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,e popularity of the modern smart devices and mobile social networks (MSNs) brings mobile users better experiences and
services by taking advantage of location-aware capabilities. Location sharing, as an important function of MSNs, has attracted
attention with growing popularity. While the users get great benefits and conveniences from MSNs, they also have high concerns
about the privacy of location. However, in the existing solution, the privacy of users can hardly be guaranteed without the
assumption of full trust in the service provider (SP), and few previous research studies have discussed the individual requirement
of mobile users in MSNs. In this paper, we propose a user-defined location-sharing scheme (ULSS) to achieve enhanced privacy
preservation under different contexts. We present a coarse-grained proximity detection method and a lightweight order-pre-
serving encryption- (OPE-) based method to provide the users with flexible privacy preservation at different privacy levels. ,e
proposed scheme preserves user’s location privacy with respect to SP, friends, and other adversaries, getting rid of the introduction
of fully trusted party (TTP). Extensive experiments were conducted to verify the effectiveness and efficiency of our
proposed scheme.

1. Introduction

With the development of the smartphone and wireless
communications technology, mobile social networks
(MSNs) have seen a tremendous rise and are becoming a
kind of important tool for our daily communication. MSNs
such as Foursquare, Wechat, and Google Latitude bridge the
users’ physical and social worlds taking advantage of loca-
tion-aware capabilities by mobile devices. Sharing and in-
teraction around content and information is the key feature
of the MSNs. In particular, location sharing [1], as an im-
portant function of MSNs, allows users to share their current
locations to the friends on the social networks or to find the
nearby friends within a certain physical distance. Based on it,
MSNs bring mobile users better experiences and services by
various location-based and personalized services, e.g.,
proximity-based detection [2] and friend locator [3], or just
simple location sharing [1].

MSNs facilitate the mobile users and make it easier for
social friends to connect in real life. While the users reap
great benefit and convenience from MSNs, they also have
high concerns about the privacy of location, since the users
have to submit their exact location information to their
friends or to the service provider (SP) when they enjoy the
service. ,e centralized SP collects all user’s information,
e.g., the user identity, the exact location, and query content.
If the private information is disclosed by potentially un-
trustworthy SP or is compromised by an adversary, it will
put the users’ sensitive information in jeopardy. Specifically,
in MSNs, the user’s location information is associated with
the social network ID and the social relationships of users,
which makes the user privacy preservation more significant
and more complicated [4–7]. ,erefore, there are both the
development chance and challenge in MSNs, and the key is
how to protect the privacy of users when providing high-
quality services.
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Over the past years, some approaches have been pro-
posed to address location privacy in MSNs [8–10], and a few
solutions [11–14] were presented to focus on user privacy
preservation in case of location sharing. Li et al. [11] pre-
sented a secure location-sharing scheme in which the user
information was stored in two kinds of servers, e.g., location
server (LS) and social network server (SNS), which incurs
high communication cost due to the multiple-round in-
teraction between the user and the servers. Moreover, the
privacy of users can hardly be guaranteed without the as-
sumption of full trust in the SP. In our previous work [3], we
proposed a lightweight privacy-aware friend locator (PAFL)
to provide privacy guarantee for the user at low computa-
tional and communication cost. However, the coarse-
grained friend locator method cannot meet the personalized
needs of mobile users. ,e challenge is that the user may
submit diverse requirements and wants to set different levels
of privacy protection due to the varying contextual condi-
tions. Here is a typical example of proximity-based location
sharing: Alice travels to a city, she first wants to find out the
friends who are located in the destination she is visiting by
the MSNs, e.g., Facebook Connect. Next, according to the
name list returned by server, Alice wants to query some
specified friends whether they are in the nearby vicinity
region defined by her, e.g., within a mile or so. In this
application, Alice refuses to reveal her exact location to any
third party (including SP and other users), whether she is the
initiator of the query or the location provider (friend). While
the existing schemes [11, 14] are inflexible for users to
change the privacy setting, it is difficult to meet the indi-
vidualized demand preferences for different users in the
traditional system.

In this paper, to satisfy the users’ individual require-
ments, we propose a user-defined location-sharing scheme
(ULSS) to realize proximity query of users in different scales
of vicinity regions. Our motivation is to provide the mobile
users with flexible privacy controls under different contexts
in an efficient and friendly way. We first propose a coarse-
grained proximity detection method based on the Hilbert
curve to determine the friends in a wide range of vicinity.
,en, we provide a lightweight order-preserving encryption-
(OPE-) based method to enable users to query the specular
friends in the nearby specified vicinity, e.g., within 5 km. In
the whole process, users can submit their proximity query
according to their individual requirements and different
personal privacy settings, without revealing the exact lo-
cation information to any SP or to any other possibly
malicious users.

Our main contributions are summarized as follows:

(1) We propose a flexible ULSS for private proximity
detection, which allows each user to maintain his
own privacy-preserving policy and provides the
users with flexible privacy protection at different
privacy levels.

(2) We propose two protocols to process the user queries
in different phases, which preserve user’s location
privacy with respect to SP, friends, and other ad-
versaries. We also prove that the proposed scheme is

secure under the stronger security model with en-
hanced privacy.

(3) We evaluate the performance of our ULSS scheme by
extensive experiments. Experiment results demon-
strate that our scheme is extremely efficient for
coarse-grained proximity detection and provides
user-defined nearby friend locator at low compu-
tational and communication cost as well.

In our scheme, the fully-trusted third party is not re-
quired, the SP is assumed to be “honest but curious,” and it
honestly executes instructions in the system, like storing
user data, handling user’s queries, and returning the results
to the issuer. However, it is curious about the collected
information of users and may try to determine or locate a
query user.

