
Research Article
Flowchart-Based Cross-Language Source Code
Similarity Detection

Feng Zhang ,1,2 Guofan Li,1 Cong Liu ,3 and Qian Song1

1College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2Shandong Key Laboratory of Wisdom Mine Information Technology, Qingdao 266590, China
3School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China

Correspondence should be addressed to Cong Liu; liucongchina@sdut.edu.cn

Received 18 July 2020; Revised 11 November 2020; Accepted 1 December 2020; Published 18 December 2020

Academic Editor: Jianping Gou

Copyright © 2020 Feng Zhang et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Source code similarity detection has various applications in code plagiarism detection and software intellectual property
protection. In computer programming teaching, students may convert the source code written in one programming language into
another language for their code assignment submission. Existing similarity measures of source code written in the same language
are not applicable for the cross-language code similarity detection because of syntactic differences among different programming
languages. Meanwhile, existing cross-language source similarity detection approaches are susceptible to complex code obfuscation
techniques, such as replacing equivalent control structure and adding redundant statements. To solve this problem, we propose a
cross-language code similarity detection (CLCSD) approach based on code flowcharts. In general, two source code fragments
written in different programming languages are transformed into standardized code flowcharts (SCFC), and their similarity is
obtained by measuring their corresponding SCFC. More specifically, we first introduce the standardized code flowchart (SCFC)
model to be the uniform flowcharts representation of source code written in different languages. SCFC is language-independent,
and therefore, it can be used as the intermediate structure for source code similarity detection. Meanwhile, transformation
techniques are given to transform source code written in a specific programming language into an SCFC. Second, we propose the
SCFC-SPGK algorithm based on the shortest path graph kernel to measure the similarity between two SCFCs.(us, the similarity
between two pieces of source code in different programming languages is given by the similarity between SCFCs. Experimental
results show that compared with existing approaches, CLCSD has higher accuracy in cross-language source code similarity
detection. Furthermore, CLCSD cannot only handle common source code obfuscation techniques used by students in computer
programming teaching but also obtain nearly 90% accuracy in dealing with some complex obfuscation techniques.

1. Introduction

Since the 1970s, the source code similarity detection technique
has attracted the attention of global researchers, and it has been
widely used in the source code plagiarismdetection in computer
programming teaching and code intellectual property protec-
tion [1]. At present, there aremainly two kinds of code similarity
detection approaches: attribute counting [2, 3] and structure
metrics. Among them, structure metrics is the most commonly
used approach that mainly includes string-based, tree-based,
and graph-based code similarity detection approaches. In recent
years, with the emergence of automatic code conversion tools
(https://www.tangiblesoftwaresolutions.com), the similarity

detection of cross-language source code poses a new research
challenge. With the extensive applications of OJ (Online Judge)
[4] in computer programming teaching, these tools are often
used to copy programming assignments by students. Most of
the existing cross-language code similarity detection approaches
are based on token or tree-based intermediate representation.
However, some complex code obfuscation techniques can
decrease the similarity of source code. For example, changing
the loop structure and adding redundant statements may affect
the detection effectiveness of existing approaches [5].

Programming assignments in computer programming
teaching are generally simple and short. As a result, for the
given original code and plagiarized code written in different

Hindawi
Scientific Programming
Volume 2020, Article ID 8835310, 15 pages
https://doi.org/10.1155/2020/8835310

mailto:liucongchina@sdut.edu.cn
https://www.tangiblesoftwaresolutions.com
https://orcid.org/0000-0003-2646-9854
https://orcid.org/0000-0002-2665-7153
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8835310

programming languages, no matter what kind of code
transformation or obfuscation techniques is adopted [6],
their core processes are highly similar if their programming
ideas are the same. (is circumstance is close to type IV
clones [7]. (erefore, aiming at the cross-language source
code similarity detection in the teaching of computer pro-
gramming, we propose a cross-language source code simi-
larity detection approach named CLCSD (cross-language
code similarity detection) based on code flowcharts. In this
approach, source code written in different programming
languages is transformed into corresponding flowcharts, and
then the similarity of code is obtained by measuring the
similarity between their flowcharts. Specifically, first of all,
for two source code fragments written in different pro-
gramming languages, there may be some differences be-
tween their flowcharts that are directly transformed by
current code conversion tools even though they have the
same processes. (is is because the flowcharts obtained by
the existing code flowchart conversion approaches and tools
are strongly correlated with the syntax of the programming
language. (erefore, we propose a standardized code
flowchart (SCFC) model based on the code flowchart (CFC)
and the program dependency graph (PDG) [8]. SCFC
standardizes the code flowcharts of different languages. In
addition, it is suitable for dealing with the most common
code obfuscation techniques in programming assignments.
Next, the approach of transforming a source code fragment
of a specific programming language into a SCFC is given.
Finally, the SCFC-SPGK algorithm based on the shortest
path graph kernel (SPGK) [9] for measuring the similarity
between two SCFCs is proposed to calculate the similarity
between two code fragments written in different languages.

(e main contributions of this paper are as follows:
(1) a cross-language source code similarity detection
(CLSCSD) approach is proposed based on standardized
code flowcharts; (2) a standardized code flowchart model
SCFC that is independent of programming language and
suitable for code similarity detection is proposed; (3) a
cross-language source code similarity detection algo-
rithm SCFC-SPGK based on SPGK is proposed. In ad-
dition, the effectiveness of CLCSD in cross-language
source code similarity detection is verified from the
perspective of the accuracy and the ability of defeating the
code obfuscation techniques through real datasets.
Meanwhile, it is verified that this approach is also suitable
for the similarity detection of source code in the same
programming language.

(e rest of this paper is arranged as follows. First, the
related work of similarity detection of the source code
written in the same language and different languages is
introduced in Section 2. Section 3 introduces the basic
idea and the core framework of the CLCSD. Next, the
SCFC model and the way of converting a flowchart
transformed from a specific programming language into a
SCFC are given in Section 4. In Section 5, the code
similarity calculation based on SCFCs is introduced in
detail. In Section 6, the effectiveness of the proposed
approach is evaluated through experiments. Finally, we
conclude this paper in Section 7.

2. Related Work

Most existing source code similarity detection approaches
measure the similarity between two source code fragments
written in the same programming language. Meanwhile,
there is some work in terms of cross-language source code
similarity detection. (erefore, we first introduce the ap-
proaches of source code similarity detection in the same
programming language in this section, and then we present
the main work of existing cross-language code similarity
detection.

2.1. Source Code Similarity Detection in the Same Language.
(ere are mainly two kinds of source code similarity de-
tection approaches: attribute counting and structure metrics.
In the early days, the approaches of attribute counting
mainly focus on how to get the measurable attributes of
code, such as the number of distinct operators and distinct
operands. However, the detection effectiveness of these
approaches is poor because they ignore too much structure
information of the code. At present, the approaches based on
structure metrics are most commonly used in code similarity
detection, which mainly includes the approaches based on
strings [10–13], trees [14–19], and graphs [8, 20–23].

2.1.1. Source Code Similarity Detection Based on Strings.
String-based detection approaches measure code similarity
from the perspective of text structure and the lexical features
of source code. (e most widely used approaches are based
on text strings [10, 24] and tokens, such as CPDP [11], SIM
[12], and JPlag [13]. (e former converts the source code
into a string sequence and then measures the similarity
based on the sequence. (e latter converts the word symbols
in the source code into hexadecimal tokens andmeasures the
similarity based on the token sequences.

