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Under the background of Energy Internet, the ever-growing scale of the electric power system has brought new challenges and
opportunities. Numerous categories of measurement data, as the cornerstone of communication, play a crucial role in the security
and stability of the system. However, the present sampling and transmission equipment inevitably suffers from data missing,
which seriously degrades the stable operation and state estimation. ,erefore, in this paper, we consider the load data as an
example and first develop a missing detection algorithm in terms of the absolute difference sequence (ADS) and linear correlation
to detect any potential missing data.,en, based on the detected results, we put forward amissing recoverymodel named cascaded
convolutional autoencoders (CCAE), to recover those missing data. Innovatively, a special preprocessing method has been
adopted to reshape the one-dimensional load data as a two-dimensional matrix, and hence, the image inpainting technologies can
be conducted to address the problem. Also, CCAE is designed to reconstruct the missing data grade by grade due to its priority
strategy, which enhances the robustness upon extreme missing situations. ,e numerical results on the load data of the Belgium
grid validate the promising performance and effectiveness of the proposed solutions.

1. Introduction

Nowadays, measurement data are the foundation of the
power system. ,e massive collected data especially the
quality of electricity such as voltage, current, and load are
tightly associated with safe operation and economic dispatch
[1]. However, due to the growing size of the power grid and
the massive number of field sensors, the absence and
anomalies of data measurements cannot be avoided, which is
mainly due to the failures and disabilities of terminal
equipment or performance degradation of transmission
channels [2, 3]. ,e problem of missing data may lead to
serious consequences including stability, optimization, and
fault prevention [4]. In addition, the measured values of the
missing data can be replaced by unknown noise, which makes
them more difficult to be perceived and diagnosed. ,us, the
efficient and accurate data detection of data anomalies and

recovery of the missing data is a fundamental for the de-
velopment of data-driven analysis and advanced algorithmic
solutions.

Essentially, the detection of missing data can be classified
as a branch of abnormal or outlier detection, and the related
researches have been investigated in the previous decades
[5]. In the conventional algorithms, the methods involving
residual and sudden change are discussed [6, 7]. Based on
statistical analysis, 3σ criteria [8], Z-score [9], and clustering
[10] are introduced. Specifically, in the power system,
scholars suggest approaches combined with the correlativity
of multimeasured data to improve accuracy [11]. However,
these solutions are susceptible to data pollution due to the
existence of missing data and lead to unsatisfactory
performance.

In recent years, with the remarkable development of
artificial intelligence (AI) technologies, more and more
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scholars concentrate on the application of AI technologies in
data recovery [12]. In literature [13], an unsupervised
learning framework based on Wasserstein generative
adversarial network (WGAN) is proposed to repair the
missing data of active power, reactive power, voltage am-
plitude, and phase in power system, which achieves high
accuracy, but the missing mask is required to be detected in
advance, and the processing efficiency is relatively low due to
the one-dimensional convolution. In [14], the adaptive
neural fuzzy inference system (ANFIS) model is developed
to recover the missing data of wind power. It performs better
compared with traditional empirical methods but is difficult
to generalize to other data. Furthermore, many other so-
lutions have been adopted (e.g., [15–20]), but almost all the
discussed solutions will deal with the missing data indis-
criminately and without priority, which brings bad per-
formance in extreme situations.

,is paper will take Belgium load data (http://www.
elia.be) as an instance to propose a new model to detect
and recover the missing data. Firstly, beginning with the
analysis of the characteristics of missing data, we present a
detection method with ADS and linear correlation to
detect the potential missing mask from the input in-
complete data. Secondly, preprocessing will be applied to
the incomplete data and the detected missing mask as
well, which reshapes them as images (matrices). Finally,
we demonstrate a CCAE model to address the missing
regions in the grade of the image by grade with defined
priority.

,e rest of this paper will be organized as follows. In
Section 2, related work and basic theories are introduced.
In Section 3, the method of missing detection is inves-
tigated in Section 3.1 and then the missing recovery al-
gorithm is developed in Sections 3.2 and 3.3. Section 4
gives some numerical results and discussion based on the
load data of the Belgium grid, where a missing mask
generation model is designed and employed for testing.
Finally, Section 5 will conclude this paper and list the
strength and weaknesses of the proposed model, and also,
future work is discussed.

2. Related Work

In this chapter, the related work including abnormal
detection, convolutional neural network (CNN), and
autoencoder (AE) is introduced, which are the basic
technologies applied in this paper.

2.1. Abnormal Detection. ,ere many abnormal detection
models widely used in the literature. ,e elementary idea is
to model the pattern of data and then set a proper threshold
or condition to pick out abnormal data in datasets. In this
part, the 3σ criteria will be explored.

For the dataset that obeys the Gaussian distribution or
known as a normal distribution [21], N(μ, σ2), as shown in
Figure 1. ,e mean μ and standard deviation σ can be esti-
mated through maximum likelihood estimation (MLE).
According to the features of Gaussian distribution, the

possibility of data lying in range (μ− 3σ, μ+3σ) is 99.7% [22].
Hence, the data out of that range could be labeled as an outlier.
Even though the original data maybe do not obey the Gaussian
distribution strictly but just approximately, we can adjust the
3σ properly to 2.5σ or 3.5σ for examples, which still makes it
work well.

