales). (a) (P1) blinker, (b) (P2) colorama, (c) (P3) csvkit, (d) (P4) dateparser, (e) (P5) decorator,
(f) (P6) deprecation, (g) (P7) grip, (h) (P8) isodate, (i) (P9) jmespath, (j) (P10) keyring, (k) (P11) mccabe, (1) (P12) pyasn, (m) (P13)
pyflakes, (n) (P14) pythoniso3166, (o) (P15) tinycss2, (p) (P16) yamllint, (q) (P17) yapf, (r) (P18) fakeredis, (s) (P19) influxdb, and (t)

(P20) pylint.

TaBLE 4: TD trends on major releases.

TaBLE 5: TD trends

on minor releases.

ATDT (%) ATD] (%) ATD- (%) ATDT (%) ATD] (%) ATD- (%)
SQALE 70.27 10.81 18.92 SQALE 46.03 8.47 455
SIG TD 75.68 24.32 0 SIG TD 87.83 6.35 5.82
MI 56.76 43.24 0 MI 67.72 20.11 12.17
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TaBLE 6: TD trends on microreleases.
ATDT (%) ATD| (%) ATD- (%)
SQALE 40.15 7.06 52.79
SIG TD 74.72 13.38 11.90
MI 55.02 19.70 25.28

TaBLE 7: Aggregated results of Granger causality tests (percentage
of F-test results).

True (%) False (%) None (%)
SQALE-MI 30 60 10
SQALE-SIG 25 65 10
SIG-SQALE 25 65 10
MI-SIG 15 85 —
MI-SQALE 10 80 10
SIG-MI 10 90 —

It is noteworthy to say that, in case of two tested libraries,
the linear trend of TD in SQALE caused the tests to end with
an error because Granger causality test does not capture
instantaneous and nonlinear causal relationships. In general,
SQALE-MI and SQALE-SIG TD had F-statistic significant in
around 1/3 of the projects (30%), while in the majority of the
other cases Granger causality was negative. These results
could indicate that, in some of the results, considering the
lagged values of SQALE time series results, we can get better
prediction of values in MI and SIG TD time series.

RQ3 findings: results from Granger causality show that
there is a limited relation between the different methods
compared, as indication that TD identification measure-
ments are rather independent. Only SQALE time series
Granger-causes both MI and SIG TD in 1/3 of the projects,
with SQALE-SIG, and SIG-SQALE also near in terms of
positive Granger causality. For other methods, there is
mostly no Granger causality.

4.3.4. Replicability. The analysis was implemented and run
using Python version 3.6.3. A derivative from Radon library
was used (https://radon.readthedocs.io/en/latest/index.
html). Radon is a Python package which computes vari-
ous source code metrics, such as McCabe’s Cyclomatic
complexity, Halstead metric, raw metrics (lines of code and
lines of comments), and MI. The sonar-python plugin
(https://docs.sonarqube.org/display/PLUG/SonarPython)
was used for the SQALE analysis. The stats model library was
used for computing the Granger causality tests. Scripts can
be run to run, aggregate, and plot all the results in a sem-
iautomated way.

A replication package contains all the metrics collected for
all the versions of the analyzed projects, together with the raw
analyses, diagrams, and source code used for the analysis [44].

4.4. Threats to Validity

4.4.1. External Validity. Threats to external validity are
related to the generalizability of our study [45]. The
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empirical evaluation was conducted on 20 Python projects
extracted from a large sample. The results on other set of
projects could be different, also peculiarities of Python
projects might play a role. The projects that were included
are all small Python libraries useful for functionalities in
other Python applications. Even though these are small li-
braries, we followed the evolution over time and all the
commits performed to reconstruct larger item set for data
analysis.

