Hindawi

Scientific Programming

Volume 2020, Article ID 8810215, 10 pages
https://doi.org/10.1155/2020/8810215

Research Article

Hindawi

Heuristic Algorithms for MapReduce Scheduling Problem with
Open-Map Task and Series-Reduce Tasks

Feifeng Zheng,' Zhaojie Wang,' Yinfeng Xu,' and Ming Liu

'Glorious Sun School of Business ¢& Management, Donghua University, Shanghai, China
2School of Economics & Management, Tongji University, Shanghai, China

Correspondence should be addressed to Ming Liu; mingliu@tongji.edu.cn

Received 20 May 2020; Revised 14 June 2020; Accepted 23 June 2020; Published 15 July 2020

Academic Editor: Lu Zhen

Copyright © 2020 Feifeng Zheng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on the classical MapReduce concept, we propose an extended MapReduce scheduling model. In the extended MapReduce
scheduling problem, we assumed that each job contains an open-map task (the map task can be divided into multiple unparallel
operations) and series-reduce tasks (each reduce task consists of only one operation). Different from the classical MapReduce
scheduling problem, we also assume that all the operations cannot be processed in parallel, and the machine settings are unrelated
machines. For solving the extended MapReduce scheduling problem, we establish a mixed-integer programming model with the
minimum makespan as the objective function. We then propose a genetic algorithm, a simulated annealing algorithm, and an L-F
algorithm to solve this problem. Numerical experiments show that L-F algorithm has better performance in solving this problem.

1. Introduction

For meeting the unpredictable demand, manufacturing
companies often acquire more manufacturing equipment.
Scheduling jobs to be processed on these manufacturing
equipment increase the complexity of business operations
[1]. Job scheduling is mainly used to assist decision makers
in deciding the processing sequence of jobs and the allo-
cation of machines. Many scholars have studied the classical
scheduling problems, such as single-machine scheduling
problem and parallel-machine scheduling problem. It is
worth noting that the combination of MapReduce job and
machine scheduling has attracted more and more scholars’
attention in recent years. In fact, MapReduce system is a
popular method of big data processing [2]. MapReduce
generally consists of one map task and one reduce task, and
the reduce task is strictly behind the map task. Normally, the
map task can be arbitrarily split into multiple map opera-
tions, and all the map operations can be processed in parallel
on multiple parallel machines, while the reduce tasks are
unsplittable; thus, the reduce tasks can only be processed by
one machine. In the classical MapReduce scheduling
problem, each job consists of the map tasks and the reduce

tasks, and the reduce task is strictly behind the map task [3].
Normally, the reduce task contains only one operation.

Many current studies on MapReduce scheduling prob-
lem assume that the available machines are identical parallel
machines, i.e., for the same operation, the processing speed
of machines is the same. In actual production and sched-
uling environment, production models of MapReduce-like
systems are widely used. For example, the manufacturing
and manual assembly of parts and components of some
valuable watches can be regarded as the production mode of
MapReduce. Another example, after finishing the basic
production of a high-grade cheongsam, it often requires
manual embroidery by multiple processors. In the process of
embroidery, many embroidered patterns are often not
processed in sequence. After the embroidery is finished, it
needs to be ironed by one of the processors and then be
packed. From embroidery to packaging, this cheongsam can
be regarded as the extended MapReduce-like job. Un-
doubtedly, MapReduce scheduling has a strong practical
significance.

However, in the actual situation, there is a kind of jobs
similar to MapReduce job. It may be easier for us to describe
their features in terms of MapReduce terminology. Thus, we

mailto:mingliu@tongji.edu.cn
https://orcid.org/0000-0003-3190-5008
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8810215

will mention such jobs as extended MapReduce jobs. Spe-
cifically, each extended MapReduce job consists of one open-
map task and several series-reduce tasks. Different from the
classical MapReduce job, the extended MapReduce job
cannot be processed in parallel. The operations of open-map
task of the extended MapReduce job can be processed by any
machine without strict sequential processing sequence (like
operations of an open shop job), but cannot be processed in
parallel. This is similar to open shop, so we call it open-map
task. We say each open-map task of a job can be divided into
multiple map operations. The expanded MapReduce job also
consists of several series-reduce tasks. In this paper, we
mainly study the expanded MapReduce scheduling problem.

We consider an extended MapReduce scheduling
problem with the open-map task and series-reduce tasks,
motivated by their practical fixed partition applications.
There are three main differences between our research and
the classical MapReduce scheduling problem:

(1) We assume that the parallel machines are unrelated,
while the machines are identical in the classical
MapReduce model

(2) In the extended MapReduce scheduling problem,
map operations (i.e., a partition of the open-map
task) cannot be processed in parallel. In the extended
MapReduce scheduling problem, the division of an
open-map task, i.e., map operations, is known a
priori

(3) We extend the classical MapReduce scheduling
problem by assuming that there are several series-
reduce tasks during processing.

In the extended MapReduce scheduling problem, each
job consists of two kinds of tasks: one open-map task and
several series-reduce tasks. There is no strict requirement of
processing sequence for the map operations (like opera-
tions of one job in open shop), but there is strict re-
quirement of processing sequence for the reduce
operations (each operation corresponds to one series-re-
duce task). Moreover, it is obvious that the extended
MapReduce scheduling problem is an NP-hard problem,
because it is an extension of the parallel machine makespan
minimization problem.

