
Research Article
Massively Parallel CFD Simulation Software: CCFD Development
and Optimization Based on Sunway TaihuLight

Xiazhen Liu,1,2 Zhonghua Lu ,1,2 Wu Yuan,1,2 Wenpeng Ma,3 and Jian Zhang1

1Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3College of Computer and Information Technology, Xinyang Normal University, Xinyang, Henan 464000, China

Correspondence should be addressed to Zhonghua Lu; zhlu@cnic.cn

Received 16 April 2020; Revised 17 June 2020; Accepted 29 June 2020; Published 22 July 2020

Academic Editor: Chenxi Huang

Copyright © 2020 Xiazhen Liu et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A parallel framework software, CCFD, based on the structure grid, and suitable for parallel computing of super-large-scale
structure blocks, is designed and implemented. An overdecomposition method, in which the load balancing strategy is based on
the domain decomposition method, is designed for the graph subdivision algorithm. *is method takes computation and
communication as the limiting condition and realizes the load balance between blocks by dividing the weighted graph. *e fast
convergence technique of a high-efficiency parallel geometric multigrid greatly improves the parallel efficiency and convergence
speed of CCFD software. *is paper introduces the software structure, process invocations, and calculation method of CCFD and
introduces a hybrid parallel acceleration technology based on the Sunway TaihuLight heterogeneous architecture. *e results
calculated by Onera-M6 and DLR-F6 standard model show that the software structure and method in this paper are feasible and
can meet the requirements of a large-scale parallel solution.

1. Introduction

Computational fluid dynamics (CFD) is a technique for
numerical simulation and analysis of fluid mechanics
problems. CFD technology is increasingly used in aerospace,
meteorological prediction, and other fields [1–4]. Some
parallel computing frameworks have been used with parallel
CFD [5, 6], e.g., OpenFOAM [7] and SU2 [8, 9]. Parallel
computing methods are increasingly used to solve large-
scale computationally intensive problems. Parallel pro-
gramming environments such as OpenMP [10, 11] and MPI
[12, 13] have appeared on parallel machines, networked
workstations, and supercomputers. *e development of
CFD in numerical methods, turbulent models, and mesh
generation technology has led to its making strides in the
simulation accuracy and capacity of complex geometric
shapes. Meanwhile, with the increasing complexity of en-
gineering problems and the rapid advancement of numerical
simulation calculation technology, the requirements for
simulation accuracy are getting increasingly stringent, and

the amount of calculation required has increased geomet-
rically. Parallel CFD technology has become the primary
method for solving complex simulation calculations [14, 15].

Current CFD methods use a computational grid to
simulate the flows in complex geometries and form different
cells through the discreteness of the grid, which is then
followed by the numerical calculation [15–17]. In order to
simulate the shape structure more realistically, a multiblock
approach is generally used to simulate different spatial re-
gions. A commonly usedmethod for solving large-scale CFD
problems is applying domain decomposition technology in
order to decompose more subblocks and allocating these
decomposed calculation regions to different processes or
threads for performing parallel calculations [18–20]. *e
methods of parallel computing are very different under
different parallel programming environments. *e MPI
method allocates one or more computing areas to a pro-
cessor. As the different computing areas are completely
isolated, the data exchange at the boundary needs to be
completed through communication. *e OpenMP method

Hindawi
Scientific Programming
Volume 2020, Article ID 8847481, 17 pages
https://doi.org/10.1155/2020/8847481

mailto:zhlu@cnic.cn
https://orcid.org/0000-0002-1554-8429
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8847481

uses the shared memory in an environment in which the
computing area is actually on one processor, and the grid
data are completely shared, rendering data communication
unnecessary. *erefore, designing different parallel frame-
works is important when using different programming
environments and grid types [21, 22].

Supercomputer architectures are generally either ho-
mogeneous [23] or heterogeneous [24]. Each core archi-
tecture of a homogeneous machine is the same, and their
status is equal. *ey can share the same code or execute
different codes on each core [25]. Homogeneous processors
can be interconnected using shared storage or through cache
[26–28]. Heterogeneous architectures represent a new
hardware platform that allows different types of processors
to work together efficiently in shared memory [24]. *e
heterogeneous architecture includes not only the traditional
CPU but also other accelerator units such as GPUs andMICs
[24, 29]. *ese different computing units have different
instruction set architectures and memory spaces [30]. *e
CPU and the accelerators have unified access to the system
memory through the Memory Management Unit (MMU)
[31, 32]. With the evolution of supercomputer technology,
the traditional homogeneous architecture has been unable to
meet the increasing requirements for computing power and
storage. For this reason, the heterogeneous architecture has
become the most important technology for the development
of supercomputers. Heterogeneous architecture machines
account for more than 30% of the current TOP500 list of
supercomputers [33]. Of the top five parallel computers, four
have heterogeneous architectures.

*e main purpose of the research content in this paper is
to develop an open-source large-scale parallel solver based
on a multiblock structure grid. First, multicore parallel
computing based on the homogeneous architecture was
implemented. Second, based on the Sunway TaihuLight
heterogeneous system [34], the calculation of data on the
CPU and accelerator communication were achieved using
the MPI +OpenACC/Athread hybrid programming model
[35] and direct memory access (DMA) technology [36].
*ird, through the use of stencil calculation, the boundary
information is exchanged through register communication,
and the single instruction, multiple data (SIMD), and as-
sembly instructions are used to optimize the computa-
tionally intensive area and further improve calculation
performance. Finally, the parallel simulation of the Onera
M6 wing model [37] realizes a parallel calculation of 500,000
cores of 1 billion grids and achieves ideal parallel acceler-
ation efficiency.

2. CCFD Software Design and Implementation

2.1. CCFD Software Architecture. CCFD is designed by
object-oriented programming [38], and its architecture is
shown in Figure 1. *e entire software platform consists of
an input/output control module, a computational geometry
module, a solver module, and a parallel algorithm module.
*e system architecture of CCFD needs to take into account
the characteristics of various calculation methods and
physical models and design a simulation software with

flexibility, robustness, accuracy, and data security. In ad-
dition, the parallel framework design needs to meet the
requirements for high parallel scalability, high data trans-
mission efficiency, and fast response time. To increase
maintainability and scalability, the CCFD architecture is
organized with blocks as the basic data structure units. Based
on this, the use and loading of data by each module in the
platform greatly simplifies the program interface and re-
duces the difficulty of development.