2.2. Convolutional Neural Network. A convolutional neural
network (CNN) is known as a feedforward neural networkwith
convolutional computation that is a typical image processing
paradigm in deep learning [23]. CNN is capable of repre-
sentation learning and can process the input image with shift-
invariant classification. ,erefore, it is called shift-invariant
artificial neural network (SIANN) aswell. An example of CNN-
based classification is illustrated in Figure 2.

,e convolutional computation in CNN illustrated in
Figure 3 differs from that in equation (1). In CNN, the
convolution is done for two-dimensional input and does not
require the reverse operation to the final output:

(f∗g)(x) � 􏽚
+∞

−∞
f(τ)g(x − τ)dτ. (1)

,e reason we employ CNN instead of artificial neural
network (ANN) [24] to process pictures is that the pa-
rameter sharing in CNN enables us to analyze images with
much fewer parameters. ,is is because the fully connected
layers are only used in the last several layers of CNN. Hence,
its training efficiency is better than ANN, when tackling with
the semantics of images. Also, the training strategies can be
supervised or unsupervised, which depend on the targets.

Typically, there are different categories of layers in CNN,
e.g., convolutional layer, pooling layer, and fully connected
layer. ,e convolutional layer applies the convolutional
kernel to the inner product the input, region by region, and
the features can be extracted in the output, as demonstrated
in Figure 3.

,e pooling layer is designed to reduce the output size
of the convolutional layer and then diminish the required
parameters in the following convolutional layers as well.
Another important benefit is that the pooling layer can
alleviate overfitting and increase generalization ability.
,e major kinds of pooling layers include max pooling
and average pooling, and the computation is shown in
Figure 4.

,e fully connected layer is similar to the layers in
ANN. ,e only difference is that we will first flatten the
two-dimensional output of the convolutional layer or
pooling layer, as a one-dimensional vector, and then, the
fully connected layer is employed, as described in Figure 5.
,us, the fully connected layer is also named the flatten
layer on CNN.

CNN has been widely adopted in computer vision, such as
image classification [25] and object recognition [26]. And the
development of autopilot is also firmly incorporated with CNN
[27].

2.3. Autoencoder. Autoencoder (AE) is a kind of supervised
or unsupervised ANN used for data compression,
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representation learning, dimensionality reduction [28], and
image denoising [29] which was first proposed by Rumelhart
in 1986 [30]. An example of AE is presented in Figure 6.

,e output of AE is required to be the same as the input
as possible, as defined in (2) to (4). After training, AE can
efficiently encode the features of input data:

f: X⟶ Z, (2)

g: Z⟶ X, (3)

f, g � argmin
f,g

‖X − g[f(X)]‖
2
. (4)

μ – 3σ μ – 2σ μ – σ

68.3%

99.7%

95.4%

μ μ + σ μ + 2σ μ + 3σ

Figure 1: Gaussian distribution.
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Figure 2: An example of CNN for classification.
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As shown in Figure 6, AE has an encoder and a decoder,
which essentially are fully connected layers. ,e encoder is
responsible for feature learning, while the decoder should be
able to reconstruct the input from the encoded features.
Notice that when dealing with image problems, AE also can
be made of convolutional layers [31] and that is exactly the
basic structure of this paper.

3. Methodology

In this section, we will firstly discuss a missing detection
algorithm to obtain the missing mask from the input in-
complete data.,en, the input data and the detected missing
mask will be further preprocessed as matrices, respectively.
After that, we build a CDCAE model to recover the missing
data in the matrices and reshape the matrices back as one-
dimensional time series.

3.1. Missing Detection

3.1.1. Classification of Missing Segments. Usually, the
missing data caused by the faults of sampling and com-
munication equipment are mainly manifested as discrete
missing points, continuous missing segments, or the com-
bination of the two [32], as demonstrated in Figure 7. When
the contact of the sampling terminal is loose or other dis-
turbance occurs, the waveform of the data may appear as
discrete missing points. However, in each link of trans-
mission, the loss of data packet by temporary communi-
cation failure will result in a continuous missing segment.

,e discrete missing points can be regarded as special
cases of the continuous missing segments with a length of
one. Hence, we only consider the missing segments.

In fact, the measurement values at the missing seg-
ments are usually not exactly zero or NA, but the noise is
distributed near zero. ,is kind of noise includes not only
the background noise from sampling equipment and
transmission channel but also the noise due to failures or
faults as well. To simplify the model, it is reasonable to
assume that the noise at the missing segments is subjected
to the Gaussian distribution with zero mean and relatively
smaller variance than that of the normal data signal.

In this work, the missing segments are classified as typical
missing segments and atypical missing segments, as illustrated

in Figures 8 and 9 . Since the normal data are very likely to be
far away from zero while the noise at missing segments is
distributed near zero, for the beginning and the end of a
missing segment, the curve will show an abnormal jump. We
call those missing segments the typical missing segments,
which are the most cases as well. On the contrary, there is a
very low possibility that the normal data before or after a
missing segment are also distributed near zero, which leads to
the overlap of the ranges of the normal data and the missing
data. In this situation, the curve may have an inapparent jump
at the beginning or end of the missing segment. ,erefore, we
name those missing segments as atypical missing segments.

Here, the threshold of the abnormal jump is defined as
the abnormal values in the ADS of the input sequence. ,e
differential sequence (DS) for the load data is naturally
subjected to the Gaussian distribution as well with zero
mean; thus, we can simply apply the 3σ criteria to specify the
abnormal values in ADS and then to locate all the abnormal
jumps. However, because there might also exist abnormal
jumps in atypical missing segments as indicated in Figure 9,
it is still unable to locate the two kinds of missing segments.