To address the extended MapReduce scheduling prob-
lem, we establish a mixed-integer programming model with
the minimum makespan as the objective function. We then
solve it by CPLEX, a genetic algorithm, and a simulated
annealing algorithm, respectively. Besides, we design a
heuristic algorithm which we called L-F algorithm to im-
prove the solution efficiency. We compare L-F algorithm
with the genetic algorithm and the simulated annealing
algorithm to verify its performance.

The studies of MapReduce scheduling problem often
assume that all the jobs are processed on identical parallel
machines [4, 5]. First, in the case of online study based on
this assumption, [6] considers a two-stage classical flexible
flow shop problem based on MapReduce system, and give an
online 6-approximation and an online (1 + €)-speed O (1/€*)-
competitive algorithm. Assuming that the reduce task is

Scientific Programming

unknown before the map task is completed, [7] considers the
preemptive and nonpreemptive processing scenarios and
prove that no matter what the processing scenario is the
competition ratio of any algorithm is at least 2 —1/n. For
improving system utilization for batch jobs, [8] proposes a
modified MapReduce architecture that allows data to be
pipelined between operators. Jiang et al. [9] propose an
online algorithm which can optimize their MapReduce
problem, where the map operations are fractional and the
reduce operations are preemptive. The paper [10] studies an
online MapReduce scheduling problem on two uniform
machines and discusses the competitive ratio with pre-
emption or nonpreemption, respectively.

Second, in the online scenario, [11] solves an online job
scheduling problem with flexible deadline bounds via a
receding horizon control algorithm. The study in [12] ex-
pands the MapReduce tasks by allowing user specify a job’s
deadline and try to make the job finished before the deadline.
Li et al. [13] study a MapReduce periodical batch scheduling
problem with makespan minimization and propose three
heuristic algorithms to solve the problem. Fotakis et al. [14]
propose an approximation algorithm for the nonpreemptive
MapReduce scheduling. They also verify the performance of
the algorithm through numerical experiments. Most studies
in the field of MapReduce scheduling have only focused on
the improvement of algorithms for the classical MapReduce
scheduling problem. However, few researches expand the
classical MapReduce scheduling problem according to its
practical applications.

In this work, we consider an extended MapReduce
scheduling problem with the open-map task and several
series-reduce tasks. In this problem, we assume that the
open-map task of each job is splittable (with fixed partition
pattern), and all the series-reduce tasks are unsplittable in
processing. Specifically, the operations of the open-map task
of one job are given beforehand. These operations must be
performed in sequence, but without precedence relation. We
establish a mixed-integer programming model with the
minimum makespan as the objective function then adopt
CPLEX to solve it. We design a heuristic algorithm called L-F
algorithm for this problem and compare it with the baseline
heuristic algorithms. Finally, we found that L-F algorithm
has advantages through numerical experiments.

The main contributions of this work are threefold:

(1) Different from the classical MapReduce scheduling
problem, we consider series-reduce tasks (in this
work, we are mainly considering two series-reduce
tasks). The map operations cannot be processed in
parallel.

(2) We consider the processing scenario in which each
job is processed on a set of unrelated parallel ma-
chines with different processing speeds.

(3) We establish a mixed-integer programming model;
then, we adopt CPLEX and two classical heuristic
algorithms to solve this problem. Besides, we design
an L-F algorithm to solve this problem more
efficiently.

Scientific Programming

The remainder of this paper is organized as follows.
Section 2 mathematically models the problem and solves the
problem via CPLEX. In order to solve this problem in large
scale, Section 3 designs heuristic algorithms (a genetic al-
gorithm, a simulated annealing algorithm, and an L-F al-
gorithm). Section 4 compares the designed L-F algorithm
with genetic algorithm and simulated annealing algorithm.
Section 5 concludes the paper and gives future research
directions.

2. Problem Statement and Mathematical Model

There are n jobs to be processed on the m unrelated ma-
chines. Each job contains k operations. There are one open-
map task and several series-reduce tasks. The operations 1 to
(k —r) represent the map operations of the open-map task of
each job. The operations (k—r+1) to k represent reduce
operations of the series-reduce tasks of the job. The specific
characteristics of a job with two series-reduce tasks are
shown in Figure 1. The processing time of operation u
(1<u<k) for job j by machine i is denoted by P/“. In ad-
dition, the processing of any two (no matter map or reduce)
operations of a job cannot be overlapped. That is to say, any
job cannot be processed on more than one machine at the
same time. The other processing rules are as follows. We aim
to produce a processing schedule so as to minimize the
makespan.

(1) In the open-map task of any job, there is no strict
requirement for the processing sequence of the given
map operations.

(2) For any job, only after completing map operations,
the reduce operations can start to be processed.

(3) The reduce operations can be processed by any
available machine, and the reduce operations of a job
are processed in a strict sequence. After the previous
reduce operation is finished, the next one can be
processed.

The problem under consideration is based on the as-
sumptions that setup time of machine and transportation
time of job between operations are not considered. In this
work, we propose scheduling methods to minimize the
makespan for this problem. Without loss of generality, we
assume that in a reasonable schedule, there may be idle time
between the processing times of any two consecutive op-
erations on a machine. Below, we propose a mixed-integer
linear programming model for this problem. For conve-

2.1. Basic Notations

2.1.1. Indices

i: index of machines

j: index of jobs

u: index of all operations of a job

h: index of positions on a machine

v: index of reduce operations of a job

s: index of processing orders of operations of a job

2.1.2. Input Parameters

M set of machines, and =11, 2, ..., m}

J: set of jobs, and J={1, 2, ..., n}

r: the number of reduce operations

U: set of operations, and U ={1, 2, ..., k—r, k—r+1, ..,
k}

H: set of positions on a machine, and H={1, 2, ..., p}
M: a sufficiently large positive integer

Plj": the processing time of operation u of job j when
processed by machine i

2.1.3. Decision Variables

x' a binary variable equal to 1 if operation u of job j
begins to be processed by machine i at position h, 0
otherwise.

ju

z; : a binary variable equal to 1 if operation u of job j is

processed by machine i, 0 otherwise.

y2": a binary variable equal to 1 if operation u in job j is
processed in the order of s, 0 otherwise. Note that if
u€[r+1, k], s must be equal to u, because they cor-
respond to series-reduce tasks.