,e remainder of this paper is organized as follows. In
Section 2, we briefly introduce the technical preliminaries,
including Hilbert curve and OPE. ,en, the overview of the
system is stated in Section 3. In Section 4, we describe the
system design, and the security analysis of our scheme is
provided in Section 5. We conduct a set of experiments to
evaluate the effectiveness of our scheme in Section 6. ,e
related work is presented in Section 7. Finally, the con-
clusion and future work are discussed in Section 8.

2. Preliminaries

2.1. Hilbert Curve. ,e Hilbert curve is a space-filling curve
[15], which visits each point once and once only in a
specified order by some algorithms in 2-dimensional (2-D)
or multidimensional space. Given 2-D square space with the
resolution of n∗ n divided into 2N ∗ 2N, n= 2N equal-sized
cells, theN-order Hilbert curve recursively resolves the space
into four equal-sized blocks by a defined way. For the N-
order Hilbert curve, the iterative process is described as four
subblocks that are replicated and partitioned after rotation
and reflection from the (N-1)-order curve blocks.

According to the order of the curve traverses, the se-
quence number for each cell is determined, which ranges
from 0 to 22N − 1. ,e integer value associated with each cell
is denoted as the Hilbert value (H-value). For example,
Figure 1 shows the 2-order Hilbert curve goes through
22 ∗ 22 cells in the given space, and each cell is given a
sequence number (H-value). ,e Hilbert curve is often used
as one of the space transformation tools, transforming a 2-D
space point into 1-D H-value. Similar to our previous work
[3], we present each cell in the given square space by a grid
coordinate <X, Y>, and the corresponding Hilbert value of
each cell can be determined by a Hilbert curve.

Definition 1. Given a Hilbert curve visiting each cell in a 2-D
square space, the grid coordinate of a cell c<Xc, Yc > can be
transformed to 1-D Hilbert value by a function _f as follows:

H(c) � f
·

〈Xc, Yc〉( 􏼁, (1)

where f
·

is the spatial transformation function and
0≤Xc, Yc ≤ 2N − 1, 0≤H(c)≤ 22N − 1. Once the Hilbert
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curve setting parameters are determined, the generated H-
values mapping to all cell are assigned. ,e setting pa-
rameters in the generating algorithm refer to the curve’s
starting point <Xo, Yo>, curve order N, curve orientation Γ,
and curve scale factor Θ. We term this parameter as spatial
transformation parameter (STP), STP � (Xo, Yo), N, Γ,Θ􏼈 􏼉.
In our example, in Figure 1, users a, b, c, and d are with the
grid coordinates of 〈1, 0〉, 〈2, 0〉, 〈1, 2〉, ​ and 〈2, 2〉. As the
2-order Hilbert curve orderly visits each cell, generated
Hilbert values of these users are 1, 14, 7, and 8, respectively.

In our study, we use the Hilbert curve to transform the
user’s real location for the purpose of privacy preservation.
From the security aspect, the space transformation function

·
f should be a one-way function, which is presented that it is
easy to encode the elements of two-dimension space and
generate one-dimension H-value but difficult to decode the
one-dimension H-value back to the original space. ,e
Hilbert curve has the above features and is suitable for our
scheme. For an adversary without the STP, it is computa-

tionally impossible [15, 16] to reverse the function f
·

−1 and
determine the correct Hilbert curve by comparing the H-
values for all original spaces.

2.2. Order-Preserving Encryption. Order-preserving en-
cryption (OPE) [17–20] is a deterministic symmetric en-
cryption scheme which preserves the sort order of plaintexts
in the ciphertexts. ,is character makes OPE very useful
when performing range queries on encrypted data. It allows
a remote untrusted database server to index the encrypted
data and directly performs range queries without decrypting
the ciphertexts [21] (returning a result in the database whose
decryptions fall within a specified range, e.g., [a, b]).

Definition 2. Order-preserving function. For any A, B ⊂ N,
|A|< |B|,function f: A⟶ B is order preserving, if for all
i, j ∈ A, f(i)>f(j), and only if i > j.

Definition 3. Order-preserving encryption. A deterministic
encryption scheme Sε � K, E(·), D(·){ }, with associated
plaintext-space D, ciphertext-space R, and encryption key-
space K, for all K, if E(·) is an order-preserving function
from D to R, the deterministic encryption scheme Sε �

K, E(·), D(·){ } is order preserving.
,e OPE-based scheme in our system consists of the

following algorithms, where EncL and EncR are interactive,
KeyGen is probabilistic, and the rest are deterministic:

Key Generation: KeyGen(1k)⟶ SK. ,e KeyGen runs
on the user side, it takes the security parameters k as input
and outputs a secret key SK.

Location Encryption: EncL l, SK{ }⟶ l′. Given a loca-
tion point l, the user outputs the ciphertext l′ with the secret
key SK.

Range Encryption: EncR R, SK{ }⟶ R′. Given a 2-ele-
ment vector R, R= [l1, l2], the user outputs the ciphertext
R′with the secret key SK.

Decryption: Dec l′, SK􏼈 􏼉⟶ l. Dec is a decryption al-
gorithm taking the ciphertext l′ and secret key SK as inputs
and outputs the plaintext l.

Detection: DetR, l′ ⟶ 0, 1{ }. It takes the ciphertext R′
and l′ as inputs, performs the vicinity detection, and outputs
1 if l falls into the range R, otherwise, it outputs 0.

3. Overview of the System

,e main idea of our scheme is to enable users to share
location information and to find their nearby friends in a
flexible and privacy-preserving way. Each user u in the
system determines his current location (e.g., longitude and
latitude) by a GPS-equipped device, which is a point in
Euclidean space, presented by a 2-tuple value (xu, yu)∈R.
,e distance between the user u and other mobile users, e.g.,

v is duv, duv �

�������������������

(xu − xv)2 + (yu − yv)2
􏽱

. ,e user u in the
system can specify a vicinity region, and we use theminimum
bounding rectangle (MBR) to cover this region and deter-
mine it by the diagonal (xVmin, yVmin), (xVmax, yVmax)􏼈 􏼉.