In addition to the sudden jump of the curve, another
feature might not be so noticeable. Under the small window
size, the segments of normal data usually show a shape of a
regular curve which has a high linear correlation for time,
while the missing data segments will have a much lower
linear correlation. ,is could be another important factor
when distinguishing the missing data from normal data.

3.1.2. 5e Criterion of Sigma and Linear Correlation.
Based on the definition in Section 3.1.1, the detection
problem can be separated as two subproblems for typical and
atypical missing segments, respectively. ,is paper will
firstly propose a method to diagnose the typical missing
segments. And then with the results, the remaining atypical
missing segments can be detected.

Assume the ground truth data as X � (x1, x2,

. . . , xn−1, xn), the input incomplete data as X′ � (x1′,
x2′, ..., xn−1′, xn

′), the missing mask as M � (m1, m2, . . . ,

mn−1, mn), and the noise signal as W � (w1, w2, . . . , wn−1
, wn), then

X′ � X − X⊙M + W⊙M, (5)

where mi is a binary number and mi � 1(0) represents xi is
missing (normal), noise wi is subjected to the Gaussian
distribution N(0, σ2N), and ⊙ is the element-wise produc-
tion operator.

,e steps to detect the missing mask M from the input
incomplete data X′ are described as follows:

(1) Define the DS and ADS of X′ as

DS X′( 􏼁 � di|di � xi
′ − xi+1′, xi

′ ∈ X′􏼈 􏼉,

ADS X′( 􏼁 � ai|ai � xi
′ − xi+1′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, xi
′ ∈ X′􏽮 􏽯.

(6)

(2) Assume di is subjected to N(0, σ2D) and calculate the
standard deviation σD. Label all the ai in ADS(X′)

Code

Encoder Decoder

Input Output

Figure 6: Illustration of an AE example.
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that ai ≥ 3.5σD as abnormal values due to abnormal
jumps.

(3) Compute the linear correlation r for every segment
between the adjacent labeled ai for time. If r≤ 0.3,
the corresponding segment is labeled as a typical
missing segment.

(4) Since the noise signal wi in missing segments obeys
N(0, σ2N), we can estimate the unknown σN through
the detected typical missing segments.

(5) Locate all the segments of X′ within
(−2.5σN, +2.5σN) except the detected typical missing
segments in (3), and check the linear correlation r

–2
0
2
4
6
8

10
12
14
16
18

x

t Noise range

(a)

–2
0
2
4
6
8

10
12
14
16
18

x

t Noise range

(b)

Figure 7: ,e (a) discrete and (b) continuous missing data (red) in the noise range.

–2.00
0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x

t

(a)

–16
–14
–12
–10

–8
–6
–4
–2

0
2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x

t

(b)

Figure 8: Examples of typical missing segments with two obvious jumps (yellow): (a) typical missing segment 1; (b) typical missing segment 2.
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Figure 9: Examples of atypical missing segments with only one or none obvious jump (yellow): (a) atypical missing segment 1; (b) atypical
missing segment 2; (c) atypical missing segment 3; (d) atypical missing segment 4.
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again. For those with r≤ 0.3, label the corresponding
segments as atypical missing segments.

(6) Set mi on the detected typical and atypical missing
segments as 1 and the other as 0. Obtain the detected
missing mask M.

To evaluate our detection algorithm, we will refer to
the confusion matrix [33] and calculate the precision P,
recall R, and F1 score [34], which is defined in 1 and in the
following equations:

P �
TP

TP + FP
, (7)

R �
TP

TP + FN
, (8)

F1 �
2PR

P + R
. (9)

3.2. Preprocessing

3.2.1. Normalization. After the missing mask M in X′ has
been detected, it is necessary to normalize X′ as
􏽣X′ � (􏽢x1′, 􏽢x2′, ..., 􏽢xn−1′, 􏽢xn

′) out of convenience, and a possible
choice is shown as follows [35]:

􏽢xi
′ �

xi
′ − min X′( 􏼁

max X′( 􏼁 − min X′( 􏼁
. (10)

But due to the pollution from the Gaussian noise in the
missing segments, we may not gain the real maximum and
minimum values, which will lead to a gap in values distri-
bution after normalization, and the values of data cannot fill
this normalized range because the is possible even higher
(lower) than the real maximum (minimum).

To avoid this problem, we will calculate the maximum
and minimum values only in the normal data
_X � xi
′| xi
′ ∈ X′, mi􏼈 􏼉 and then normalize xi

′ as

􏽢x′i � 1 − mi( 􏼁
xi
′ − min( _X)

max( _X) − min( _X)
0.99 + 0.01􏼠 􏼡. (11)

,e values of 􏽢xi
′ can well fully fill the range (0, 1), and

there is no more apparent gap in the distribution of the
values as well. Notice that a potential advantage by doing so
is that noise in xi

′will be replaced by zero which represents
missing data uniquely and vice versa. So, the following
recovery algorithm can easily know which data are the
missing data by just reading the zero values, even without
knowing the missing mask M.

