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)e medical literature contains valuable knowledge, such as the clinical symptoms, diagnosis, and treatments of a particular
disease. Named Entity Recognition (NER) is the initial step in extracting this knowledge from unstructured text and presenting it
as a Knowledge Graph (KG). However, the previous approaches of NER have often suffered from small-scale human-labelled
training data. Furthermore, extracting knowledge from Chinese medical literature is a more complex task because there is no
segmentation between Chinese characters. Recently, the pretrainingmodels, which obtain representations with the prior semantic
knowledge on large-scale unlabelled corpora, have achieved state-of-the-art results for a wide variety of Natural Language
Processing (NLP) tasks. However, the capabilities of pretraining models have not been fully exploited, and applications of other
pretraining models except BERT in specific domains, such as NER in Chinese medical literature, are also of interest. In this paper,
we enhance the performance of NER in Chinese medical literature using pretraining models. First, we propose a method of data
augmentation by replacing the words in the training set with synonyms through the Mask Language Model (MLM), which is a
pretraining task. )en, we consider NER as the downstream task of the pretraining model and transfer the prior semantic
knowledge obtained during pretraining to it. Finally, we conduct experiments to compare the performances of six pretraining
models (BERT, BERT-WWM, BERT-WWM-EXT, ERNIE, ERNIE-tiny, and RoBERTa) in recognizing named entities from
Chinese medical literature. )e effects of feature extraction and fine-tuning, as well as different downstreammodel structures, are
also explored. Experimental results demonstrate that the method of data augmentation we proposed can obtain meaningful
improvements in the performance of recognition. Besides, RoBERTa-CRF achieves the highest F1-score compared with the
previous methods and other pretraining models.

1. Introduction

In recent decades, it has been generally known that the
rapid growth of information technology has resulted in
huge amounts of information generated and shared in the
field of medicine, where the number of published doc-
uments, such as articles, books, and technical reports, is
increasing exponentially [1]. For example, PubMed
houses over 380,000 publications found by just searching
the keyword “Diabetes” (Jan. 2009 to Oct. 2019). )e
medical literature contains valuable knowledge, such as
the clinical symptoms, diagnosis, and treatments of a
particular disease. However, it is time-consuming and

laborious for medical researchers to obtain knowledge
from these documents. )us, it is critical to extract in-
formation and knowledge from unstructured medical
literature using novel information extraction techniques
and present the findings in a visually intuitive Knowledge
Graph which supports machine-understandable infor-
mation about the medicine [2, 3].

Named Entity Recognition (NER) is the fundamental
task in Natural Language Processing (NLP). It is also the
initial step in extracting valuable knowledge from un-
structured text and building a medical Knowledge Graph
(KG). As shown in Figure 1, NER aims to recognize entities
from unstructured text, and the results of NER may affect
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subsequent knowledge extraction tasks, such as the Relation
Extraction (RE). In the early years, researchers used rule-
based or dictionary-based methods for NER tasks [4, 5].
However, these methods lack generalization, for they are
proposed for particular types of entities. Traditional machine
learning and deep learning methods emerging in recent
years are also used in NER tasks [6]. Nevertheless, the
performance of these methods often suffers from small-scale
human-labelled training data, resulting in poor general-
ization capability, especially for rare words. Moreover,
recognizing entities from Chinese documents is a more
complex task because there is no segmentation between
Chinese characters. Furthermore, in the field of Chinese
medical literature, some English symbols, such as the
chemical symbols Na and K, may appear in the documents,
which makes the NER task more difficult. )erefore, it is of
interest to know whether the prior semantic knowledge can
be learned from large amounts of unlabelled corpora to
improve the performance of NER.

Recently, pretraining models (e.g., BERT and ERNIE)
have achieved state-of-the-art (SOTA) results on several
NLP tasks. )e pretraining models obtain prior semantic
knowledge from large-scale unlabelled corpora through
pretraining tasks and improve the performance of
downstream tasks by transferring this knowledge to
them. However, the capabilities of pretraining models
have not been fully exploited, and most of the previous
works have focused on BERT [7, 8], but applications of
other pretraining models in specific domains, such as
NER in Chinese medical literature, are also of interest.