*e CCFD software platform system is built on block
units. *e structure and basic unit calling of CCFD are the
blocks and boundaries. *e internal points and boundary
points of the blocks are divided into two data structures:
BLOCKs and BCs. *e main information such as geometric
variables and calculation variables are stored in the block,
while the boundary type and starting information are stored
in the boundary. In accordance with the advantages and
disadvantages of an array of structures (AoS) and a structure
of arrays (SoA), the variables of CCFD on the block are
organized in the form of SoA.*e advantages of this method
can be stated as follows. On the one hand, the centralized use
and loading of grid variables improves the hit rate and data
utilization of cache. On the other hand, it facilitates the
packaging and collection operation of parallel communi-
cation, which is beneficial to the parallel optimization of the
large-scale computation of CCFD.

CCFD integrates various computing models and
methods effectively. In order to facilitate the software
module specifications, code organization development, and
extended maintenance, we organize the entire software
system with the application layered model, which makes the
codemodules independent between layers and interconnects
the calling relationships. *e solver can be divided into five
layers. *e first layer is grid input, which controls the file
input and the load balancing of block calculation and
communication on the processor. In the second layer, the
calculation is divided into a multiblock method and con-
ventional calculation methods according to the calculation
demand. *e third layer is divided into Euler, N-S, and
turbulent model based on the flow equation.*e fourth layer
is a method of selecting spatial and temporal terms for
different equations. *e fifth layer is a basic algorithm layer
that includes a sparse matrix solving method, modular
parallel communications, and error information output.

2.2. CCFD Software Process. Software process design needs
to fully take into account the actual calculation methods
used. For example, CCFD uses a multiblock structure grid
based on a second-order precision finite volume method to
solve partial differential equations and uses multigrid
methods to accelerate convergence techniques. In order to
allow large-scale structure blocks to be calculated on parallel
machines, the domain decomposition technique is used to
divide a large-scale block into smaller-scale subblocks. *e
adjacency relationships between the subblocks are stored in
the information of the block, and the information is shared
and updated after each iteration of calculation to ensure the
compatibility between the results of the partial differential

2 Scientific Programming

equations and the unpartitioned block. *e area of the block
is assigned to different processors for calculation. *is
mapping and allocation process involves the calculation and
communication load balancing of the block on the pro-
cessor. *erefore, the entire software system can be thought
of as being roughly divided into five parts: preprocessing,
area decomposition, load balancing, flow field calculation,
and postprocessing output.

*e software process design considers the calculation
methods used in practice and meets the communication
needs between the multiblocks. Regardless of partition
parallel computing or multiblock computing, it is essential
to calculate the partial differential equations on each block.
*e calculation time of subblocks of different sizes differs
depending on the process. *e larger the scale, the larger the
calculation time. If the subblock sizes are not uniform, there
will be multiple processes waiting for individual processes.
Based on the above characteristics of CCFD software, we
designed a software parallel process, as shown in the
flowchart in Figure 2.

*e unit data based on the block, which is the functional
module structure of CCFD, are shown in Figure 3. *e
structure is divided into eight modules. *e calling and
connection between each module are based on the block
unit. *e main body of the calling is the parallel solver.
*rough the parallel solver, the block geometry module,
parallel module, source term solution, right term solution,
turbulent viscous, and output control are used to complete

the entire solution process. *e connection lines in Figure 3
indicate the link relationship between the modules. *e
entire process largely determines the parallel expansion
efficiency of the software system. *e allocation strategy of
blocks to processors also affects how much the parallel ef-
ficiency can be improved. For example, an imbalance in the
calculation and the communication load between blocks on
the process will cause the process to wait idle for the overall
calculation.

3. CCFD Parallel Design

3.1. Load Balancing Strategy. One goal of domain decom-
position technology is to subdivide a large size of block
into smaller subblocks. *e subblocks’ computing area is
allocated to different processes, or threads, for parallel
computing processing [19, 20]. As shown in Figure 4, a
three-dimensional structure block is subdivided into mul-
tiple smaller subblocks, each having multiple adjacency
surfaces, which represent the communication relationship
between the subblocks. When the subblocks are calculated
on different processors, the adjacent surfaces need to carry
out data transmission and communication.

Once the domain is decomposed, a larger number of
smaller, more uniform blocks are formed. *ese subblock
computing areas are allocated to different processes, or
threads, for concurrent execution. In this particular process,
we need to ensure that the calculation and communication

CCFDv3.0

Geometry Solution Numerics

multigrid_geometry

metric/coordinate

boundary_type

config/output Grid integration

Multigrid_integration Singlegrid_integration

euler_solution

ns_solution

turb_bl

viscous/inviscid

flux

limiter

min_distance

vorticity_magnitu
de

turb_sa

extend-limiter

extend-flux

extend-distance

extend-turbulent

extend-bound_type

extend-numeric

extend-vorticity_mag

extend-vis/inviscid

extend-config

Parallel

mpi_module

mpi_initial

load_balance

Figure 1: CCFD software framework.

Scientific Programming 3

allocated to each processor are relatively balanced, and there
is no idle waiting of the processor. *is process of block and
course mapping allocation is called load balancing. Cur-
rently, there is much research taking place on load balancing
methods, and several algorithms have been proposed, in-
cluding greedy algorithm, spectral method, genetic algo-
rithm, and ant colony algorithm [39]. *ese algorithms are
applicable to unstructured grids but cannot be directly
applied to structured grids. Traditional structure grid load
balancing methods generally use a cyclic allocation method
or a uniform distribution method, neither of which consider
the load balance of the calculation amount and communi-
cation [20].

Aiming at the problem of large-scale multiblock struc-
ture grid computing and communication load balancing,
CCFD scientists proposed an overdecomposition method.
CCFD divides the blocks and processor mapping and dis-
tribution process into two layers: coarse and fine. At the

coarse layer, domain decomposition methods such as re-
cursive boundary are used to subdivide large and uneven
blocks into smaller and more uniform subblocks. *e al-
gorithm is a method of approximate linear time complexity,
and the decomposition time is related to the number of
blocks and the maximum dimension of the block. *e
purpose of the subdivision operation in the coarse layer is to
lay a foundation for further balancing the calculation and
communication loads. For example, uneven blocks make it
difficult to balance the calculation and communication al-
location, which will result in a series of processor-inde-
pendent block sequences. Before using the fine-layer load
balancing algorithm, the subblocks of the coarse layer need
to be renumbered.*e number of grids in each subblock was
used as the statistical standard for the calculation amount,
and the adjacent faces of each subblock and other subblocks
are the statistical standard for communication volume. *is
information is redrawn into a multidirectional weighted

Start

myid = host?

Yes

Read parameter
information, BC, grid data, etc.

