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Terahertz time-domain spectroscopy (THz-TDS) systems are widely used to obtain fingerprint spectra of many different bio-
medical substances, and thus the identification of different biological materials, medicines, or dangerous chemicals can be realized.
However, the spectral data for the same substance obtained from different THz-TDS systems may have distinct differences
because of differences in system errors and data processing methods, which leads to misclassification and errors in identification.
To realize the exact and fast identification of substances, spectral standardization is the key issue. In this paper, we present detailed
disposal methods and execution processes for the spectral standardization and substance identification, including feature
extracting, database searching, and fingerprint spectrum matching of unknown substances. Here, we take twelve biomedical
compounds including different biological materials, medicines, or dangerous chemicals as examples. )ese compounds were
analyzed by two different THz-TDS systems, one of which is a commercial product and the other is our verification platform.)e
original spectra from two systems showed obvious differences in their curve shapes and amplitudes. After wavelet transform, cubic
spline interpolation, and support vector machine (SVM) classification with an appropriate kernel function, the spectra from two
systems can be standardized, and the recognition rate of qualitative identification can be up to 99.17%.

1. Introduction

Terahertz (THz) spectroscopy has a wide range of appli-
cations and has become an important research topic in
recent years. THz radiation is an electromagnetic wave with
a frequency between 0.1 and 10 THz. )e photon energy of
THz radiation is about 4meV, which is one million times
weaker than an X-ray photon; therefore, it will not cause
harmful photoionization in biological tissues [1–3]. Addi-
tionally, the vibrational and rotational frequencies of most
polar molecules are located in the THz range, which can
provide specific absorption responses (fingerprint spectra)
for the identification of compounds [4, 5]. Compared with
other electromagnetic spectra (Raman, infrared, or ultra-
violet-visible light spectroscopy, i.e., which detects specific
molecules or molecular bonds [Reference]), THz spectra

reflect the collective behavior of molecules and can be used
to detect different substances with different molecular
structures as well as polymorph and chiral substances, even
those that have the same elements and molecular bonds [6].

To date, THz technology has been widely applied in the
identification of many compounds and has been proven to
have high recognition accuracy [7–9]. Especially in bio-
medical fields, different medicines, biomarkers, dangerous
chemicals, and biological materials have been identified by
THz technology [10–14]. Currently, various algorithms
based on machine learning have be used for classification
different kinds of data [15, 16], which can also be a potential
tool for classifying terahertz spectra. However, for different
research groups, the presented spectrum data for the same
substance may not be same. For example, THz spectra of
dinitrotoluene show large differences in the amplitudes and
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frequency domain, which are caused by variations in system
errors and data processing methods for different measuring
systems [17, 18]. )is may cause big errors in the database
built and the substance identification. )erefore, a stan-
dardization method for spectral acquisition and data pro-
cessing is urgently needed.

In this paper, we propose a method of THz spectrum
standardization, which can improve the recognition rate
affected by spectral differences among different systems. )e
diagram of the spectral standardization is shown in Figure 1.
After spectra are obtained from different systems, a series of
calibration processes are followed to obtain standard spectra.
)ese standard spectra can be used directly for data com-
parison and then substance identification. Based on this
technological process, we successfully standardized the
spectra of 12 biomedical substances including different bi-
ological materials, medicines, or dangerous chemicals and
then utilized support vector machine (SVM) for qualitative
identification, which presents a higher accuracy than that of
other common methods.

2. Methods

2.1. Sample Preparation. To ensure the wide applicability of
our method, we randomly selected the following compounds
as representatives, including biological materials, medicines,
and dangerous chemicals: 4-aminobenzoic acid, amoxicillin,
phenylalanine, 4-phenyl-2-pyrrolidone-1-acetamide (A2),
(R)-2-amino-1-phenylethanol (A3), a mixture of explosives
containing cyclonite (C5), d-lactose monohydrate, trini-
trotoluene, benzoic acid, p-toluylic acid, glutamic acid, and
riboflavin. )ese pure samples were purchased from Sigma
Aldrich and stored properly according to manufacturer’s
recommendations. Each compound was taken for a certain
mass and then mixed with 120mg polyethylene (PE) powder
and then pressed into 2mm-thick tablets (ø13mm) with 3
tons of force. )e pressing time was set at 1min, and the
mass loss was controlled less than 1%. A pure polyethylene
tablet was also pressed with the same parameters as a ref-
erence. During the test, the temperature was at room
temperature (∼22°C) and the humidity was controlled below
1%.