C/“: the completion time of the operation u of job j.

Crax: the maximum completion time of operation u of
job j.

$/“: the time when operation u of job j began to be
processed.

Pi*; the processing time of operation u of job j.

2.2. Mathematical Model. The objective is to minimize the
makespan, as shown in the following formula:

nience, we first explain the basic symbols and decision min f = C,,,, (1)
variables and then build the model.
subject to
Zfo;l‘:l, ie dl,heH, 2)
j€J ueU
Zx{::z{ul, ied,je],uel, (3)

heH

Scientific Programming

Open-map task Series-reduce tasks

-~
_J
-
_J

i
|
|
I
I
|
i
|

Operation k - 1 Operation k i
|
|
|
|
I
I
|
|
|

Operation 1
Operation 2

L

FIGURE 1: The specific process characteristics of the extended MapReduce job (the case that r=2).

Yz'=1, jeJuel, (4)

iell
Yylt=1, jelucel, (5)

seU
Zyguzl, je],uEU, (6)

ueU
st-CcMz0-M *(2 —yi” —yi"‘>, jel, uul,s,steU, andul #u,s>sl, (7)
pf”:Zp{“*z{“, jel,uel, (8)

iedll

$M20-M=(1-x{"), jel,uel, 9)

§ "™ s0-M

/

*<2— Zx{;:— Zx{;,u>, j»j € J, u,ure U, and j# jroru#ut,h,hie Handh>h,

ieM ieM

(10)

=YY Y Pl Me(1-x0),
jreJ upeU hye[1,h-1] (11)

jeJ,ueU, heHandj#jlroru#ul,

C=8¢"+P" jeJ,ueU, (12)
Coax2C*, e, (13)
SjVZCjV', jel,velk—r+1Lk—-r+2,.., k-1, vie{v+ L,v+2,...,k}, (14)
§'>CM jel,ue{l,2,... k-t velk—r+1Lk—r+2,...,k}, (15)
x{;:, zf“, yi”e{O, 1}, ied,je],u,seU, heH, (16)
CM", Crur P, 8", jeJucU. (17)

Scientific Programming

Constraints (2)-(4) guarantee that each operation can
only be processed by at most one machine at a time, and any
operation must be completed. Constraints (5)-(7) guarantee
that any operation cannot be processed in parallel. Con-
straint (8) calculates the actual processing time of operation
u of job j. Constraints (9)-(11) calculate the start processing
time of any operation and describe the relationship between
the start processing time of two operations on the same
machine. Constraints (12)-(13) calculate the completion
time of any operation and the makespan. Constraints (14)-
(15) calculate the start processing time of the reduce op-
eration. Constraints (16)-(17) limit the ranges of the
variables.

3. Heuristic Algorithms

As the problem is NP-hard, we propose a genetic algorithm
and a simulated annealing algorithm to solve it. Since the job
with two reduce tasks are common in practice, we solve the
extended MapReduce scheduling problem with two reduce
tasks via CPLEX and heuristic algorithms. Otherwise, a new
heuristic algorithm, i.e., L-F algorithm, is proposed to solve
this problem more efficiently.

3.1. Genetic Algorithm. Genetic algorithms are computa-
tional models to simulate the natural selection and genetic
mechanism of Darwin’s biological evolution theory. It is a
method to search the optimal solution by simulating the
natural evolution process. Genetic algorithms have been
widely used in scheduling problems [15, 16] and other NP-
complete problems [17]. In genetic algorithms, each chro-
mosome represents a feasible solution to the problem
studied. In this section, for solving this problem, we generate
a certain number of initial feasible solutions, i.e., initial
population, and then through cyclic selection of the parents,
we get offspring through the process of crossover and
mutation of the parents’ chromosomes, constantly opti-
mizing to find the optimal solution.

3.1.1. Chromosome Representation. In this study, each
chromosome can be divided into two parts on average. All
the elements of the first part represent all the operations of
all the jobs, which are called operation genes. All the ele-
ments of the second part represent the number of machines,
which are called machine genes. For example, in Figure 2,
the first element of the chromosome is 21, representing
operation 1 of job 2, and the tenth element (the first machine
gene) is 1, representing machine 1. The operation genes
correspond to the machine genes one by one. For example,
in Figure 2, the first operation gene is 21, and the first
machine gene is 1, which means that operation 1 of job 2 is
processed by machine 1.

In addition, on each chromosome, if both operations
belong to a job, the start processing time in the subsequent
operation is later than the completion time of the preceding
operation. Similarly, on each chromosome, if two operations
are assigned to the same machine, the start time of the

subsequent operation is later than the completion time of the
previous operation.

3.1.2. Initialization of Chromosomes. We randomly generate
chromosomes according to the number of jobs, the number
of machines, and the processing rules. For example, in
Figure 2, in the first part of chromosomes, operation 2 of job
2 (22) and operation 1 of job 1 (11) correspond to machine 2.
However, operation 2 of job 2 is ahead of operation 1 of job
1. That is to say, the starting time of operation 1 of job 1 must
be after the completion time of operation 2 of job 2.