No

MPI_Recv:receive data MPI_Send:send data

Load balancing, blocks mapped
to processor

Mesh check, calculation
metric

Allocate arrays for flow data

Calculation flow
filed

Force coefficient
integral

Output

Steady/unsteady Initialization time, grid
data, parameter

Yes

No

End
iteration

Update BC, Multigrid, mesh
sequence up interpolation

Calculate viscous, time step

Calculate inviscid, viscous flux

Source term calculation

Update BC information
Interpolation from coarse mesh
to fine mesh
Multigrid, time step subiteration
Output physical data
Output residual file
Output restart file

(1)
(2)

(3)
(4)
(5)
(6)

Figure 2: CCFD software process.

4 Scientific Programming

graph based on the subblock topology, and the communi-
cation volume and calculation volume are the two weights of
the weighted graph [40]. *e fine-layer graph partitioning
algorithm performs graph segmentation based on the
weighted graph formed by the upper layer. *e total amount
of calculations of the subdomains formed as far as possible is
balanced, and the total amount of communication in the
subdomains is balanced with the smallest amount of com-
munication between subblocks [41]. Figure 5 shows a
multidirectional weighted graph G � (V, E) drawn after
preprocessing the CCFD blocks, and finding a partitioning

of the vertices of G into n sets in such a way that the sums of
the vertices weights in each set are as equal as possible, and
the sum of the edges weights crossing between sets is
minimized. *erefore, this partitioning of the vertices
guarantees the computation in each processor is equal, and
the communication between processors is minimized. *e
method based on k-way graph partitioning has moderate
computational complexity, its complexity for computing is
O(|V|log k), and log k is levels of recursive bisection for the
algorithm.

In this paper, we discuss how we found that the cal-
culation scale and the number of subblocks of the calculation
example have a direct relationship with the amount of
calculation and communication load balancing. For exam-
ple, the number of subblocks and the size of the subblocks
directly affect the distribution of the amount of calculation
in the process. *e greater the number of subblocks and the
balance of the size, the more balanced the distribution of the
calculations. However, the greater the number of partitions,
the larger the adjacent area of the block. *is condition
directly leads to an increase in communication and affects
the realization of communication load balancing among the
blocks. As an example, the block size in the M6 calculation
ranges from 11,000 to 13,000, and the area of cut face is
between 450 and 625.*e block size and the adjacent surface
after domain decomposition are relatively balanced, which is
conducive to load balancing. Figure 6 shows the actual
calculation load distribution of each process in the M6
calculation example, using 256 or 512 threads.

Testing the M6 model, we found that, with the increase
in parallel scale, the actual distribution of the computing
load will become worse, along with an increase in the

Start

input
input

config

multi-grid

multi-grid
boundary

restrict

smoothing

prolonged

source LU_ADI

R-K

RHS
time_step viscous

turbulent

limiter flux

distance

vorticity magnitude

B-L SA

Output residual Finish

force restart

geometry

input grids

boundary set

mem_alloc
metric

check mesh

block mapped

PARALLEL-Solver
parallel_module

load_balance

Steady/
unsteady

Figure 3: CCFD method and module invocation relationship.

Figure 4: Domain decomposition.

Scientific Programming 5

number of threads. In this case, 256 threads are the critical
point of the calculation load balancing. When the number of
threads is less than 256, the overall computational load
balance is ideal. However, the actual distribution of com-
putational load will be significantly different when the
number of threads is greater than 256. When the subblock
size and the total number of blocks in the partition are stable,
the number of blocks allocated to each process decreases,
with the number of threads increasing. *en, the influence
on the distribution of the calculation amount caused by the
difference in the number of blocks on each thread and the
actual size of the block increases, resulting in a decrease in
the degree of interprocess calculation load balancing.

After the domain decomposition, the total calculation
amount of the block remains stable, and the absolute amount
of communication between the blocks increases with the
increase of the number of parallel cores. In terms of com-
munication load balancing between blocks, the degree of

communication load balancing decreases with the increase
in parallel scale. Figure 7 shows the actual communication
load distribution of each process in the M6 calculation
example, using 256 and 512 threads.

3.2. Parallel Data Structure. CCFD supports two grid for-
mats: CFD General Symbol Standard (CGNS) grid and
PLOT3D. *e operation of the software system involves the
access to and update of various data, which mainly include
control parameters, grid data, flow field data, and temporary
variables. *e specific block variables are as follows:

type, public: blocks_type
type (cell_type), pointer, dimension(:,:,): cell
type (coordinate_type), pointer, dimension(:,:,): coordinate
type (metric_type), pointer, dimension(:,:,): metric
type (variable_types), pointer, dimension(:,:,): variable

0

0.5

1

1.5

2

2.5
×105

Co
m

pu
ta

tio
na

l l
oa

d

0 50 100 150 200 250
Processor ID

(a)

×104

0

2

4

6

8

10

12

14

Co
m

pu
ta

tio
na

l l
oa

d

0 50 100 150 200 250 300 350 400 450 500
Processor ID

(b)

Figure 6: Calculation load distribution in the use of 256 and 512 threads.

Graph partitioning

Processor#0

Processor#1

Processor#2

DGi

w(gi
0, gi

1)

w(g i0 , g in)

w(g
i

2, g
i

n)
w(

gi 0,
gi 2)

w(g
i 1,

gi n)

w(
gi 1,

gi 3)

w(g i
n , g i

3)

w(gi
2, gi

3)

gi
n

gi
2

gi
3

gi
0

gi
1

Figure 5: Multiblock structured grids for graph partitioning.

6 Scientific Programming

type (variable_mg_types), pointer, dimension(:,:,):
variable_mg
type (turbulent_type), pointer, dimension(:,:,): turbulent
end type blocks_type

All data can be divided into global, local, and exchange
data. Global data refer to the data that all processors will save
and not modify during calculation, such as control pa-
rameters. Local data refer to the data that are only stored
locally and are not shared with other processors, such as flow
field data in blocks’ interior points. Exchange data refer to
the data that need to be exchanged with other processes,
such as boundary data of adjacent faces.

When large-scale parallel computing is performed in
CFD, huge data reads and exchanges offer a great test to the
data structure and data flow. *e reasonable data structure
and data flow design directly affect the reliability and effi-
ciency of the platform operation. In order to ensure the
efficiency and security of data, the design of CCFD parallel
software is based on the block data structure. *e grid data,
boundary data, and flow field data are stored in each block
unit. As shown in Figure 8, a block stores information such
as grid coordinates, boundary information, and primitive
variables [40, 41].