4.4.2. Internal Validity. Threats to internal validity are re-
lated to experimental errors and biases [45]. The data col-
lection process has been carried out to make it as much
replicable as possible: by running some scripts is possible to
start over the collection process, calculating the TD mea-
surement, and then aggregating the results in the visual and
textual form. One issue is that calculation of coverage of
projects (for coverage measures in the SIG TD model)
implies that projects have to be built and tested. This in-
troduces a phase that is semiautomated, as projects that
could not be built either need to be fixed or cannot be
included in the sample set of projects. Another internal
validity threat is about the implementation of the method.
For MI, we used the implementation from the Radon library,
and for SQALE, we reutilized SonarQube implementation
through the sonar-python plug-in. The SIG TD models were
reimplemented based on the information available in the
papers published about the models (e.g., [33]). Either in our
or the adopted implementation, there might be some in-
consistencies or issues in the calculations of the metrics,
being difficult to have some tests for TD ground truth [46].

4.4.3. Construct Validity. Threats to construct validity relate
to how much the measures used represent what researchers
aim to investigate [45, 47]. In our case, we considered black-
box analyses based on trends of evolution of the measure-
ments provided by the three TD identification techniques.
Our definition of trends was connected to software releases
(major, minor, and micro), which we considered appropriate
due to the research questions that were set. The current study
was more exploratory in looking for emerging patterns,
while further studies can look into more explanatory aspects.

5. Related Works

In the literature, TD has been investigated from various
perspectives [9, 48] and number of different approaches has
been proposed for TD identification and management [49].

However, there are not many studies that compare al-
ternative TD identification methods. One reason could be
the complexity/time required to implement the methods and
the second reason about the comparability of the metrics
defined. Furthermore, Izurieta et al. [46] note that it can be
difficult to compare alternative TD measurements methods
due to missing ground truth and the uncertainties of the
measurement process. One of the earliest studies to compare
metrics for TD identification was the study by Zazworka
et al. [11], comparing four alternative methods across
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different versions of Apache Hadoop: (a) modularity vio-
lations, (b) design patterns grime build-up, (c) source code
smells, and (d) static code analysis. The focus was on
comparing how such methods behave at the class level. The
findings were that the TD identification techniques indicate
different classes as part of the problems, with not many
overlaps between the methods.

Griffith et al. [50] compared ten releases of ten open
source systems with three methods of TD identification ((i)
SonarQube TD plug-in, (ii) a method based on TD iden-
tification using a cost model based on detected violations,
and (iii) and one method defining design disharmonies to
derive issues in quality). These methods were compared
against software quality models. Authors found that only
one method had a strong correlation to the quality attributes
of reusability and understandability.

Mayr et al. [40] proposed a benchmarking model for TD
calculation. The purpose of the model is to allow comparison
of a project’s TD values with baseline values based on a set of
reference projects. Within their work, the authors also
propose a general classification scheme for the technical debt
computation approaches. Additionally, authors compare 3
different TD computation approaches: CAST, SQALE, and
SIG quality model. Based on the comparison, the authors
derive requirements for the benchmarking model. The
comparison focuses on higher-level qualitative attributes,
such as data sources, target level, and productivity factors
rather than on quantitative comparison on given set of
projects.

Oppedijk [51] compared the statistical correlation of the
results from the application of both Maintainability Index
and the SIG Maintainability Model to 73 software projects:
52 proprietary software systems and 21 open source systems.
19 systems were written in the C programming language, 11
in C++, and 43 in Java. Overall, the two models were found
to have a moderate statistically significant positive corre-
lation in case of the C programming language (0.494 or 0.476
depending on the MI model applied), as well as for Java
(0.459 and 0.500), while for C++ results were not significant,
mainly due to the low sample sizes (0.365 and 0.423).
Overall, expectations were for a higher correlation level
between the two models. Another interesting finding is
about the collinearity of different components of the two
models, showing that some components have too much
collinearity (namely, changeability vs. analysability and
changeability vs. testability for the SIG Maintainability
Model, average Halstead Volume, average extended cyclo-
matic complexity, and average unit size for MI). This sug-
gests that some models can be improved by removing some
of the components, in case of the computation of a global
maintenance index.