X

1

30

21

0

0 1 Y

(a)

5 6 9 10

11

121323

4 7
c d

a b

8

151410

X

1

2

3

0

0 1 2 3 Y

(b)

Figure 1: Hilbert curve: (a) 1-order; (b) 2-order.
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,emobile user u can invite his friends v to join a friend
group FGu, and the invited user v may either accept or
decline to join FGu. If v accepts, the friendship relation F
between u and v will be built as (u, v){ } ∈ F. In the same way,
if user u is a friend of v, then users u and v are friends, and
(u, v), (v, u){ }⊆F. ,e user u can manage the members of
FGu, and SP will maintain the friend list for him. ,e
summary of notations used in the system is illustrated in
Table 1.

3.1. System Model. ,e system architecture of the ULSS
scheme is shown in Figure 2, which consists of the service
provider, location-based social network server (LBSNS), and
users. In the system model for our proposed protocol, the
mobile user can be a request initiator or a participant (lo-
cation provider). For ease of explanation, in the set of users,
we assume Alice is the request initiator, and one of her
friends Bob is the participant.

,emobile user Alice is an initiator who intends to share
her real-time location in theMSNs and request the server for
the proximity detection service. To preserve location privacy,
Alice preprocesses the privacy information using the pre-
loaded modules on her mobile device and then submits the
encrypted location information to the server. Alice main-
tains different location policies according to the various
contextual conditions, including the coarse granularity lo-
cation privacy-preserving policy Pa and fine granularity
location privacy-preserving policy Pb. With Pa, Alice can
receive a user list from the server, and it shows the friends
who are located over a large vicinity area (like a city) des-
ignated by her.,en, referring to some specified users on the
received list, with Pb, Alice may query if they are in the
nearby vicinity region (like around 2 km). ,e participant
Bob is a friend of Alice. Bob follows the proposed protocol
and the privacy policy of Alice. In the whole process, Bob
only provides his encrypted location to the social network
and preserves his real location information against to any
other third party.

,e service provider is a server in MSNs, which is an
untrusted entity. Unlike the previous systems in [11, 22],
which deploy the social network server and location server
separately, in our architecture, the SP is an integrated server
LBSNS. It provides users with two kinds of services, loca-
tion-based services, and social network services. LBSNS
achieves integrated service delivery, such as storing users’
information and maintaining user friend list and offering
dynamic user data update and adjustment. ,e LBSNS
conducts proximity detection based on the encrypted lo-
cations of user and his friends and returns the results to
mobile users based on their privacy-preserving policy.

3.2. Security Assumption. ,ere are generally external attack
and internal attack for the threat model [23]. ,e former is
caused by unauthorized outsiders, and the latter is initiated
by internal participant (for example, the users and LBSNS in
our system). We assume the communication channels be
secure by standard security schemes (such as SSL and SSH)
or using cryptographic methods to resist internal attacks

[24–26]. In the ULSS scheme, we consider only internal
attack and assume conventional threat model in our system
as follows: we consider the dishonest mobile users try to
obtain other users’ information outside the scope of the
authorized access privileges. For example, Alice learns the
exact location of Bob; Bob obtains the vicinity area or exact
location of Alice. ,e untrusted mobile users may use some
tools to forge their location, such attacks can be detected as
presented in [27]. Besides, the LBSNS is assumed to be
“honest but curious” by honestly following the proposed
protocol in general but being curious about the content of
queries, like the exact location and the real identity of users.
In our system, LBSNS integrates location-based services and
social network services on one server, which stores the
information of all users, and social relationship network of
them as well. In the ULSS scheme, all entities (including
users and LBSNS) are assumed to be potential adversaries.
,emain security goal of our proposed scheme is to preserve
user’s location privacy against to all participants. In addition,
the collusion between the malicious users and LBSNS is not
allowed in our proposed ULSS scheme.

4. System Design

In this section, we first present the user registration and then
describe the user location representation and update. In our
system, according to user-defined location privacy-preserving
policies, we use different methods to perform proximity de-
tection: coarse-grained proximity detection and user-defined
nearby friend detection as described in this section.

4.1. Registration. Before each user enjoys the location-
sharing services in the social network, he should first
register with his IDU on the LBSNS, who verifies and
maintains the uniqueness of the ID. Generally, users can
use pseudonyms in the registration for safety consider-
ations. ,e initiator Alice builds a friend group FGA by
inviting her friends to join in. ,e LBSNS will generate a
group ID (like a random 256-bit-string) for the FGA, storing
the user list of it. Alice can classify the users on the list into
several subgroups, like colleagues, families, classmates, and
so on, defined as C1, C2, . . . Cn, FGA � C1, C2, . . . Cn􏼈 􏼉

,e LBSNS creates a friend relationship network for each
user and updates dynamically and maintains the infor-
mation of friend list as requested by users.

Each user should set a distance threshold Dsu to preserve
the location privacy during the application’s initialization

Table 1: Summary of notations.

Notation Description
(xu, yu) Point coordinate of user u
〈Xu, Yu〉 Grid coordinate of user u
(xo

u, yo
u) Origin of the grid user u located

(x
f
u , y

f
u ) Offset to the ordinate origin of user u

Gu Grid identification number of the user u
H (u) Hilbert value of the cell user u located
(Xo, Yo) Starting point of Hilbert curve
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phase.Dsu defines aminimum distance with which the user u
allows his friends to search him. Otherwise, a user would be
precisely located by the adversary continually reducing the
range of vicinity detection. For example, Alice finds Bob
somewhere around her by the vicinity detection service, and
she can obtain the accurate location information of Bob
according to continuous queries, such as by returning results
when the range is set to 2 km, 1 km, 500m, and so on.,e SP
will build a profile Pr for each user to keep these settings, e.g.,
for Alice, PrA � (IDA,PSW ∗A , FGA, DSA}, where IDA is the ID
of Alice, PSW∗A is the ciphertext of the password, FGA is the
friend group of Alice, and DSA is the distance threshold. ,e
ULSS scheme allows users to customize and personalize their
profiles to satisfy different users’ needs.