2.2. THz-TDS Measurement. THz-TDS systems from the
University of Shanghai for Science and Technology (USST
system) and the Shanghai Gaojing Image Technology
Company (Gaojing system) were used to measure the
spectra of these 12 compounds, respectively. )e USST
system has a spectral resolution of 0.001 THz, signal-to-noise
ratio (SNR) of 40000 :1, and effective bandwidth of
0.1–4.0 THz [19, 20]. )e Gaojing system has a spectral
resolution of 0.001 THz, SNR of 50000 :1, and effective
bandwidth of 0.2–1.5 THz. Due to the different frequency
ranges of these two systems, only data recorded between
0.2 THz and 1.5 THz can be compared. First, samples's time-
domain spectra can be obtained by THz-TDS systems. )en
the time-domain spectra are converted using fast Fourier
transform to frequency-domain spectra. Finally, the relative

absorbance of a sample α (w) can be calculated by using the
following equation [21]:

α(w) �
1
d

􏼒 􏼓log
lref(w)

lsam(w)
􏼠 􏼡, (1)

where lsam (w) is the frequency-domain spectrum of the
sample tablet, lref (w) is the frequency-domain spectrum of
the pure polyethylene tablet, and d is the thickness of the
sample.

2.3. Baseline Correction and Noise Removal. Baseline drift is
generally caused by scattering from solid state samples in the
THz region. )e testing environment and different system
errors can also lead to baseline drift and noise to different
degrees. )erefore, baseline correction and noise removal is
necessary for standardization of spectra. Wavelet transform
has good time-frequency localization character and decor-
relation, which can remove the baseline and noise with
different scales and can retain the effective information in
the different frequency regions of the terahertz spectrum at
the same time. Here, we used the wavelet transform to
correct the baseline at low frequency and recognize the
signal and noise at high frequency according to multi-
resolution analysis [22]. )e Mallat algorithm [23] was used
for wavelet decomposition as follows:

f(u) � CJφJ(u) + 􏽘

J

j�1
djψj(u). (2)

)e mother wavelet φJ (u) is orthogonal to the scaling
function ψj (u), CJ is a coefficient in the J+ 1th level of the
low frequency component, and dj is a coefficient in the jth
level (1≤ j≤ J) of the high frequency component. With this
equation, different parts and frequencies of the signal can be
analyzed, respectively. Based on the mother wavelet Dau-
bechies 9, the spectra of the 12 compounds were decom-
posed at level 6. )e coefficient in level 6 is a low-frequency
component, which represents a baseline of zero, and the
coefficients in levels 1–5 are high-frequency components
that contain both noise and useful information. We dropped
the high-frequency components from levels 1–3, which
represented noise, and we retained the low-frequency
components from levels 4-5, which represented useful
information.

2.4. Sampling Interval. Due to the different sampling in-
tervals between the USST system (0.009 THz) and the
Gaojing system (0.01 THz), the data points’ number
recorded between 0.2 and 1.5 THz by these two systems
was 143 (the USST system) and 130 (the Gaojing system).
Different data points’ number could lead to errors in the
recognition program as characteristic dimensions of input
data are different. Cubic spline curve interpolation [24]
was applied here to unify the data points’ number.)e final
data points’ number was adjusted to the larger one of these
two THz-TDS systems (143 data points of the USST
system).
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2.5. SVM Classification. An SVM classifier was constructed
by using a nonlinear mapping function to map the training
data set onto a higher-dimensional space and then solve the
linearly inseparable problem in a linear kernel space. In this
study, we used a “one-against-one” approach for multiclass
classification [25]. For t classes, we constructed t (t − 1)/2
binary classifiers to take into account all combinations of
pairs of classes. A given training set of data was used to
establish the SVM classifier, which can be described by
(Xi, Yi), i� 1, 2, 3, . . . , N, Xi ∈Rn, where Yi is an output label
of the input absorption spectral data Xi. )e objective
function of the SVM is defined as follows [26]:

min
1
2
w

T
w + C 􏽘

N

i�1
εi

⎡⎣ ⎤⎦

subject to:

Yi w
T

· φ(X) + b􏼐 􏼑 − 1≥ εi

εi ≥ 0, i � 1, 2, . . . , N,

(3)

where c is the penalty parameter, φ (·) is a kernel function,
and w and b are the SVM weight and bias parameters,
respectively. )e penalty parameter c controls the trade-off
between the margin maximization and error minimization,
and the kernel function is used in establishing the SVM
classification model. )ree common kernel functions are
described by the following equations [27]:

linear kernel, k(x, y) � x · y,

polynomial kernel, k(x, y) � [(x · y) + 1]
d
,

RBF kernel, k(x, y) � exp
− |x − y|

2

g
2􏼠 􏼡.

(4)

In SVMclassification, it is important to select an appropriate
kernel function according to the characteristics of the sample.
For example, if the spectral data of the samples are independent
with sufficient unique characteristics, in other words, if they are
linearly separable, then the linear kernel will be themost suitable
kernel. In addition, it is the simplest and fastest. Otherwise, a
nonlinear kernel function, such as the RBF kernel or polynomial
kernel, will be needed to map the spectral data to higher di-
mensions. A process with one of these kernel functions will be
longer and will require more optimization parameters, and
overfitting may reduce the identification accuracy.