3.3. Parallel Communication Optimization. *e proportion
of blocks computing and communicating is one of the main
factors in the parallel expansion performance of software.
Ideally, a large amount of local computing is a computa-
tional priority problem, and a small amount of communi-
cation is good for parallel expansion. If the amount of local
computing is small, the large amount of communication is a
communication priority problem, which leads to poor
parallel scalability. *e computing model and method used
by parallel software determine the amount of local com-
puting, and the communication mode of parallel software
affects the amount of communication. For example, in actual
calculations, there are some challenges: many small and
frequent data communications, a large amount of data and a

fixed number of a block boundary updates, one-to-many
broadcast data, and many-to-one master-slave communi-
cation. In terms of these challenges, using a different and
flexible communication mode facilitates the software’s
parallel expansion.

CCFD uses the mode of traversing and allocating blocks
to communicate. Each process traverses all block numbers.
Only the local blocks are calculated, while the nonlocal
blocks are used for asynchronous communication according
to the actual communication needs. For example, when
process 1 communicates with process 2, each process packs
the mesh belonging to the adjacency surface relationship
with nonblocking transmissions and then directly performs
subsequent calculations. It does not detect whether the
communication has been completed until the communi-
cation data are used locally. If the communication is
completed, it can be used directly; otherwise, wait for the
communication to complete. In Figure 9, B4 and B6 are the
respective senders and receivers of data. Under nonblocking
communication, B4 and B6 only need to send data to
perform subsequent calculations and do not need to wait for
the completion of data reception.

In the actual calculation of CCFD, there is a large
amount of small and frequent communication, such as the
detection of the local subblock, the updating of the local
subblock, the updating of the flow field data, the calculation
of the turbulent model, and the multigrid up-down inter-
polation process, which occurs after the block is read. *ese
small and high-frequency communications are very time-
consuming and affect the parallel efficiency of the processor.
To solve these problems, we generally use methods such as
collective communication, data prefetching, and computa-
tional alternative communication. Collective communica-
tion packs the number of high-frequency communication
times in order to reduce the number of communication
requests, which in turn reduces the communication time.
*e aim of prefetching technology is to obtain data in ad-
vance in each calculation iteration and hide the commu-
nication time.*e alternative method of calculation refers to
using calculations to complete the local results, which can

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

Processor ID

A
m

ou
nt

 o
f c

om
m

un
ic

at
io

n
(k

B)

(a)

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

6000

7000

Processor ID

A
m

ou
nt

 o
f c

om
m

un
ic

at
io

n
(k

B)

(b)

Figure 7: Communication load distribution using 256 and 512 threads.

Scientific Programming 7

improve data utilization and reduce communication times
and data volume.

When there are many uneven blocks in the local process,
the program is prone to idle waiting in the blocking or
sequential traversal execution mode. For example, the small
block quickly ends the calculation and enters the commu-
nication. Large blocks have not yet entered the communi-
cation, and the data are not ready, which will cause a long
wait. *e overlap of calculation and communication is
shown in Figure 10. Each communication request ends after
the data are sent, and the detection of the completed
communication is not performed until the data to be re-
ceived are used in the calculation process. For example,
processor P1 and processor P2 send data to each other, but
these data are not necessarily used immediately once the
communication ends. In this case, we can send the data to
the background for continued processing, and the processor
can perform subsequent calculations until the data are used

and whether they have been received is detected. *is
method allows data communication and calculation to be
performed at the same time. Because the communication
time is hidden under the calculation time, it is called the
overlapping technology of calculation and communication.

*e design and selection of communication modes
largely determine the computing efficiency and parallel
scalability of parallel software. Different computing modes
and methods and data structures require the design of a
reasonable and flexible communication mode according to
the actual situation. CCFD parallel software adopts flexible
communication modes and carries out different parallel
optimization designs for different calculation models and
methods. Moreover, it also presents the modular design for
the general data communication methods, which greatly
simplifies the process of program programming and
maintenance and achieves ideal parallel efficiency and data
utilization.

Residual computing

Residual computing

ISend/IRecv MPI_Waitall

B7B4B3B1

B8B6B5B2

P0

P1

Figure 9: Nonblocking communication mode.

BLOCKs

Metric

Coordinate(x, y , z)

BCs

bc_type, diection

iblank, istart, iend

Turbulent

Viscous, vorticity

min_distance

SA, SST, K-W

Cell

ρ, u, v, w, p

Viscous, dt

Blank

Mesh

BLOCKs

BCs

Overlap

Laminar

Geometry Expand

Turbulent

BLOCKs

BCs

Figure 8: Data structure.

8 Scientific Programming

4. Optimization on Sunway TaihuLight
Heterogeneous Platforms

Sunway TaihuLight is the first 100P heterogeneous system
supercomputer in China. It was developed by China’s Na-
tional Research Center of Parallel Computer Engineering &
Technology (NRCPC) and is installed at the National
Supercomputing Center in Wuxi province. It is powered
exclusively by Sunway’s SW26010 processors, with an HPL
mark of 93.0 petaflops, and kept its number three spot in the
TOP500 list of supercomputers [33]. *e SW26010 multi-
core processor is composed of four computing core groups
(CGs), and the four CGs are interconnected at high speed
through the on-chip network, as shown in Figure 11. Each
CG consists of a management processing element (MPE)
and a multicore array containing 64 computing processing
elements (CPEs). MPE can directly access memory, while
CPE can directly access main memory and supports DMA
batch data transfer [34].

*e SW26010 processor has slow memory access and
large memory access instruction delay, a memory access
problem that has seriously affected the performance of the
CFD solver. *e CCFD solver has been transplanted and
optimized in Sunway TaihuLight, and the program memory
access problem has been solved in three ways: using high-
speed storage instead of main memory access; eliminating or

reducing memory access operations; and hiding memory
access time. *e optimization work in this paper is divided
into the following aspects. We use MPI to achieve parallel
communication between the core groups and use Athread to
achieve the master-slave core parallelism in the core group.
*e data of the slave core are stored in the core group, the
subarea is partitioned, and DMA batch transfer eliminates
main memory fetch operations. *e matrix data continuity
access is optimized. *e fast Carmack algorithm is used. *e
vectorized calculation and manual assembly instruction are
rearranged. *e use of a double cache method to cover fetch
time significantly improves the parallel efficiency.

4.1. Data Partitioning and DMA Parameter Tuning.
CCFD is optimized based on the memory size of SW26010
and the performance of DMA to achieve domain decom-
position and DMA parameter tuning. *e block division of
the many-core group calculation grid used by CCFD is
shown in Figure 12. Using a 32∗ 32∗ 32 block as an ex-
ample, in order to efficiently use the storage space of CPE, 64
slave core blocks divide the grid data along the X-Y cross
section.*en, the divided block data are allocated to 64 slave
cores, and the 64 slave cores execute the same calculation
process synchronously to complete a flow field calculation of
the entire block.