When preparing the training datasets, the ground truth
data X also will be normalized as 􏽢X � (􏽢x1, 􏽢x2, . . . , 􏽢xn−1, 􏽢xn),
where

􏽢xi �
xi − min( _X)

max( _X) − min( _X)
0.99 + 0.01. (12)

It should be noted that the local maximum and mini-
mum values used here for normalization may not be the

global maximum and minimum of the normal data before
missing happens, for the reason the real maximum and
minimum could be blocked by the missing mask. ,us,
when we normalize those blocked data, the results are
probably beyond range (0, 1). But fortunately, since the data
discussed in this paper are load data with obvious period-
icity, the local maximum and minimum would be very close
to the global maximum and minimum.

3.2.2. Grade. Repairing the missing data is to figure out how
to make the best estimation for the missing data based on the
adjacent normal data. Hence, making full use of the adjacent
normal data is the key to solve the problem.

We note that, for different missing data at the same
missing segment, the specific locations of the missing data are
different, and also the numbers of adjacent available normal
data are different. In detail, the missing data near the be-
ginning or the end of the missing segments are closer to the
normal data, which makes them easier to be recovered, while
the missing data at the center of the missing segments are far
away from the normal data and difficult to be addressed.

To design more targeted recovery algorithms for dif-
ferent missing situations, this paper will introduce powerful
improvement on the detected missing mask M in Section
3.1.2. ,e core idea is that the missing data at the center
should be recovered based on the recovery of the missing
data at edges, which indicates the edge missing data have a
higher priority and are before being recovered:

T � Grade(M). (13)

To distinguish the missing data at different positions, we
grade M into K submissing masks T � (G1, G2, . . . ,

GK−1, GK) separately, where K is the grade parameter and
the j-th submissing mask is Gj � (g

(j)
1 , g

(j)
2 , . . . , g

(j)
n−1, g

(j)
n ).

,e missing segments in M will be divided into smaller
submissing segments from two ends toward the inside. ,e
ratio of the submissing segments in Gj concerning that in M

is defined as Rj:

􏽘

K

j�1
Gj � M,

􏽘

K

j�1
g

(j)
i � mi,

􏽘

K

j�1
Rj � 1,

(14)

where g
(j)

i is a binary number similar as mi.

Table 1: Confusion matrix in detection.

Missing Normal
Predicted missing True positive (TP) False positive (FP)

Predicted normal False negative (FN) True negative (TN)
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In this paper, the hyperparameters K � 3 and corre-
sponding R1 � 40%, R2 � 30%, and R3 � 30%, as shown in
Figure 10.

3.2.3. Reshape. ,e load data in the power system change
along with the patterns of society operation and production.
Hence, it will show evident multiple periodicities in days,
weeks, quarters, and years. When repairing this kind of data,
only referring to the continuity between the directly adjacent
normal data and the missing data (e.g., data before and after
half an hour) is not enough and leads to bad performance.
Instead, the periodicity should be taken into consideration,
meaning that we have to also refer to the data in adjacent
cycles (e.g., the data at the same time but different periods),
since those data, to some extent, are indirectly adjacent and
share very similar patterns, as presented in Figure 11.

In terms of semantic intensity, direct adjacency is
stronger than indirect adjacency, but they can be com-
bined as a reference. For the data at the edges of the
missing segments, due to the constraint of the waveform
continuity, the directly adjacent data are nearly the most
important repair reference; but for the missing data inside
the missing segment, there will not be any directly adjacent
data for reference, while the indirect adjacent data become
a very significant factor instead. However, traditional
mathematical estimation and interpolation methods can
only perceive data inside a very limited window around the
missing data, so they cannot make full use of the infor-
mation from indirect adjacent data. As a result, the repair
accuracy is low, especially for the long continuous missing
segments.

When dealing with similar problems, literature [35]
proposes a method to transfer the one-dimensional har-
monic data into a two-dimensional grayscale image by

periodic truncation and reshaping, as demonstrated in
Figure 12n � km. Inspired by this, this paper will reshape the
one-dimensional incomplete data 􏽣X′ and corresponding
submissing masks Gj into matrices.

Take 􏽣X′, for example, assume the number of sampling
points per day is m, for a dataset with k days, and the size .
,en, reshape 􏽣X′ into a k-by-m matrix A 􏽢X′

:

A 􏽢X′
� reshape 􏽣X′􏼒 􏼓 � ai,j􏽨 􏽩

k×m
, (15)

where ai,j � 􏽢x(i−1)m+j
′ . For the load data of Belgium grid, k �

2000 and m � 96.
And similarly, matrices AGj

can be obtained. ,e two-
dimensional structure of the matrix enables the direct and
indirect adjacency to be compatible with each other in
rows and columns separately. And the shaped matrix can
be understood as a special “generalized” image. Based on
the above analysis, when we reshape the data, the problem
of repairing the missing one-dimensional data becomes
the problem of inpainting a two-dimensional image. In
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Figure 10: Submissing masks G1, G2, and G3 from the missing mask M.
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Figure 11: Direct and indirect adjacency relationship in load data.
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the following discussion, we will combine the deep
learning and image processing techniques to address this
problem.

3.2.4. Edge Padding. After reshaping, the data located in the
center of the matrices will have more available adjacent data
than that at the edge of the matrices, which indicates the
number of available adjacent data is radially attenuated
outward from the core of the matrices, making the recovery
of edges data more difficult than that of the central data.

