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Object detection is one of the core tasks in computer vision. Object detection algorithms often have difficulty detecting objects
with diverse scales, especially those with smaller scales. To cope with this issue, Lin et al. proposed feature pyramid networks
(FPNs), which aim for a feature pyramid with higher semantic content at every scale level. The FPN consists of a bottom-up
pyramid and a top-down pyramid. The bottom-up pyramid is induced by a convolutional neural network as its layers of feature
maps. The top-down pyramid is formed by progressive up-sampling of a highly semantic yet low-resolution feature map at the top
of the bottom-up pyramid. At each up-sampling step, feature maps of the bottom-up pyramid are fused with the top-down
pyramid to produce highly semantic yet high-resolution feature maps in the top-down pyramid. Despite significant improvement,
the FPN still misses small-scale objects. To further improve the detection of small-scale objects, this paper proposes scale adaptive
feature pyramid networks (SAFPNs). The SAFPN employs weights chosen adaptively to each input image in fusing feature maps
of the bottom-up pyramid and top-down pyramid. Scale adaptive weights are computed by using a scale attention module built
into the feature map fusion computation. The scale attention module is trained end-to-end to adapt to the scale of objects
contained in images of the training dataset. Experimental evaluation, using both the 2-stage detector faster R-CNN and 1-stage

detector RetinaNet, demonstrated the proposed approach’s effectiveness.

1. Introduction

Object detection is one of the most important problems in
computer vision. In recent years, object detection accuracy
has improved greatly by using deep convolution neural
network (CNN) [1]. Object detection algorithms based on
CNN are commonly classified into two-stage detector and
one-stage detector. Representative two-stage detectors in-
clude R-CNN [2], SPP-net [3], fast R-CNN [4], and faster
R-CNN [5]. Correspondingly, representative single-stage
detectors include SSD [6], several incarnations of YOLO
([7-9]), and RetinaNet [10].

Most of these methods use a DCNN such as VGG [1] or
ResNet [12] as their “backbone” network to extract features
to detect object area, or bounding box, and to classify object
in the bounding box. Some object detection algorithms, such
as faster R-CNN, uses a feature map at a fixed resolution
level for the task. Others, such as RetinaNet, use a hierarchy

of feature maps having different resolutions. The single
resolution feature map of the faster R-CNN (e.g., Cs in
Figure 1(a)) has high semantic content induced by later
CNN layers of the backbone network. However, its reso-
lution is low, so a small object in the input image may be
missed (in Figure 1, thin and thick borders of the feature
maps indicate their low and high semantic content, re-
spectively). One could use earlier layers of the backbone
CNN as feature maps for object area detection and classi-
fication. However, these earlier layers of feature maps (e.g.,
C, or C, in Figure 1(a)) have lower semantic content while
having higher resolution. This leads to inaccurate object area
(bounding box) and inaccurate classification labels of objects
in the area.

In recent years, the multilayer feature map has been
proposed to deal with this issue, significantly improving the
accuracy of small object detection (e.g., SSD, FPN, and
RetinaNet). For example, SSD combines a multiscale set of


mailto:ohbuchi@yamanashi.ac.jp
https://orcid.org/0000-0002-7605-9135
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8839979

Bottom-up pathway

P Predict

Bottom-up pathway

9}

Scientific Programming

Bottom-up pathway Top-down pathway

SA Lateral connection *P5 —»| Predict

¢, | NP, > Predict

o~ —»| Predict

A f '¢ P, redic

? >y P — Predict
Y 2

o | a7 R
f Fixed

C weight 0.5

Top-down pathway

5

Lateral connection

G

y—

A
C4T
e !
?

?