Processor#1 Processor#2
ISend/IRecv

Send
Send

mpi_test mpi_test

Transfer
complete

Transfer
complete

Update BCs
residual

computing

mpi_testall
all the blocks

complete

mpi_testall
all the blocks

complete

do i =1, BCs
ISend
Irecv

enddo

do nbl =1, BLOCKs
Update BCs

residual
computing

residual
print

enddo

Transfer the
BCs data

Update BCs
information
and residual
computing

for each
block

Update BCs
residual

computing

Time Time

Figure 10: Communication and computation overlap.

Scientific Programming 9

In actual programming, the size partition and direction
selection of computational subdomains need to be further
tuned, combined with the calculation process and the
performance of the DMA. *e local data memory (LDM) of
the core processing unit is 64 kB, and in the actual flow field
calculation, the size of the storage space required for dif-
ferent calculation processes ranges from 12 kB to more than
100 kB. Based on this, the temporarily stored LDM data need

to strictly control the calculation scale, flexibly utilize DMA
batch transmission, and eliminate the fetch operation to
obtain data from the memory, thereby reducing the fetch
time. In Figure 11, DMA is called by slave core. X is the
lowest dimension of the data block, Y is the secondary di-
mension, and Z is the highest dimension. *e data along the
highest dimension are allocated to the same slave processor,
and they are calculated along the Z-axis. *e data

MC MPE CG

CPE
cluster

MCMPECG

CPE
cluster

MC MPE CG

CPE
cluster

MCMPECG

CPE
cluster

NoC

Main
memory

Main
memory

Main
memory

Main
memory

Figure 11: General architecture of the SW26010 processor.

D
im

en
sio

n
Z

Dimension XDimension Y

Dimension Y

Dimension XD
im

en
sio

n
Y

Multiblocks

Grid data assigned to accelerator matrix

Dimension XD
im

en
sio

n
Z

Figure 12: Block’s domain decomposition for CPE slave group.

10 Scientific Programming

transmitted to local are calculated cyclically by the slave core
processor to complete the iterative solution of the flow field
of a single block.

4.2. Register Communication Optimization. After the block
subarea data are evenly distributed to the slave core arrays,
the slave cores that are physically located adjacent to each
other on the on-chip bus have the adjacent global grid data.
*e SW26010 processor supports the same columns of slave
core array registers performing point-to-point discrete
communication. *e aggregate bandwidth of the register
communication theory is much larger than the theoretical
aggregate bandwidth of the DMA. *is paper uses register
point-to-point communication to obtain the boundary data
stored on the adjacent slave cores on the X-Y plane in the
slave core array group. Moreover, the register communi-
cation and the asynchronous mechanism of arithmetic
operation are used to fill the instructions that have nothing
to do with the communication data between the RLC_GET/
RLC_PUT instructions, to cover the communication time
between the register communications.

As shown in Figure 13, using the XY plane as an example,
the green dots indicate the grid data stored on the slave core
LDM.*eflowfield calculation of the local cell is performed on
each slave core, and the update result is returned. However, the
local cells are calculated using the data of cells in four directions
which contain part of halo cells in Figure 13 and assigned to
adjacent slave calculation local cell to complete the calculation
of the internal point. For the three-dimensional 13-point
model discussed in this paper, after reading one layer of cal-
culation subregion data blocks from the core, it is necessary to
read two layers of halo data blocks from the surrounding four
directions to complete the calculation.

*e SW26010 supports register communication between
peers and the same column. On the accelerator array, the
registers of accelerators in the same row or the same column
realize interconnected communication and can transmit 128
bits of data each time. As shown in Tables 1 and 2, the peer
processors place the data in the register and specify the target
number of the peer processor and then send the data to the
destination. *e target processor will collect the data over
the Internet and save it to the register of the processor,
realizing the communication operation of the register.

4.3. SIMD Calculation and Assembly Instruction
Optimization. *e SW26010 supports the 256-bit SIMD
instruction set, which can perform four double-precision or
eight single-precision data operations simultaneously. To
ensure the use of SIMD, the calculation process and
the address alignment of the variable array need to be
alignment-adjusted. At the same time, SIMD_LOAD/
SIMD_STORE and the calculation instruction are manually
adjusted under the premise of ensuring that the calculation is
correct, so that the LOAD/STORE and the calculation time
are partially hidden. Data access and storage processing and
arithmetic of the SW26010 are operated on two pipelines. To
achieve the overlap of the data fetch and arithmetic oper-
ations, this paper analyzes the order of instructions

generated by the compiler, through manually adjusting the
order of instructions, and implements the overlap of data
fetch load/store operations and data-independent opera-
tions. *is method can eliminate data dependencies and
improve code efficiency.

To further improve the calculation performance, the
calculation code is disassembled. As shown in Table 3, by
observing the order of the instruction execution sequence
after disassembly, we found the memory access and cal-
culation instructions are completely separated, and nearly
six access instructions are issued on the pipeline before one
calculation instruction is launched. After ensuring that the
data are not relevant, we use inline assembly functions and
handwritten assembly codes instead of function interface
codes. As shown in Table 4, after manually adjusting the
assembly code, the overlap of memory access and calculation
instruction time is realized.

5. CCFD Application and Results

To verify the architecture and parallel performance of the
CCFD software, this paper selects the DLR-F6 wing-body
assembly, the CT-1 standardmodel, and the ultra-large-scale
M6 wing model for testing. *e test platforms are the Yuan
supercomputer at the Computer Network Information
Center in Beijing and the Sunway TaihuLight supercom-
puter at the National Supercomputing Center in Wuxi.

5.1. Optimization Results on Sunway TaihuLight. Using a
block of size 32∗ 32∗ 32 as the optimization case, the block
data were divided into the 8∗ 8 slave cluster on CGs, the
main calculation function and hot spots of CCFD were
optimized, the flow field calculation was accelerated, and the
entire CFD simulation process was completed. Figure 14
shows the SIMD optimization provided by Sunway’s
compiler in the Roe scheme calculation part, and the
comparison of the average cycles number before and after
inline assembly instruction optimization. *e optimization
effect of SIMD and assembly instructions is significant, in
that implementing the overlap of fetching and manual in-
struction adjustment further optimizes the calculation.