3.1.3. Fitness Function. In the genetic algorithm, fitness
determines the probability that a chromosome is selected as
a parent chromosome. We assume that NIND is the number
of individuals in the population, j is the jth chromosome in
the population, and obj (j) is the corresponding objective
value of chromosome j in the population. Since this study
aims to minimize the objective function, we define the fitness
value of chromosome j as 1/obj (j).

3.1.4. Crossover and Mutation. In genetic algorithm, after
mutation and crossover, the offspring cannot only retain the
high-quality genes stained by the parent chromosomes, but
also make the new chromosome population more diverse.
However, the processes of crossover and mutation are easy
to generate infeasible solution. For example, in this study, if
we cross or mutate the operation genes of the chromosomes,
this will easily lead to some operations being reprocessed
and some operations not being processed, which is obviously
inconsistent with our intention. Adopting a correcting al-
gorithm to modify unfeasible offspring is very time-con-
suming; hence, it is preferable to design operators such that
precedence constraints are not violated [18].

In this problem, any operation can be processed by any
machine. Therefore, in order to avoid infeasible solutions,
we only cross the machine genes. Since there is no crossover
of the operations genes in the chromosomes, the order of
operation genes in the chromosome is still feasible. It is
obvious that each of the obtained offspring still represents a
feasible solution. From the aspect of chromosome mutation,
we randomly select a chromosome in a population. When
the generated random number is less than the mutation
probability, based on empirical data (the following six steps
are executed with a probability of 0.1 to 1, respectively; we
find that the effect is better when the probability is 0.3), we
divide the genetic algorithm into the following six steps to
carry out chromosome mutation based on empirical data:

Step 1. Randomly select two machine genes on the
chromosome with the probability of 0.3, and then
generate them again.

Step 2. Randomly select two jobs with the probability of
0.3, and then exchange all the operation genes of the
two jobs in chromosome. The genes of the corre-
sponding machine parts are then randomly generated.

6 Scientific Programming
Operations Machines
s ' Y ')
Chromosome | 1 3y 135 95|11 (12|13 (33| 23| 1 |22]2 |21 |1]|2]1
representation

<

-

F1GURE 2: Chromosome representation.

Step 3. Randomly select a job with the probability of 0.3,
and then exchange the operation genes in chromosome
that represent the map operations of the job.

Step 4. Randomly select two jobs with the probability of
0.3. Then, randomly select one map operation from
each job, under the condition that no infeasible solu-
tion is generated. Then, the map operation genes of the
two jobs are changed.

Step 5. Randomly select two jobs with the probability of
0.3, and then change the first reduce operation genes of
the two jobs.

Step 6. Randomly select two jobs with the probability of
0.3, and then change the second reduce operation genes
of the two jobs.

3.1.5. Termination Conditions. When the following condi-
tions are satisfied, the genetic algorithm runs out. (1) The
number of iterations reaches the maximum preset number;
(2) the fitness value of the best chromosome in the pop-
ulation remains unchanged in the last 100 consecutive
generations.

3.2. Simulated Annealing Algorithm. Simulated annealing
algorithms (SA) are local search methods [19]. In recent
years, the algorithms have been more and more widely used
in scheduling problems [20]. The earliest idea of the algo-
rithm is proposed by [21]. Simulated annealing algorithms
are derived from the principle of solid annealing [22]. The
solid is heated to a sufficiently high temperature and then
allowed to cool slowly. When heating, the internal particles
of the solid become disordered with temperature rise, and
the internal energy increases, while the particles gradually
decrease during cooling. It tends to be in an orderly state,
reaching an equilibrium state at a temperature, and finally
reaching the ground state at normal temperature. The in-
ternal energy is minimized. In this section, we solve the
above problem via a simulated annealing algorithm.

3.2.1. Initial Feasible Solution. We encode the initial feasible
solution with 2*# (1 is the sum of the number of operations
of all jobs) elements. In the initial feasible solution, the first
elements represent the operations, which are called opera-
tion elements. The last 7 elements represent the machines,
which are called machine elements. The initial feasible
decoding method is the same as that of chromosome coding
in genetic algorithm. However, it is worth noting that in

simulated annealing algorithm, we only generate an initial
feasible solution. The diversity of feasible solutions is
achieved by continuously generating new flexible solutions.

3.2.2. New Feasible Solution. To avoid generating infeasible
solutions, we transform the initial feasible solutions in the
following steps based on empirical data (the following six
steps are executed with a probability of 0.1 to 1, respectively;
we find that the effect is better when the probability is 0.3):

Step 1. Randomly select two machines elements from
the old solution with a probability of 0.3, and then
generate them randomly again.

Step 2. With a probability of 0.3, the operation elements
in the new solution are mutated by randomly selecting
two jobs. All the operation elements of the two jobs are
exchanged with each other in the solution, and then the
elements of the corresponding machine parts are
randomly generated.

Step 3. Randomly select a job with a probability of 0.3,
and then exchange the position of the operation ele-
ments in the solution of the open-map task of the job.

Step 4. Randomly select two jobs with a probability of
0.3, and then change the elements in the solution
representing the map operations of the two jobs.

Step 5. Randomly select two jobs with a probability of
0.3, and then exchange the elements in the solution
representing the first reduce operations of the two jobs.

Step 6. Randomly select two jobs with a probability of
0.3, and then exchange the elements in the solution
representing the second reduce operations of the two
jobs.

Each initial feasible solution is called new feasible so-
lution after the above steps of transformation.