O

\Z 5 » Predict
>¢ r, —» Predict
> » Predict
VI P, redic
= » Predict
e AR
Scale
attention
module

©

(c)

FIGURE 1: Feature maps used for region proposal and object class prediction in the faster R-CNN [5] (a), feature pyramid networks (FPNs)
[11] (b), and the proposed scale adaptive FPN (SAFPN) (c). (a) The faster R-CNN [5] predicts object bounding box based on a highly
semantic yet low-resolution feature map. Due to low resolution of the feature map, mall objects tend to be missed. (b) The feature pyramid
network (FPN) [11] predicts object bounding box based on multiresolution, highly semantic feature maps formed by fusion feature maps of
top-down and bottom-up pathways. Adjacent scale feature maps are integrated by using fixed weights 0.5. RetinaNet [10] also uses this FPN.
(c) The proposed scale adaptive FPN (SAFPN) integrates feature maps by using weights computed, at each resolution level, by using the scale
attention module (SAM) to suit scales of objects in each input image.

feature maps to localize and identify objects. However, its
ability to detect smaller objects is still not satisfactory. It is
also computationally expensive due in part to its choice of
the base network, VGG.

Lin et al. [11] added the feature pyramid network (FPN)
to faster R-CNN for efficient yet accurate detection of objects
having varying scales. The FPN, illustrated in Figure 1(b),
consists of a pair of multiscale pyramids of feature maps. The
bottom-up pathway is a pyramid induced by the backbone
CNN, starting from the highest resolution yet least semantic
input image. The bottom-up pyramid produces a highly
semantic yet lowest resolution feature map (Cs in
Figure 1(b)) at the top of the pyramid. The top-down
pyramid starts with the low resolution yet highly semantic
image handed over from the bottom-up pyramid (Ps in
Figure 1(b)) and is generated by repeated up-sampling. The
top-down pyramid feature maps are enriched by fusing
information passed on from feature maps of the bottom-up
pathway via the lateral connections. The feature maps of the

top-down pyramid, which simultaneously have high se-
mantic content as well as high resolution, are used for object
area detection and classification.

Several object detection network architectures appeared
since incorporated FPN. For example, a single-stage detector
RetinaNet combines the FPN with a modern backbone
network and a loss function called focal loss to achieve high
speed as well as high accuracy. The accuracy of RetinaNet is
comparable to the two-stage detector faster R-CNN. Focal
loss is introduced to the RetinaNet training to alleviate
positive/negative sample imbalance.

In the FPN, integration of information from the bottom-
up pathway via lateral connection and information from the
top-down pathway is done by using fixed-weight summa-
tion, as illustrated in Figure 1(b). However, the optimal ratio
of the fusion depends on the size of objects in the input
image. Obviously, the sizes of objects vary from image to
image, and distribution in size of objects in images depends
on the dataset. Fixed weights used in the FPN to integrate
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bottom-up and top-down feature maps, which amounts to
an even weight average of the two, are most likely
suboptimal.

In this paper, to improve both object localization and
classification accuracy, we propose integrating feature maps
of the bottom-up pathway and top-down pathway of the
FPN using scale adaptive weights computed per input image.
In the proposed approach, called scale adaptive FPN
(SAFPN), the weights for feature map integration are
learned from the images in the training dataset and com-
puted per input image at inference time. The SAFPN may be
viewed as an attention mechanism over image object scales
and semantic levels. We evaluate our proposed approach’s
effectiveness by applying the proposed SAFPN to two object
detection architectures, one a two-stage detector faster
R-CNN and the other a one-stage detector RetinaNet.

Our contributions can be summarized as follows:

(1) Proposal of the scale adaptive feature pyramid
network (SAFPN): a novel method to fuse feature
maps of the bottom-up pyramid and top-down
pyramid of the FPN based on input image. The
weights for fusion are computed per input image at
each resolution level by the scale attention module
(SAM). The SAM is trained end-to-end along with
the other parts of the object detection network.

(2) Experimental evaluation of the SAFPN: experi-
mental evaluation of the proposed SAFPN using two
representative object detection networks, a one-stage
detector and a two-stage detector. The evaluation
using PASCAL VOC 2007 and PASCAL VOC
2007 +2012 as training datasets showed that the
proposed SAFPN significantly improves object de-
tection accuracies in both types of detectors.

