
Research Article
MCAF: Developing an Annotation-Based Offloading
Framework for Mobile Cloud Computing

Yilian Zhou,1 Ligang He ,2 Bin Wang,3 Yi Su,2 and Hao Chen1

1College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
2Department of Computer Science, University of Warwick, Coventry, UK
3ZTE Corporation, Shenzhen, China

Correspondence should be addressed to Ligang He; ligang.he@warwick.ac.uk

Received 29 November 2019; Revised 24 February 2020; Accepted 7 May 2020; Published 16 July 2020

Academic Editor: Daniele D’Agostino

Copyright © 2020 Yilian Zhou et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Offloading computation from mobile to remote cloud servers is a promising way to reduce energy consumption and improve the
performance of mobile applications. However, a great challenge arises as automatic integration of powerful computing resources
in remote cloud infrastructure and the portability of mobile devices. In this paper, we develop a Java annotation-based offloading
framework, called MCAF, for android mobile devices..is framework is designed and committed to simplifying the development
of android applications enabled with the offload capability. All the developers need to do is to import the SDK library of our
MCAF and annotate the computation-intensive methods. MCAF can automatically extract the annotated source code and
generate the code that will be run in the Cloud. Moreover, the codes of making the offloading decisions are automatically inserted
into the original source code. We also conducted the real experiments to show the applicability of our MCAF.

1. Introduction

Advances in the portability and capability of mobile devices
such as smartphones, together with increasingly faster and
widespread wireless networks, a large number of mobile
APPs such as shopping, gaming, information management,
and so on have been made. Smartphones have changed
human lives and become indispensable gadgets in modern
society. Despite the fast increase in hardware performance of
mobile devices, it is still limited comparing with their
desktop counterparts and cannot meet the ever-increasing
demand from end-users and APP developers (e.g., CPU,
storage, and battery life). .e limited hardware resources
impede further improvement of Quality of Services (QoS)
[1] for users and also further expansion of mobile APP
categories. Integrating mobile devices with powerful Cloud
platform [2, 3] to provide the Mobile Cloud Computing
(MCC) offers a promising solution to overcoming the
challenge [4, 5].

MCC is able to save the energy consumption of mobile
devices and/or improve the running performance of the

mobile applications by offloading part of executions from
mobile devices to cloud servers. Although various offloading
frameworks have been developed, a big obstacle to hinder
the wide adoption of these offloading frameworks is that it
relies heavily on the programmers to develop the mobile
applications in a manner designated in the offloading
framework. In this work, we aim to design and develop an
offloading framework which simplifies the development of
mobile applications. Our offloading framework, called
MCAF, makes use of Java annotation, which is different
from the existing ones in the following aspects.

In all existing offloading frameworks, the programmers
either have to annotate the source code or write the source
code in a specific manner, and the framework developers
need to develop the bespoke compiler to compile the source
code embedded with the offloading ability. To use MCAF,
there is no need to develop a new compiler, and only the
existing Java compiler is needed to realize the offloading
process.

Moreover, most existing frameworks such as Cuckoo [6]
require the programmers to implement the code to be run on

Hindawi
Scientific Programming
Volume 2020, Article ID 5304612, 9 pages
https://doi.org/10.1155/2020/5304612

mailto:ligang.he@warwick.ac.uk
https://orcid.org/0000-0002-5671-0576
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5304612


the Cloud. In contrast, MCAF aims to minimize the effort of
conducting the offload. .e programmers who employ
MCAF do not need to implement the code running on the
Cloud but write the source code as normal for the mobile
device and add the Java annotations that specify the code
offloading. MCAF automatically extracts from the source
code the part that is to be run on the Cloud according to the
Java annotation. .e extracted code is then encapsulated
automatically as a stand-alone Java program and is offloaded
to the Cloud when the conditions are met.

Another major difference between MCAF and most
existing frameworks is that MCAF offloads the task at the
granularity of the method level. MCAF extracts the source
code of a method that is to be offloaded and then wraps up
the method as a stand-alone program.