2.1.2. Source Code Similarity Detection Based on Trees.
Tree-based detection approaches construct a parse tree
[14, 15] or an abstract syntax tree (AST) [16–18] of the
source code by lexical and syntax analysis. (e parse tree
focuses on syntax, while the abstract syntax tree focuses on
logic. (is kind of approach measures the similarity by
matching subtrees or vectors that are transformed from the
tree structures [19].

2.1.3. Source Code Similarity Detection Based on Graphs.
(e code similarity detection approaches based on graphs
mainly use the program dependency graph (PDG) [8, 21–23]
and the control flow graph (CFG) [20, 22]. A PDG reflects
the logical structures of code, including the control de-
pendency and data dependency between statements. (e
approaches based on PDGs measure the code similarity by
matching the isomorphic subgraphs. A CFG reflects the
control structures of source code. (e approaches based on
CFGs measure the code similarity by matching the paths in
the CFGs. In addition, some approaches [8, 19] combine
AST and PDG to detect the code similarity.

2 Scientific Programming

(e above three kinds of approaches are used to measure
the similarity of source code written in the same pro-
gramming language. However, these approaches are not
suitable for cross-language code similarity detection because
of the syntax differences between different programming
languages.

2.2. Source Code Similarity Detection in Different Languages.
At present, there are mainly three kinds of approaches for
cross-language source code similarity detection.

2.2.1. Cross-Language Source Code Similarity Detection
Based on Intermediate Language. (e main idea of these
approaches is to convert the code written in different lan-
guages into common intermediate language code, such as
RTL (Register Transfer Language) [25] and CIL (Common
Intermediate Language) [26]. (en, these approaches
measure the similarity of code written in different languages
by converting the intermediate language code into tokens or
directly comparing the intermediate language code. (is
kind of approach ignores too much structure information of
the source code. In addition, some approaches have limi-
tation for using. For example, the approaches using CIL only
works with the Microsoft.Net languages.

2.2.2. Cross-Language Source Code Similarity Detection
through Tree-Based Intermediate Representation. (e main
idea of these approaches is to convert the source code written
in different languages into common tree structures, such as
eCST (enriched concrete syntax tree) [5], AST [27, 28], and
CodeDOM (Code Document Object Model) [29]. (en, the
tree structures are converted into token sequences or vectors
to improve the efficiency of similarity measure. In addition,
Nafi et al. [30] combine the approaches of ASTand attribute
counting to detect the similarity of cross-language source
code. However, the intermediate representation based on
trees cannot represent the logical structure of the source
code completely, such as the loop structure. Meanwhile,
these approaches cannot defeat the complex obfuscation
techniques, such as adjusting the order of statements and
adding redundant statements [5].

2.2.3. Cross-Language Source Code Similarity Detection
Based on NLP (Natural Language Processing). Some ap-
proaches utilize NLP to detect the similarity of cross-language
source code. (ese techniques mainly include n-gram model
[31], LSA (Latent Semantic Analysis) [32], BOW (Bag of
Words) [33], component analysis, and multiple logistic re-
gression models [34]. (ese approaches also ignore the
structural features of the source code. Although the approach
proposed in [28] combines the AST and LSTM to detect the
similarity between Java and Python code, they are greatly
affected by some complex obfuscation technologies, e.g., the
commonly used adding redundant statements. Meanwhile,
this kind of approach needs to train their models with a lot of
code rather than detecting the code similarity directly.

3. Framework of CLCSD

3.1. Basic Idea. A code flowchart can express the execution
flow of an algorithm clearly and intuitively, and therefore, it
is an essential tool for analyzing and designing an algorithm.
For the code assignments submitted by students in the
teaching of computer programming, existing common code
obfuscation techniques commonly cannot modify the core
process of the code. (erefore, the similarity between two
pieces of code can be measured by comparing their corre-
sponding processes that are expressed by flowcharts. Some
existing tools can directly convert a source code into its
corresponding flowchart. However, a flowchart generated by
these tools is usually closely related to the syntax features of
the programming language that the code is written in. As a
result, the flowcharts generated from source code written in
different languages by existing conversion tools are different
due to the differences in the basic syntax of different pro-
gramming languages. Figures 1(a) and 1(b) show a piece of
Java code and Python code for finding all prime numbers
between 100 and 200. (ese two code fragments are written
based on the same idea, and their corresponding flowcharts
directly generated by the Visustin (https://www.aivosto.
com/visustin.html) tool are shown in Figures 1(c) and
1(d). We can see that there are some differences between two
flowcharts. (us, the code similarity calculated directly
based on these two flowcharts cannot reflect the real sim-
ilarity between these two pieces of source code.

(erefore, we give a standardized flowchart model that is
independent of the specific programming language to solve
this problem. (en, we take the standardized flowchart as
the basis of similarity measure for the source code written in
different languages. Finally, we present the standardized
flowchart similarity measure approach to measure cross-
language source code similarity.

3.2. Overall Framework. (e overall framework of the
proposed approach is shown in Figure 2. For two code
fragments written in different programming languages, the
whole process of calculating their similarity is divided into
two steps.

First, two SCFCs are generated according to these two
code fragments. In this step, there are three substeps. (e
code is preprocessed based on a PDG first to remove re-
dundant statements. (en, the flowcharts of code (code
flowchart (CFC)) are generated using existing conversion
approaches according to the source code. Finally, two CFCs
are standardized and converted into two SCFCs according to
the definition of the SCFC in this study.

Second, the similarity between two SCFCs is calculated
using the similarity measure algorithm based on graphs.
Finally, the value is taken as the similarity between these two
code fragments.

4. SCFC and Standardization

(ere are a few kinds of flowcharts, such as algorithm
flowcharts, data flowcharts, code flowcharts, and system
flowcharts. (e proposed SCFC belongs to the code

Scientific Programming 3

https://www.aivosto.com/visustin.html
https://www.aivosto.com/visustin.html

flowchart. We first introduce the SCFC model based on our
previous work [35]. (en, we give the way of converting a
piece of source code into its corresponding SCFC.

4.1. SCFC. In this section, we first introduce the node, edge,
and structure of SCFC.(en, we give the definition of SCFC.

4.1.1. SCFC Node. A node is a basic element of a flowchart.
According to the statements in the source code, we give nine
types of SCFC nodes:

(1) declare: a statement that declares a variable
(2) assign: a variable assignment statement, such as� ,

+� , + +, and − −

int i,j;
int n = 0;
int m = 0;
for(i = 101;i< = 200;i++){

for(j = 1;j< = i;j++){
n = i%j;
if(n = = 0) {

m = m+1;
}

}
if(m = = 2){

System.out.print(i+" ");
}
m = 0;

}

(a)

m = 0
for i in range(100,200):

for j in range(1,i + 1):
n = i%j
if n = = 0:

m + = 1
if m = = 2:

print(i,end = " ")
m = 0

(b)

int i,j;

i< = 200?

j = 1 End

n = i%j; m = = 2?

m = 0;

i++j++

n = =0?

Yes

Yes

Yes No

No

No

j< = i?

Yes

No

System.out.print(i + " ");

int n = 0;
int m = 0;
i = 101

m = m + 1;

(c)

m = 0

m = 0

for i in range(100,200)

for j in range(1,i+1)

End

End for

End for
No

n = = 0?

No
m = = 2?

Yes

print(i,end = “ ”)

m+ = 1

Yes

n = i%j

(d)

Figure 1: Flowcharts converted from Java and Python code using Visustin; (a) Java code example; (b) Python code example; (c) code
flowchart of (a); (d) code flowchart of (b).