4.2. Location Representation and Update. Each user u ob-
tains his location in the forms of latitude-longitude by the
GPS (latu, lonu). ,e ULSS scheme enables the user to
transform his location by the Hilbert curve method as de-
scribed in Section 2. ,us, the system first assigns a space
range, where mapping the geolocation into a coordinate
point denoted by (xu, yu)∈R in Euclidean space. For ex-
ample, the system can define the square scale using the
longitude and latitude of 4 points of east, west, north, and
south. As shown in Figure 1, the given space range is divided
into 2N ∗ 2N equal-size cells and formed a grid system. Each
grid in the space is numbered uniquely from N. To protect
the location privacy, each user in the ULSS scheme trans-
forms his location coordinate (xu, yu) into two parts. ,e
first part (xo

u, yo
u) is the origin coordinate of the grid where

he is located in the grid system, the second part (x
f
u , y

f
u ) is

the offset coordinate in the grid, and xu � xo
u + x

f
u ,

yu � yo
u + y

f
u . We assume that the location coordinate range

is separated into N scale levels, the coordinates of a user can
be represented as Gu‖(x

f
u , y

f
u ). Here Gu is the grid identi-

fication number of the user u in the N-th scale level, and

0≤Gu ≤ 22N − 1, (x
f
u , y

f
u ) is the offset coordinates in the

corresponding grid. In the ULSS scheme, if the transfor-
mation parameter STP is defined, the H-values mapping to
all cell are assigned, which means the Gu can be obtained by
the H-value according to equation (1).

In general, if a user’s motion or movement trajectory is
in a small range (e.g., in a city), the origin coordinates of the
grid in the given space are not changed, and the user can
specify a time interval with which the user automatically
updates his offset coordinate. While user traverses a large
area, e.g., traverse different grids in the grid system, the
changes in offset coordinates exceed a certain degree (e.g.,
greater than the unit length of a grid), and the user should
recalculate his location Gu‖(x

f
u , y

f
u ) and submit related

information to the server. In this way, we can reduce the
computation and communication overheads for the user and
improve the performance of the whole system.

4.3. Coarse-Grained Proximity Detection. In this phase, a
user queries an LBSNS and gets the results showing friends
in the coarse-grained vicinity area (such as in the same city).
,e main idea of coarse-grained proximity detection is to
utilize the Hilbert curve method to transform user’s location
and the coordinates of vicinity. ,e scheme cloaks user and
his vicinity by mapping 2-D points into identification
numbers in corresponding scale level which can be pre-
sented by H-value under given STP. ,e LBSNS provides
results by comparing the hash values of all values submitted
by mobile users. ,e processes are shown in Figure 3, and
the detailed steps are as follows:

Step 1. When the user Alice logs onto the system and
wants to view the friends who are located in the coarse-
grained vicinity area, she can submit a query QA= {IDA,
listA,N} to the SP, where IDA is the login ID of Alice,
which can be pseudonymous; listA is the user list in the
friend group specified by Alice, which can be a clas-
sification of his friends. Actually, Alice can search

Alice Request &
encrypted data

Encrypted data

Bob LBSNS

Figure 2: System architecture of ULSS scheme.
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several classifications in his friend group FGA, like {Ci,
Ci+1,. . .,Cj}, 1< i, j< n, for simplicity, and we denote it
by listA. According to the coarse granularity location
privacy-preserving policy Pa, Alice sets the granularity
N. For example, Alice wants to search the friends in the
listA who are located over a large vicinity area, e.g., the
same city she stays. In the given space range, Alice
assigns the appropriate granularity N so that the vi-
cinity can be presented by a grid number in the Hilbert
transformation. In the Hilbert STP, N is the scale level
1≤N≤ 16. Generally, the larger the N, the bigger the
vicinity area.
Step 2. Receiving upon the request from an initiator
Alice, the LBSNS generates the STP according to the
Hilbert curve method for users. In the STP, the scale
level N is defined by Alice. ,e system determines
longitude and latitude coordinate ranges as curve scale
factor Θ, mapping it to the points in the given space
range. In this way, the given 2-D space can be trans-
formed to be a grid system with the equal size of 2N ∗ 2N

grids.,en, the SP randomly selects the curve’s starting
point <Xo, Yo>, and curve orientation Γ to build the
STP and determine the Hilbert curve. Next, the LBSNS
searches the friend list according to the listA submitted
by Alice and distributes the generated STP to Alice and
users on the list.
Step 3. When receiving STP, each user transforms his
location point (xu, yu) toGu‖(x

f
u , y

f
u ), and the process is

as follows: Alice first maps her point location in Eu-
clidean space (xa, ya) into the 2N ∗ 2N grids system <X,
Y>. For example, if the square space range Θ is de-
termined by 4 points of east, west, north, and south,
(xE, yE), (xW, yW), (xN, yN), and (xS, yS), the unit length
Unit of each grid can be presented by (xW—xE)/2N or
(yS—yN)/2N. With the site (xa, ya), Alice can locate her
grid coordinates <Xa, Ya> in the grid system by cal-
culating Xa= [(xW—xa)/Unit] andYa = [(ya—yS)/Unit]
and also gets the offsets (x

f
a , y

f
a ) in the corresponding

grid. ,en, she transforms the grid coordinates <Xa,

Ya> to a Hilbert value H(a) using equation (1) by the
determined STP. Now Alice obtains the G(a) and can
transform her location (xa, ya) into Ga‖(x

f
a , y

f
a ). In

order to prevent other entity getting real location in-
formation, Alice submits the hash value of it, hash(Ga),
to the LBSNS, where hash(·) is a collision-resistant hash
function. In this way, Alice cloaks her exact location
into a region, presented by hash(Ga). ,e friends of
Alice, e.g., Bob also transforms his locations and sends
the hash(Gb) to the LBSNS in the same way.
Step 4. ,e LBSNS collects the transformed location
information from Alice and her friends. ,en, it
searches the users who have the same hash(Gu) as Alice
and returns the neighboring users located in the vi-
cinity to Alice under the coarse-grained setting Pa.