In this paper, we enhance the performance of NER in
Chinese medical literature using pretraining models. )e
dataset we used is “A Labelled Chinese Dataset for Diabetes
(LCDD),” which contains authoritative Chinese medical
literature in recent seven years. )e main contributions of
this paper can be summarized as follows:

(1) Firstly, we proposed a method of data augmen-
tation based on the Masked Language Model
(MLM). Pretraining models will predict the
masked words during the procedure of MLM,
which can be used for synonym replacement to
augment the training set [9]. Considering that
there is no segmentation between Chinese char-
acters, we choose ERNIE to conduct this task
because it has the entity-level and phrase-level
masking strategies.

(2) Secondly, we consider NER as a downstream task of
six kinds of pretraining models (BERT, BERT-

WWM, BERT-WWM-EXT, ERNIE, ERNIE-tiny,
and RoBERTa) and transfer the prior semantic
knowledge obtained during pretraining to the
downstream task to enhance the performance.

(3) Finally, exhaustive experiments are conducted based
on the LCDD dataset. We compare the performance
of the NER task on the original and augmented
training set. Meanwhile, in addition to comparing
the pretraining models with previous methods, we
compare the six pretraining models to each other.
Moreover, we also explore the performance under
different downstream models and two main ap-
proaches: feature extraction and fine-tuning. Ex-
perimental results demonstrate that the method of
data augmentation we proposed can obtain mean-
ingful improvements in the performance of recog-
nition. Besides, RoBERTa-CRF based on the
augmented training set with fine-tuning obtains the
SOTA result.

2. Related Work

In this section, we will introduce the related works of the
Named Entity Recognition, pretraining models, and data
augmentation.

2.1. Named Entity Recognition. )e Named Entity Recog-
nition aims to identify chunks of text which refer to specific
entities of interest, such as drugs, symptoms, treatments, and
diseases. Rule-based and dictionary-based approaches had
played an important role. For example, Gerner et al. [10]
used a dictionary-based approach to identify species names
in biomedical literature. Fukuda et al. [11] proposed a rule-
based method to extract material names such as proteins
from biological documents. However, these methods lack
generalization because they need hand-craft rules. Re-
searchers also tried using machine learning methods to
recognize entities from unstructured data. He et al. [12]
presented a CRF-based approach to recognize drug names in
biomedical texts. Wang et al. [13] compared six biomedical
NER tools based on the Hidden Markov Model (HMM) and
Conditional Random Field (CRF). Nevertheless, machine
learning methods need to choose a set of features manually,
which is time-consuming and laborious. In recent years,
deep learning methods, which can improve the performance
of NER without feature engineering, have received in-
creasing attention. For example, Zhu et al. [14] proposed an
end-to-end deep learning approach for biomedical NER

Unstructured medical text Structured data

There was no obvious inducement for the patient to have shortness of breath
after activity, intermittent upper extremity edema, and occasional chest
tightness. He was treated in the local hospital and considered as “coronary heart
disease”
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Figure 1: An example of NER.
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tasks which leverages the local contexts via Convolutional
Neural Network (CNN). For Recurrent Neural Network
(RNN), Chen et al. [15] used a Bidirectional Long Short-
Term Memory (BiLSTM) model for the NER from Chinese
adverse drug event reports. Chen et al. [16] used dictionary
features to help identify rare and unseen clinical named
entities. However, deep learning methods still suffer from
insufficient training data.

2.2. Pretraining Models. Recently, the pretraining models,
which generate representations of words with prior se-
mantic knowledge on large-scale unlabelled corpora,
have achieved state-of-the-art results for a wide variety of
NLP tasks [17]. Various pretraining models have emerged
after Devlin et al. [18] released BERT in 2018. )ese
models consist of multilayer bidirectional Transformer
blocks [19]. )e main differences among pretraining
models lie in the pretraining tasks and pretraining cor-
pora. Table 1 shows the difference in detail. We denote the
number of Transformer layers as L, the hidden size as H,
and the number of self-attention heads as A. During the
procedure of the Next Sentence Prediction (NSP), which
is a kind of pretraining task, the pretraining models are
trained to predict whether two sentences have a con-
textual relationship, and the pretraining models can
understand the relationship between the sentences in this
way.