3. Results

3.1. Original Spectral Data Analysis. )e spectra of the
samples measured by the USST system and the Gaojing
system are shown in Figure 2. It can be seen clearly that the
spectra obtained from the two systems showed significant
differences in their curve shapes and amplitudes, especially for
amoxicillin, phenylalanine, p-toluylic acid, trinitrotoluene,
and riboflavin. )e main reason is that the USST system just
gives out the original time-domain waveform, without any
data processing, while the Gaojing system provides the
smoothed data after a series of data preprocessing, whose
details are unknown (commercial protection). Additionally,
the system parameter settings, environmental conditions, and
data calculation methods will cause spectral differences.
)erefore, it was hard to compare spectra recorded by one
system with those recorded by the other systems directly.

3.2. Data Standardization. Upon the obvious differences in
the spectral shape and amplitude of two THz-TDS systems,
data standardization is necessary to eliminate noise, base-
lines, and instability of different systems. )e results of data
standardization between the two systems are shown in
Figure 3. )e data processing procedure had two steps:

THz-TDS 1

THz-TDS 2

THz-TDS N

Unstandard spectrum

Unstandard spectrum

Unstandard spectrum

Calibration processing

Initial time-domain
spectrum

Remove reflection peak

Fast fourier transform

Effective frequency
-domain selection

Absorbance calculation

Wavelet transform

Cubic spline interpolation

Standard spectrum

Standard spectrum

Application

Database building

Fingerprint spectrum
matching

Substance
identification

Figure 1: )e diagram of the spectral standardization. Spectra obtained from different THz-TDS systems can be uniformed to the standard
spectrum after our calibration process.
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(1) )e elimination of baseline drift and noise by using
the wavelet transform. It can be seen that, for the
USST system, the peaks from the original spectra
(Figure 2, black solid lines) became sharper and
their baselines were eliminated after this step
(Figure 3, blue solid lines), while for the Gaojing
system, as the spectra had already been pre-
processed by the system, it is normal that the
spectra nearly had no difference (red dotted lines in
Figures 2 and 3). )ese processing steps made the

absorption peaks, curve shapes, and amplitudes in
the spectra from the two systems very similar to
each other.

(2) )e standardization of the data points’ number.
Cubic spline interpolation was used to add the
number of the Gaojing spectral data points to 143
with a sampling interval of 0.009 THz without
changing the shapes of the spectra. Otherwise, it will
cause errors in the algorithm for the mismatch of
spectral data dimensions.
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Figure 2: THz spectra of 12 compounds measured by two THz-TDS systems. Black solid lines show spectra obtained from the USST
system (left y-axis)—original time-domain spectral data without any data processing; red dotted lines show spectra obtained from the Gaojing
system (right y-axis)—smoothed data after information privacy processing. (a) 4-Aminobenzoic acid. (b) A2. (c) A3. (d) Amoxicillin. (e)
Phenylalanine. (f) Benzoic acid. (g) C5. (h) d-Lactose monohydrate. (i) p-Toluylic acid. (j) Glutamic acid. (k) Trinitrotoluene. (l) Riboflavin.
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3.3. Compound Identification. All standardized spectral data
from the 12 compounds were divided into two sets based on
their sources. )e processed dataset from the USST system
was used to optimize the parameters and build the SVM
classifier model, while the processed data from the Gaojing
system was used for classification of each compound. Our

model, which includes wavelet transform, cubic spline in-
terpolation, and SVM, has the advantage of low demand for
sample numbers and easier to obtain globally optimal so-
lutions. Additionally, several kernel functions, such as the
linear kernel function, polynomial kernel function, and
radial basis function (RBF) kernel, are commonly used to
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Figure 3: Standardization of spectra from two systems, USST system (blue solid lines) and Gaojing system (pink dashed lines), for the 12
compounds. (a) 4-Aminobenzoic acid. (b) A2. (c) A3. (d) Amoxicillin. (e) Phenylalanine. (f ) Benzoic acid. (g) C5. (h) d-(+)-Lactose
monohydrate. (i) p-Toluylic acid. (j) Glutamic acid. (k) TNT. (l) Riboflavin.
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construct the SVM classifier. )e choice of kernel function
should be based on the characteristics of the sample data. In
our study, the absorption spectra from the 0.2–1.5 THz range
were selected, and these spectra contain sufficient charac-
teristic information for linear separation of the 12 com-
pounds. Consequently, we first evaluated the linear kernel
function for compound identification. )e open source
software LIBSVM [28] was used in this study, and the
identification accuracy reached 99.17%. Furthermore, it only
took a short time without searching for optimum kernel
parameters, which proved the validity of the linear kernel
function for these spectral data.