4 Scientific Programming

(3) loop: a repeated statement, such as for, while, and do
while

(4) jump: a process jump statement, such as goto, break,
continue, and other statements used to implement a
process jump in a process of circular execution

(5) call site: a function call statement
(6) return: a statement that returns the value of a

function
(7) control: a branch statement, such as if, else, and

switch
(8) output: an output statement
(9) combine: merging of adjacent declare or assign

nodes in a flowchart that have no data dependency

As mentioned above, SCFC is a model that expresses the
standardized flowchart of a piece of source code. It is also the
basis for calculating the code similarity. (erefore, the
definition of SCFC should consider the requirements of
defeating code obfuscation techniques used in code simi-
larity detection. Exchanging statement orders is a commonly
used code obfuscation technique. In this study, we extend
SCFC with a combine node to defeat this obfuscation
technique. Specifically, adjacent declare or assign nodes that
have no data dependency in the same basic block [20] are
merged into a combine node. Figure 3 gives an example. (e
nodes int p and q� 0 correspond to the adjacent declare and
assign nodes, which are independent and can be combined
into a combine node.

4.1.2. SCFC Edge. (ere are two kinds of SCFC edges in a
SCFC model.

Definition 1. (sequential execution edge (SEE)). For SCFC
nodes v1 and v2, if the statement corresponding to v2 is
executed immediately after the statement corresponding to
v1, there is a sequential execution edge from v1 to v2.

Definition 2. (control dependency edge (CDE)). For SCFC
node v1 that belongs to a loop or control node type, if the
value of condition in v1 controls whether a basic block
executes while v2 is the first node of the block, then there is a
control-dependent edge from v1 to node v2. (e control
dependency edge has two properties: CDE-Y indicating that
the edge meets the control condition and CDE-N indicating
that the edge does not meet the control condition.

4.1.3. SCFC Structure. In Figure 1, the control structure and
loop structure of flowcharts, which are transformed from
source code written in different languages, may also be
different due to syntax differences of programming lan-
guages. (erefore, we propose the standardized structure of
SCFC.

Based on the three basic structures sequence, branch,
and loop in the flowchart, we give three standardized
structures of SCFC: (1) SS: sequential structure; (2) BS:
branch structure; (3) LS: loop structure. (ese three
structures are shown in Table 1.

4.1.4. Definition of SCFC. Based on the definition of the
SCFC node and edge, the definition of SCFC is as follows.

Definition 3. standardized code flowchart (SCFC)).
SCFCp � (V, E, TV, TE, μ, δ) is the standardized code
flowchart of a piece of code p, where,

(i) V is the set of nodes and E ⊆V×V is the set of edges
(ii) TV � {assign, declare, control, loop, jump, call site,

return, output, combine} is the set of node types
(iii) TE � {SEE, CDE} is the set of edge types
(iv) μ: V⟶ TV is the function of assigning a node type

tv ∈TV to a node v ∈V
(v) δ: E⟶TE is the function of assigning an edge type

te ∈TE to an edge e ∈E

4.2. SCFC Conversion for Language-Specific Flow Charts.
(ere are two steps in converting a piece of code in a specific
programming language into a SCFC. First, the code is
preprocessed to deal with redundant statements. (en, the
preprocessed code is converted into a flowchart by existing
tools, which is closely correlated with the syntax of the
programming language. Finally, the flowchart is converted
into the corresponding SCFC.

4.2.1. Source Code Preprocess Based on PDGs. Redundant
statements may exist in a piece of code. In addition, adding
redundant statements is also a common obfuscation

Source code 1 based on
programming language 1

Source code 2 based on
programming language 2

Code 1

Code 2

SCFC 1
Graph similarity

detection algorithm Similarity

Preprocessing Standardization
CFC 1

CFC 2 SCFC 2

Transformation

Preprocessing Standardization

SCFC
generation

Transformation

Figure 2: Overall framework of CLCSD.

int p

q = 0

declare: int p

assign: q = 0

combine

Figure 3: A combine node example.

Scientific Programming 5

technique because redundant statements increase the
number of nodes and edges in the generated flowchart. As a
result, the code similarity precision based on the flowchart is
affected. Take the code in Figure 4(a) for example. Given a
code fragment that calculates the largest value of two
numbers, the code contains redundant statements in the
third and the sixth line. Figure 4(b) shows the corresponding
PDG of the code. We can see that the declared variables and
assignments in the third and sixth lines have no data de-
pendencies on the return statements. (at is, the code in the
third and sixth lines is redundant. We preprocess the source
code by the traditional PDG to deal with redundant state-
ments and obtain a SCFC that can reflect the real process of
the code. Given a piece of code, the preprocessing steps are
as follows:

(1) (e source code is converted into a PDG.
(2) (e origin and end points of all edges in the PDG are

exchanged.
(3) Deep traversal in the PDG from the nodes corre-

sponding to the output statement and return
statement (the traversed node will not repeat the
traversal) is executed. (en, a new directed graph
Gnew is obtained.

(4) (e code corresponding to graph nodes that are not
in Gnew is removed from the source code

Figure 5 shows the preprocessing result of the code in
Figure 4 according to the above steps.

Next, the preprocessed code needs to be transformed
into its corresponding SCFC. (e details are described as
follows.

4.2.2. Transformation of SCFC. Learning from the node
definition in PDGs, a node in a SCFC needs not to embody
specific code statements for source code similarity measure.
For the flowchart obtained by the existing approaches and
tools (we call it the original flow chart), the nodes in it can be
mapped to the nodes of a SCFC one by one according to
their types. Similarly, edges in the original flowchart can be

mapped to SEE, CDE-Y, and CDE-N according to their
types.

For two pieces of source code, if they use different types
of loop structure or different forms of the same loop
structure, the loop structure in the corresponding flow chart
may also be different [35]. (erefore, it is necessary to
transform both the loop structure of different types and
different forms of the same loop structure into a stan-
dardized LS. An example of the transformation of the loop
structure is shown in Figure 6.

Similarly, the branching structures, including if,
if...else, if...else if, and switch case, are all converted to the
BS structure of SCFC.

Finally, the corresponding SCFC of a code fragment can
be obtained based on the mapped nodes, edges, and stan-
dardized structures. Take the Java and Python code in
Figure 1 for example; Figure 7 shows their SCFCs. We can
see that the code written in two different languages with the
same idea has a high similarity in terms of the SCFC.

5. Similarity Measure of SCFCs

A SCFC is a directed graph. (erefore, we can apply graph
similarity calculation algorithms to measure the similarity of
two SCFCs. (e similarity measure based on the graph
kernel is one of the most important approaches in the re-
search of graph similarity measure, which include graph edit
distance-based, tree-based, and path-based approaches.
First, the approach based on graph editing distance [36] is
inefficient because its time complexity increases exponen-
tially with the number of vertices. Second, the tree-based
similarity measure approaches are mainly used to calculate
the similarity between directed acyclic graphs. Meanwhile,
the similarity measurement complexity of trees is lower than
that of graphs [37, 38]. However, the circle is one of the
important structures in the structures of the source code.
(ese approaches are suitable for directed acyclic graphs,
which limits its application in the graph-based code simi-
larity detection. Finally, the similarity measure approaches
based on paths determine the similarity of two graphs by

Table 1: (e structures of SCFC.