Now that CCFD has completed the acceleration opti-
mization of the main functional modules, including flux
calculation, turbulent model, and time advancement
method, and the slave core acceleration ratio has finally
reached more than 30 to 1. Figure 15 shows the comparison
of calculation time before and after the optimization of the
main calculation function module of CCFD.

5.2. DLR-F6 Wing Body Assembly. *e German Aerospace
Center’s DLR-F6 wing-body assembly is a typical example of
a transonic transport aircraft, which verifies the CFD solver’s
ability to calculate complex shapes [42]. *e calculation
conditions are Mach number Mach� 0.7510, Reynolds
number Re� 0.0212465×106, angle of attack α� 1.003°, and
side slip angle β� 0°. *e calculation method uses Roe
scheme, LU_ADI time advancement method, three-layer
mesh sequencing strategy, and the Spalart-Allmaras

Scientific Programming 11

turbulent model. Figure 16 shows the pressure nephogram
of the entire assembly.

Figure 17 shows the comparison of the experimental
results and calculated pressure coefficients of the different

positions of the DLR-F6 wing. *e CCFD calculation results
are consistent with the experimental results, which verifies
that CCFD can simulate the flow field calculation of a
complex-shaped aircraft.

5.3. CT-1 Standard Model. *e CT-1 is a model of high-
angle static aerodynamic characteristics released by the
China Aerodynamics Research and Development Center in
2005 [43]. We focus on the numerical simulation capabilities
of the CFD solution software at high angles of static aero-
dynamic characteristics. Figure 18 shows the pressure
nephogram at different angles of attack.

Figure 19 shows a comparison of the experimental results
and the drag coefficients for each angle of attack. By comparing
the experimental results with the calculation results of the static
aerodynamic characteristics of the CT-1 standard model at
high angles of attack, the CCFD calculation results are con-
sistent with the experimental results, which verifies the nu-
merical simulation ability of CCFD to solve the static
aerodynamic characteristics at high angle of attack.

5.4.Ultra-Large-Scale ParallelTesting ofM6Wing. *eOnera
M6 wing standard calculation model [37] uses 650 million grids
and 28,160 blocks. It verifies the parallel solver capabilities above

Table 4: Out-of-order execution of instructions.
(1). “vldd $0, 0(%2)\n\t”
(2). “vldd $3, 0(%3)\n\t”
(3). “vmuld $0, $3,$0\n\t”
(4). “vldd $1, 32(%2)\n\t”
(5). “vldd $4, 32(%3)\n\t”
(6). “vsubd $1, $4,$1\n\t”
(7). “vldd $2, 64(%2)\n\t”
(8). “vldd $5, 64(%3)\n\t”
(9). “vdivd $2, $5, $2\n\t”
(10). “vmad $0, $1, $2, $2\n\t”

X/col_id

REG_PUTR
REG_GETR

REG_PUTC
REG_GETC

05 06 07

15

25 27

17

26

16

Y/
ro

w
_i

d

00

11

20

30

40

50

60

70

01

11

21

31

41

51

61

71

02

12

22

32

42

52

62

72

03

13

23

33

43

53

63

73

04

14

24

34

44

54

64

74

05

15

25

35

45

55

65

75

06

16

26

36

46

56

66

76

07

17

27

37

47

57

67

77

Local cell
Halo cell

Figure 13: Data dependence and register communication from slave cores.

Table 1: Send data to the same row register.
asm volatile(\
“vldd $0, 0(%0)\n\t”
“vldd $1, 0(%1)\n\t”\
“vldd $2, 0(%2)\n\t” “putc $0, %4\n\t”\
“vldd $3, 0(%3)\n\t” “putc $1, %4\n\t”
“putc $2, %4\n\t”\
“putc $3, %4\n\t”\
\)

Table 2: Receive data from the same row register.
asm volatile(\
“getc $1\n\t”\
“getc $2\n\t”\
“getc $3\nt” “vstd $1, 0(%0)n\t”\
“getc $4\n\t” “vstd $2, 0(%1)\nt”\
“vstd $3, 0(%2)\n\t”\
“vstd $4, 0(%3)\n\t”
\)

Table 3: Order of instructions generated by the compiler.
(1). “vldd $0, 0(%2)\n\t”
(2). “vldd $1, 32(%2)\n\t”
(3). “vldd $2, 64(%2)\n\t”
(4). “vldd $3, 0(%3)\n\t”
(5). “vldd $4, 32(%3)\n\t”
(6). “vldd $5, 64(%3)\n\t”
(7). “vmuld $0, $3, $0\n\t”
(8). “vsubd $1, $4, $1\n\t”
(9). “vdivd $2, $5, $2\n\t”
(10). “vmad $0, $1, $2, $2\n\t”

12 Scientific Programming

the 10,000-core level and the parallel expansion performance of
CCFD. *e calculation conditions are Mach number
Mach� 0.840, Reynolds number Re� 21.70×106, angle of

attack α� 3.06°, and side slip angle β� 0°. *e calculation
method uses Roe scheme, LU_ADI time advancement method,
and the Spalart-Allmaras turbulent model.

0

10000

20000

30000

40000

50000

60000

70000

80000

NO-SIMD SIMD Assembler

73269

20445

3843
Co

m
pu

ta
tio

n
cy

cl
es

3.58X

19.07X

Figure 14: Comparison of cycle before and after SIMD and assembler optimization.

35

30

25

20

15

10

5

0

35

30

25

20

15

10

5

0

Sp
ee

du
p

Pr
ec

en
ta

ge
 o

f t
im

e

lu
_a

di SA

flu
x_

vi
sc

ou
s

ve
lo

ci
ty

m
us

cl

tim
e_

ste
p

Precentage of time
Speedup

Figure 15: Master-slave core acceleration times and time ratio of the main calculation module after optimization.

Figure 16: Pressure nephogram for DLR-F6.

Scientific Programming 13

CCFD is based on the Sunway TaihuLight heterogeneous
platform, with its core groups communicating with each other
using MPI, and 64 slave cores in the core group accelerated in
parallel using Athread. Figure 20 shows that the parallel

efficiency of CCFD reached 60% under the Sunway TaihuLight
heterogeneous platform with 13,000 cores and 500,500 cores.
*e parallel result test indicates that the super-large-scale parallel
computing scalability of CCFDhasmet the design requirements.

X/C

Cp

0 0.2 0.4 0.6 0.8 1
X/C

0 0.2 0.4 0.6 0.8 1

–1.5

–1

–0.5

0

0.5

1

33.1%

CAL
EXP

Cp

–1.5

–1

–0.5

0

0.5

1

63.8%

CAL
EXP

Figure 17: Comparison of the pressure curves of each wing position and the nacelle section with the experimental data.