To solve the problem of an unbalanced distribution of
the available adjacent data in the radial direction, the most
direct and effective method is to arrange some additional
data on the edges. When we truncate the original one-di-
mensional data and reshape it into matrices, two adjacent
data at the truncated point will be separated and then
arranged at the end of this row and the beginning of the next
row accordingly. So, the left edge and the right edge of the
matrix are - “adjacent- ” but misplaced by one row, as il-
lustrated in Figure 13. ,us, the data in the left and right
edges can be used as padding data for each other.

Take A 􏽢X′
, for example, to improve this unbalanced

distribution, two k-by-p padding matrices B 􏽢X′
and C 􏽢X′

are
designed, and p is the padding depth:

B 􏽢X′
� bi,j􏽨 􏽩

k×p
, C 􏽢X′

� ci,j􏽨 􏽩
k×p

, (16)

where

bi,j �
ai−1,m−p+j i> 1

0 i � 1
􏼨 ,

ci,j �
ai+1,j i< k

0 i � k
􏼨

(17)

Define the ratio of p and m as hyperparameter padding
ratio η:

η �
p

m
. (18)

,en, arrange B 􏽢X′
and C 􏽢X′

to the left and right sides of
A 􏽢X′

, respectively, to get a k-by-L padding matrix Z 􏽢X′
as

Z 􏽢X′
� Padding A 􏽢X′

􏼒 􏼓 � B 􏽢X′
A 􏽢X′

C 􏽢X′
􏼔 􏼕 � zi,j􏽨 􏽩

k×L
, (19)

where L � m + 2p.
And similarly, padding matrix ZGj

can be attained.

3.2.5. Slice. Because there are no padding data on the upper
and lower sides of padding matrices, we will cut the padding
matrices into smaller L-by-L slices and set proper over-
lapped rows as padding data on the upper and lower sides.

TakeZ 􏽢X′
, for example, the slices are defined as S 􏽢X′

, where
the t-th slice S 􏽢X′

(t) is a L-by-L matrix:

S 􏽢X′
� Slice Z 􏽢X′

􏼒 􏼓,

S 􏽢X′
(t) � s

(t)
i,j􏽨 􏽩

L×L
,

(20)

where s
(t)
i,j � z(t−1)m+i,j and t≤ ns � 􏼄k − 2p/m􏼅.

For adjacent slices S 􏽢X′
(t) and S 􏽢X′

(t + 1), there are 2p

overlapped rows on the lower side of S 􏽢X′
(t) and the upper side

of S 􏽢X′
(t + 1). Hence, the first and last p rows and columns are

redundant data. And as a result, when recovering a slice, we only
need to consider its center m-by-m region which is defined as
the core region:

Core S 􏽢X′
(t)􏼒 􏼓 � u

(t)
i,j􏽨 􏽩

m×m
, (21)

where u
(t)
i,j � s

(t)
i+p,j+p.

In particular, the core areas of the first (last) slice will
include the upper (lower) p rows, which leads to a
(m + p)-by-m matrix:

Figure 12: Reshaping of the one-dimensional data to the two-dimensional image.
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Core S 􏽢X′
(1)􏼒 􏼓 � u

(1)
i,j􏽨 􏽩

(m+p)×m
,

Core S 􏽢X′
ns( 􏼁􏼒 􏼓 � u

ns( )
i,j􏼔 􏼕

(m+p)×m
,

(22)

where u
(1)
i,j � s

(1)
i,j+p and u

(ns)
i,j � s

(ns)
i+p,j+p.

Similarly, slices SGj
can be obtained.

3.3. Missing Recovery. When we use a two-dimensional
matrix to represent one-dimensional data, the problem of
recovering one-dimensional data becomes the problem of
image inpainting. Recently, CNN and GAN technologies in
the deep learning field have excellent performance on image
inpainting. In [36], the author uses the previous five con-
volutional layers from the AlexNet [23] as an encoder to
extract the features of images with missing areas and then
uses six deconvolutional layers as a decoder to restore the
missing regions from the learned features. Inspired by this,
this paper will put forward a convolutional autoencoder-
based network to recover the missing data in the pre-
processed matrices.

As we know, the feature learning in the AlexNet is
designed for the object classification problem, where the
object positions will not matter since the category of an
object does not depend on its position. And because of the
use of the max pool, “valid” padding, and flatten layer, the
size of the tensor will be compressed, which will blur the
position information. ,erefore, it is nearly impossible to
trace back to the original positions of features in deep
layers, especially when the input data are damaged
heavily.

For reshaped matrices, because the semantic informa-
tion is not uniformly distributed in rows and columns, the

original position of the feature is even more important when
extracting the features. If the convolution and deconvolution
framework is applied directly, the fuzzy location of features
in deep layers will further degrade the situations. Moreover,
since the “generalized” images are usually low-dimensional
with low rank, the context encoder in [36] will have bad
performance as the author reminded.

,us, this paper presents a CCAE network based on the
context encoder as follows: only use convolutional layers
without any flatten, pooling, or fully connected layers, re-
place the padding mode from “valid” to “same,” and set the
stride as one which keeps the height and width of the output
tensors in every layer equal to the input, namely, L-by-L.
Finally, the output matrix will be restored to one-
dimensional.