Structure types SS BS LS

Structure charts

Node 1

Node 2

SEE

Control 1

Control 2

Control 3

Node 1 Node 2 Node 3 Node 4

CDE-Y
CDE-Y

CDE-N

CDE-Y

CDE-N

CDE-N

SEE SEE SEE SEE

Loop

Node 2 Node 4

CDE-N
SEE

Node 3

Node 1

CDE-Y

6 Scientific Programming

comparing the number of common paths in these two
graphs. (ese approaches mainly include the random walk
graph kernel (RWGK) [39, 40], the common path graph
kernel (CPGK) [41], and the shortest path graph kernel
(SPGK) [9, 42]. RWGK considers the same vertex in the
path, which leads to the tottering phenomenon [43] and
affects the similarity of graphs. Moreover, this method does
not take the similarity of the node tags into account for the
graph similarity measure [44]. CPGK mainly solves the
similarity measure of directed acyclic graph [41], which is
unsuitable for measuring the similarity of SCFCs. SPGK
does not consider repeated traversal of the same edges in

similarity measure. As a result, it can avoid the tottering
phenomenon. However, its time complexity is slightly
higher, which is O (n4).

A SCFC can be represented as a directed cyclic graph
with a root node. Considering the validity and time com-
plexity of SCFC similarity measure, we choose the SPGK as
the basis of SCFC similarity measure. Combining with the
features of nodes and edges in the SCFC, we propose the
SCFC-SPGK algorithm for the similarity calculation of
SCFCs.

5.1. SCFC-SPGK Algorithm. (e SPGK algorithm is first
introduced in this section, and then, the SCFC-SPGK al-
gorithm based on SPGK is presented in detail.

SPGK first uses the Floyd–Warshall algorithm [41, 44] to
find the distance between any two vertices in the graph based
on the adjacency matrix of the graph. Assume that A1 andA2
are the weighted adjacency matrices of the graphs G1 � (V1,
E1) and G2 � (V2, E2), respectively. (e shortest distance
between any two vertices in the graphs is obtained by the
Floyd–Warshall algorithm, and the shortest path matrices
A′1 and A′2 and the transformed graphs R1 � (V ′1, E ′1) and
R2 � (V ′2, E ′2) are obtained by combining A1 and A2. (e

2 int j = 3;
1 int i = 2;

3 int r = 0;
4 if(i < j) {
5 return j;

}else{
6 r = r + 1;
7 return i;

}

(a)

assign,
i = 2

assign,
j = 3

control,
i < j

return i; assign,
r = r + 1;

assign,
r = 0;

return j;

(b)

Figure 4: (a) (e example code fragment and (b) the PDG of the example code fragment.

2 int j = 3;
1 int i = 2;

3
4

if(i < j) {
return j;

}else{
5 return i;

}

(a)

assign,
i = 2

assign,
j = 3

control,
i < j

return i; return j;

(b)

Figure 5:(e code fragment after removing redundant statements. (a)(e example code fragment after preprocessing; (b) the PDG of code
fragment in (a).

for(int i = 0; i < 10; i++)

sum = sum + i print (sum)

Loop

assign output

SEE

Yes No
CDE-NCDE-Y

assign

assign
SEE

int sum = 0

Figure 6: (e standardization of LS.

Scientific Programming 7

definition of the shortest path kernel function to compare
the similarity of two graphs is shown in the following
equation:

k G1,G2(􏼁 � 􏽘
e1∈E1

􏽘
e2∈E2

k∗path�1 e1, e2(􏼁, (1)

where kpath � 1∗ (e1, e2) represents a subkernel function of
length 1, which is defined as follows:

k∗path�1 e1, e2(􏼁 � exp −
A′ 1(i, j) − A′ 2(k, l)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

m1 ∗m2

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠, (2)

where
e1 � (V1i

′ ,V1j
′), e2 � (V2k

′ ,V2l
′),m1 � |V1′ |, andm2 � |V2′ |.

In the SPGK algorithm, the time complexity of the
shortest path between all vertices in the graph is O(n3) when
using the classical Floyd–Warshall algorithm, and the time
complexity that compares all paths in the two graphs is
O(n4). (erefore, the time complexity of the shortest path
graph kernel algorithm is O(n4).

We propose the SCFC-SPGK algorithm based on SPGK.
Since the SCFC is directed graph with the root node, the
shortest path from the root node to other nodes (single
source path) is enough to reflect the features of a SCFC for
obtaining the shortest path set. (us, the time complexity is
reduced. (e main idea of the algorithm is as follows. First,
the shortest path sets S1 � {p1, p2, ..., pm} and S2 � {p′1, p′2, ...,

p′n} are obtained. In terms of optimal matching, the path
length L is obtained for each path pi in S1, then the path is
matched with the path length in S2 within [L − 1, L+ 1], and
then the set S� {(pi, p′j)| 0< j< n} is obtained. Second, for
each path pair, the edit distance Dv of the two path node
attribute sequences (Vi, Vj) and the edit distance De of the
edge attribute sequence (Ei, Ej) are calculated. Finally, the
path p′j with the minimum sum of Dv and De is selected to
pair with pi. At the same time, the paired paths are no longer
included in the pairing between the remaining paths. (e
resulting path matching set Sfinal � {(pi, p′j) | 0< i< t, 0< j< t,
t�Min (m, n)}. (e kernel function definition of SCFC-
SPGK is shown in the following equation:

k G1,G2(􏼁 � 􏽘

t

i�1,j�1
􏽘

pi,pj(􏼁∈Sfinal

exp −
Dv pi,pj􏼐 􏼑 + De pi, pj􏼐 􏼑􏼐 􏼑

mi ∗mj

⎛⎝ ⎞⎠,

(3)

wheremi � len(pi),mj � len(pj). After obtaining the kernel
of the two graphs, the ratio of the kernel and the number of
matched path pairs in the matching set is taken as the
similarity of the two graphs, which is shown as follows:

sim G1,G2(􏼁 �
k G1,G2(􏼁

len Sfinal(􏼁
. (4)

(e whole SCFC-SPGK algorithm is shown as follows.
(e function ShortestPath_Floyd obtains the shortest path
set between the root node and other nodes in the graphs G

Start

combine

control

assign

control

assign

control

combine

control

CDE-N

output

CDE-Y

combine

SEE

SEE

CDE-Y

SEE

CDE-Y

SEE

CDE-N

SEE

SEE

CDE-N

End

CDE-N

assign

SEE

CDE-Y

SEE

(a)

Start

combine

control

assign

control

assign

control

combine

control

CDE-N

output

combine

SEE

CDE-Y

SEE

CDE-Y

SEE

CDE-N

SEE

SEE

CDE-N

SEE

End

CDE-N

SEE

CDE-Y

CDE-Y

(b)

Figure 7: An example of SCFC. (a) Java-SCFC and (b) Python-SCFC.

8 Scientific Programming

and G′ through the Floyd–Warshall algorithm. Dv and De
are the functions that return the edit distance of the two
paths, in which parameters of Dv are two node sequences
and parameters of De are two edge sequences.

5.2. Time Complexity Analysis. Assuming that S1 and S2 are
the shortest path sets from each node to their root nodes in
the graph G1 and G2, respectively. (e time complexity that
obtains the shortest distance between other nodes and the
root node in the graph by the Floyd–Warshall algorithm is
O(n2). Let pi be a path with n nodes in S1 and pj be a path with
m nodes in S2. (e time complexity of the shortest edit
distance between the node sequence of pi and the node
sequence of pj is O(mn). In conclusion, the time complexity
of Algorithm 1 is O(n2). (e algorithm improves the
matching accuracy and reduces the time complexity based
on the features of SCFCs.