For the NER task, Devlin et al. [18] first consider NER
as a downstream task of BERT for extracting named
entities from the news (MSRA-NER). Pires et al. [7]
realized zero-shot NER through multilingual BERT.
Besides, pretraining models are also used on domain-
specific NER, such as biomedicine. For example, Hakala
and Pyysalo [8] applied a CRF-based baseline approach
and multilingual BERT to the Spanish biomedical NER
task. However, the capabilities of pretraining models have
not been fully exploited. Furthermore, applications of
other pretraining models except BERT in specific do-
mains, such as NER in Chinese medical literature, are also
of interest.

2.3. Data Augmentation. A common approach of data aug-
mentation in the area of NLP is synonym replacement [24]. A
previous work found synonyms with k-nearest neighbours
using Word2Vec [25]. However, the MLM of pretraining
models is more suitable for synonym replacement. It is not only
because the word representations obtained by the pretraining
models contain more abundant semantic knowledge than
previous models but also because Word2Vec cannot handle
polysemous words. Wu et al. [9] proposed a method of data
augmentation based on BERT. However, BERT will mask the
Chinese characters, not words, during the procedure of the
MLM because there is no segmentation between Chinese
characters. )erefore, we perform data augmentation based on
ERNIE because it has entity-level and phrase-level masking
strategies in the MLM process. )e method of data augmen-
tation will be presented in Section 3.1.

3. Methods

3.1.DataAugmentationUsing ERNIE. As mentioned earlier,
the Masked Language Model (MLM) is intensely suitable for
data augmentation. During the procedure of the MLM, a
certain portion (e.g., 15%) of words are replaced by a special
symbol [MASK], and the pretraining model is trained to
predict the masked word. Specifically, for a token sequence
x � x1, . . . , xT􏼈 􏼉, the pretraining model first constructs a
corrupted sequence 􏽢x by randomly setting a portion of
tokens in x to a special symbol [MASK] [26]. )e training
objective is to reconstruct x from 􏽢x:

max
θ

logpθ
(x | 􏽢x) � 􏽘

T

t�1
mtlogpθ

xt

􏼌􏼌􏼌􏼌 􏽢x􏼐 􏼑, (1)

where mt � 1 indicates that xt is masked. )e whole process
is like a Cloze task [18]. We repeat the process of MLM using
a trained pretraining model. )e model is not retrained and
is only used to predict masked words. Obviously, the words
predicted by the model can be regarded as the synonyms of
the masked words. We perform data augmentation based on
ERNIE because it has entity-level and phrase-level masking
strategies in the MLM process.

A visualization of the process can be seen in Figure 2.
ERNIE randomly masks a portion of characters or words in
the input sequence by default [21]. It is worth noting that
masking the named entities is not appropriate because these
entities may be proper nouns or rare words in medical
literature, especially the disease and drug entities like “糖尿
病 (diabetes)” and “胰岛素 (insulin)” in Figure 2. When
ERNIE predicts these entities, the result may not be correct
Chinese words because the information of these entities may
not be obtained during pretraining. )erefore, we only
randomly mask the tokens except for named entities. Fur-
thermore, we input a single sequence that starts with a
particular classification token [CLS] and ends with an
ending token [SEP], because the context information of
sentence pairs is not necessary, which is different from
inputting sentence pairs during pretraining [18, 21]. As
shown in Figure 2, one sequence input into ERNIE consists
of the following four parts:

(1) Token IDs: We use the original vocabulary provided
by ERNIE to get the ID number of each token.

(2) Sentence IDs: ERNIE uses this mark to determine the
sentences to which the token belongs. As mentioned
earlier, we input the single sentence, not a sentence
pair. Accordingly, all the sentence ID numbers are 0.

(3) Position IDs: )e Transformer cannot obtain posi-
tion information through self-attention heads, since
it contains no recurrence and no convolution [19].
)erefore, the position ID number is injected to get
information about the relative or absolute position of
the tokens.

(4) Segmentation IDs: )e segmentation IDs represent
the segmentation information. Specifically, “0” de-
notes the beginning of a word, and “1” does not
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denote the beginning. Moreover, we assign “−1” to
the corresponding position of [CLS], [SEP], and
named entities. ERNIE will not mask the token
where the segmentation ID equals “−1.” We use
THULAC (http://thulac.thunlp.org/) for word seg-
mentation [27].