AOA 30

AOA 0

AOA 60

AOA 90

Figure 18: Pressure nephogram at different angles of attack for CT-1.

14 Scientific Programming

6. Conclusions and Future Work

Using the multiblock structure grid parallel technology of
domain decomposition, we design the parallel software
framework, software process, parallel data structure, and
communication mode of parallel CFD solver software. *e
designed CCFD can be used for large-scale mega-core
parallel computing tasks and has good parallel expansion
ability and parallel efficiency. *e overdecomposition load
balancing strategy for CCFD guarantees the load balancing
performance of computing and communication.*e use of a
mesh sequencingmethod based onmultigrid technology can

accelerate the iterative convergence speed. We perform the
optimizations on DMA, SIMD, assembly instruction rear-
rangement, and double buffering in the Sunway TaihuLight
heterogeneous architecture. *e super-large computational
scale test with a maximum of 505,000 cores in parallel across
the core group achieved a parallel efficiency of 60% based on
13,000 cores. In the future, we will use direct numerical
simulation of turbulence models to achieve more realistic
geometric flow simulations, increase the scale of cases and
parallelism, and achieve more efficient operation of parallel
CFD software in heterogeneous systems.

Data Availability

*e grid data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

*is work was supported by a grant from the National Key
R&D Program of China (No. 2019YFB1704204), the Na-
tional Natural Science Foundation of China (Nos. 61702438
and 11502267), the Chinese Academy of Sciences strategic
pilot technology special (Class B, XDB22020102, and Class
C, XDC01040100), and the Informatization Special Project
of Chinese Academy of Sciences (No. XXH13506-204).

References

[1] J. Blazek, Computational Fluid Dynamics: Principles and
Applications, Elsevier Science Publication, Amsterdam,
Netherlands, 2005.

Alf

CL

0 20 40 60 80 100

–0.5

0

0.5

1

1.5

Exp.
CCFD

CL

Alf
0 20 40 60 80 100

–0.5

0

0.5

1

1.5

Exp.
CCFD

Figure 19: Lift and drag coefficients at different angles of attack for CCFD.

Number of cores

Pa
ra

lle
l s

pe
ed

up

100000 200000 300000 400000 500000

5

10

15

20

25

30

35

Ideal speedup
Speedup of CCFD

Figure 20: Parallel efficiency of large-scale test for CCFD.

Scientific Programming 15

[2] H. K. Versteeg and W. Malalasekera, An Introduction to
Computational Fluid Dynamics, Pearson Education Limited,
London, UK, 2nd edition, 2007.

[3] P.Wesseling, “Principles of computational fluid dynamics,” in
Computational Mathematics, Vol. 29, Springer-Verlag, Berlin,
Germany, 2001.

[4] C.-L. Lin, M. H. Tawhai, G. Mclennan, and E. A. Hoffman,
“Computational fluid dynamics,” IEEE Engineering in Med-
icine and Biology Magazine, vol. 28, no. 3, pp. 25–33, 2009.

[5] F. He, X. Dong, N. Zou, W. Wu, and X. Zhang, “Structured
mesh-oriented framework design and optimization for a
coarse-grained parallel CFD solver based on hybrid MPI/
OpenMP programming,” >e Journal of Supercomputing,
vol. 76, no. 4, pp. 2815–2841, 2020.

[6] A. Gel, E. J. Hu, E. Ould-Ahmed-Vall, and A. A. Kalinkin,
“Modernization and optimization of a legacy open-source
CFD code for high-performance computing architectures,”
International Journal of Computational Fluid Dynamics,
vol. 31, no. 2, pp. 122–133, 2017.

[7] S. Li, R. Paoli, and M. D’Mello, “Scalability of OpenFOAM
density-based solver with Runge–Kutta temporal discretiza-
tion scheme,” Scientific Programming, vol. 2020, Article ID
9083620, 11 pages, 2020.

[8] F. Palacios, T. D. Economon, and J. J. Alonso, “Large-scale
aircraft design using SU2,” in Proceedings of the AIAA
Aerospace Sciences Meeting, Kissimmee, FL, USA, January
2015.

[9] F. Palacios, A. Alonso, K. Duraisamy et al., “An open-source
integrated computational environment for multi-physics
simulation and design,” in Proceedings of the AIAA Aerospace
Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition, Grapevine, TX, USA, January 2013.

[10] S. Yakubov, B. Cankurt, M. Abdel-Maksoud, and T. Rung,
“Hybrid MPI/OpenMP parallelization of an Euler-Lagrange
approach to cavitation modelling,” Computers & Fluids,
vol. 80, pp. 365–371, 2013.

[11] Y.-X. Wang, L.-L. Zhang, W. Liu, X.-H. Cheng, Y. Zhuang,
and A. T. Chronopoulos, “Performance optimizations for
scalable CFD applications on hybrid CPU+MIC heteroge-
neous computing system with millions of cores,” Computers
& Fluids, vol. 173, pp. 226–236, 2018.

[12] D. Cheng, C. Xu, B. Cheng, M. Xiong, X. Gao, and X. Deng,
“Performance modeling and optimization of parallel LU-SGS
on many-core processors for 3D high-order CFD simula-
tions,” >e Journal of Supercomputing, vol. 73, no. 6,
pp. 2506–2524, 2017.

[13] O. Bessonov, “OpenMP parallelization of a CFD code for
multicore computers: analysis and comparison,” in Pro-
ceedings of the 11th International Conference on Parallel
Computing Technologies, PaCT 2011, Kazan, Russia, Sep-
tember 2011.

[14] A. Amritkar, S. Deb, and D. Tafti, “Efficient parallel CFD-
DEM simulations using OpenMP,” Journal of Computational
Physics, vol. 256, pp. 501–519, 2014.

[15] V. Moureau, P. Domingo, and L. Vervisch, “Design of a
massively parallel CFD code for complex geometries,”
Comptes Rendus Mécanique, vol. 339, no. 2-3, pp. 141–148,
2011.

[16] B. Kong, R. O. Fox, H. Feng et al., “Euler-euler anisotropic
Gaussian mesoscale simulation of homogeneous cluster-in-
duced gas-particle turbulence,” AICHE Journal, vol. 63, no. 7,
pp. 2630–2643, 2017.

[17] A. Capecelatro, A. Cauble-Chantrenne, A. Jundt et al.,
“Running large-scale CFD applications on Intel-KNL-based

clusters,” International Journal for Numerical Methods in
Fluids, vol. 86, no. 11, pp. 699–716, 2018.