6. Experiment and Evaluation

In this section, we verify the effectiveness of the proposed
approach by experiments. We perform a comparative ex-
periment to compare CLCSD with related approaches in
cross-language source code similarity detection through real
code datasets. In addition, we also conduct an experiment on
similarity detection of the source code written in the same
language. In terms of the implementation of CLCSD, for the
given code written in two different languages, their PDGs are
generated automatically based on the PDG generation
framework (https://github.com/victorjmarin/sourcedg)
first, and the code is preprocessed using the approach
proposed in Section 4.2. Next, the preprocessed code is
transformed into flowcharts expressed by the dot script [45].
(us, the two flowcharts are converted into corresponding
SCFCs. Finally, the SCFC-SPGK algorithm is used to cal-
culate the similarity between these two SCFCs, and the
obtained similarity value is regarded as the similarity be-
tween two pieces of source code.

6.1. Effectiveness Evaluation for Cross-Language Source Code
Similarity Detection. We construct four experimental code
sets (https://github.com/langtaosha1/CodeSet.git). First, we
construct the first code set to verify the accuracy of each
approach. In this code set, there are ten groups of code, and
each group contains six programming questions selected
from OJ platform. We ask a volunteer to submit the Java,
Python, and C# code for each question following the same
solution idea. Any two of the three answers can be regarded
as the source code and the plagiarized code because each
question is solved in the same way by the same volunteer.
Second, we construct the second code set to investigate the
code obfuscation techniques that each approach can defeat
in cross-language code similarity detection. We keep the
Python code in the first code set unchanged and use ten
commonly used code obfuscation techniques [46, 47] to
modify the Java and C# code in each code group. (e ten
code obfuscation techniques are shown in Table 2 from easy
to difficult. Specifically, we modify the Java code in the way

that theN-th code obfuscation technique is used for theN-th
group of code.

We construct the third and fourth code sets by the public
dataset provided by Vislavski et al. [5] to further verify the
effectiveness of our approach and avoid the contingency of
special datasets.(e third code set is constructed in the same
way as the first one, while the fourth code set is constructed
in the same way as the second code set. Moreover, they had
five times as much data as the first and second code sets,
respectively.

6.1.1. Code Similarity Detection Effectiveness Comparison

(1) Experiment Setup. Based on the first and the third code
sets, we first compare our approach with three existing
similarity detection tools in cross-language similarity de-
tection effectiveness. (e theory of these three existing tools
is based on tree, attribute counting, and NLP, respectively.
Among them, Vislavski et al. [5] propose LICCA, which
mainly relies on the SSQSA platform and generates a
common intermediate representation called eCST (enriched
concrete syntax tree). Nafi et al. [29] propose CLCDSA,
which selects nine measurement attributes and obtain fea-
ture measurement values by traversing the AST (abstract
syntax tree). Flores et al. [30] propose DeSoCoRe to extract
code features by tri-grammodel and weights word frequency
based on normalized term frequency.(e similarity between
codes is calculated by cosine similarity. In this experiment,
the effectiveness of these four approaches is compared. (e
evaluation indicator is the average similarity of the source
code pairs corresponding to all the questions in each group,
and the calculation method is shown in formula (5). In this
experiment, we set n to ten:

sim �
􏽐

n
i�1 simi

n
. (5)

(2) Experimental Result. (e comparison results of the above
approaches with CLCSD in the effectiveness of cross-language
source code similarity detection are shown in Figure 8. We
can see the average similarity values calculated by CLCSD for
each group of questions are greater than that of DeSoCoRe,
CLCDSA, and LICCA. Among them, DeSoCoRe is string-
based approaches, and it strongly depends on the syntax of the
programming language. As a result, the average similarity
values obtained by DeSoCoRe are lower than those of the
other three approaches. (e similarity obtained by LICCA is
lower than that of CLCDSA and CLCSD because LICCA
requires two code fragments with the same block size, control
flow, and sequences along with the same flow of statements.
However, it is difficult to satisfy these preconditions in cross-
language code [29] due to the syntax differences of different
programming languages. Experimental results in Figure 8
show that the similarity detection value of CLCDSA is lower
than CLCSD in cross-language code similarity detection.
CLCDSA may be influenced by the syntax differences of
different languages because the attribute values of two code
fragments of different programming languages may be

Scientific Programming 9

https://github.com/victorjmarin/sourcedg
https://github.com/langtaosha1/CodeSet.git

different even if they implement the same function. For
example, the Python language does not require variables to be
declared in advance.

6.1.2. Anti-Obfuscation Effectiveness Comparison

(1) Experiment Setup. Based on the second and fourth code
sets, we conduct a code antiobfuscation experiment for the
above four cross-language similarity detection approaches.
Similar to the first experiment, we choose the average
similarity of the code corresponding to all the questions in
each group as the evaluation indicator. At the same time, we
multiply obfuscateN-th group of data corresponding toN-th
obfuscation technique and take the average of the experi-
mental results as the final result to ensure the effectiveness of
the experiments.

(2) Experimental Result. (e comparison results of the four
approaches in defeating cross-language code obfuscation
techniques are shown in Figure 9.

By comparing Figures 8 and 9, we can see that the four
approaches can completely defeat the first three obfuscation
techniques. Since DeSoCoRe directly extracts features from
the source code, the obfuscation techniques that change the
original code other than formatting and comments can affect
the effectiveness of DeSoCoRe. LICCA uses the tree-based
intermediate representation to detect cross-language code
similarity. (erefore, the obfuscation techniques that can
change the structure of the code may adversely affect the
effectiveness of this approach, such as the fifth, seventh,
ninth, and tenth obfuscation techniques. CLCDSA detects
cross-language code similarity based on attribute counting,
so the obfuscation technique that changes the attributes of
the original code has a negative effect on the effectiveness of
this approach, such as the seventh, eighth, ninth, and tenth
obfuscation techniques. In particular, the ninth obfuscation
technique has a great effect on CLCDSA, LICCA, and
DeSoCoRe because the obfuscation technique adds redun-
dant statements and changes the attribute values and
structures of the code.(e proposed approach is less affected
by this obfuscation technique because the preprocessing
based on PDGs can completely remove the redundant
statements that have no data dependency on the original
code. In addition, the proposed approach can defeat eight
other obfuscation techniques except the fifth and ninth
obfuscation techniques and partially defeat the fifth and
ninth obfuscation techniques because the fifth obfuscation
technique may change the position of combine nodes in
SCFC (e.g., converting global variables to local variables),

Input: the graphs G� (V, E, TV, TE, μ, δ) and G′� (V′, E′, TV, TE, μ, δ);
Output: sim, the similarity value between G and G′;

(1) Path set S� {}, path set S′� {}
(2) sim� 0, k� 0
(3) V0 �Get_RootNode(G); V′0 �Get_RootNode(G′);
(4) Get the adjacency matrix A of G and adjacency matrix A′ of G′ by E and E′ respectively.
(5) S� ShortestPath_Floyd (V0, A)//get the shortest path set of G between V0 and other nodes.
(6) S′� ShortestPath_Floyd (V′0, A′)//get the shortest path set of G′ between V′0 and other nodes.
(7) for each p ∈ S:
(8) assume match set St � {}
(9) for each p′∈ S′:
(10) if ((len(p)− 1) ≤ len(p′) ≤ (len(p) + 1)) then:
(11) D� Dv(p, p′) +De(p, p′)
(12) add D to St
(13) end if
(14) end for
(15) d�min(St)//the path with the highest degree of matching is the final match.
(16) k+� exp(− (d/(|pd|∗ |pd′|)))
(17) St � {}
(18) sim� k/len(S)
(19) end for
(20) output sim

ALGORITHM 1: SCFC-SPGK.