3.3.1. Network Structure. To recover the preprocessed in-
complete data S 􏽢X′

with SGj
, a CCAE model is proposed with

the structure shown in Figure 14.
,ere are K convolutional autoencoders (CAEj) blocks

cascaded in CCAE corresponding to K submissing masks
SGj

. Each CAEj has an encoderEj, a decoder Dj, and a filter
Fj. Encoder Ej and decoder Dj are made of Q convolutional
layers, respectively, where the stride is one, padding mode is
“same,” and activation function is Relu. ,e filter Fj is used
to update the recovery results of the missing segments in SGj

,
that is,

Fj � Fj−1 + Dj ⊙ SGj
. (23)

And then, Fj will be the input of Ej+1 in CAEj+1, which
ensures SGj+1

will be recovered based on the recovery result of
SGj

. In particular,

6
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Figure 13: Misplacement adjacency between the left and right sides and self-padding.
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F1 � S 􏽢X′
+ D1 ⊙ SG1

,

S􏽢Xrec′
� FK,

(24)

where S􏽢Xrec′
is the recovery result of S 􏽢X′

.
In this paper, K � 3 as mentioned and Q � 2. As a result,

there are four convolutional layers in each CAEj. ,e
number of convolutional kernels in each layer is 64, 96, 32,
and 1 in CAE1, 32, 64, 16, and 1 in CAE2, and 32, 64, 16, and
1 in CAE3. ,e corresponding kernel size is (5, 5), (11, 11),
(5, 5), and (3, 3) in CAE1; (7, 7), (5, 5), (3, 3), and (3, 3) in
CAE2; and (5, 5), (5, 5), (3, 3), and (3, 3) in CAE3, as
demonstrated in Figure 15. ,e red rectangles represent the
core areas in Section 3.2.5.

Without a flatten layer and fully connected layers, we
only employ two convolutional layers for feature learning.
As a result, the learned feature will locate at its original
position, which means this network will encoder a feature
vector for every point in the input matrix and just put that
feature vector at the same position as the computed point.
,rough that, the position information can be retained
during feature learning to the most extend.

3.3.2. Loss Function. One thing we should notice is that the
size of the output matrices of CCAE is still L-by-L, in which
only their m-by-m core areas matter as mentioned in Section
3.2.5. Hence, the loss functionL is defined as the root mean
squared error (RMSE) of the missing data within core areas:

L S􏽢Xrec
′, S􏽢X􏼒 􏼓 �

���������
1

􏽐
n
i�1 mi

􏽘

􏽳 ns

t�1

Core S􏽢Xrec
′(t) − S􏽢X

(t)􏼒 􏼓

������

������

2

2
,

(25)

where S􏽢X
is obtained through the same preprocessing in

Section 3.2.

3.3.3. Restore. Since S􏽢Xrec′
is a set of normalized L-by-L matrix

slices S􏽢Xrec′
(t), it should be restored back to one-dimensional

time series, which means the reverse operations of pre-
processing in Section 3.2. Assume ns �

􏼄k − 2p/m􏼅 � k − 2p/m, then reorganize the core areas of
slices S􏽢Xrec′

(t) as a k-by-m matrix AF:

AF �

Core S􏽢Xrec′
(1)􏼒 􏼓

⋮

Core S􏽢Xrec′
ns( 􏼁􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� fi,j􏽨 􏽩

k×m
. (26)

After that, reshape AF into a n-by-1 time series 􏽢Yrec �

(􏽢y1, 􏽢y2, ..., 􏽢yn−1, 􏽢yn), where 􏽢yh � fi,j for those (i − 1)m +

j � h. Finally, reverse the normalization in Section 3.2.1 to
get the restored results Yrec � (y1, y2, ..., yn−1, yn) in which

yh � 􏽢yh − 0.01( 􏼁
max( _X) − min( _X)

0.99
+ min( _X). (27)

4. Experimental Results and Discussion

In this section, we will validate our detection and recovery
algorithms. Load data from the Belgium grid will be con-
ducted as training and test data, and a missing mask gen-
eration model is presented to produce generative missing
masks under different parameters.

4.1. Experimental Design

4.1.1. Missing Mask Generation Model. In the original load
data of the Belgium grid, there are very few missing seg-
ments; therefore, it could be regarded as ground truth data
X. ,en, we have to manually generate missing masks M for
detection and recovery testing.

Define the missing rate as c where

c �
􏽐

n
i�1 mi

n
. (28)

If we just randomly select some segments in X as
missing segments, the segments collision might happen, as
demonstrated in Figure 16, which results in a lower
missing rate than the given c. ,erefore, a stratified
sampling model is proposed to solve the problem, as
shown in Figure 17.

Define the number of missing data as NMD, namely,

NMD � 􏽘 n
i�1mi � nc. (29)

,en, divide NMD as NMS segments where NMS is the
number of missing segments and

NMS � random([NMDα], [NMDβ]), (30)

SG1
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CAEi

CAEK

D1 F1E1

Di FiEi

DK FKEK

......

......

K blocks

SX′
ˆ

SX′
ˆ rec

Figure 14: General structure of CCAE.
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Figure 16: Segments collision in random generation of the missing mask.
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Figure 15: An instance of CCAE with K � 3 and Q � 2.
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where α and β are length parameters of missing segments
which determine the average length of missing segments
ALMS:

ALMS �
2

α + β
. (31)

Randomly generate an integer between NMDα and
NMDβ as NMS and then stochastically divide NMD as NMS
segments; then, according to the proportion of each NMS
segment, divide M as NMS subsegments, too. Finally, within
every subsegment in M, we independently select a missing
segment and set those bits inside the subsegments as 1 and

NMD NMSα, β

γ

Missing segment

Subsegment

M

Figure 17: Stratified sampling generation model of the missing mask.
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Figure 18: ,e missing masks in different missing rate c.
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Figure 19: ,e missing masks in different α and β (ALMS).
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others as 0. ,is pipeline ensures c and the distribution of
missing segments are independent.