4.4. User-Defined Nearby Friend Detection. When Alice re-
ceives the results of the coarse-grained proximity detection
from LBSNS, she can further select some specified users she
has interest to perform nearby friend detection under the
fine granularity policy Pb. For example, referring to some
particular users on the received list, presented by listB, Alice
may query if they are in the nearby vicinity region (like
around 2 km). Note that the neighborhood range in this
phase can be customized arbitrarily by Alice under the
constrain conditions of security assumption. We intend to
use lightweight OPE technology to implement the user-
defined nearby friend detection, and the processes are as
follows:

Step 1. Alice generates an encryption key SK according
to the OPE key generation algorithm
KeyGen(1k)⟶ SK and shares the key through the
secure channel to the friends to be queried.
Step 2. Alice customizes a neighborhood range to re-
trieve the nearby friends. For example, the range
around her A meters or the range with A and B meters
in the x-axis and y-axis directions. ,e scheme gen-
erates a rectangle R to cover this range, R= [rl, ru],
where rl = (xa −A, ya −B) and ru= (xa +A, ya + B) de-
note the lower-left corner and upper-right corner of the
vicinity range R, respectively. Notice that, here we use
the offset coordinates in the corresponding grid to
present the vicinity R. ,en, Alice encrypts R, by
EncR R, SK{ }⟶ R′.
Step 3.When a specific user Bob receives the request, he
encrypts his own location before submitting. ,e lo-
cation point of Bob lb is presented by Gb‖(x

f

b , y
f

b ).
Here, Bob only needs to send his encrypted offset
coordinates to further ensure the safety of his data. In
this way, even some malicious attacker can decrypt the
ciphertext, he has no way to obtain the real lb without
Gb. If we denote the offset coordinates of Bob by Olb,
Bob inputs it to the encryption function
EncL Olb, SK􏼈 􏼉⟶ Olb′ and submits Olb′ to the LBSNS
to avoid potential security risks from trusted third party
(TTP) free server.

Alice

2. distribute STP

1. QA = {IDA, ListA, N}

3. send hash (Ga)

2. distribute STP

3. send hash (Gb)

4. return friend list

1. share SK
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4. return results
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Figure 3: Processes in the ULSS scheme.
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Step 4. LBSNS performs the range query on the ci-
phertexts directly and returns the results whether l′ falls
into the associated range by Det(R′, l′)⟶ 0, 1{ }.
LBSNS collects the information from all users of listB

conducting the proximity detection and returns those
who is in the nearby vicinity R to Alice.

5. Security Analysis

,e ULSS scheme uses the Hilbert curve method to perform
coarse-grained proximity detection and utilizes the OPE
method to conduct user-defined nearby friend detection. We
give the security analysis for these two technologies.,e security
assumption and requirements are described in Section 3.2.

5.1. Hilbert Curve Transformation. In general, the privacy
protection methods in most literatures are public, and the
technology of Hilbert curve in the ULSS scheme may be
obtained by some adversaries. Once an attacker learns some
background knowledge of the users’ original locations or
their transformed locations, they may guess the secret key
(e.g., STP in the ULSS scheme) with a certain probability.
However, some researchers in [15, 16, 28] stated that it is
computably impossible to get the correct STP by comparing
H values of all locations, and it can resist brute force attacks.

Brute-Force Attack. In STP, we represent curve’s orientation
Γ in terms of q bits, and it will generate 2q values in the entire
360° space. ,e malicious adversary needs to make 2q at-
tempts to determine the right Γ. Refer to the curve’s starting
point (X0, Y0), and we represent the value with q bit data,
respectively. To search for the correct (X0, Y0) over 2q ∗ 2q

elements, it requires the adversary to try 2q ∗ 2q candidate
coordinate values on the X and Y axes. In our scheme, the
square space range Θ is fixed value, and the order of the
Hilbert curve N is determined by users. ,erefore, we have
(N∗ 2q ∗ 2q ∗ 2q) solutions for the entire space, where q is
the number of bits presenting each parameter of STP. N is
the order of the Hilbert curve, and 1≤N< 16. If the value of
q is big enough, the possibility of getting the correct STP by
trying combinations of parameters is negligible. For ex-
ample, if q= 32, the complexity of exhaustive search for the
STP would be O(23∗32).

,erefore, for anyone without the STP, it is computa-
tionally impossible to reverse the process of the spatial
transformation and get the users’ original locations. ,e
one-way mapping of the Hilbert curve makes the trans-

formation function f
•

(〈Xc, Yc〉) be a secure encryption
function [15, 16]. Any adversary has no way to learn the
user’s real location without the encryption key STP. We can
say that the Hilbert curve transformation is a very appro-
priate approach to preserve user location privacy in our
ULSS scheme.