Table 2: (e obfuscation techniques.

Number Obfuscation technique
1 Copying the original code completely
2 Modifying the comments
3 Changing the code format and adding blank lines
4 Renaming identifiers
5 Adjusting code statements order
6 Replacing constants
7 Changing data types
8 Substituting equivalent operators
9 Adding redundant statements
10 Substituting equivalent control structures

10 Scientific Programming

while the other eight obfuscation techniques cannot change
the structure of SCFC after the preprocessing.

6.2. Effectiveness Evaluation for the Same Language Source
Code Similarity Detection

6.2.1. Experiment Setup. We construct the fifth code set to
evaluate the effectiveness of CLCSD in the similarity de-
tection of the code written in the same language. Meanwhile,

we also evaluate its effectiveness in dealing with code ob-
fuscation techniques. We regard the Java code in the third
code set as original code, while the Java code for the same
question in the fourth code set is plagiarized because the
fourth code set is constructed by obfuscating the Java code
and C# code in the third code set. To construct the fifth code
set, we collect the answer with Java code in the third code set
and the answer with Java code in the fourth code set for each
selected question. (e whole code set is still divided into ten

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Av

er
ag

e s
im

ila
rit

y

1 2 3 4 5 6 7 8 9 10

CLCSD
CLCDSA

LICCA
DeSoCoRe

Test group

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Av
er

ag
e s

im
ila

rit
y

1 2 3 4 5 6 7 8 9 10

CLCSD
CLCDSA

LICCA
DeSoCoRe

Test group

(b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Av
er

ag
e s

im
ila

rit
y

1 2 3 4 5 6 7 8 9 10

CLCSD
CLCDSA

LICCA
DeSoCoRe

Test group

(c)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Av
er

ag
e s

im
ila

rit
y

1 2 3 4 5 6 7 8 9 10

CLCSD
CLCDSA

LICCA
DeSoCoRe

Test group

(d)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Av
er

ag
e s

im
ila

rit
y

1 2 3 4 5 6 7 8 9 10

CLCSD
CLCDSA

LICCA
DeSoCoRe

Test group

(e)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Av
er

ag
e s

im
ila

rit
y

1 2 3 4 5 6 7 8 9 10

CLCSD
CLCDSA

LICCA
DeSoCoRe

Test group

(f)

Figure 8: (e similarity comparison of source code written in different languages. (e effectiveness comparison (a) between Java and
Python on the first code set, (b) between Java and C# on the first code set, (c) between Python and C# on the first code set, (d) between Java
and Python on the third code set, (e) between Java and C# on the third code set, and (f) between Python and C# on the third code set.

Scientific Programming 11

groups, and each group contains thirty questions. (us, for
each question, there is the original Java code and the ob-
fuscated Java code. We use SIM [12], GPLAG [21],

DeSoCoRe [31], LICCA [5], CLCDSA [30], and CLCSD to
calculate the similarity of each Java source code pair. For the
six approaches, we compare their ability to defeat common
code obfuscation techniques. (e evaluation indicator of the
experiment is the average similarity of each approach against
the code obfuscation techniques in each group, as shown in
formula (5).

6.2.2. Experimental Result. (e comparison results of the
above six approaches in the effectiveness of the same lan-
guage source code similarity detection are shown in Fig-
ure 10. In terms of difficulty, we divide the ten obfuscation
techniques into three categories. (e first category is simple
obfuscation techniques, including the first, second, and third
code obfuscation techniques. (e second category is rela-
tively complex obfuscation techniques, including the fourth,
fifth, sixth, seventh, and eighth code obfuscation techniques.
(e third category is the most complex obfuscation tech-
niques, including the ninth and tenth techniques.

First, all the six approaches can completely defeat these
code obfuscation techniques. (e simple obfuscation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Av

er
ag

e s
im

ila
rit

y

1 2 3 4 5 6 7 8 9 10

CLCSD
CLCDSA

LICCA
DeSoCoRe

Test group

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Av
er

ag
e s

im
ila

rit
y

1 2 3 4 5 6 7 8 9 10

CLCSD
CLCDSA

LICCA
DeSoCoRe

Test group

(b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Av
er

ag
e s

im
ila

rit
y

1 2 3 4 5 6 7 8 9 10

CLCSD
CLCDSA

LICCA
DeSoCoRe

Test group

(c)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Av
er

ag
e s

im
ila

rit
y

1 2 3 4 5 6 7 8 9 10

CLCSD
CLCDSA

LICCA
DeSoCoRe

Test group

(d)

Figure 9: Resistance effectiveness for cross-language code obfuscation techniques. (e resistance effectiveness comparison (a) between Java
and Python on the second code set, (b) between Python and C# on the second code set, (c) between Java and Python on the fourth code set,
and (d) between Python and C# on the fourth code set.

1 2 3 4 5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

CLCSD
SIM
GPLAG

CLCDSA
LICCA
DeSoCoRe

The code group and obfuscation technique number

Av
er

ag
e s

im
ila

rit
y

Figure 10: (e similarity detection comparison in the same
language.

12 Scientific Programming

techniques have no effect to the detection effectiveness after
applying simple preprocess to the original code, such as
removing comments, whitespace, and blank lines.

Second, for relatively complex obfuscation techniques,
CLCSD and GPLAG are fully resistant to the fourth, sixth,
and eighth obfuscation techniques. (is is because they
consider not the content of the nodes, but the structure of
the code. For the fifth obfuscation technique, it has no effect
on GPLAG because GPLAG only analyzes the dependencies
between statements. However, because the fifth obfuscation
may change the location of combine nodes in a SCFC,
CLCSD is slightly less resistant to this obfuscation technique
than GPLAG. For the seventh obfuscation technique,
CLCSD and GPLAG are fully resistant to it because it may
add redundant statements that depend on the original code.
CLCDSA is fully resistant to the fourth, fifth, and sixth
obfuscation techniques because they cannot change the
attribute values of the original code. SIM and DeSoCoRe are
less resistant to obfuscating techniques other than the fourth.
Because SIM and DeSoCoRe are string-based approaches,
the obfuscation techniques except the fourth have a greater
impact on the content and the order of a piece of code. SIM is
implemented based on tokens. In the pretreatment, it
converted all identifiers into token sequences. (us, it can
defeat the fourth obfuscation technique. However, DeS-
oCoRe does not have a uniform identifier, and it is greatly
affected.

(ird, for the most complex obfuscation techniques,
SIM, CLCDSA, LICCA, and DeSoCoRe cannot defeat these
techniques because they change the content or structure of
the original code greatly. For the ninth obfuscation tech-
nique, CLCSD and GPLAG cannot fully defeat it because the
added redundant statements may have dependencies on the
original code. However, their antiobfuscation ability is better
than other approaches. For the tenth obfuscation technique,
GPLAG is resistant to it because it does not affect the control
dependencies of the source code. Meanwhile, CLCSD can
also defeat this obfuscation due to the SCFC unifies the
control structures of the code.