The rest of this paper is organized as follows. In the next
section, we review relevant work. In Section 3, we describe
the proposed method, followed by its experimental evalu-
ation in Section 4. Conclusion and future work will be
presented in Section 5.

2. Related Work

2.1. Object Detection. We review some of the previous
methods of object detection in this section. In 2013, Girshick
et al. proposed the R-CNN [2], which employs a region
proposal. While it uses the CNN, the R-CNN’s overall ar-
chitecture is influenced by a traditional shallow object de-
tection approach. A set of object region proposals are
extracted by the classical selective search [11] approach.
Then, each region proposal is fed to a CNN after the region is
rescaled to a prescribed size to extract features for the region.
The R-CNN used Alexnet by Kryzhevsky et al. [13] trained
on the ImageNet dataset for feature extraction. The feature
extracted by the CNN is passed on to a linear support vector
machine (SVM) to determine the object class.

In 2014, He et al. proposed spatial pyramid pooling
networks (SPP-nets) [3] to handle objects in images having
arbitrary size/scale. The SPP layer is located after the last
convolution layer, right before the fully connected layers of a

standard CNN pipeline. The SPP-net reduces the costs of
detecting large objects using pyramidal pooling.

In 2015, Girshick proposed the fast R-CNN [4], which is
an improvement over the R-CNN and SPP-net. The fast
R-CNN employs single CNN pipeline for both object
bounding box regression and object classification. The CNN
is trained simultaneously for both box regression and object
classification objectives. This and other improvements
brought significant speedup over the predecessor R-CNN.
Note that region of interest (ROI) pooling in the fast R-CNN
can be considered a special SPP case.

Also in 2015, shortly after the fast R-CNN [5], Ren et al.
proposed the faster R-CNN. The faster R-CNN is the first
DNN-based object detector trained end-to-end. It is also the
first DNN-based object detector to perform at near real-time
speed. The most important innovation of the faster R-CNN
is its region proposal network (PRN) that proposes
bounding boxes having high objectness. By sharing most of
its processing with the main object detection network, the
faster R-CNN is much more efficient than the fast R-CNN.
The faster R-CNN uses a single resolution feature map for
region proposal and object classification (Figure 1(a)). As the
feature map of a latter layer of a standard CNN is highly
semantic yet of low resolution, bounding box region re-
gression and object classification accuracy are limited.

Lin et al. proposed, in 2017, the feature pyramid network
(FPN) [11] to faster R-CNN. The idea of the feature pyramid
had been popular during pre-DNN due to its ability to
perform multiscale processing of images, e.g., for object
recognition. However, it went out of favor in the early years
of the DNN for its computational cost. The FPN couples a
bottom-up pyramid inherent in a CNN with a top-down
pyramid that performs up-sampling and deconvolution.
Semantic information trickles down the top-down pathway
from the small (low resolution) yet highly semantic feature
map to the high-resolution and highly semantic feature map.
The two pyramids are connected by lateral connections to
pass on high-resolution information to the top-down net-
work from the bottom-up network. The FPN has been
adopted by other object detection networks, most notably a
one-stage detector RetinaNet [10] by Lin et al.

Traditionally, a two-stage detector held an advantage in
accuracy over a one-stage detector. However, RetinaNet,
despite being a one-stage detector, achieved accuracy
comparable to the two-stage detector faster R-CNN. Reti-
naNet combines the FPN with a new loss function called
focal loss with an improved backbone network. Focal loss
alleviates issues associated with an unbalanced number of
samples between the object region (foreground) and its
background.

The method proposed in this paper improves upon the
FPN by adding a scale-space attention mechanism to
adaptively compute, for each input image, weights for fea-
ture map integration. Given an input image, a trained scale
attention module in the top-down pathway adaptively
weights feature maps based on scales of objects contained in
the input image. For example, given an image containing
smaller objects, higher-resolution feature maps are em-
phasized more. The scale attention module is trained along



with the other parts of the object detection network using the
training image dataset.