Griffith et al. [52] introduced a conceptual model for a
discrete-event simulation of the Scrum agile process which
includes both defect and TD creation. The simulation is used
to study the integration of multiple TD management
strategies in agile development processes. To evaluate the
differences between the TD management strategies, authors
use five metrics: cost of completed items (CC), count of work
items completed (WC), cost of effective technical debt
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(ETD), cost of potential technical debt (PTD), and cost of
total technical debt (CTD). CC, ETD, PTD, and TD are
expressed in terms of source lines of code (SLOC).

Li et al. [53] analyzed 13 open source projects with
multiple releases for each of them focusing on evaluation of
architectural technical debt (ATD). The ATD is measured as
the average number of modified components per commit
(ANMCQ). In the case study, the authors investigated the
correlation between the ANMCC and source code-based
modularity metrics, such as Index of Package Changing
Impact (IPCI), Index of Inter-Package Extending (IIPE), or
Index of Package Goal Focus (IPGF). The study showed that
IPCI and IPGF have strong negative correlation with
ANMCC and therefore could be used as an ATD indicator.
Although multiple metrics were compared, the authors did
not focus directly on the comparison of existing TD mea-
sures, and they also focus solely on the ATD instead of
general TD.

Kosti et al. [54] distinguished between two categories of
TD approaches: methods that monetize the amount of TD
metric (such as SQALE) and methods that provide proxies
for TD metric with structural metrics (for example, similar
to [53]). In their work, the authors are comparing the
correlation between the SQALE metric and 20 structural
object-oriented metrics from two metric suites [55, 56]. The
case study is conducted on 20 open source projects. The
results showed that several of the metrics can be used to
quantify the TD since they strongly correlate with the
SQALE metric. Although, the authors include high number
of metrics in the comparison, they focus only on SQALE as
the direct TD indicator and they investigate only the cor-
relation between the metrics.

Zazworka et al. [57] studied and compared the human
elicitation of TD with the automated TD identification. For
the automated TD identification, the authors used code
smell detection tools as well as common structural metrics.

Although different types of TD were considered, a de-
tailed quantification of the results is not provided.

6. Conclusions

The goal of this paper was to compare three main techniques
about TD identification that were proposed over time: (i) the
Maintainability Index (MI), (ii) SIG TD models, and (iii)
SQALE. We compared experimentally the three methods on
a set of 20 Python projects.

Generally, all methods report an increasing trend of TD
for the projects, but there are different patterns in the final
evolution of the measurements time series. MI and SIG TD
report generally more growing trends of TD compared to
SQALE, which shows more periods of steady TD. MI is the
methods that reports largely more repayments of TD
compared to the other methods. SIG TD and MI are the
models that show more similarity in the way TD evolves,
while SQALE and MI are the less similar. The Granger
causality for all projects and combination of methods shows
that there is a limited dependency between the time series
denoting the evolution of TD measurements. Still, we could
find some relationships between SQALE and MI and SQALE
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and SIG TD models, in the sense that previous lags of
SQALE time series could be used to improve prediction of
other models in 1/3 of the projects.

Though exploratory in nature, by running the analysis on
a different set of methods, we had findings comparable to
previous research [11]. Seems there is limited overlap be-
tween the different methods for TD identification, probably
due to the multifaced TD definition. One consequence being
that practitioners adopting one or the other method might
get different perceptions about the state of the projects. This
can be seen from our analysis, when some models were
reporting no changes in TD, while others larger repayments.
One lesson learnt from the analysis is that using multiple
methods can give more insights about the real presence of
TD in a software project. By looking at the patterns from
alternative methods, it is possible to understand better if TD
is growing in an uncontrolled way.

Future works will go into extending the analysis to a
larger scale and to get more explanatory insights, such as
looking at relationships of models with common software
quality metrics.

Data Availability

The mined datasets, experimental results with diagrams, and
source code to support the findings of this study have been
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