5.2. Security of Order-Preserving Encryption. ,e researchers
in [29, 30] formalized a security requirement for OPE and
proposed an efficient blockcipher-based scheme provably

meeting their security definition. ,e OPE scheme has been
proven [29] that it is security under distinct chosen-plaintext
attack (IND-DCPA). Popa et al. [31] presented that the ideal
security guarantee for order-preserving encryption is to
reveal no additional information about the plaintext values
besides their order. ,ey proposed an ideal security protocol
for OPE, which can achieve indistinguishability under or-
dered chosen-plaintext attack (IND-OCPA) security. ,e
ULSS scheme utilizes the OPE method to conduct user-
defined nearby friend detection. Alice and her friends hold
the secret key SK, derived from the security of the OPE
scheme, and any other entities including the LBSNS without
the key cannot get the real location of users. ,erefore, the
security of user-defined nearby friend detection in the ULSS
scheme can be achieved from that of the OPE scheme.

6. Evaluation

In this section, the efficiency and effectiveness of our ULSS
scheme were evaluated by the extensive experiments. During
the phase of coarse-grained proximity detection, we focus on
the location transformation using the Hilbert curve method,
which is mainly affected by the parameter of Hilbert orderN.
During the phase of user-defined nearby friend detection, we
focus on the location encryption by OPE, which is mainly
affected by the size of data. We also conducted experiments
to evaluate the computational and communication over-
heads of each entity under different system settings, like the
size of vicinity s or number of friends n.

All experiments were conducted on Java Development
Kit (JDK).1.7 with the Intel (R) Core (TM) i7-7500U 2.70-
GHz CPU and Win 10 OS. We used the 256-bit OPE
symmetric encryption algorithm and 256-bit SHA hash
function to ensure data confidentiality and integrity. ,e
cryptographic algorithms were performed with JPBC library.
In the experiments, we used the Web API of Amap [32] to
get the GPS positioning by the function GetLongitu-
deAndLatitude and initialized the location of each user by
calling function GetCurrentPosition. ,e studies utilize
uniform data sets to randomly generate batches of 10,000
user locations and then map them into the points in a
65536 ∗ 65536 area in 2-D space. We assume each mobile
user stores his friend list on the LBSNS, and each user has a
maximum of 2,000 friends. Each mobile user can specify an
arbitrary vicinity to search for his nearby friends. For the
security and privacy issue, the minimum size of vicinity is set
to 1 km2, and we got the average data from 20 experiment
results.

6.1. Hilbert Curve Order. In the phase of coarse-grained
proximity detection, Alice and her friends use the Hilbert
curve to transform their exact locations into a cloaked re-
gion, presented by an H-value. ,e LBSNS gives the results
of coarse-grained detection according to the hash values
submitted by all users, and the computational overhead of
the LBSNS is almost negligible. In this set of experiments, we
mainly evaluated the processing time on the user side. When
performing the Hilbert curve transformation, curve’s
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starting point is set to 〈0, 0〉 and the curve orientation Γ is set
to be clockwise, the square space range Θ is determined by 4
points of east, west, north, and south in China. Figure 4
shows the average computational cost during the location
transformation with various Hilbert curve order N for the
user. As shown by it, the computational processing time of
the user slightly increases as N≤ 13, and the transformation
time is no more than 0.2 second. In fact, in our ULSS
scheme, if N≥ 16, the generated region is too small to cloak
user’s exact location. Generally, in the initialization phase,
we assign the value of N is no bigger than 15. After
transformation, each user submits the hash value of his
transformed location to the LBSNS to prevent the infor-
mation leakage on the third entity. Table 2 shows that this
operation completes within several milliseconds. ,us, in
practical application of the scheme, for the user, we can say
the Hilbert curve transformation is computationally
efficient.

6.2. Encryption andDecryption. In the phase of user-defined
nearby friend detection, we used the 256-bit OPE symmetric
encryption algorithm to ensure the data confidentiality for
users. Table 2 shows the computational overheads of the
encryption and decryption in various data sizes. In the ULSS
scheme, the initiator Alice encrypts her vicinity range R, and
her friend Bob encrypts his offset coordinates (x

f

b , y
f

b ), the
size of them is no more than 64 bytes. For each user, we can
see, from Table 2, the average processing time for the en-
cryption is about 13ms. For the LBSNS, it conducts the
nearby friend detection directly on the ciphertexts since the
OPE preserves the sort order of plaintexts in the ciphertexts.
It means that, without decrypting any ciphertext, the LBSNS
can return a result in the list whose decryptions fall within a
specified range R. ,is process can be completed by com-
paring the value of ciphertexts, which ensures minimal
overhead on the LBSNS.

6.3. Number of Friends. We gave an experiment to evaluate
the efficiency of the ULSS scheme in terms of various pa-
rameters, e.g., number of friends n and the size of vicinity s.
We illustrated the experimental results by the computational
time and traffic overheads from the Alice, Bob, and the
LBSNS, respectively. We assumed Alice submits a coarse-
grained proximity query to LBSNS, upon receiving the re-
sults, and she selected half of friends from the list to further
put forward nearby friend query. In this process, we ignored
the communication network transmission delay, as it was
impacted by different network environments. Figure 5
shows the computational time of each entity in the
scheme when the number of friends n changes from 20 to
2000, and we set the default vicinity was 2 km2. ,e pro-
cessing time is 92–98ms for Alice and 80–85ms for Bob.
While it grows for LBSNS with number of friends, because
the server should handle the proximity detection require-
ment from each participant, the greater the number of
friends is, the longer the time it takes. Similarly, LBSNS
needs to distribute STP to Alice and her friends, and its
communication cost grows linearly with n (as shown in
Figure 6). During the phase of user-defined nearby friend
detection, Alice should share the encryption key to her
friends, the traffic also grows, and the communication cost of
Bob maintains at a very low level.