4. Discussion

Among the kernel functions, the RBF kernel is the most
commonly used in SVMs. )erefore, the RBF kernel was
also evaluated in this study, and the corresponding
penalty parameter c and kernel function parameter g were
optimized by the grid search method [29]. )e final
identification accuracy was 95.00% as shown in Table 1.
)e only misclassification was for phenylalanine. )is
could be attributed to the overfitting from the RBF kernel
function and the proximity of the absorption peak of
phenylalanine (1.27 THz) to that of glutamic acid
(1.25 THz). )e proximity of these peaks was more
problematic as these compounds only have one absorp-
tion peak in the 0.2–1.5 THz range. As a result, six phe-
nylalanine samples were misclassified as glutamic acid
(Figure 4), which reduced the overall accuracy.

Considering that the absorption peaks in the spectra
reflect the vibration/rotation of molecules' functional
groups, therefore, some same functional groups may cause
the similar absorption peaks in the spectra which will cause
error in identification. )is can be reduced by searching for
more absorption peaks over a wider THz range and im-
proving the SNR of the spectra. In the present study, the
effective bandwidth of the Gaojing system was 0.2–1.5 THz,
and both phenylalanine and glutamic acid have only one
absorption peak in this range. )erefore, we could not
improve the accuracy by extending the bandwidth of the
system, so the selection of an appropriate kernel function for
the SVM classifier was crucial for optimization of our
method.

For comparison, correlation coefficients and BP neural
networks, which are widely used as spectroscopy identifi-
cation methods, were also used here [30, 31]. )e perfor-
mances of these models were evaluated based on their
accuracy for classification of the test dataset (Table 2). It is
proved that our model was much more accurate than the
correlation coefficient and BP neural network models for
compound identification. )is could be attributed to the
high sensitivity of our model for characteristics of the
sample, small number of samples required, and self-regu-
lation in finding minima.

Based on all our results, we can conclude that the errors
between different THz-TDS systems are mainly affected by
four factors:

(1) )e SNR of the system: since the noise in the system
interferes with the absorption peaks, improving the
SNR can effectively reduce the identification error.

(2) Data standardization: because different system errors
and data preprocessing can create large differences in

Table 1: Compound identification results using the RBF kernel
function.

Material Class
number Correct Error Accuracy

(%)

Total
accuracy

(%)
4-
Aminobenzoic
acid

1 10 0 100

A2 2 10 0 100
A3 3 10 0 100
Amoxicillin 4 10 0 100
Phenylalanine 5 4 6 40
Benzoic acid 6 10 0 100
C5 7 10 0 100 95.00
d-(+)-Lactose
monohydrate 8 10 0 100

p-Toluylic acid 9 10 0 100
Glutamic acid 10 10 0 100
TNT 11 10 0 100
Riboflavin 12 10 0 100

0 20 40 60 80 100 120
0

2

4

6

8

10

12

Test set samples

La
be

ls

Actual test set classification
Prediction test set classification

Figure 4: Results of compound identification based on RBF kernel
function.

Table 2: Results of different algorithms for identifying the
compounds.

Algorithm Classification accuracy (%)
Correlation coefficient 81.54
BP neural networks 91.21
SVM (with the linear kernel) 100.00
SVM (with the RBF kernel) 95.00
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curve shapes and amplitudes of spectra, standardi-
zation of data from different THz-TDS systems is
required for accurate identification. In our study, this
was achieved by using the wavelet transform and
cubic spline interpolation. But othermethods such as
digital filtering and the window function could also
be applied to the standardization.

(3) Kernel functions: in SVM classification, the ap-
propriate kernel function should be selected based
on the characteristics of sample data. A suitable
kernel function can greatly reduce the computa-
tional complexity and improve the classification
accuracy.

(4) Identification methods: SVM can effectively
achieve high generalization performance with a
small number of samples, which improves the
classification accuracy compared with other iden-
tification algorithms. However, the kernel function
cannot be selected automatically, and then the
user’s experience in this area determines the final
outcome.

5. Conclusion

In our paper, we proposed an approach of spectra stan-
dardization for different THz-TDS systems and then realized
the qualitative identification using these standard spectra.
)e model contains wavelet transform, cubic spline inter-
polation, and SVM. With this model, we realized the
qualitative identification of 12 biomedical compounds with
100% recognition rate. )ese results show the importance of
spectra standardization for different THz-TDS systems and
the accuracy of these standard spectra. Based on these re-
sults, our method is demonstrated to be a potential tool for
the identification of different substances in the biomedical
field. However, for actual usage, the sample will contain far
more compositions. In this case, the accuracy will be
dropped. )erefore, further optimization is needed to im-
prove the model’s performance. For example, the input
spectra can be preprocessed to extract the information re-
lated to target substances, which can reduce the influence of
other substances.
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