Some of the generative missing masks with given c, α,
and β are shown in Figures 18 and 19 . For each set of
parameters, four missing masks are generated indepen-
dently, and the total number of data is n � 200; the blue
regions represent normal data with mi � 0, while red regions
mean missing data with mi � 1.

4.1.2. Dataset Configurations. As mentioned, we will take
the load data of the Belgium grid during 2014–2020 as an
example, which involves 2000 days in total and 96 sampling
points per day. ,e original data values range from
7000MW to 14000MW.

To better evaluate the proposed model, the detection
and recovery components will be tested independently,
which means the missing mask for the recovery compo-
nent is the generative missing mask instead of the detected
missing mask by the detection component. Hence, dif-
ferent datasets configuration will be used for the two
components.

For the detection component, we assume noise W obeys
the Gaussian distribution N(0, σ2N) and define SNR for the
normal data signal power Pdata and noise signal power Pnoise
as

SNR � 10lg
Pdata

Pnoise
, (32)

where Pdata � 1/n‖X‖22 and Pnoise � σ2N.
In the experiment, we consider SNR ranges from 15 dB

to 40 dB. Since the original data range from about 7000 to
14000, if we directly generate a missing mask on that,
nearly all the missing segments will be typical missing
segments. To comprehensively evaluate the missing de-
tection algorithm, we linearly map the original data values
into (-500, 0), (-250, 250), and (0, 500), respectively. ,e
factor of missing rate c should be investigated as well,
which is set as 10%, 20%, and 40% separately. Besides,
length parameters are fixed as α � 0.1 and β � 0.15, then
ALMS � 8. ,e configurations are shown in Table 2. ,e
indexes to assess the detection results are precision P,
recall R, and F1 score in Section 3.1.2.

For the recovery component, because the noise will be
cleared as zero in Section 3.1.2, we do not care about the
influence of noise W. Instead, parameters c, α, β, and p are
studied. c will be set as 5%, 10%, and 20%, while α and β will
be set as (0.1, 0.15), (0.05, 0.075), and (0.025, 0.0375),
corresponding to ALMS of 8, 16, and 32. Furthermore,
padding depth p will be set as 0, 7, 9, and 11. For each p, the
missing mask contains mixed 3 × 3 combinations of (c, α, β).
,e configurations are listed in Table 3. ,e index to assess
the recovery results is RMSE in Section 3.3.2.

In addition, the missing masks with the above config-
urations will be generated for ten times independently to
avoid the stochastic disturbance in results.

4.1.3. Training Settings. For each set of configurations in
Table 3, 80% will be used as training sets and the remaining
20% will be testing sets. ,e specifications of software and
hardware are presented in Tables 4 and 5 . ,e optimizer is
“Adam,” the learning rate is set to descend exponentially
along the epochs, and the batch size is 20 (slices of S 􏽢X′

(t)

with corresponding missing masks).

4.2. Results and Discussion of Missing Detection. As illus-
trated in Figure 20, for the data mapped in the positive range
(0, 500) or the negative range (−500, 0), all the precision,
recall, and F1 are all nearly 100% when the SNR is over
20 dB, while the SNR needs to be more than 30 dB to reach
the same result for the data mapped in (−250, 250). ,is is

Table 2: Dataset configurations for missing detection.

# Range c SNR
1 (−500, 0) {5%, 10%, 20%} (15 dB, 40 dB)
2 (−250, 250) {5%, 10%, 20%} (15 dB, 40 dB)
3 (0, 500) {5%, 10%, 20%} (15 dB, 40 dB)

Table 3: Dataset configurations for missing recovery.

# p c (α, β)
1 0 {5%, 10%, 20%} {(0.1, 0.15), (0.05, 0.075), (0.025, 0.0375)}
2 7 {5%, 10%, 20%} {(0.1, 0.15), (0.05, 0.075), (0.025, 0.0375)}
3 9 {5%, 10%, 20%} {(0.1, 0.15), (0.05, 0.075), (0.025, 0.0375)}
4 11 {5%, 10%, 20%} {(0.1, 0.15), (0.05, 0.075), (0.025, 0.0375)}

Table 4: Specifications of the software.

Item Version
Python 3.7.6
TensorFlow 1.14

Table 5: Specifications of hardware.

Item Specifications
System Ubuntu 19.04
CPU i9-9820x
GPU Nvidia Titan Xp 12G ×4
RAM 64G
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because the ratio of the atypical missing segments for data
mapped in (−250, 250) is much higher than the other two,
and the noise on the missing segments in that situation will
have a very high possibility to be overlapped with the normal
data. Moreover, we might be unable to obtain enough typical
missing segments for noise estimation, which influences the
detection performance.