3.2.3. Selection. We use R1, R2, and T, to represent the
objective values of the initial feasible solution, the objective
values of the new feasible solution, and current temperature,
respectively. We judge whether to accept the new feasible
solution according to the Metropolis criterion. That is, if the
objective value of the generated new feasible solution is
better than the objective value of the initial feasible solution,
then accept the new feasible solution. Otherwise, it is nec-
essary to further judge whether exp (R1 — R2/T) is greater
than or equal to the number randomly generated from 0 to 1.

Scientific Programming

If so, accept the new feasible solution; otherwise, refuse to
accept the new feasible solution.

3.3. L-F Algorithm. For solving the extended MapReduce
scheduling problem, an algorithm based on Least Processing
Time first (LPT) rule and First Come, First Served (FCES)
rule is proposed, which is called an L-F algorithm. We divide
all the extended MapReduce jobs’ processing process into
three stages. The first stage is dedicated to the open-map
task, the second stage is for the first series-reduce task, and
the third stage is for the second series-reduce.

When an operation is processed by a machine which takes
the longest processing time to process this operation in the
machine set, we call it processed in the worst case. For ex-
ample, if the processing time of an operation is 10 on machine
1 and 5 on machine 2, then the processing time in the worst
case is 10. In order that a job with a longer processing time in
the worst case can be processed on a faster machine, in the
first stage, all the map operations of all jobs are processed in
the sequence of processing time under the worst case from the
longest to the shortest. When starting to process each op-
eration, we choose the machine with the minimum com-
pletion time for the operation. For the operations which
belong to the second and third stages of the process, we sort
them according to the principle of first come, first served.
Among all the jobs, open-map task of a job is the first to be
completed, and the first series-reduce task of the job is the first
to start being processed. Similarly, the first series-reduce task
of a job is the first to be completed, and the second series-
reduce task of the job is the first to start being processed.

The specific steps of L-F algorithm are as follows:

Step 1. According to the processing time in the worst
case, the map operations are sorted in a nonincreasing
order. Each operation is processed on the machine that
can complete it in the shortest completion time.

Step 2. After all the map operations of a job is com-
pleted, the first reduce operation 10 of the job starts to
be processed on the available machine that can com-
plete it in the shortest completion time.

Step 3. After the first reduce operation of a job is
completed, the second reduce operation starts to be
processed on the available machine that can complete it
in the shortest completion time.

4. Numerical Experiments

In this section, in order to compare the performance of the
L-F algorithm, the genetic algorithm, and the simulated
annealing algorithm, we carry out three numerical experi-
ments in different scales by MATLAB R2014b on a PC with
Intel Core i5. This paper focuses on solving the extended
MapReduce scheduling problem with two reduce tasks; thus,
in numerical experiments, only two reduce tasks are in-
cluded in each job.

In small-scale instances, we adopt CPLEX to solve the
mathematical model. CPLEX is one of the important tools
for solving mixed linear programming problems [23]. In the

genetic algorithm, based on parameter of experiments, we
assume that the initial population number is 100, the
number of iterations is 200, the crossover rate is 0.3, and the
mutation rate is 0.7. In the simulated annealing algorithm,
we assume that the initial temperature is 1000, the minimum
temperature is 0.001, the cooling rate is 0.1, and the number
of iterations at each temperature is 100. In addition, we
assume that the solution value obtained by one heuristic
algorithm is obj, and the optimal solution obtained by
CPLEX is obj*; then, there is gap = (obj — obj */obj").

4.1. Small-Scale Instances. We first carry out numerical ex-
periments on small-scale instances. In each instance, we first
randomly generate 10 sets of processing time data for op-
erations of all jobs from 1 to 5. We then calculate the average
of the objective values, the gap value, and the running time of
CPLEX, the genetic algorithm, the simulated annealing al-
gorithm, and L-F algorithm; the results are shown in Table 1.
Besides, we also randomly generate 10 sets of processing time
data for operations of all jobs from 1 to 10 for each instance.
Similarly, we then calculate the average of the objective values,
the gap values, and the running times of CPLEX and the three
heuristic algorithms; the results are shown in Table 2.

From the small-scale instances, it can be seen that when
the range of the processing time of operations is enlarged
from (1, 5) to (1, 10), the running time of CPLEX increases
significantly. While the running time of the genetic algo-
rithm, the simulated annealing algorithm, and L-F algorithm
does not change significantly. From the aspect of gap value,
when the range of the processing time of operations is
enlarged, the gap values of the genetic algorithm and sim-
ulated annealing algorithm decrease slightly. However, the
gap value of L-F algorithm increases slightly with the in-
crease of processing time of all the operations.

Besides, Tables 1 and 2 report that the running times of
all the three heuristic algorithms are significantly less than
CPLEX. L-F algorithm is slightly better than the genetic
algorithm and the simulated annealing algorithm in solution
quality and computational time. In addition, the genetic
algorithm is better than the simulated annealing algorithm
in terms of running time. The gap value of the genetic al-
gorithm is slightly smaller than that of the simulated
annealing algorithm. Specifically, when the number of
machines is 2, the genetic algorithm and the simulated
annealing algorithm are better than L-F algorithm in so-
lution quality. In general, gap values of the genetic algorithm
and the simulated annealing algorithm are proportional to
the number of machines and jobs. However, with the in-
crease of the number of machines and jobs, the gap value of
L-F algorithm decreases in general.