[18] L. Lapichino, A. Quarteroni, and G. Rozza, “Reduced basis
method and domain decomposition for elliptic problems in
networks and complex parametrized geometries,” Computers
& Mathematics with Applications, vol. 71, no. 1, pp. 408–430,
2016.

[19] S. Badia and H. Nguyen, “Balancing domain decomposition
by constraints and perturbation,” SIAM Journal on Numerical
Analysis, vol. 54, no. 6, pp. 3436–3464, 2016.

[20] S. Badia, A. F. Mart́ın, and J. Principe, “Multilevel balancing
domain decomposition at extreme scales,” Siam Journal on
Scientific Computing, vol. 38, no. 1, pp. C22–C52, 2016.

[21] O. S. Lawlor, S. Chakravorty, T. L. Wilmarth, and
N. Choudhury, “ParFUM: a parallel framework for un-
structured meshes for scalable dynamic physics applications,”
Engineering with Computers, vol. 22, no. 3-4, pp. 215–235,
2006.

[22] G. T. Abraham, A. James, and N. Yaacob, “Priority-grouping
method for parallel multi-scheduling in grid,” Journal of
Computer and System Sciences, vol. 81, no. 6, pp. 943–957,
2015.

[23] T. Shimokawabe, T. Aoki, and N. Onodera, “High-produc-
tivity framework for large-scale GPU/CPU stencil applica-
tions,” Procedia Computer Science, vol. 80, pp. 1646–1657,
2016.

[24] I. Z. Reguly and G. R. Mudalige, “Productivity, performance,
and portability for computational fluid dynamics applica-
tions,” Computers and Fluids, vol. 199, Article ID 104425,
2020.

[25] J. Wang, X. Lv, and X. Chen, “Comparative analysis of list
scheduling algorithms on homogeneous multi-processors,” in
Proceedings of the IEEE International Conference on Com-
munication Software & Networks, IEEE, Beijing, China, 2016.

[26] L. Chai, A. Hartono, and D. K. Panda, “Designing high
performance and scalable MPI intra-node communication
support for clusters,” in Proceedings of the IEEE International
Conference on Cluster Computing, IEEE, Tampa, FL, USA,
November 2006.

[27] Q. Tang, L.-H. Zhu, L. Zhou, J. Xiong, and J.-B. Wei,
“Scheduling directed acyclic graphs with optimal duplication
strategy on homogeneous multiprocessor systems,” Journal of
Parallel and Distributed Computing, vol. 138, pp. 115–127,
2020.

[28] A. Kayi, T. El-Ghazawi, and G. B. Newby, “Performance issues
in emerging homogeneous multi-core architectures,” Simu-
lation Modelling Practice and >eory, vol. 17, no. 9,
pp. 1485–1499, 2009.

[29] S. G. Ahmad, C. S. Liew, E. U. Munir, T. F. Ang, and
S. U. Khan, “A hybrid genetic algorithm for optimization of
scheduling workflow applications in heterogeneous com-
puting systems,” Journal of Parallel and Distributed Com-
puting, vol. 87, pp. 80–90, 2016.

[30] H. A. Tokel, G. Alirezaei, S. Baig, and R. Mathar, “An opti-
mization framework for planning of WAMS with a hetero-
geneous communication network,” in Proceedings of the IEEE
International Conference on Smart Grid Communications,
IEEE, Sydney, Australia, November 2016.

[31] L. Deng, F. H. Bai, F. H. Bai, and Q. Xu, “CPU/GPU com-
puting for an implicit multi-block compressible Navier-Stokes
solver on heterogeneous platform,” International Journal of
Modern Physics: Conference Series, vol. 42, Article ID 1660163,
2016.

16 Scientific Programming

[32] W. Cao, C.-F. Xu, Z.-H. Wang, L. Yao, and H.-Y. Liu, “CPU/
GPU computing for a multi-block structured grid based high-
order flow solver on a large heterogeneous system,” Cluster
Computing, vol. 17, no. 2, pp. 255–270, 2013.

[33] TOP500 Supercomputing Sites (EB/OL), 2019, https://www.
top500.org.

[34] Z. Xu, J. Lin, and S. Matsuoka, “Benchmarking SW26010
many-core processor,” in Proceedings of the 2017 IEEE in-
ternational parallel and distributed processing symposium
workshops (IPDPSW), IEEE, Orlando, FL, USA, pp. 743–752,
May 2017.

[35] H. Fu, J. Liao, J. Yang et al., “*e Sunway TaihuLight su-
percomputer: system and applications,” Science China In-
formation Sciences, vol. 59, no. 7, pp. 113–128, 2016.

[36] C. Yang, W. Xue, H. Fu et al., “10M-core scalable fully-im-
plicit solver for nonhydrostatic atmospheric dynamics,” in
Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, IEEE
Press, Salt Lake City, UT, USA, 2016.

[37] Z. Johan, K. K. Mathur, S. L. Johnsson, and T. J. R. Hughes, “A
case study in parallel computation: viscous flow around an
ONERA M6 wing,” International Journal for Numerical
Methods in Fluids, vol. 21, no. 10, pp. 877–884, 1995.

[38] W. S. Brainerd, “Object-oriented programming,” in Guide to
Fortran 2008 Programming, Springer, Berlin, Germany, 2015.

[39] W. Deng, J. Xu, Y. Song, and H. Zhao, “An effective improved
co-evolution ant colony optimization algorithm with multi-
strategies and its application,” International Journal of Bio-
Inspired Computation, vol. 20, no. 5, pp. 1–10, 2020.

[40] D. LaSalle, M. M. A. Patwary, N. Satish, N. Sundaram,
P. Dubey, and G. Karypis, “Improving graph partitioning for
modern graphs and architectures,” in Proceedings of the 5th
Workshop on Irregular Applications: Architectures and Algo-
rithms, ACM, Austin TX, USA, November 2015.

[41] Z. Shang, “Large-scale CFD parallel computing dealing with
massive mesh,” Journal of Engineering, vol. 2013, Article ID
850148, 6 pages, 2013.

[42] J. C. Vassberg, A. J. Sclafani, and M. A. DeHaan, “A wing-
body fairing design for the DLR-F6 model: a DPW-III case
study,” Report No. AIAA-2005-4730, AIAA, Reston, VA,
USA, 2005.

[43] Y. Wang, G. Wang, and Z. Chen, “Numerical simulation of
static aerodynamic characteris of CT-1model at high angles of
attack,” Acta Aeronautica Et Astronautica Sinica, vol. 29,
no. 4, pp. 859–865, 2008.

Scientific Programming 17

https://www.top500.org
https://www.top500.org