2.2. Attention Mechanisms. Various forms of attention
mechanisms have been used in biological systems, i.e.,
human beings, as well as in recent neural networks. The
human visual system is immediately attracted to salient
locations in the visual field. This behavior indicates that the
human visual system assigns different importance to an
image’s different locations to perform the task at hand.
Spatial attention mechanism has been applied in computer
vision. For example, in [14], Pinheiro and Collobert pro-
posed a CNN trained to put higher weight on pixels im-
portant in classifying an image. The CNN learns to perform
segmentation tasks based on the per-image class label in a
weakly supervised setting.

Another well-known example of attention is the adaptive
weighting of channels in feature maps of neural networks. Fu
et al. in [15] employed channel attention to selectively
emphasize channels in feature maps, as well as spatial at-
tention, for scene segmentation.

This paper applies the idea of the attention to scale space
to adaptively weight multiple-scale feature maps of the
bottom-up pyramid and top-down pyramid of the feature
pyramid networks for fusion.

3. Methods

3.1. Overview. Our proposed method, scale adaptive feature
pyramid networks (SAFPNs), is an improvement over the
original FPN. Feature pyramid networks (FPNs) [11],
depicted in Figure 1(b), try to create a multiresolution
feature pyramid in which feature maps at all resolution levels
are highly semantic and, at the same time, have a high
resolution for accurate object localization and classification.
This is achieved by a top-down pathway using up-sampling
and lateral connections linking the top-down pathway with
the bottom-up pathway inherent in a CNN. The FPN uses
fixed, equal weights to integrate information coming from
the two pathways. Fixed weight used for the integration,
however, is not optimal for every image.

Our SAFPN, illustrated in Figure 1(c), computes weights
for the integration adaptively, per scale and per each input
image, so that the feature map at a scale concordant with the
scale of object in the input image is weighted more than the
others. For example, for an image containing smaller objects,
a higher-resolution feature map would be weighted more
than the other feature maps. For an image containing larger-
scale objects, on the other hand, the lower resolution feature
map would be weighted more than the others. The adaptive
weighting is learned by the scale attention module (SAM),
which is trained end-to-end with the other parts of the object
detection network. The proposed approach, SAFPN, is
versatile in which it applies to many different object de-
tection architectures, including both 1-stage and 2-stage
networks for object detection. We will later evaluate the
SAFPN on both the faster R-CNN [5], a 2-stage method, and
RetinaNet [10], a 1-stage method.
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3.2. Adaptive Multiscale Feature Integration. The scale
adaptive feature pyramid network (SAFPN) is illustrated in
Figure 1(c). The original FPN, illustrated in Figure 1(b), uses
a fixed weight of 0.5 to weigh both feature maps C; of the
bottom-up pathway and P; of the top-down pathway. Our
SAFPN employs the scale attention module to compute
weights for integration adaptively for each input image. This
is done by the SAM observing the strengths of responses of
feature maps at various scales in the bottom-up pathway
induced by a backbone CNN.

Let us assume the SAFPN to contain five scale levels, C =
{C,C,,C5,Cy, Cs}, in its bottom-up pathway induced by
convolutional layers of a CNN. A feature map C; has height H,
width W, and depth D. Of these multiple levels of feature maps
in the pyramid, C; is the highest resolution yet least semantic
feature map, while Cs is the lowest resolution yet most semantic
feature map. Similarly, let P = {P,, P;, P,, P} be the set of
feature maps generated by the top-down pathway formed by
up-sampling. As shown in Figure 1(c), the lowest resolution
feature map at the top of the top-down pathway, Ps, is obtained
by reducing the number of channels of Cs using 1x 1 con-
volution. Other feature maps P; | at i level, where i = 2 ~ 4 is
computed by using the following equation, except for Ps:

P, = wic—l Gy + sz—l - P, (1)

where C; and P,, i'™ feature map in C and P, are weighted by
the (scalar) weights w{" and w} = (1 — w{), respectively. The
weights are determined based on the strengths of responses
of the feature maps C = {C,,C;,C,,C;} in the bottom-up
pathway and are normalized using the Softmax function as
equation (2) and Figure 2:

o ea(lc])
T nes(lcl) )

The strength of response of the feature map C; is
computed as its I-norm of all the values in the feature map
using equation (3). In the experiments below, we tried
several different values of p; L’-norm corresponds to L1-
norm, L2-norm, and Loo-norm if p=1, p=2, or p = 0o,
respectively. We also tried L0.5-norm and square of L2-
norm:

H W D Up
el - < ) ||> B
h=1w=1d=1

Note that the feature maps of resolution levels
i €1{2,3,4,5} are used, and the highest resolution feature
map C,; and its counterpart P, are not used in our imple-
mentation. C; and P, are not used in part due to their large
memory footprint.

4. Results and Discussion

4.1. Experimental Settings. To evaluate the proposed scale
adaptive feature pyramid network (SAFPN), we conduct a
set of experiments over the following five variations of
networks:
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F1Gure 2: Computing weights for feature map integration based on strengths of responses of the feature maps at various scales.

(1) FRCNN: original faster R-CNN [5] that uses a single
resolution feature map (i.e., no FPN).

(2) FRCNN-FPN: faster R-CNN added with the mul-
tiresolution feature map FPN [11]. The original FPN
[11] and RetinaNet [10] use fixed weights (wic, wf ) =
(0.5,0.5) forintegration. We also experimented with
different values of fixed weights as listed below to see
how it affects object detection accuracy:

w’ ={0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. (4)

(3) FRCNN-SAFPN: faster R-CNN added with the
proposed SAFPN. The pair of weights (w{",w}) for
feature map integration is determined adaptively.

(4) RetinaNet: original RetinaNet [10] with the (fixed-
weight) FPN.

(5) RetinaNet SAFPN: RetinaNet [10] whose FPN is
replaced with the SAFPN.

In the list above, two networks using the proposed
approach, the faster R-CNN SAFPN (3) and the RetinaNet
SAFPN (5), are compared against others, which are (1), (2),
and (4). Recall that the original RetinaNet (4) includes the
FPN by birth, but its weights for feature map integration are
fixed at unity.

Training is done by using combinations of Pascal VOC
2007 and Pascal VOC 2012 datasets. We train the networks
using either

(1) Pascal VOC 2007 trainval dataset or
(2) Pascal VOC 2007 + 2012 joint trainval dataset

Evaluation is done by using Pascal VOC 2007 test set
(Pascal VOC 2012 test set is not openly available and thus
cannot be used). We use mean average precision (mAP) as
index of accuracy.

We added our SAFPN to the faster R-CNN and Reti-
naNet reimplementations by a group called UCAS-Det
downloaded from [16, 17]. UCAS-Det makes available these
networks with several different backbone networks, e.g.,
ResNet-50 and ResNet-101. For both the faster R-CNN and
for the RetinaNet, we chose ResNet_v1_101 [12] pretrained
by using the ILSVRC-2012-CLS image classification dataset
as the backbone. Both networks are then trained by using
either the Pascal VOC2007 trainval or Pascal VOC

2007 + 2012 joint trainval dataset. Pixel resolution of images
in these databases varies, but the majority of images are
either 500 x 375 (landscape) or 375 x 500 (portrait).

The training used the Adam [18] optimizer with mo-
mentum 0.9 and minibatch size 1. The small minibatch size
of 1 is due to memory limitation (5GByte) of the GPU,
Nvidia Tesla K20, which we used. Training is done for
100,000 epochs for the Pascal VOC 2007 trainval dataset and
150,000 epochs for the Pascal VOC 2007 + 2012 joint trainval
dataset. The learning rate is manually scheduled, starting at
1x 1072 and reduced to 1 x 10~* at 50,000™ epoch and to
1x 1077 at 70,000" epoch.