Overall, MCAF aims to reduce the efforts of the
framework developers and the programmers in realizing the
offloading capability in mobile Apps. All that the users of
MCAF have to do is to import the MCAF SDK library and
add annotation for computation-intensive methods. In this
paper, we present the design and implementation of our
offloading framework. In order to showcase the applicability
of our approach, we also developed two mobile applications
for real-life scenario by applying our offloading framework.
Experiments have also been conducted to evaluate the ef-
fectiveness of our framework.

Note that in practice confidentiality and the integrity of
the transmitted data should be ensured. .ere are the
existing measures in the literature [7, 8] to address the se-
curity issues in the offloading framework. For example, in
the work presented in [7], the data are encrypted and signed
before transmitting, and are then decrypted in the Cloud.
.e encryption and decryption costs are taken into account
when making the offloading decisions. Ensuring security is
not the focus of this paper. MCAF can make use of the
existing security measure in the literature (such as the one
presented in [4]) to ensure confidentiality and the integrity.

.e remainder of this paper is organized as follows. In
Section 2, we provide the background of Java annotation and
the related work. In Section 3, we present the design of
MCAF and also a case study to show the exact workings of
MCAF. MCAF is evaluated in Section 4. .is paper is
concluded in Section 5.

2. Background

2.1. Annotation. Annotation is an important feature in Java
since it relives Java developers from the pain of cumbersome
configurations [9]. It shifts the responsibility of writing the
boilerplate Java code from the programmer to the compiler.
Annotations were first introduced in Java 5.0 and more
advanced features are gradually supported in later Java
versions.

Annotation is a form of metadata and can be used to
describe any information about the elements (packages,
classes, methods, fields, arguments, variables, etc.) in a
program [10]. Annotations do not directly affect the pro-
gram semantics. However, since annotation does affect the
way in which the programs are treated by tools and libraries,

they can in turn affect the semantics of the running program.
Annotations can be read from source files, class files stati-
cally, or be read reflectively at runtime. For example, an-
notations, such as Deprecated, Override, or NotNull, can be
used to describe the constraints or the usages of the elements
in a method during the compilation.

Although typically an application programmer never
have to define an annotation type, it is not hard to do so..e
declaration of an annotation type is similar to that of a
normal interface. An at-sign (@) precedes the keyword
“interface.” .e declaration of a method will also define the
elements of the annotation type..e declaration of a method
must not have any parameters and can have default values.
Return types are restricted to primitives, String, Class, enum,
annotation, and arrays of these types. .e following is an
exemplar declaration of an annotation type. Once an an-
notation type is defined, program developers can use it to
annotate source code. In general, annotations will be pro-
cessed during the compilation. .e command-line utility
APT, an annotation processing tool, is used to find and
execute the annotation processors based on the annotations
inserted in the source files.

2.2. RelatedWork. Many researchers believe that combining
mobile computing with clouds is a promising solution to
overcome the battery limitation of smartphones and extend
the performance of smartphones [11]. Indeed, much recent
work has focused on building the frameworks that enable the
offloading of mobile computations to the cloud [12, 13].

Cuervo et al. proposed an offloading system called
MAUI, which can enable fine-grained energy-aware code
offloading from smartphone to the remote server [14]. In
MAUI, a method that is possible to be offloaded is declared
as a “remotable” method. MAUI then models the offloading
problem as an integer programming problem and finds the
optimal offloading decision by solving the integer program.
Microsoft.NET Common Language Runtime (CRL) is the
programming language used by MAUI. However, the
drawback of MAUI is that it needs the developers to modify
the source code run on the local mobile and implement the
source code run in the Cloud.

Compared with MAUI, CloneCloud [15, 16] goes one
step further and does not ask the programmer to label (e.g.,
declare) the offloadable methods. CloneCloud automatically
identifies the offloading costs by analyzing the source code
both statically and dynamically at runtime. It then runs an
optimizer to partition the tasks between mobile devices and
the Cloud.

MAUI and CloneCloud are the systems for offloading
parts of the existing program running on the mobile device
to the Cloud. Cuckoo [6, 17] is the application development
framework. Cuckoo can be used by programmers to develop
the mobile Apps that have the offloading ability. Cuckoo
provides a simple programming model and allows a single
interface with a local and a remote (on the Cloud) imple-
mentation. .e Apps developed using Cuckoo will decide at
runtime automatically whether the local or the remote
implementation is invoked for an interface.