4.2. Large-Scale Instances. In this section, for comparing the
performance of the genetic algorithm, the simulated
annealing algorithm, and L-F algorithm, we carry out nu-
merical experiments on large scale. In this numerical ex-
periment, we also randomly generate 10 sets of data in a range
of 1 to 10 of processing time of operations of all jobs under the
different scale of machines and jobs. Due to the fact that

8 Scientific Programming
TaBLE 1: Experimental results for small-scale instances of the processing time of operations range from 1 to 5.
CPLEX GA SA L-F
(m, n, k) . . .) . . .)
obj* Time obj Time gap obj Time gap obj Time gap
(2, 3, 3) 10.90 0.24 11.40 1.75 0.05 11.50 2.75 0.06 12.40 0.00 0.14
(2, 3, 4) 14.40 5.24 15.20 2.18 0.06 15.30 3.17 0.06 17.00 0.00 0.18
(2,3,5) 16.00 45.95 16.90 2.53 0.06 17.60 3.63 0.10 18.40 0.00 0.15
(2, 4, 3) 13.50 7.14 13.80 2.07 0.02 13.90 3.12 0.03 15.00 0.00 0.11
(2,4, 4) 16.70 545.07 18.10 2.61 0.08 18.40 3.82 0.10 19.70 0.00 0.18
(2,5, 3) 16.70 32.14 17.30 2.42 0.04 17.10 3.67 0.02 17.70 0.00 0.06
(3, 4, 3) 8.00 1.07 9.50 2.07 0.19 9.90 3.22 0.24 9.40 0.00 0.18
(3,4, 4) 10.60 112.79 12.80 2.61 0.21 13.60 3.80 0.28 13.30 0.00 0.25
(3,5, 3) 9.40 25.75 11.30 2.41 0.20 11.30 3.61 0.20 11.10 0.00 0.18
(3, 6, 3) 11.60 7231.70 13.30 2.74 0.15 13.90 4.02 0.20 13.90 0.00 0.20
(4, 5, 3) 7.30 1.35 9.40 2.43 0.29 9.90 3.58 0.36 8.20 0.00 0.12
(4, 5, 4) 9.30 243.26 13.40 3.13 0.44 14.10 4.46 0.52 12.60 0.00 0.35
(4, 6, 3) 8.30 49.19 10.90 2.82 0.31 11.80 4.04 0.42 9.50 0.00 0.14
(5, 5, 4) 7.50 12.23 11.20 3.13 0.49 12.60 4.40 0.68 9.40 0.00 0.25
(5, 6, 3) 6.20 2.52 8.90 2.78 0.44 10.50 3.99 0.69 7.60 0.00 0.23
(5, 6, 4) 8.20 177.18 12.80 3.51 0.56 14.60 4.95 0.78 10.60 0.00 0.29
(5, 7, 3) 6.90 251.84 11.10 3.16 0.61 11.80 4.19 0.71 8.40 0.00 0.22
(8, 10, 3) 5.70 304.38 11.00 4.16 0.93 12.00 5.71 1.11 6.80 0.00 0.19
Average 10.40 502.83 12.68 2.70 0.28 13.32 3.90 0.36 12.28 0.00 0.19
Note. gap = (obj — obj */obj").
TaBLE 2: Experimental results for small-scale instances of the processing time of operations range from 1 to 10.
CPLEX GA SA L-F
(m, n, k) .) . . .) . '
obj* Time obj Time gap obj Time gap obj Time gap
(2, 3, 3) 19.20 0.24 20.30 1.76 0.06 20.70 2.74 0.08 21.80 0.00 0.14
(2,3, 4) 24.00 5.93 26.40 2.19 0.10 25.90 3.16 0.12 27.40 0.00 0.14
(2,3,5) 34.40 553.70 36.50 2.55 0.06 37.80 3.74 0.10 39.80 0.00 0.16
(2, 4, 3) 21.50 7.93 22.80 2.09 0.06 22.90 3.08 0.07 24.80 0.00 0.15
(2, 4, 4) 30.90 8047.90 32.60 2.63 0.06 34.40 3.77 0.11 37.20 0.00 0.20
(2,5, 3) 30.90 2910.40 32.00 2.44 0.04 32.00 3.60 0.04 36.30 0.00 0.17
(3, 4, 3) 15.20 1.20 28.20 2.11 0.20 18.60 3.15 0.22 17.30 0.00 0.14
3, 4, 4) 19.00 32.20 23.70 2.65 0.25 25.10 3.80 0.32 23.30 0.00 0.23
(3,5, 3) 16.60 251.24 19.70 2.45 0.19 20.80 3.60 0.25 20.00 0.00 0.20
(3, 6, 3) 19.30 2181.60 22.80 2.80 0.18 24.00 4.15 0.24 22.80 0.00 0.18
(4, 5, 3) 13.10 1.12 15.50 2.44 0.18 17.10 3.60 0.31 13.70 0.00 0.05
(4, 5, 4) 15.10 209.78 22.40 3.10 0.48 24.70 412 0.64 18.90 0.00 0.25
(4, 6, 3) 14.10 35.06 18.00 2.80 0.28 19.50 4.07 0.38 16.40 0.00 0.23
(5, 5, 4) 12.00 9.94 19.40 3.09 0.62 21.90 4.48 0.83 14.50 0.00 0.21
(5, 6, 3) 11.60 3.03 16.00 2.76 0.38 17.90 4.03 0.54 12.90 0.00 0.11
(5, 6, 4) 11.80 22.69 18.20 3.12 0.54 20.20 4.43 0.71 13.70 0.00 0.16
(5, 7, 3) 10.60 77.17 17.20 3.13 0.62 20.50 4.52 0.93 13.10 0.00 0.24
(8, 10, 3) 9.10 101.94 18.70 413 1.05 21.40 5.81 1.35 10.70 0.00 0.18
Average 18.11 802.95 22.24 2.68 0.30 23.69 3.89 0.40 21.37 0.00 0.17

Note. gap = (obj — obj */obj").