Table 1 shows the number of images and number of
objects in Pascal VOC 2007 and Pascal VOC 2012 datasets.
Both of these two datasets consist of 20 categories.

4.2. Experimental Result. Tables 2 and 3 compare accuracies
in mAP [%] of the five cases listed above. It also compared
L1-norm, Loo-norm, and L2-norm for computing strength
of response for a feature map C; in determining weights for
feature map fusion.

The results in both Tables 2 and 3 show that for both the
2-stage network faster R-CNN [5] and for 1-stage network
RetinaNet [10], the proposed SAFPN produces the highest
accuracy among those compared.

In Table 2, networks are trained using the Pascal VOC
2007 train dataset. In the table, the FRCNN-SAFPN pro-
duced mAP of 78.3%, which is significantly better than
74.6% of the original FRCNN (without FPN) and 76.1% of
the ~ FRCNN-FPN  that  uses  fixed  weight
(w&, w?) = (0.5,0.5). In case of RetinaNet, mAP improved
from 73.3% using the original FPN to 74.2% using the
proposed SAFPN. Of various norms tried for the pooling of
responses, square of L2-norm, (L2)? shows the highest
accuracy, very closely followed by L2-norm.

In Table 3, networks are trained using the Pascal VOC
2007 + 2012 joint trainval dataset that contains more training
samples than Pascal VOC 2007 train only. The FRCNN-
SAFPN produced mAP of 79.9% in the table, which is
significantly better than 76.4% of FRCNN and 78.4% of
FRCNN-FPN. Tendency for RetinaNet is similar; accuracy
in mAP improved from 76.3% to 78.5% by swapping the
FPN with SAFPN. Again, the square of L2-norm, (L2)?, does
the best among the norms we tried in pooling a feature map’s
response.
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TABLE 1: Pascal VOC 2007 and Pascal VOC 2012 datatsets.

Splits Pascal VOC 2007  Pascal VOC 2012
Train # images 2,501 5,717

# objects 6,301 13,609
Val # images 2,510 5,823

# objects 6,307 13,841
Trainval # images 5,011 11,540

# objects 12,608 27,450

# images 4,952 —
Test # objects 12,032 -

TaBLE 2: Accuracies in mAP [%] of the faster R-CNN [5] without
the FPN, with the (original) FPN, and the proposed SAFPN.

SAFPN
W/O FPN FPN )
105 L1 L2 (I2)* Loo
Faster RCNN 746 761 761 781 78.3 783 753

RetinaNet 733 720 742 741 742 731

Accuracies for RetinaNet [10] are also shown with the FPN and SAFPN.
Training is done using the Pascal VOC 2007 train dataset.

TaBLE 3: Accuracies in mAP [%] of the faster R-CNN [5] without
FPN, with (original) FPN, and proposed SAFPN.

SAFPN
W/O FPN FPN >
L0.5 L1 L2 (L2)° Loo

Faster R-CNN 76.4 784 789 795 79.5 79.9 765
RetinaNet 77.6 761 772 783 785 764

Accuracies for RetinaNet [10] are also shown with the FPN and SAFPN.
Training is done using the Pascal VOC 2007 + 2012 joint trainval dataset.

Figures 3 and 4 plot, for the FPN, the effects that fixed
values (w¢, w!) have on accuracy. It is compared against the
cases using the SAFPN, which appear as horizontal lines. We
tried values of (w¢, w?’) as listed below and plotted accuracy
against it:

wiC ={0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. (5)

Accuracy varies depending on (wf,w?), but the pro-
posed adaptive SAFPN performs equal or better than the
hand-tuned fixed-weight integration.