As can be seen in Figure 2, “病人 (patients)” and “口服
(take orally)” in the raw sentence are replaced by “患者
(patients)” and “注射 (be injected with),” respectively. )ese
two groups of words are synonyms in Chinese. We perform
the above operation on all samples in the training set to
obtain the dataset D′. Finally, we combine the dataset D′
generated by ERNIE with the original training data D to get
the augmented training data Daug.

3.2. Named Entity Recognition Using Pretraining Models.
We consider NER in medical literature as the down-
stream task of the pretraining model. As the pretraining
models are pretrained on large-scale unlabelled corpora,
the output of pretraining models can be regarded as the
representations of tokens with prior semantic knowledge.
)e key to using a pretraining model for NER is how to
transfer the prior semantic knowledge obtained from the
source domain to the target domain (e.g., Chinese

medical literature NER in this paper). )ere are two main
approaches to transfer the prior semantic knowledge to
the downstream tasks: feature extraction and fine-tuning
[28]. For feature extraction, the parameters of pretraining
models are fixed and only the parameters in downstream
models are trained through the downstream task. )e
pretraining models are regarded as the feature extractors
and output the representations of tokens with prior se-
mantic knowledge in the source domain. )e represen-
tations, which are higher-level and more abstract
features, will be input into the downstream task. On the
other hand, for fine-tuning, all the parameters of pre-
training models and downstream models are trained
through the downstream task. )e pretraining models
will learn the semantic knowledge of the target domain
from the training data of the downstream tasks. )ese two
approaches are illustrated by Figure 3, where areas
marked by blue squares indicate that the parameters of
the corresponding models are trained through the
downstream task.

For the structure of downstream model, we test the fol-
lowing three common modules: Full Connection (FC), LSTM,
and CRF. As shown in Figure 3, the LSTM and CRF are op-
tional. )e performance of different modules will be shown in
the fourth section.
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Diabetic patients can be injected with insulin
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Figure 2: Data augmentation using ERNIE.

Table 1: Parameters, pretraining tasks, and corpora of pretraining models.

Pretraining model L H A Pretraining task Pretraining corpora
BERT [18] 12 768 12 Masked Language Model, NSP Books Corpus, Wikipedia
BERT-WWM [20] 12 768 12 Whole Word Masking, NSP Wikipedia
BERT-WWM-EXT [20] 12 768 12 Whole Word Masking, NSP General data (Baike, News, and QA), Wikipedia
ERNIE [21] 12 768 12 Phrase-level and entity-level masking, NSP Chinese Wikipedia, Baidu Baike, News, and Tieba
ERNIE-tiny [22] 3 1024 12 Phrase-level and entity-level masking, NSP Chinese Wikipedia, Baidu Baike, News, and Tieba
RoBERTa [23] 12 768 12 Dynamic masking Books Corpus, Wikipedia
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4. Experiments and Results

In this section, we will introduce the dataset for the NER task
and show the results. )e experiments were performed with
PaddlePaddle, which is a framework of deep learning. For
hardware, we used an eight-core CPU and a V100 GPU.

4.1. Dataset. )e dataset we used is “A Labelled Chinese
Dataset for Diabetes,” which is provided by Alibaba Cloud
[29]. )is dataset comes from the authoritative Chinese
diabetes journals in recent seven years, from which the
literature related to basic research, clinical research, drug
usage, diagnosis, and treatment methods are selected. )e
dataset covers the latest research hotspots on diabetes and is
labelled by professionals with a medical background. We
divided this dataset into training set, development set, and
test set within the ratio of 6 : 2 : 2. )e details of the labels are
given in Table 2.

4.2. Experiment Settings. We tested the performance of NER
from the following three aspects:

(1) Using themethod of data augmentation we proposed
(2) Using pretraining models and common deep

learning models like the BiLSTM
(3) Using downstream models with different structures

Firstly, we tested the performance using the original
dataset and the augmented dataset.)en, the performance of
pretraining models, including the BERT series, ERNIE, and
RoBERTa, was compared with common deep learning
models, such as BiLSTM. Finally, we compared the per-
formance when the downstream model is the LSTM or CRF.
For the pretraining models, the parameters were established
based on the pretrained parameters provided by their au-
thors. For the downstream models, the weights were

established using Xavier initialization, while the biases were
initialized as 0.

)e hyperparameters are set up based on trial and error.
We evaluated the performance at every 1000 steps on the
development set, and the experiment would be terminated
prematurely once the loss no longer drops. )e final se-
lection of the hyperparameters would be the best on the
development set. All the hyperparameters involved are listed
in Table 3.