CPLEX takes a lot of time to solve the problem, we calculate
gap value by replacing the exact objective value with the
minimum objective value obtained by the three heuristic
algorithms. In Table 3, we further expand the scale of jobs and
machines to compare the three heuristic algorithms.

From Table 3, we can see that L-F algorithm has better
performance than the genetic algorithm and the simulated
annealing algorithm in large-scale instances. The gap value
of the genetic algorithm and the simulated annealing al-
gorithm is proportional to the number of operations.

Otherwise, when the number of jobs and operations is
constant, the gap values of the genetic algorithm and the
simulated annealing algorithm are proportional to the
number of machines.

Table 3 also reports that when the number of machines
increases form 4 to 6, the gap values of the genetic algorithm
and the simulated annealing algorithm increase significantly.
However, when the number of operations of each job and
machines is constant, with the increase of the number of
jobs, the gap value of L-F algorithm decreases, while the gap

Scientific Programming 9
TaBLE 3: Experimental results for large-scale instances.
GA SA LF

(m, n, k) . , . . . ,

obj Time gap obj Time gap obj Time gap
(2, 30, 3) 178.70* 12.17 0.00 183.90 15.96 0.03 191.50 0.00 0.07
(2, 30, 5) 323.90" 21.53 0.00 332.10 27.28 0.03 333.50 0.01 0.03
(2, 30, 10) 683.40 55.08 0.12 696.80 65.45 0.14 611.60" 0.01 0.00
(2, 50, 3) 312.80" 21.03 0.05 318.30 27.29 0.02 327.00 0.01 0.05
(2, 50, 5) 563.20" 47.70 0.00 572.80 50.83 0.02 565.40 0.01 0.00
(2, 50, 10) 1204.10 117.87 0.17 1193.80 138.27 0.16 1029.90" 0.01 0.00
(2, 100, 3) 671.30 51.13 0.02 662.70 64.93 0.01 658.00" 0.01 0.00
(2, 100, 5) 1181.30 111.44 0.07 1168.30 135.79 0.06 1103.70* 0.01 0.00
(2, 100, 10) 2536.50 376.14 0.21 2480.60 435.82 0.18 2102.60" 0.03 0.00
(4, 30, 3) 87.80 11.85 0.19 95.10 15.66 0.29 73.70" 0.00 0.00
(4, 30, 5) 164.80 21.72 0.28 173.60 27.71 0.35 128.50" 0.01 0.00
(4, 30, 10) 368.70 55.72 0.49 378.10 66.39 0.53 247.20" 0.01 0.00
(4, 50, 3) 151.30 21.28 0.31 157.80 27.58 0.37 115.20* 0.01 0.00
(4, 50, 5) 280.60 41.30 0.39 291.90 51.65 0.45 201.50* 0.01 0.00
(4, 50, 10) 652.60 116.99 0.57 638.80 137.93 0.60 398.90" 0.02 0.00
(4, 100, 3) 338.70 53.83 0.47 333.50 68.64 0.44 231.10" 0.01 0.00
(4, 100, 5) 606.30 116.50 0.47 604.50 141.69 0.47 411.80" 0.02 0.00
(4, 100, 10) 1329.60 376.39 0.58 1301.20 433.62 0.62 821.20" 0.05 0.00
(6, 30, 3) 62.30 21.29 0.64 68.60 16.10 0.81 37.90* 0.01 0.00
(6, 30, 5) 114.50 22.41 0.77 125.70 28.28 0.94 64.70" 0.01 0.00
(6, 30, 10) 265.60 57.08 0.71 274.70 67.99 0.77 155.30" 0.01 0.00
(6, 50, 3) 109.80 21.16 0.70 113.80 27.39 0.76 64.50" 0.01 0.00
(6, 50, 5) 198.90 42.64 0.81 207.60 53.06 0.89 109.70* 0.01 0.00
(6, 50, 10) 447.00 118.65 0.94 457.50 139.43 0.99 230.40" 0.03 0.00
(6, 100, 3) 232.80 53.58 0.89 233.60 68.20 0.89 123.40" 0.01 0.00
(6, 100, 5) 416.30 114.81 0.88 421.50 139.36 0.90 221.80" 0.03 0.00
(6, 100, 10) 923.20 363.43 1.01 907.60 417.32 0.98 458.20" 0.06 0.00
Average 532.56 89.89 0.43 533.16 107.02 0.47 408.08 0.02 0.01

Note. gap = (obj — obj */obj").

value of the genetic algorithm and the simulated annealing
algorithm does not change significantly.

5. Conclusion

In this paper, we study an extended MapReduce scheduling
model with one open-map task and several series-reduce
tasks. Different from the classical MapReduce scheduling
problem, we assume that the map operations cannot be
processed in parallel and the available machines are unre-
lated machines. We then propose a genetic algorithm and a
simulated annealing algorithm and design L-F algorithm to
solve the problem. Finally, compared with the genetic al-
gorithm and the simulated annealing algorithm, L-F algo-
rithm has better performance in large-scale instances.

We propose two future research directions for studying
this problem. First, when different operations or jobs are
processed on the same machine, there may be setup time.
Future research on this problem can take setup time into
account. Second, considering preemptive processing, this
may be more realistic in some actual production scenarios.

Data Availability

The parameter setting data involved are available, and the
data involved in the numerical experiments are all obtained
from the solver and also included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant nos. 71771048, 71832001,
71531011, and 71571134) and the Fundamental Research
Funds for the Central Universities (Grant no. 2232018H-07).