When the SNR decreases from 20 dB to 15 dB, there is
significant deterioration in the results. F1 of data mapped
in (−500, 0) and (0, 500) can drop to 0.7. And it will be even
worse for the data mapped in (−250, 250), where F1 can be
lower than 0.6. But fortunately, in most cases, the data are

always positive or negative, which is far away from zero,
and the noise on missing data is slight enough which
ensures high SNR. ,us, the detected mask could be
regarded as the ground truth missing masks. ,is is also
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Figure 20: Missing detection results for different missing rates and normalization ranges.

Table 6: RMSE of CCAE for different padding depths.

# p CCAE (×10− 2)

1 0 4.15
2 7 3.94
3 9 3.79
4 11 3.84
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the reason for just using the generative missing mask
rather than the detected missing mask to test the sequential
recovery component.

Another phenomenon is that, in the high SNR region,
the missing rate seemingly makes no difference to the
detection, while in the low SNR region, the higher the

missing rate is, the better the detection performs. It may
be not so intuitive. But our further analysis indicates that
when the SNR is low, the ratio of the false-positive
samples will increase greatly because of the overlap of
normal data and noise, even when the missing rate is zero.
,erefore, a higher missing rate will bring more positive
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Figure 21: Missing recovery results with core areas inside red rectangles.
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Figure 22: Continued.
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samples in turn, which decreases the false-positive sam-
ples to some degree.

4.3. Results and Discussion of Missing Recovery. ,e RMSE
for different padding depths is shown in Table 6. Generally,
the CCAE model performs well on the missing recovery
problem, and RMSE is pretty low for the normalized range
(0, 1). Besides, the edge padding technique can further
improve the recovery error, but too deep padding depth
may lead to a drop in the performance, and in this ex-
periment, the optimal choice is 9 with the padding ratio of
9.375%.

During training, CCAE is allowed to output high error
on those padding areas, which makes the loss function
converge more easily and efficiently. And without the
padding areas, those errors would appear in the core areas
unavoidably, which is also the reason we design the edge
padding technique.

,eoretically, the deeper the padding depth is, the more
the adjacent data can be used for the edges data in the core
area, but with the increase in the depth, the distance between
the padding data and core data will grow linearly, too. And
once beyond a certain distance, the padding data can no
longer provide any useful information, which instead causes
a lower proportion of the core area in the padding slice and
brings low computation efficiency.

To demonstrate the recovery performance of CCAE with
p � 9, we randomly chose some output slices of S􏽢Xrec′

compared with the input slices S 􏽢X′
and the ground truth S􏽢X

in Figure 21, where those matrices are virtualized by
grayscale images.,e size of each slice is 114-by-114, and the
blue, green, and yellow segments in submissing masks
represent the submissing segments in G1, G2, and G3, re-
spectively. ,e areas inside red rectangles are core areas.

,e core areas of the output images are nearly the same
as core areas of the ground truth, even for those inputs with
high missing rate and long missing segments. We even
cannot tell the difference between the cores of output and
ground truth. Only when zooming up the output, we can

find some slight difference in the textures for the ground
truth.

While in the edge padding area outside the core areas,
there are obvious black holes as the blue circles shown in
Figure 21 because of ignoring those areas when defining the
loss function in Section 3.3.2. In Figure 22, we restore some
rows of the output to one-dimensional to get 􏽢Yrec, and the
results are consistent with the previous discussion.

5. Conclusion and Future Research

,is paper proposes a missing load data detection and re-
covery model based on CCAE. In the detection issue, we
combine ADS and the linear correlation as a criterion to
detect the potential missing segments. And based on the
detection results, we further divide the detected missing
mask into submissing masks with priority and then reshape
the original one-dimensional data and mask into two-di-
mensional matrices for data enhancement. ,e constructed
matrices are regarded as “generalized” images, which
transform the recovery problem to images inpainting.
Furthermore, the deep learning technologies are conducted,
and we have designed a CCAE model to repair the input
damaged matrices. To assess the algorithms, we build a
missing mask generation model to generate missing masks.
Numerical results on the load data of the Belgium grid
indicate that the developed detection and recovery algo-
rithms have satisfactory performance under different
missing situations. It should be highlighted that the pro-
posed intelligent detection and recovery solution can be used
for other forms of time-series dataset.

Here, the strength of the proposed detection and re-
covery algorithms can be summarized as follows: it can be
found that the missing detection is nearly 100% accurate for
most situations; the missing segments can be recovered
grade by grade with priority in submissing masks strategy,
which ensures the recovery accuracy even for long-missing
segments. Also, the reshaping from one-dimensional time
series to the two-dimensional image is a powerful data
enhancement method for the load data, which enables the
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Figure 22: Missing recovery results in one-dimensional (96 points/day).
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CNN to understand the semantics of one-dimensional data.
Finally, the structure of CCAE is not sensitive to the input
size, so it is easy to make transfer learning to datasets with
different periods.

On the contrary, the proposed solution is still needed for
further investigation as it has the following potential limi-
tations: firstly, under the condition of low SNR, some of the
normal data distributed around zero may be wrongly labeled
as missing data.,e training process requires a large amount
of historical data, which is difficult for some problems. Also,
the number of hyperparameters is too many to be optimized
and demands for the expert experience.

In future work, further research effort is required to
further improving the proposed algorithmic solution from
two aspects. Firstly, the models can be further enhanced
through the adoption of more sophisticated deep learning
models. Also, the solution can be incorporated with a hybrid
model that consists of multiple different machine learning
algorithms. In addition, the proposed solution can be ap-
plied and validated for different time-series data in other
application domains.
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