For the evaluation, we introduced the precision, recall,
and F1-score. )e precision value refers to the ratio of
correct entities to predicted entities. )e recall value is the
proportion of the entities in the test set which are correctly
predicted. )e F1-score is calculated according to the fol-
lowing formulation:

F1 �
2∗ Precision∗Recall
Precision + Recall

. (2)

It can be seen that the F1-score is the harmonic mean of
the precision and recall, which can comprehensively reflect
the performance of the model on NER tasks. We use P, R,
and F to represent precision, recall, and F1-score,
respectively.

4.3. Results. Firstly, we tested the effects of data augmen-
tation method we proposed. )e augmented dataset is ob-
tained through the MLM of ERNIE as described in the third
section. We used three pretraining models (BERT, ERNIE,
and ERNIE-tiny) based on the original dataset and aug-
mented dataset, respectively. )e parameters of pretraining
models are updated through fine-tuning. )e downstream
model is a single-layer FC without the CRF or LSTM. )e
results are shown in Table 4.

)e performance of NER in Chinese medical litera-
ture can be improved when using the augmented dataset,

O OO OB-disease B-disease··· ···

LSTM/CRF (optional) LSTM/CRF (optional)

FC FC

Trained
part

Representations

Transformer Transformer

Transformer

Transformer

Transformer

Transformer

Pretraining
model

Embeddings

Input tokens CLS

(a) (b)

CLSt1 t1 t2 t3 tnt2 t3 tn···

··· ···

···SEP SEP

Figure 3: Two main approaches: (a) feature extraction and (b) fine-tuning.
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and the F1-score can be increased by approximately
0.14% on average. )e subsequent experiments are all
based on the augmented dataset.

)en, we compared the performance when using
pretraining models and common deep learning models.
)e results are shown in Table 5. )e parameters of
pretraining models are also updated during fine-tuning,
and the downstream model is a single-layer FC without
the CRF or LSTM, too. As we can see from Table 5, using
pretraining models can obtain meaningful improve-
ments in the performance of NER. Among pretraining
models, the F1-score of ERNIE-tiny is the lowest, at only
89.466%. In contrast, RoBERTa obtained the highest F1-
score with 91.209%. Moreover, the performance of BERT
series models (BERT, BERT-WWM, and BERT-WWM-
EXT) is relatively higher than that of ERNIE.

Furthermore, we also compared the two main ap-
proaches transferring prior semantic knowledge to the NER
task: feature extraction and fine-tuning. For feature ex-
traction, we fixed the parameters of pretraining models. On
the contrary, the parameters of pretraining models were
trainable and can be updated during fine-tuning based on
the training set. )e downstream model structure is also a
single-layer FC without the CRF or LSTM.)e results shown
in Table 6 indicate that the F1-score can be slightly increased
through fine-tuning.

Finally, we also tested the performance of different
downstream model structures. RoBERTa was used as the
pretraining model in this test. For the downstream model,
we tested the FC, CRF, LSTM-CRF, and BiLSTM-CRF,
respectively. For LSTM-CRF and BiLSTM-CRF, the di-
mension of the hidden layer was 128. It can be found from
Table 7 that the performance of recognition reduced when a
fairly complex model was used as the downstream model.

5. Discussion

In this section, we will discuss the experimental results in
detail.

5.1. Data Augmentation. Results also show that the aug-
mentation method we proposed can increase the F1-score by
approximately 0.14% on average. Although the improve-
ment is not significant, the result is meaningful for it
demonstrates that the data augmentation using ERNIE is
feasible. As mentioned in Section 2.3, BERT will mask the
Chinese characters, not words, during the procedure of the
MLM because there is no segmentation between Chinese
characters, and the results may not be grammatically correct
Chinese sentences. However, the MLM of ERNIE can re-
place a portion of Chinese phrases or words with synonyms.
)e semantics of the new Chinese sentences generated by
ERNIE are similar to those of the original sentences, and
they are combined as the augmented dataset. We do not
mask the named entities in light of these entities which may

Table 2: Statistics of “A Labelled Chinese Dataset for Diabetes.”