2 Scientific Programming



DPSF [18] is another offloading framework based on Java.
It first analyses the call-graph of the application offline and
determines which classes can be offloaded. It then partitions all
Java classes into two parts during the compilation. .e classes
in one part are run locally in the mobile phone while the other
will be offloaded to run on the server. .e entire application is
deployed in both local mobile and remote server. .e appli-
cation starts running in local mobile.When it runs to amethod
in a class that is offloaded, it makes use of the RMI (Remote
Method Invocation) mechanism in Java to invoke the method
in the Java application deployed in the remote server. Although
DPSF also makes use of the existing ability in Java to realize
offloading, there are the following differences from ourMCAF.

First, DPSF is essentially a static offloading framework
because it, whose classes are offloaded, has to be determined
at the programming stage through the offline profiling, and
then the source code has to be adjusted to fulfil the off-
loading. DPSF is dynamic only in the sense that when it
begins to run the application but detects that the network
connection is poor, it will run the original Java application.
Once the original application or the application with the
offloading ability starts running, it will run to completion.
.ere is no other mechanism in DPSF that makes the off-
loading decisions for individual classes during the appli-
cation execution. In MCAF, although we annotate which
methods can be offloaded at the programming stage, the
offloading decisions can be made for a particular method. If
the offloading condition is met, the offloading is then carried
out for that method.

Second, DPSF offloads the workload at the granularity of
the class level, while it is at the method level in MCAF.

.ird, when using DPSF, the programmer has to change
the source code, for example, changing the modifier of non-
private fields to private and generating the public getter/setter
methods for them, generating a proxy class for each offloaded
class, and so on. InMCAF, the programmer only annotates the
methods through Java annotation scheme, but does not change
the original source code, which reduces the programmer’s
effort and is less error-prone during the development stage..e
source code for running the offloaded methods in the Cloud
server is automatically generated by MCAF, not written by the
programmer. If the annotation is ignored, the application
behaviour remains unchanged.

3. MCAF

3.1. MCAF Modules. .e Mobile Cloud Annotation
Framework (MCAF) consists of the following modules: (1)
Annotation Handler: extracting all information related to
the annotated methods; (2) Cloud Proxy: realizing the
communications between the local mobile device and the
Cloud; (3) Offloading Decider: implementing the offloading
strategies; and (4) Code Rewriter: automatically wrapping up
the source codes of the extracted method as stand-alone Java
programs and compiling them as classes files.

3.1.1. Annotation Handler. APT is the existing annotation
processing tool. In MCAF, APT is used to identify which

method is annotated and save the annotation information.
.e saved annotation information contains the accessing
modifiers, the return type, and the parameters type of the
annotated methods. However, the parameter values and the
method code are not included. One of the responsibilities of
Annotation Handler is to complement the annotation in-
formation saved by APT. Annotation Handler extracts the
segment of the source code in each annotated method.
Specifically, a regular matching expression is constructed in
Annotation Handler, which is used to search the annotation
information saved by APT and to match the part of source
code which implements the annotated methods. .e
extracted code segment will be packaged as the stand-alone
Java program and compiled to the class files by the Code
Rewriter module. .e class files will be transferred to and
run on the Cloud according to the offloading decision made
by Offloading Decider.

3.1.2. Offloading Decider. After the processing of Annota-
tion Handler, all annotated methods are identified, and the
annotation information and the source file of these methods
are saved. When an annotated method is invoked, the
Offloading Decider module calculates the offloading cost of
this method. If it is beneficial to offload, the bytecode of this
method, which is obtained by the Code Rewriter module, is
retrieved and transferred to the cloud by the Cloud Proxy
module. If the Offloading Decider decides not to offload, the
method will be executed in the local mobile device.

Note that the offloading strategy is not the focus of this
paper. MCAF is a framework to realize the offloading ability.
.e developer can plug any existing offloading strategy into the
Offloading Decider. .e Offloading Decider interfaces with
other components inMCAF through its output, which is either
True or False. If the output is true, the method in question will
be offloaded. Otherwise, the method will be run locally. Al-
gorithm 1 in Section 3.2 presents an example of this.