6.4. Size of Vicinity. In this set of experiments, the com-
putational and communication cost of each entity in the
ULSS scheme is evaluated when the size of vicinity s changes
from 1 km2 to 20 km2. We assumed Alice first specified the
Hilbert order to 5, when she got the results in the coarse-
grained region, she defined a nearby vicinity (the size is s) to
search for proximity friend. Figures 7 and 8 show that the
computation and communication overheads for Alice, and
SP slightly grow with increasing vicinity area, while it holds
constant for Bob.

6.5. Comparison with Other Approaches and Discussion.
We compared our proposed scheme with other similar
approaches for a holistic evaluation of our system. Table 3
shows the results in terms of TTP, server, cryptography
method, and efficiency characteristics when comparing with
approaches like MLS in 2017 [11], VPPLS in 2017 [13], and
UDPLS in 2017 [22].

From the table, we find that some approaches, e.g., the
VPPLS scheme, need a fully trusted third party (TTP) to
verify the user ID and run some cryptographic computation.
In the TTP-based schemes, the third party stores user’s
sensitive information and some important information of
the system, which may put the system in jeopardy if it is
comprised. However, our scheme uses the location
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Figure 4: Computational overhead of location transformation for
the user.

Table 2: Computational overhead of encryption and decryption.

Size (bytes) 32 64 128 1024 10 k 1M
Hash (ms) 6 6 8 9 11 14
Encryption (ms) 11 13 21 122 136 2049
Decryption (ms) 10 11 29 130 522 43822
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transformation and OPE method to protect user privacy
getting rid of the introduction of TTP.

Some exiting solutions, e.g., MLS and UPDLS, separately
deploy two different servers including location server and
social network server to store information and provide users
two kinds of services, location-based services, and social
network services. ,e main drawback of LBS/SNS separated
architectures is the multiple-round interactions between the
servers, which may incur higher communication cost and
cause great computation and storage burden as well. In
practice, mobile users can enjoy their online social network
services by the wireless mobile network and, meanwhile,
obtain their exact location information through the GPS
equipped in the smart terminals. Nowadays, location sharing

and services are important functions of MSNs, and inte-
grating two kinds of services can bring more convenient and
flexibility for users, which has become an indispensable tool
of users’ daily life. In security aspect, in the LBS/SNS sep-
arated architectures, the user’s location information and user
profiles are separately stored in two servers, and they are
assumed to be no-collusion to guarantee the system safety.
However, commonly, in some location-sharing scenarios,
the location information can be easily captured by adver-
saries, if the server providers collude with them or collude
with each other, the user privacy and system safety are
insecure, which makes these distributed architectures un-
practical in real life. In our model, these two kinds of servers
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are combined by one LBSNS, providing integrated service
delivery.

In terms of cryptographic methods, the VPPLS protocol
used the homomorphic encryption method to compute the
distance between Alice and her friends without disclosing
the exact position to other party, and MLS and UDPLS rely
on symmetric encryption AES and asymmetric encryption
RSA signature to ensure the data integrity and confidenti-
ality. ,ese privacy preservation approaches can provide
user location sharing privately and securely. However, the
main concern is the heavy computing burden both on user
and server sides when running the encryption algorithms.
Different with the traditional encryption method, our
scheme utilizes efficient OPE algorithm to protect user data,
and the ULSS only needs to encrypt very small amount of
user data, in our evaluation result, Table 2 shows that user
only takes several milliseconds to complete the encryption
process. Besides, for the LBSNS, it can directly conduct the
proximity detection by comparing the ciphertexts, without
having to decrypt, which can greatly save the computing and
communication resources. ,us, we can deduce that our
scheme is more efficient.

Discussion. In our proposed scheme, we presented two
methods, Hilbert curve-based proximity detection method
and lightweight order-preserving encryption- (OPE-) based
method, to provide the users with flexible privacy preser-
vation in an efficient and friendly way.,e evaluation results
of Hilbert curve transformation show that the processing
time on the user side and server side is very small. And from
the experiments with respect to order-preserving encryp-
tion, we can also find that the average processing time of
users is several milliseconds. Meanwhile, due to OPE, the
server can directly perform range queries without decrypting
the ciphertext, which minimizes the overhead on it. Com-
pared with the homomorphic encryption- (HE-) based
method [13] and AES&RSA-based method [11, 22], we can
state that our ULSS is more efficient and practical. From the
aspect of security, in some existing solution, the privacy of
users is guaranteed based on the assumption of fully trust in
the service provider or TTP. However, the TTP-based
structure results in trust issues, like the single-point failure
and the bottle-neck problem of communications, and if the
TTP is comprised, the security of the entire system is at risk.
Our scheme is TTP-free architecture, which can protect user
location privacy with respect to SP, friends, and other ad-
versaries. We also prove that the proposed scheme is secure
under the stronger security model with enhanced privacy.
Moreover, unlike the multiserver structure in [11, 22], in our
scheme, the LBS and SNS are integrated by one server to
provide entire and convenient services, and it also can

reduce communication and computational overheads and
security risks as well.

7. Related Work

7.1. Location-Based Services. With the popularity of LBS, the
concern of privacy leakage in LBS raises, and many re-
searches for privacy preservation have been proposed. K-
anonymity [33] is one of the popular technologies to solve
the privacy leakage issue in LBS, which employs a trusted
third party (TTP) called anonymizer to replace the exact
location of the user by a cloaked area including at least K
users so that the user location is indistinguishable from K− 1
other locations. Based on this fundamental idea, researchers
[34–37] proposed efficient methods and models to construct
K-anonymity spatial region (K-ASR) to protect user privacy.
,e authors in [36] proposed a location privacy-preserving
K-anonymity method based on the credible chain, in which
the optimal K value for the user is determined according to
the user’s environment and social attributes. ,e authors in
[37] proposed a privacy scheme through caching and spatial
K-anonymity (CSKA) and utilized the Markov model to
predict the next query location according to the user mo-
bility in continuous LBS. ,e TTP-based schemes, to some
extent, solve the problem of privacy leakage in LBS. How-
ever, the introduction of the anonymizer in these schemes
actually transfer users’ trust from the SP to the intermediate
entities. If it is compromised by the adversaries, it will pose a
serious threat to users. ,us, these TTP-based schemes can
only provide limited security assurance. In order to address
the problem, in our previous work [38], we designed a
privacy-preserving scheme based on location transforma-
tion getting rid of the fully trusted entities to provide en-
hanced security. ,e anonymizer can provide users accurate
results without knowing any information about a user’s real
location.