Training set Development set Test set
Disease related
Disease 25197 8399 8399
Reason 2849 950 950
Symptom 3166 1055 1056
Test 28819 9606 9606
Test value 6402 2134 2134
2erapy related
Drug 9946 3315 3315
Frequency 309 103 103
Amount 871 290 290
Method 606 202 203
Treatment 896 298 299
Operation 493 164 164
Side effect 1052 351 350
Common entities
Duration 6543 2181 2180
Anatomy 16866 5622 5622
Level 1333 446 448
Total 105348 35116 35119

Table 3: Hyperparameters.

Parameters Values
Learning rate 5e− 5
Batch size 32
Weight decay 0.01
Epoch 6
Optimizer Adam optimizer

Table 4: Recognition results of original dataset and augmented
dataset.

P (%) R (%) F (%)
Models
BERT 90.778 90.674 90.726
ERNIE 90.488 90.354 90.421
ERNIE-tiny 89.361 89.162 89.261
Models (augmented dataset)
BERT 90.968 91.048 91.008
ERNIE 90.659 90.527 90.593
ERNIE-tiny 89.466 89.348 89.407

Table 5: Recognition results of pretraining models and deep
learning models.

P (%) R (%) F (%)
Deep learning models
BiGRU 89.431 81.842 85.443
BiGRU-CRF 88.463 84.332 86.341
BiLSTM 89.511 82.251 85.700
BiLSTM-CRF 89.113 84.983 86.992
Pretraining models
BERT 90.968 91.048 91.008
BERT-WWM 91.023 91.108 91.065
BERT-WWM-EXT 91.059 90.996 91.027
ERNIE 90.659 90.527 90.593
ERNIE-tiny 89.466 89.348 89.407
RoBERTa 91.164 91.254 91.209
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be proper nouns or rare words in the field of medical lit-
erature. )e results also demonstrate that the augmentation
method we proposed is meaningful and feasible.

5.2. Comparison of Pretraining Models with Common Deep
LearningMethods. Obviously, using pretraining models can
obtain meaningful improvements in the performance of
NER. )e pretraining models have learned abundant prior
semantic knowledge from the pretraining corpora (e.g.,
Chinese Wikipedia and Baidu News) [20, 21]. Pretraining
corpora can also be regarded as the “source domain.” When
conducting the NER task, the prior semantic knowledge will
be transferred to the downstream task, which can also be
known as the “target domain.” )e whole process can be
regarded as transfer learning. Task-specific semantic
knowledge contained in the target domain will be obtained
during fine-tuning.

On the contrary, the common deep learning models can
only learn knowledge from the training set, also known as
the target domain. )e training process is done from scratch
on the target domain, whether it is the baseline model
(BiLSTM-CRF) or other deep learning models. )erefore,
these models can only learn the knowledge in the target
domain from the training set. )e experimental results also
indicated that using pretrainingmodels can get a meaningful
increase in the F1-score by at least 3%.

5.3. Comparison between Pretraining Models. We also
compared the performances of the six most common pre-
training models for NER in Chinese medical literature:
BERT, BERT-WWM, BERT-WWM-EXT, ERNIE, ERNIE-
tiny, and RoBERTa. First of all, it is shown that the deeper the
layer, the better the performance for the pretraining models
with similar pretraining tasks and the same pretraining
corpus, such as ERNIE and ERNIE-tiny. ERNIE has twelve
Transformer layers, but ERNIE-tiny only has three Trans-
former layers. Although ERNIE-tiny increases the number

of hidden units and optimizes the pretraining task with
continual pretraining [30], three Transformer layers cannot
extract semantic knowledge well. )e F1-score of ERNIE-
tiny is the lowest among all the pretraining models.

Secondly, for pretraining models with the same model
structure, RoBERTa obtains the highest F1-score. From the
perspective of the pretraining task, RoBERTa removes the
sentence-level pretraining task because Liu et al. [23] found
that removing the NSP loss in BERTcan slightly improve the
performance of downstream tasks. For the NER in Chinese
medical literature, the pretraining models do not need to
learn sentence-level semantic knowledge during pretraining,
because the inputs are all individual sentences, not sentence
pairs. )e NSP and Dialogue Language Model (DLM) of
BERT and ERNIE are designed to improve the performance
of specific downstream tasks, such as SQuAD 1.1, which
requires reasoning about the relationship between sentence
pairs. Moreover, as mentioned before, RoBERTa can acquire
richer semantic representations with a dynamic masking
strategy [23]. In contrast, BERT and ERNIE use static
masking strategy in every pretraining epoch.)erefore, their
performance is slightly lower than that of RoBERTa.