3.1.3. Cloud Proxy. .eCloud Proxymodule is responsible for
offloading-related communications between local mobile device
and the Cloud. Firstly, when the Offloading Decider decides to
offload an annotated method, Cloud Proxy transfers the byte-
code and the arguments of themethod to the Cloud. Second, the
execution results of the offloaded method are returned to the
local mobile device and passed to the invoked method.

3.1.4. Code Rewriter. Code Rewriter generates two types of
source code (class). After AnnotationHandler extracts the code
segment of the annotated methods, Code Rewriter generates
the stand-alone source code for each annotated method. .e
source code is then compiled to a Java class, whose name is the
name of the annotated method appended by a word “Class.”
For example, if the name of the annotatedmethod is “Add,” the
name of the new class is “AddClass.”.e generated classes may
be transferred to and run on the cloud after the offloading
decision is made. In the class, a member function is defined
which includes all instructions of the annotated method. By
invoking the member function of the newly generated class on

Scientific Programming 3



the cloud, we will obtain the same results of the annotated
method as it runs on the local smartphone. We call this type of
class the Cloud execution class.

.e second type of source code (class) generated by Code
Rewriter is run in the local smartphone. In this source code, the
new class inherits from the class where the annotatedmethod is
located..e name of this new class is the name of the inherited
class appended by an underscore symbol“_.” For example, if
the inherited class is “A,” the name of the new class is “A_.”
Code Rewriter overrides the new class “A_” by automatically
inserting the code which makes the offload decisions and the
code that interacts with the Cloud, such as uploading the
“AddClass” generated above, and its input parameters to the
Cloud and receiving the return results from the Cloud. If the
decision made by the added decision making code is false (i.e.,
do not offload), the original instructions of the annotated
method will be run in the local smartphone. We call this new
class the policy and local execution class.

3.2.ACase Study ofMCAF. In this subsection, we present an
example to illustrate the workings of MCAF.

We first define a new annotation named “Upload” in
Algorithm 2.

Target and Retention are two predefined annotation types
in Java. .e Target type with the value of Element-
Type.METHOD in line 1 is used to specify that the annotation is
applied at the method level. .e Retention type with the value
of RetentionPolicy.CLASS in line 2 is used to specify that the
added annotation is retained by the compiler at the compile
time (but is ignored by the Java Virtual Machine). Line 3
defines a new annotation type called Upload. Defining a new
annotation type is similar as defining an interface in Java except
that the keyword interface is preceded by the sign @. In the
body of the Upload annotation type, three annotation type
elements are declared: type, module, and valueType. .e type
element is used to identify the Upload annotation. .emodule
element is used to specify the module in which the annotated
method is located (assume the annotated method is in the
“app” module). valueType is the data type of the input pa-
rameters of the annotated method. We developed an Anno-
tation.jar package. .e “Upload” annotation type is defined in

Annotation.jar. Annotation.jar also implements the function-
ality of the Code Rewriter component.

After the Upload annotation type is defined, we can use it
to annotate a method. In Algorithm 3, a class with the name
of “A” is defined, which includes an “Add” method. .e
“Add” method takes two input parameters with the integer
type, x and y. Before the “Add” method, the newly defined
“Upload” annotation type is inserted, in which the valueType
element takes the actual types (i.e., integer) of the two input
parameters, x and y. .e other two elements, “type” and
“module,” take the default values.

When the code in Algorithm 3 is compiled, the compiler
realizes that the “Add” method is annotated by “Upload.”
Two types of source code (two classes) will be generated.

On one hand, the compiler will invoke the Code Rewriter
functionality implemented in Annotation.jar to generate a
new class named “AddClass” as shown in Algorithm 4. If the
offload decider decides to offload the “Add” method, the
“AddClass” will be uploaded to the Cloud for execution.

On the other hand, the compiler will also invoke the Code
Rewriter functionality to generate another new class named
“A_,” which extends from class “A” (the “Add” method is
located in class “A”)..en the “Add” method is overwritten by
inserting a set of instructions shown in Algorithm 1 (from line
4 to line 10) in the “Add” method. In Algorithm 1, line 3 calls
the offload decider to determine whether the “Add” method
should be uploaded. If the output of theOffloadDecider is True
(checked in line 4), the method needs to be offloaded and lines
5–8 will be run. Lines 5 and 6 check whether the “Add”method
has been offloaded (the App may be executed repetitively). If it
has been offloaded, it means that the code of the “Add”method
exists in the Cloud and there is no need to upload the code of
the method again. If the method has not been offloaded before,
it calls the Cloud Proxy to upload the “AddClass” (line 7),
which contains the code of the “Add” method that will be run
in the Cloud, and then wait for the Cloud to return the result of
running the “Add” method (line 8). If the out of the Offload
Decision is False, the calculation is performed locally (line 10).