6.3. Experimental Conclusion. (rough the above experi-
ments, we can draw the following conclusions. First, the
proposed approach has a higher accuracy in terms of cross-
language source code similarity detection compared with
the existing approaches. At the same time, CLCSD is re-
sistant to the common obfuscation techniques such as
modifying the comments, copying completely, changing
the code format and adding blank lines, renaming iden-
tifiers, replacing equivalent control structure, replacing
constant, and adding nondependent redundant statements.
Secondly, for the same language source code similarity
detection, the effectiveness of CLCSD to defeat the fifth
obfuscation techniques is slightly lower than that of
GPLAG. However, the effectiveness to defeat other ob-
fuscation techniques of the proposed approach is nearly the
same with that of GPLAG. Meanwhile, CLCSD is more

accurate in similarity detection compared with SIM,
CLCDSA, LICCA, and DeSoCoRe.

7. Conclusion and Future Work

Existing code similarity detection approaches transform the
source code into the structure that can express the features of
the source code, such as strings, trees, and graphs. (en, the
similarity between source codes is measured based on these
structures. However, these methods are not suitable for cross-
language code similarity detection because these structures
are often related to the syntax features of the programming
languages that the code is written. (e code flowcharts de-
scribe the core process of the code; therefore, for a pair of
plagiarized source code written in different programming
languages, their corresponding core code flow charts are
similar. Based on this idea, we propose the CLCSD approach
for cross-language code similarity detection. (e approach
converts source code into standardized flowcharts based on
SCFC and determines the source code similarity by the
similarity of SCFCs using the proposed SCFC-SPGK algo-
rithm. (e SCFC-SPGK algorithm reduces the node search
space in the SCFC and improves the detection efficiency. In
addition, some approaches, including the code preprocessing
based on a PDG and the introduction of the combine node,
improve the ability of the proposed approach in fighting
against the code obfuscation techniques, such as adding re-
dundant statements and adjusting the sequence of statements.

(e proposed approach is the preliminary exploration of
cross-language source code similarity detection based on
flowcharts. We can further improve the approach from the
following three aspects.

First, we can further investigate the approach to fight
against more complex obfuscation techniques, such as
adding redundant statements with data dependencies. We
can combine CLCSD with existing dynamic similarity de-
tection approaches [48]. In this way, we can obtain the code
similarity through the running results of the source code to
defeat more complex code obfuscating techniques.

Second, we can combine machine learning techniques
with the proposed approach to detect the similarity between
large-scale source codes. If the experimental dataset is large
enough, machine learning algorithms such as the neural
network [1] can be used to cluster similar code sets.(us, the
accuracy and efficiency of code similarity detection can be
further improved.

(ird, the idea of similarity measure based on flowcharts
can be generalized to the similaritymeasure in other fields. For
example, in the field of educational process mining, students
can be clustered by measuring their similarity of learning
processes that can be discovered from the learning data in a
MOOC platform using process mining techniques [49].

Data Availability

We constructed our datasets based on the submission of OJ
system and the public dataset provided by Vislavski et al. [5].

Scientific Programming 13

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is research was funded by EducationMinistry Humanities
and Social Science Research Youth Fund Project of China
under grant 19YJCZH240 (User-steering multi-source ed-
ucation data integration approach research in big data en-
vironment), Qingdao Social Science Planning Research
Project under grant QDSKL1901123, National Science
Foundation of China under grants 61902222 and U1931207,
Taishan Scholars Program of Shandong Province under
grants tsqn201909109 and ts20190936, SDUST Research
Fund under grant 2015TDJH102, and SDUST Excellent
Teaching Team Construction Plan under grant
JXTD20180503.

References

[1] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary
code similarity detection,” in Proceedings of the CCS,
pp. 363–376, Dallas, Texas, USA, November 2017.

[2] S. Engels, V. Lakshmanan, and M. Craig, “Plagiarism de-
tection using feature-based neural networks,” in Proceedings
of the 38th SIGCSE Technical Symposium on Computer Science
Education, SIGCSE 2007, pp. 34–38, Covington, Kentucky,
USA, March 2007.

[3] L. Moussiades and A. Vakali, “PDetect: PDetect: a clustering
approach for detecting plagiarism in source code datasets,”
Ce Computer Journal, vol. 48, no. 6, pp. 651–661, 2005.

[4] S. Wasik, M. Antczak, J. Badura, A. Laskowski, and T. Sternal,
“A survey on online Judge systems and their applications,”
ACM Computing Surveys, vol. 51, no. 1, pp. 1–34, 2018.

[5] T. Vislavski, G. Rakić, N. Cardozo et al., “LICCA: a tool for
cross-language clone detection,” in Proceedings of the 25th
IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER 2018), pp. 512–516, Campobasso,
Italy, March 2018.

[6] E. L. Jones, “Metrics based plagarism monitoring,” Journal of
Computing Sciences in Colleges, pp. 253–261, Vermont, USA,
2001.

[7] Q. Y. Chen, S. P. Li, M. Yan, and X. Xia, “Code clone de-
tection: a literature review,” Journal of Software, vol. 30, no. 4,
pp. 962–980, 2019.

[8] J. Krinke, “Identifying similar code with program dependence
graphs,” in Proceedings of the Eighth Working Conference on
Reverse Engineering WCRE, pp. 301–309, Stuttgart, Germany,
February 2001.

[9] K. M. Borgwardt and H. P. Kriegel, “Shortest-path kernels on
graphs,” in Proceedings of the International Conference on
Data Mining ICDM, pp. 74–81, Houston, Texas, USA, De-
cember 2005.

[10] B. S. Baker, “On finding duplication and near duplication in
large software systems,” in Proceedings of the Working Con-
ference on Reverse Engineering WCRE, pp. 86–95, Toronto,
Ontario, Canada, August 1995.

[11] B. Muddu, A. Asadullah, and V. Bhat, “CPDP: a robust
technique for plagiarism detection in source code,” in Pro-
ceedings of the 2013 7th International Workshop on Software
Clones ICSC, pp. 39–45, San Francisco, CA, USA, May 2013.

[12] S. Burrows, S. M. M. Tahaghoghi, and J. Zobel, “Efficient
plagiarism detection for large code repositories,” Software
Practice and Experience, vol. 37, no. 2, pp. 151–175, 2006.

[13] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding pla-
giarisms among a set of programs with JPlag,” Journal of
Universal Computer Science, vol. 8, no. 11, pp. 1016–1038,
2002.

[14] J. W. Son, S. B. Park, and S. Y. Park, “Program plagiarism
detection using parse tree kernels,” in Proceedings of the 9th
Pacific Rim International Conference on Artificial Intelligence
PRICAI, pp. 1000–1004, Guilin, China, August 2006.

[15] K. Oscar and Simon, “Syntax trees and information retrieval
to improve code similarity detection,” in Proceedings of the
Twenty-Second Australasian Computing Education Confer-
ence, pp. 48–55, New York, NY, February 2020.

[16] Z. Liping, L. Dongsheng, L. Yanchen, and Z. Mei, “AST-based
plagiarism detection method,” Computer Engineering and
Design, vol. 33, no. 4, pp. 1660–1664, 2012.

[17] H. Kikuchi, T. Goto, M. Wakatsuki, and T. A. Nishino,
“Source code plagiarism detecting method using alignment
with abstract syntax tree elements,” in Proceedings of the 2014
15th IEEE/ACIS International Conference on Software Engi-
neering, Artificial Intelligence, Networking and Parallel/Dis-
tributed Computing ACIS, pp. 1–6, Las Vegas Nevada, USA,
une 2014.

[18] T. Guo, G. Dong, H. Qin, and B. Cui, “Improved plagiarism
detection algorithm based on abstract syntax tree,” in Pro-
ceedings of the 2013 Fourth International Conference on
Emerging Intelligent Data and Web Technologies (EIDWT),
pp. 714–719, Xi an, China, September 2013.