Finally, different pretraining corpora will affect the
performance of NER in Chinese medical literature for
pretraining models with the same pretraining tasks and
the same model structures, such as BERT-WWM and
BERT-WWM-EXT. )e pretraining corpus of BERT-
WWM is the Chinese Wikipedia, while the pretraining
corpus of BERT-WWM-EXT includes not only the
Chinese Wikipedia but also News and Q&A [20]. )e
training dataset we used contains formal scientific lit-
erature, and the pretraining corpus of BERT-WWM is
closer to it. )e results in Table 5 demonstrate that the F1-
score of BERT-WWM is slightly higher than that of
BERT-WWM-EXT.

5.4. Comparison of Feature Extraction and Fine-Tuning
Approaches. As shown in Table 6, the F1-score can be
slightly increased through fine-tuning. )is phenomenon
may indicate that the pretraining models can obtain se-
mantic knowledge from the target domain during fine-
tuning. In other words, the representations outputs from the
pretraining models are not adapted to the specific NER task
well when the pretraining models are only used as a feature
extractor, because the task-specific representations cannot
be obtained in this case. )us, general-purpose represen-
tations can be obtained through fine-tuning. However,
considering that the improvement is not significant and the
feature extraction is computationally cheaper than fine-
tuning, the transfer method should be selected in light of
specific conditions in practice.

5.5. Comparison of Different Downstream Model Structures.
According to the results in Table 7, RoBERTa-CRF obtained
the SOTA results. For the NER task, there are strong de-
pendencies across labels. For example, the I-Drug label must
follow the B-Drug label. As a probability model, the CRF can
output the predicted sequence according to the above rules.

Table 6: Recognition results of feature extraction and fine-tuning.

Pretraining models P (%) R (%) F (%)
BERT (feature extraction) 90.881 90.983 90.932
BERT (fine-tuning) 90.968 91.048 91.008
ERNIE (feature extraction) 90.519 90.639 90.579
ERNIE (fine-tuning) 90.659 90.527 90.593
RoBERTa (feature extraction) 91.109 91.275 91.192
RoBERTa (fine-tuning) 91.164 91.254 91.209
Values in bold represent the maximum values.

Table 7: Recognition results of different downstream model
structures.

Pretraining models P (%) R (%) F (%)
RoBERTa-FC 91.164 91.254 91.209
RoBERTa-CRF 91.187 91.358 91.270
RoBERTa-LSTM-CRF 90.615 90.784 90.697
RoBERTa-BiLSTM-CRF 90.820 90.911 90.650
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)erefore, the performance of RoBERTa-CRF is better than
that of RoBERTa-FC with only one FC layer.

)e experimental results in Table 7 also demonstrate
that adding the LSTM after RoBERTa does not improve
the performance of recognition. )e reason is that, on the
one hand, the multiheaded self-attention network in the
pretraining model has extracted the abstract represen-
tations of input tokens well. )erefore, it is not necessary
to add the LSTM to extract more abstract representations.
On the other hand, a more complex network structure
may cause overfitting, which will reduce the performance
of recognition.

6. Conclusion

In this paper, we utilize the pretraining models to recognize
the named entity in Chinese medical literature, which is the
key step in building the medical Knowledge Graph. First of
all, we propose a method of data augmentation based on the
MLM of ERNIE. A portion of characters and phrases are
replaced by synonyms except for the named entities in light
of the fact that the named entities may be proper nouns or
rare words in the field of medicine. Moreover, we consider
NER as a downstream task of the pretraining models and
transfer the prior semantic knowledge obtained during
pretraining to it.

)e results of experiments demonstrate that not only can
the data augmentation method we proposed improve the
performance of recognition, but also using pretraining
models can obtain a meaningful improvement compared
with the common deep learning models. Furthermore, for
NER in Chinese medical literature, the F1-score can be
slightly increased through fine-tuning, and using a more
complex downstream model will reduce the performance of
recognition. For the future work, we will attempt to carry out
experiments with a dataset labelled by ourselves and conduct
Relation Extraction based on the entities recognized in
Chinese medical literature.
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