,e TTP-free schemes were adopted in the distributed
peer to peer (P2P) environment to protect user privacy.
Montazeri et al. in [39] introduced an information-theoretic
notion for location privacy offering two models in both
snapshot LBS and continuous LBS. Huang et al. [40] pro-
posed a multimodal Bayesian embedding model (MMBE)
for point-of-interest (POI) recommendation on location-
based cyber-physical social networks. Sangaiah et al. used
machine learning techniques to propose a method for
conserving position confidentiality of roaming PBSs users in
[41]. ,e authors in [42] considered the privacy and utility
requirements of each user to propose an optimal user-
centric location obfuscation mechanism. Sun et al. [43]
introduced the location-label based (LLB) algorithm to
distinguish locations of mobile users to sensitive and

Table 3: Comparison of our proposed with other protocols.

Protocol TTP Server Cryptographic methods
MLS [11] No Separately deployed LS and SNS AES and RSA signature
VPPLS [13] Yes Integrated LBSNS Homomorphic encryption
UDPLS [22] No Separately deployed LS and SNS AES and RSA signature
Our scheme No Integrated LBSNS OPE
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ordinary locations and designed three protocols to protect
user privacy for different user environments. Zhang et al. [9]
proposed a deviation-based query exchange (DQE) scheme
to obfuscate the users’ query point to mitigate trajectory
disclosure inMSNs. In our previous work [44], we presented
a collaborative trajectory privacy-preserving (CTPP) scheme
for continuous LBS queries, in which trajectory privacy is
guaranteed by caching-aware collaboration between users.
,e main idea is to spatiotemporally break the correlations
of continuous LBS queries to prevent the adversary from
reconstructing a user’s actual trajectory. ,e main drawback
of TTP-free scheme is that multiple-round interaction be-
tween the servers and the user may cause a higher com-
munication cost and may incur a higher computation
overhead on the user side.

In addition, differential privacy technology [45–47],
mix-zone method [48, 49], and encryption-based methods
are also adopted to protect user privacy in LBS.

7.2. Location-Sharing Service. Our paper briefly focuses on a
popular LBS location-sharing service, which enables users to
share their current locations by the GPS-enabled devices to
their friends on the MSNs or to find whether any friends are
within a given vicinity area. It makes a large number of social
network applications by the virtue of the smartphone and
MSNs. Previous research studies [11, 12] discussed the issue
of privacy preservation for the location-sharing service. In
order to protect location privacy and social network privacy
of mobile users, Li et al. [11] proposed a location-sharing
construction with multiple location servers, in which the
user’s friend set was divided into multiple subsets randomly.
Zheng et al. [2] presented a location tag constructionmethod
by environmental signals to provide an unforgeable location
proof and used Bloom filters to efficiently represent users’
location tags and vicinity regions. In the spatial-general-
ization-based method [50, 51], the user location space is
divided into grids, and the precise position of user is
replaced by the generalized grid prior to sending to SP. ,e
authors in [50] proposed two protocols named “Hide and
Seek” and “Hide and Crypt” based on spatial generalization
to offer private proximity detection. Based on the “one
degree” grid, Jing et al. in [51] presented a flexible and
private proximity testing (FPODG) protocol. However, in
the existing solution, the privacy of users can hardly be
guaranteed without the assumption of fully trust in the
service provider. Homomorphic encryption- (HE-) based
privacy-preserving location-sharing scheme methods
[13, 14] allow mobile users to compute distances between
them and their friends without knowing the exact locations
of each other. Based on HE, Tang and Cai proposed privacy-
preserving location-sharing scheme (VPPLS) to build two
models to enable users to query their friends’ location in a
secure way, which allowed user to make a classification of his
friends and provide a verification for query result. ,e main
drawback of these methods is the large computational and
communication cost of the system, which makes the scheme
less practical. Li and Jung [52] used the technology of ci-
phertext policy attribute-based encryption (CP-ABE) to

design fine-grained privacy-preserving location query pro-
tocol (PLQP), and it satisfies different levels of location
query and realize fine-grained and multileveled access
control. ,ese cryptographic-based methods can provide
strong privacy guarantee for users at the high expense of
computation and traffic. We proposed a lightweight privacy-
aware friend locator (PAFL) in our previous work [3] to
provide privacy guarantee for the user in an efficient way.
However, the coarse-grained friend locator method cannot
meet the personalized needs of mobile users. In this paper,
we proposed a flexible ULSS scheme for private proximity
detection, in which each user can maintain his own privacy-
preserving control policy.

8. Conclusion

In this paper, we proposed user-defined location-sharing
scheme in mobile social networks to protect user privacy in
proximity detection service. We proposed two protocols,
coarse-grained proximity detection and lightweight user-
defined nearby friend detection to realize proximity query of
users in different scales of vicinity regions. Our scheme is
TTP-free architecture, in which the location-based services
and social network services are integrated by one LBSNS
server, making it more practical and convenient. Experi-
mental results suggest that the ULSS scheme consumes low
computational and communication overheads even for a
large size of vicinity area and mount of friends. In our
scheme, we used a minimum bounding rectangle to cover
the user-specified vicinity region, which affects the accuracy
of the results. In the future, we will propose an approach
which can support the irregular shape vicinity to deliver
services in more accurate ways.
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