When the Cloud server receives the “AddClass.Class”
uploaded by the smartphone, it invokes the “Add”method in
the AddClass.Class through the Java reflection mechanism.
.e segment of code that run the “Add”method in the Cloud

(1) public class A_ extends A {
(2) int Add(int x, int y) {
(3) isAddClassNeedUpload�Decider.getClassUploadStatus();
(4) if (isAddClassNeedUpload) {
(5) isAddClassRemoteExists�Decider.getRemoteExistsStatus();
(6) if (!isAddClassRemoteExists) {
(7) ClientProxy.uploadClass(“xx/xxx/AddClass.Class”);}
(8) return ClientProxy.getResult(“Add”, x, y);
(9) }
(10) return x+ y;

}
}

ALGORITHM 1: Generating a new class “A_” that extends from class “A” and then overwriting the “Add” method by inserting the offloading
instructions.

4 Scientific Programming



is shown in Algorithm 5, in which x and ywill take the values
uploaded by the smartphone.

3.3. System Architecture. In this section, we present the
system architecture for implementing the Android applica-
tion with the offload capability. First, we introduce what type
of methods can be annotated using our scheme. Android
applications run their bytecode on the Dalvik Virtual Ma-
chine (Dalvik VM). .ere are some differences between
Dalvik VM and Java Virtual Machine (JVM). Dalvik VM has
optimized the execution of the android code. For example, UI
graphic, camera, and sensors cannot be executed on JVM
because their execution depends on the Android Runtime
Environment. .e methods which can be annotated must

meet the following conditions: (1) the annotated methods can
only contain the pure java code. Note that the percentage of
the code that is offloaded will not be significantly reduced due
to this condition since the methods that are most likely to be
offloaded are computation-intensive ones and all arithmetic
operations can be programed in pure Java code. (2) .e
annotated methods should not use the global variables. If the
global variables have to be used, they need to be transferred to
the Cloud server together with other method parameters. (3)
.e annotated methods have to be public methods.

3.3.1. Build Process. Figure 1 shows the process of building
an Android application using our framework from the
source code to the apk file..e only thing that the developers

(1) @Target(ElementType.METHOD)
(2) @Retention(RetentionPolicy.CLASS)
(3) public @interface Upload {
(4) String type() default “Upload”;
(5) String module() default “app”;
(6) String[] valueType() default {};
(7) }

ALGORITHM 2: Defining a new annotation type named “Upload.”

public class A extends MainActivity {
@Upload(valueType� {“int,” “int”})
int Add(int x, int y) {
return x+ y;

}
}

ALGORITHM 3: Annotating the “Add” method in the “A” class.

(1) Object[] parameters� new Object[]{x, y};
(2) Class[] parametersType�new Class[]{int.class, int.class};
(3) Object[] parameters� (Object[]) entityBean.parametersValue.toArray();
(4) Class[] parametersType� entityBean.parametersType.toArray(new Class[entityBean.parametersType.size()]);
(5) Class<?> cl�Class.forName(“org.demo.data.AddClass”);
(6) Method method� cl.getDeclaredMethod(“add,” parametersType);
(7) Object object� cl.newInstance();
(8) ret� (int) method.invoke(object, parameters);

ALGORITHM 5: .e Cloud server executes the “Add” method in the AddClass.Class through the Java reflection scheme.

package org.cloud.annotations.MainActivity;
public class AddClass {
public int Add(int x, int y) {
return x+ y;

}
}

ALGORITHM 4: Generating the “AddClass” to be run on the Cloud.

Scientific Programming 5



need to do is to add the annotation, which divides the source
files into two categories: annotation source files and the
original source files. In this process, Annotation Process
Tools (APT) can find all annotated methods in annotated
source files. .en, it generates the Cloud execution classes
that can be executed on the Cloud and the classes that run on
the local smartphone through the framework SDK.