In the case of hand-tuned integration, for both the
RetinaNet and faster R-CNN, weighting the bottom-up
pyramid feature maps C; more than top-down pyramid
feature maps P; seems to produce higher accuracy.

Figure 5 shows examples of object detection using the
FRCNN-FPN and FRCNN-SAFPN. As indicated in Figure 5,
the FRCNN-FPN uses (wic,wf) = (0.5,0.5) for every res-
olution level of its FPN. The SAFPN, on the other hand, uses
adaptively computed values of w¢ determined from each
input image for each of the four resolution levels. Using fixed
weights, a small cow in the background (A), as well as a small
cow close to the center (C) is not detected. Using the SAFPN,
however, small-sized objects are detected, as in (C) and (D).
Note that, for the images having small objects, i.e., (B) and
(D), the SAFPN weighs higher-resolution feature maps at
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FiGgure 5: Examples of fixed weights using FPN (a) and adaptive weights using SAFPN (b). SAFPN gave large weight to high resolution
feature map c; in (B) and (D), which helps detection of small objects. For image (F) containing a large object, SAFPN gave large weight to low
resolution feature map cs. (a) A “cow” far in the background is not detected [w?, w?, w?, w’] = [0.5,0.5,0.5,0.5]. (b) A small “cow” far in the
background is detected. Smaller scales (level 2 and 3) have higher weights for this image [w?, w?, w!, w?] = [0.28,0.34,0.19, 0.16]. (c) Small
cow near the center of image is not detected [w? w?, w?, w’] = [0.28,0.34,0.19,0.16]. (d) Small “cow” near the center of the image is
detected. Smaller scales (levels 2 and 3) have higher weights for this image [w?, w?, w#, w?] = [0.31,0.34,0.19,0.16]. (e) This image contains

easy-to-detect large object, an airplane [w?, w?, w?, w?] = [0.5,0.5,0.5,0.5]. (f) With a large object, SAFPN weighs larger scale (i.e., lowest

resolution) feature map at level 5 [wg, wi,

level 3 the most. In comparison, for the image (F) having a
large airplane, the SAFPN weighs the lowest resolution
feature map at level 5 the most.

5. Conclusion

In this paper, we tackled the issue of correctly detecting
objects having varying scales, especially those having small
scales, from images.

With a single low-resolution feature map, such as those
found in the faster R-CNN [5], small objects localization and

wt, wl] = [0.06,0.08,0.25,0.61].

classification are difficult. The feature pyramid network
(FPN) [11] significantly improved object detection accuracy
by using pyramids of multiple resolution feature maps that
provide high semantic content at multiple resolution levels.
However, its ability to detect small-scale objects is still
limited. We conjectured that the limitation is in part due to
fixed weights used in the integration of feature maps be-
tween the bottom-up pyramid and the top-down pyramid.

This paper proposed an improvement to the FPN [11]
called scale adaptive feature pyramid network (SAFPN) that
adaptively determines weight for feature map fusion per



input image for each scale. The weights are computed per
input image for each scale based on responses of feature
maps in the bottom-up feature pyramid by the scale at-
tention module. While the SAFPN incurs an increase in
computational cost, an increase in memory footprint is
negligible.

We performed a set of experiments using both the 2-
stage network faster R-CNN [5] and 1-stage network Ret-
inaNet [10], both of which are modified with the SAFPN.
The set of experiments has shown that the proposed SAFPN
significantly improves object detection accuracy over the
FPN. Accuracy measured in mean average precision (mAP)
for the original faster R-CNN and faster R-CNN with the
(fixed weight) FPN is 74.6% and 76.1%, respectively, when
trained using the Pascal VOC 2007 dataset. The faster
R-CNN with the proposed SAFPN improved mAP value to
78.3%. For RetinaNet, replacing its (fixed weight) FPN with
the proposed SAFPN improved accuracy in mAP from
73.3% to 74.2%.

Future work includes combining the proposed scale-
space attention mechanism with some form of spatial at-
tention mechanism to improve accuracy.
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