References

[1] A. Vital-Soto, A. Azab, and M. F. Baki, “Mathematical
modeling and a hybridized bacterial foraging optimization
algorithm for the flexible job-shop scheduling problem with
sequencing flexibility,” Journal of Manufacturing Systems,
vol. 54, pp. 74-93, 2020.

J. Dean and S. Ghemawat, “MapReduce,” Communications of

the ACM, vol. 53, no. 1, pp. 72-77, 2010.

[3] Y. Ji, L. Tong, T. He, K.-W. Lee, and L. Zhang, “Improving
multi-job MapReduce scheduling in an opportunistic envi-
ronment,” in Proceedings of the 2013 IEEE Sixth International
Conference on Cloud Computing, pp. 9-16, Santa Clara, CA,
USA, June 2013.

[4] H. Chang, M. Kodialam, R. R. Kompella, T. V. Lakshman,
M. Lee, and S. Mukherjee, “Scheduling in MapReduce-like

[2

10

(5]

(6]

(8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

systems for fast completion time,” in Proceedings of the IEEE
INFOCOM, pp. 3074-3082, Shanghai, China, April 2011.

J. Huang, F. Zheng, Y. Xu, and M. Liu, “Online MapReduce
processing on two identical parallel machines,” Journal of
Combinatorial Optimization, vol. 35, no. 1, pp. 216-223, 2017.
B. Moseley, A. Dasgupta, R. Kumar, and T. SarlOs, “On
scheduling in map-reduce and flow-shops,” in Proceedings of
the 23rd ACM Symposium on Parallelism in Algorithms and
Architectures—SPAA °11, pp. 289-298, San Jose, CA, USA,
June 2011.

T. Luo, Y. Zhu, W. Wu, Y. Xu, and D.-Z. Du, “Online
makespan minimization in MapReduce-like systems with
complex reduce tasks,” Optimization Letters, vol. 11, no. 2,
pp. 271-277, 2015.

T. Condie, N. Conway, P. Alvaro, and J. M. Hellerstein,
“MapReduce online,” in Proceedings of the USENIX Confer-
ence on Networked Systems Design ¢ Implementation, San
Jose, CA, USA, April 2010.

Y. Jiang, W. Zhou, and P. Zhou, “An optimal preemptive
algorithm for online MapReduce scheduling on two parallel
machines,” Asia-Pacific Journal of Operational Research,
vol. 35, no. 3, pp. 1-11, 2018.

Y. Jiang, P. Zhou, T. C. E. Cheng, and M. Ji, “Optimal online
algorithms for MapReduce scheduling on two uniform ma-
chines,” Optimization Letters, vol. 13, no. 7, pp. 1663-1676,
2019.

D. Cheng, X. Zhou, Y. Xu, L. Liu, and C. Jiang, “Deadline-
aware MapReduce job scheduling with dynamic resource
availability,” IEEE Transactions on Parallel and Distributed
Systems, vol. 30, no. 4, pp. 814-826, 2019.

Z. Tang, J. Zhou, K. Li, and R. Li, “MTSD: a task scheduling
algorithm for MapReduce base on deadline constraints,” in
Proceedings of the 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops ¢ Ph. D.
Forum, Shanghai, China, May 2012.

X.Li, T. Jiang, and R. Ruiz, “Heuristics for periodical batch job
scheduling in a MapReduce computing framework,” Infor-
mation Sciences, vol. 326, no. 1, pp. 119-133, 2016.

D. Fotakis, I. Milis, O. Papadigenopoulos, E. Zampetakis,
G. Zois, and Z. S. Georgios, “Scheduling MapReduce jobs and
data shuffle on unrelated processors,” Experimental Algo-
rithms, vol. 9125, pp. 137-150, 2015.

U. Aickelin and K. A. Dowsland, “An indirect Genetic Al-
gorithm for a nurse-scheduling problem,” Computers &
Operations Research, vol. 31, no. 5, pp. 761-778, 2004.

Z. Zakaria and S. Petrovic, “Genetic algorithms for match-up
rescheduling of the flexible manufacturing systems,” Com-
puters & Industrial Engineering, vol. 62, no. 2, pp. 670-686,
2012.

A. Hassani and J. Treijs, “An overview of standard and parallel
genetic algorithms,” in Proceedings of the IDT Workshop on
Interesting Results in Computer Science and Engineering,
pp. 1-7, Visteras, Sweden, 1975.

F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic al-
gorithm for the flexible job-shop scheduling problem,”
Computers & Operations Research, vol. 35, no. 10, pp. 3202-
3212, 2008.

J. Ji, M. Mika, R. Rafal, W. Grzegorz, and W. Jan, “Simulated
annealing for multi-mode resource-constrained project
scheduling,” Annals of Operations Research, vol. 102, no. 1-4,
pp. 137-155, 2001.

M. Kolonko, “Some new results on simulated annealing ap-
plied to the job shop scheduling problem,” European Journal
of Operational Research, vol. 113, no. 1, pp. 123-136, 1999.

Scientific Programming

[21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598,
pp. 671-680, 1983.

[22] D. Bertsimas and J. Tsitsiklis, “Simulated annealing,” Statis-
tical Science, vol. 8, no. 1, pp. 10-15, 1993.

[23] Y. Shinano and T. Fujie, “ParaLEX: a parallel extension for the
CPLEX mixed integer optimizer,” in Recent Advances in
Parallel Virtual Machine and Message Passing Interface,
pp- 97-106, Springer, Berlin, Germany, 2007.