[19] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic
clones,” in Proceedings of the 30th International Conference on
Software Engineering ICSE, pp. 321–330, Leipzig, Germany,
May 2008.

[20] H.-i. Lim, H. Park, S. Choi, and T. Han, “A method for
detecting the theft of Java programs through analysis of the
control flow information,” Information and Software Tech-
nology, vol. 51, no. 9, pp. 1338–1350, 2009.

[21] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: detection of
software plagiarism by program dependence graph analysis,”
in Proceedings of the Conference: Proceedings of the Twelfth
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining SIGKDD, pp. 872–881, Philadelphia,
USA, January 2006.

[22] D. Qiu, J. Sun, and H. Li, “Improving similarity measure for
Java programs based on optimal matching of control flow
graphs,” International Journal of Software Engineering and
Knowledge Engineering, vol. 25, no. 07, pp. 1171–1197, 2015.

[23] R. Komondoor and S. Horwitz, “Using slicing to identify
duplication in source code,” in Proceedings of the Interna-
tional Static Analysis Symposium, pp. 40–56, Springer, Berlin,
Heidelberg, January 2001.

[24] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a mul-
tilinguistic token-based code clone detection system for large
scale source code,” IEEE Transactions on Software Engi-
neering, vol. 28, no. 7, pp. 654–670, 2002.

[25] C. Arwin and S. M. M. Tahaghoghi, “Plagiarism detection
across programming languages,” in Proceedings of the Twenty-
Nineth Australasian Computer Science Conference
(ACSC2006), pp. 277–286, Hobart, Tas, Australia, January
2006.

[26] F. Al-Omari, I. Keivanloo, C. K. Roy, and J. Rilling, “Detecting
clones across microsoft. net programming languages,” in
Proceedings of the 19th Working Conference on Reverse

14 Scientific Programming

Engineering, pp. 405–414, IEEE, Kingston, ON, Canada,
October 2012.

[27] L. Nichols, M. Emre, and B. Hardekopf, “Structural and
nominal cross-language clone detection,” Fundamental Ap-
proaches to Software Engineering, FASE, pp. 247–263,
Springer, Berlin, Germany, 2019.

[28] D. Perez and S. Chiba, “Cross-language clone detection by
learning over abstract syntax trees,” in Proceedings of the
IEEE/ACM 16th International Conference on Mining Soft-
ware Repositories (MSR), pp. 518–528, IEEE, Montreal, QC,
Canada, May 2019.

[29] N. A. Kraft, B. W. Bonds, and R. K. Smith, “Cross-Language
clone detection,” in Proceedings of the Twentieth International
Conference on Software Engineering & Knowledge Engineering
(SEKE’2008), pp. 54–59, San Francisco, CA, USA, January
2008.

[30] K. W. Nafi, T. S. Kar, B. Roy et al., “CLCDSA: cross Language
code clone detection using syntactical features and API
documentation,” in Proceedings of the IEEE/ACM 34th In-
ternational Conference on Automated Software Engineering
(ASE), pp. 1026–1037, San Diego, CA, USA, January 2019.

[31] E. Flores, A. Barrón-Cedeno, P. Rosso, and L. Moreno,
“DeSoCoRe: detecting source code re-use across program-
ming languages,” in Proceedings of the 2012 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 1–4, Montr
´eal, Canada, June 2012.

[32] E. Flores, A. Barrón-Cedeno, L. Moreno, and P. Rosso, “cross-
language source code Re-use detection using latent semantic
analysis,” Journal of Universal Computer Science, vol. 21,
no. 13, pp. 1708–1725, 2015.

[33] X. Cheng, Z. Peng, L. Jiang, H. Zhong, H. Yu, and J. Zhao,
“CLCMiner: detecting cross-language clones without inter-
mediates,” IEICE Transactions on Information and Systems,
vol. 100, no. 2, pp. 273–284, 2017.

[34] F. Ullah, J. Wang, M. Farhan, M. Habib, and S. Khalid,
“Software plagiarism detection in multiprogramming lan-
guages using machine learning approach,” Concurrency and
Computation: Practice and Experience, Article ID e5000, 2018.

[35] Q. Song, Research on Cross-Language Code Similarity De-
tection Method Based on Program Flow Chart, Shandong
university of science and technology, Qingdao, China, 2019.

[36] M. Neuhaus, K. Riesen, and H. Bunke, Fast Suboptimal Al-
gorithms for the Computation of Graph Edit Distance,
pp. 163–172, SPR & SSPR. Springer, Berlin, Heidelberg, 2006.

[37] Z. Lin, H. Wang, S. Mcclean et al., “A multidimensional
sequence approach to measuring tree similarity,” IEEE
Transactions on Knowledge and Data Engineering, vol. 24,
no. 2, pp. 197–208, 2012.

[38] Z. Lin, H. Wang, and S. Mcclean, “Tree similarity measure-
ment for classifying questions by syntactic structures,” in
Proceedings of the International Conference on Intelligent
Computing, pp. 379–390, Lanzhou, China, August 2016.

[39] F. Den Hollander, H. Kesten, V. Sidoravicius et al., “Random
walk in a high density dynamic random environment,”
Indagationes Mathematicae, vol. 25, no. 4, pp. 785–799, 2014.

[40] U. Kang, H. Tong, and J. Sun, “Fast random walk graph
kernel,” in Proceedings of the Society of Indian Automobile
Manufacturers, pp. 828–838, Anaheim, CA, USA, April 2012.

[41] C. H. Elzinga and H. Wang, “Kernels for acyclic digraphs,”
Pattern Recognition Letters, vol. 33, no. 16, pp. 2239–2244,
2012.

[42] R. W. Floyd, “Algorithm 97: shortest path,” Communications
of the ACM, vol. 5, no. 6, p. 345, 1962.

[43] P. Mahe, N. Ueda, T. Akutsu, J. Perret, and J. Vert, “Ex-
tensions of marginalized graph kernels,” in Proceedings of the
Twenty-first International Conference on Machine Learning,
p. 70, Alberta, Canada, January 2004.

[44] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and
K. M. Borgwardt, “Graph kernels,” Journal of Machine
Learning Research, vol. 9, no. 2, pp. 1201–1242, 2010.

[45] S. Warshall, “A theorem on boolean matrices,” Journal of the
ACM, vol. 9, no. 1, pp. 11-12, 1962.

[46] E. Flores, A. Barrón-Cedeño, L. Moreno, and P. Rosso,
“Uncovering source code reuse in large-scale academic en-
vironments,” Computer Applications in Engineering Educa-
tion, vol. 23, no. 3, pp. 383–390, 2015.

[47] M. Novak, M. Joy, and D. Kermek, “Source-code similarity
detection and detection tools used in academia,” ACM
Transactions on Computing Education, vol. 19, no. 3, pp. 1–37,
2019.

[48] Z. Tian, Q. Zheng, T. Liu, M. Fan, E. Zhuang, and Z. Yang,
“Software plagiarism detection with birthmarks based on
dynamic key instruction sequences,” IEEE Transactions on
Software Engineering, vol. 41, no. 12, pp. 1217–1235, 2015.

[49] C. Liu, H. Duan, Q. Zeng, M. Zhou, F. Lu, and J. Cheng,
“Towards comprehensive support for privacy preservation
cross-organization business process mining,” IEEE Transac-
tions on Services Computing, vol. 12, no. 4, pp. 639–653, 2019.

Scientific Programming 15