3.3.2. Runtime Architecture. Figure 2 shows the runtime
architecture of the application. In the smartphone, the
runtime architecture is mainly divided into four parts. .e
first part is Methods, which contains themethods that will be
executed when the android application runs. In Figure 2,
there are two classes in the methods part, which are divided
by the dotted line. Methods A and B are in the same class,
while methods C, D, and E are in the other. In addition, we
use the dotted ellipse to represent the annotated methods,
which are methods B, C, and E. .e second part is Policy,
which makes the offload decisions for the annotated
methods. .e third part is assets; it is a resource folder and
contains the source code of the annotated methods, which
can be uploaded and executed on the Cloud. .e last part is
Proxy; it is responsible for communication with the cloud. In

the Cloud server, the module argument is used to receive the
arguments from local smartphone when an annotated
method is executed in the Cloud.

In theCloud server, the argumentmodule is responsible for
managing the transmission of the parameters between the
smartphone and the server. When an annotated method is
invoked in the local phone during runtime, the method will
wrap the parameter values into the serialized file stream, which
is transmitted to the server through the network and is
deserialized to the parameters value on the server. By using the
serialization, we can transmit the complex type parameters
easily in addition to basic types of data. On the Cloud server, we
allocate thememory space to store the executable files uploaded
from the smartphone. .ese files are invoked through the Java
reflection mechanism. .e required parameters during the
execution are provided by the argument module. When the
Cloud server obtains the execution results, we will use the
serialization mechanism to pass the results to the smartphone.

4. Evaluation

.e aim of developing the offload framework is to save the
energy consumption of the smartphone where the mobile

Local phone Cloud server

A B

B B

C

C C

D E

E EPolicy

Methods

Proxy Proxy

Assets

Dalvik VM JVM

Argument

Figure 2: .e runtime architecture of android application generated by the framework.

Classes.dexClasses

Classes Assets

Android
apk

builder

Apk file

+
Remote

Phone

Annotation
processor

Annotation
processing toolsAnnotationed

source files

Code
rewriter

Proxy

Offloading
policy

Application
source files

Developer Build system

Figure 1: .e build process of an android application with MCAF.

6 Scientific Programming



App is running while maintaining the performance of the
App. In this section, we evaluate the performance and power
consumption of our MCAF. We conducted real experiments
on a smartphone, which is Vivo X20 with 1.8GHz CPU, octa
core processors, 4GB RAM and Android OS 7.1.1.We used a
desktop as a Cloud server, which runs ubuntu 14.04 with a
3.40GHz CPU and 16GB RAM. .e Cloud server and
smartphone are interconnected by wifi.

We implemented two applications and ran them either on
the local phone or on the cloud server through offloading. .e
first application is to perform matrix computation, which is a
computational intensive application. In this application, we
generated the square matrix with the size of 100×100. .e

elements of the matrix are random numbers between −10 and
10. .e application computes the n-th Power of the matrix.
First, we ran the application on the smartphone. .en, we ran
the application by offloading it to the Cloud server. We also
measured the power consumption of the smartphone and the
execution time of the application in both cases. How to design
smart offloading strategies is not the focus of this work. In the
experiments, the application is always offloaded when the
wireless connection is available.

4.1. Execution Time. Table 1 lists the execution times of the
application when running in the smartphone and when

Table 1: .e execution time of the matrix computation application.

Power n
Offloading (ms)

Local phone (ms) Speedup (local_run/offloading_run)
Transmission Cloud

20 237 61 6912 23.19
40 232 77 13742 44.47
60 232 102 20610 61.71
80 214 128 27468 80.32
100 210 152 34551 95.44

Table 2: .e execution time of the Image Segmentation application.

Times
Offloading (ms)

Local phone (ms) Speedup (phone/offloading)
Transmission Remote

2 969 20 3727 3.85
4 984 27 7485 7.61
6 1003 29 11201 11.17
8 1065 43 15022 14.11
10 1067 93 18710 17.54

12
11
10
9
8
7
6
5
4
3
2
1
0

20 40 60 80 100
Time

120
110
100
90
80
70
60
50
40
30
20
10
0

Co
ns
um

pt
io
n

Offloading
Localphone
Ration

(a)

12
13

11
10
9
8
7
6
5
4
3
2
1
0

Time
2 4 6 8 10

40

35

30

25

20

15

10

5

0

Co
ns
um

pt
io
n

Offloading
Localphone
Ration

(b)

Figure 3: (a).e energy consumption of the matrix computation application; the x-axis is the number of times the matrix multiplication is
performed (i.e., the power n). (b) .e energy consumption of the image segmentation application; the x-axis is the number of times the
image segmentation is performed.

Scientific Programming 7



offloading. .e offloading execution time consists of 2
parts, including the communication time of uploading the
code and the parameters to the Cloud and the execution
time on the Cloud server. As the table shows, the com-
munication time is relatively stable. .is is because the
data transmitted and the network speed during the off-
loading process change little. .e execution time on the
Cloud server increases gradually as the power n (i.e., the
number of matrix multiplication) increases. We also
calculate the speedup of running through offloading over
running in the smartphone. As the computation increases,
the speedup increases too. .e results show that our
offload framework can significantly improve the running
performance of the application.

.e second application we used in the experiments is
image segmentation, which partitions a digital image into
multiple segments. It is also a computation-intensive ap-
plication. .e execution times of the application in local
phone and in the Cloud server are shown in Table 2. .e
input size of the test image is 300× 300 pixel. As the table
shows, the application incurs more communication time
compared to thematrix computation application..e results
still show good speedup when the application is offloaded.

4.2. Energy Consumption. To evaluate the energy con-
sumption of these applications, we used software called
Trepn Profiler [19]. It is an on-target power and performance
profiling application for mobile devices. In the Trepn Pro-
filer, the power measurement for a single app can be
achieved with a feature called Show Deltas. Figures 3(a) and
3(b) show the energy consumption of these two applications
when they are executed locally and through offloading. It can
be observed from the figure that offloading offers significant
energy saving. .e amount of energy saved increases as the
computation size increases.

5. Conclusion

.is paper presents a Java annotation-based offload
framework called MCAF for mobile cloud computing.
MCAF is used to upload the annotated source code to the
Cloud server at the granularity of methods. By using MCAF,
developers do not need to implement the Cloud-side service,
which can be generated automatically by MCAF during the
compilation. .e codes of making the offloading decisions
are also automatically inserted. All that the developers need
to do is to import the SDK library of our MCAF and an-
notate the computation-intensive methods. We conducted
the real experiments to showcase the applicability of MCAF.

It is possible to extend this work to allow the offloading
of the Android-related methods (i.e., the methods that are
not programed in pure Java code, but call the functions in
Android-related libraries). In order to realize the offloading
of android-related code, the following work should be
conducted: (i) extracting the offloaded method and gener-
ating a stand-alone apk that encapsulates the offloaded
method; (ii) setting up a VM in the Cloud and deploy the
Dalvik VM environment in the VM; (iii) developing a

functional component in the Cloud VM to enable the
communication between the Dalvik VM and the mobile..e
development of the above framework is expected to involve
much more engineering work than deploying a standard
Java VM as in the current MCAF. We will carry out careful
investigations as to whether it is worth the effort. After all,
only computation-intensive tasks are most likely to be
offloaded, which can be coded in pure Java code.

MCAF is originally designed for offloading the workload
from smartphones to the Cloud server. We plan to explore
the application ofMCAF in fog-edge computing. In fog-edge
computing, data processing is moved to edge devices, which
are closer to where the data are generated compared with
Cloud computing. As long as the edge devices are more
powerful than smartphones, there is no reason why MCAF
cannot be used to achieve the offloading of the workload
from smartphones to edge devices in fog-edge computing.

Data Availability

.e data supporting the results of this work are available
upon request from the corresponding author.

Conflicts of Interest

.e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

.is research was partially funded by National Natural
Science Foundation of China under Grants 61972137 and
61772183 and the Worldwide Byte Security Co. Ltd.

References

[1] J. Mei, K. Li, and K. Li, “Customer-satisfaction-aware optimal
multiserver configuration for profit maximization in cloud
computing,” IEEE Transactions on Sustainable Computing,
vol. 2, no. 1, pp. 17–29, 2017.

[2] K. Li, C. Liu, K. Li, and A. Y. Zomaya, “A framework of price
bidding configurations for resource usage in cloud comput-
ing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 8, pp. 2168–2181, 2016.

[3] C. Liu, K. Li, C. Xu, and K. Li, “Strategy configurations of
multiple users competition for cloud service reservation,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27,
no. 2, pp. 508–520, 2016.

[4] H. Qi and A. Gani, “Research on mobile cloud computing:
review, trend and perspectives,” in Proceedings of the 2nd IEEE
International Conference on Digital Information and Com-
munication Technology and It’s Applications (DICTAP),
pp. 195–202, IEEE, Bangkok, .ailand, May 2012.

[5] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of
mobile cloud computing: architecture, applications, and ap-
proaches,” Wireless Communications and Mobile Computing,
vol. 13, no. 18, pp. 1587–1611, 2013.

[6] C. A. I. Long, K. K. H. Kunasekaran, V. Ramakrishnan et al.,
“Task offloading to the cloud by using cuckoo model for
minimizing energy cost,” in Proceedings of the 2016 Inter-
national Conference on Information Engineering, Management
and Security (ICIEMS 2016), Tirupur, India, 2016.

8 Scientific Programming



[7] B. Huang, Y. Li, Z. Li et al., “Security and cost-aware com-
putation offloading via deep reinforcement learning in mobile
edge computing,” Wireless Communications and Mobile
Computing, vol. 2019, Article ID 3816237, 20 pages, 2019.

[8] V. Viduto, C.Maple,W. Huang, and D. López-Peréz, “A novel
risk assessment and optimisation model for a multi-objective
network security countermeasure selection problem,” Deci-
sion Support Systems, vol. 53, no. 3, pp. 599–610, 2012.

[9] W. Cazzola and E. Vacchi, “@Java: bringing a richer anno-
tation model to Java,” Computer Languages, Systems &
Structures, vol. 40, no. 1, pp. 2–18, 2014.

[10] http://tutorials.jenkov.com/java/annotations.html.
[11] J. Liu, K. Li, D. Zhu, J. Han, and K. Li, “Minimizing cost of

scheduling tasks on heterogeneous multicore embedded
systems,” ACM Transactions on Embedded Computing Sys-
tems, vol. 16, no. 2, p. 36, 2016.

[12] Y. Wang, I.-R. Chen, and D.-C. Wang, “A survey of mobile
cloud computing applications: perspectives and challenges,”
Wireless Personal Communications, vol. 80, no. 4, pp. 1607–
1623, 2015.

[13] M. A. Khan, “A survey of computation offloading strategies
for performance improvement of applications running on
mobile devices,” Journal of Network & Computer Applications,
vol. 56, pp. 28–40, 2015.

[14] E. Cuervo, A. Balasubramanian, D. Cho et al., “MAUI: making
smartphones last longer with code offload,” in Proceedings of
the 8th International Conference on Mobile Systems, Appli-
cations, and Services, ACM, San Francisco, CA, USA,
pp. 49–62, June 2010.

[15] B. G. Chun, S. Ihm, P. Maniatis et al., “Clonecloud: elastic
execution between mobile device and cloud,” in Proceedings of
the 6th Conference on Computer Systems, ACM, Salzburg,
Austria, pp. 301–314, April 2011.

[16] L. P. R. Mali and L. G. D. Naik, “A review on distributed
application processing framework-clone cloud,” International
Journal of Engineering and Computer Science, vol. 4, no. 1,
2015.

[17] R. Kemp, N. Palmer, T. Kielmann et al., “Cuckoo: a com-
putation offloading framework for smartphones,” in Pro-
ceedings of the 2010 International Conference on Mobile
Computing, Applications, and Services, pp. 59–79, Los
Angeles, CA, USA, October 2010.

[18] D. Kong, T. Qi, T. Yang et al., “A dynamic computation
offloading framework for Android,” in Proceedings of the 5th
IEEE International Conference on Broadband Network &
Multimedia Technology, pp. 134–138, IEEE, Guilin, China,
November 2013.

[19] https://developer.samsung.com/game/trepn.

Scientific Programming 9

http://tutorials.jenkov.com/java/annotations.html
https://developer.samsung.com/game/trepn

