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The feature ranking as a subcategory of the feature selection is an essential preprocessing technique that ranks all features of a
dataset such that many important features denote a lot of information. The ensemble learning has two advantages. First, it has
been based on the assumption that combining different model’s output can lead to a better outcome than the output of any
individual models. Second, scalability is an intrinsic characteristic that is so crucial in coping with a large scale dataset. In this
paper, a homogeneous ensemble feature ranking algorithm is considered, and the nine rank fusion methods used in this
algorithm are analyzed comparatively. The experimental studies are performed on real six medium datasets, and the area under
the feature-forward-addition curve criterion is assessed. Finally, the statistical analysis by repeated-measures analysis of
variance results reveals that there is no big difference in the performance of the rank fusion methods applied in a homogeneous
ensemble feature ranking; however, this difference is a statistical significance, and the B-Min method has a little

better performance.

1. Introduction

During recent years, the amount of data generated daily has
grown dramatically. IBM estimated that every day 2.5
Quintillion bytes of data is created, and 90% of the data in
the world today has been created in the last two years.
Nowadays, such voluminous data are known as big data. The
analysis of such massive data on a single machine is im-
possible or very slow and time-consuming. Hence, it is
necessary to use the algorithms which can be distributed
between several machines or several threads.

Feature selection (FS) is a crucial preprocessing tech-
nique to deal with high-dimensional datasets that are
common in the big data era. The feature selection tech-
nique’s primary objective is to select a subset of features so
that the selected subset contains discriminating power, the
same as the original features set [1-3]. This technique can
reduce the dimensionality of the feature space and improve
classification performance due to removing irrelevant and
redundant features [4].

According to the final result, feature selection techniques
can be categorized into two subcategories: feature-subset
selection (FSS) and feature ranking (FR). Moreover,
depending on whether the label of each instance is available
or not, the feature selection can be classified into supervised
and unsupervised types [5-9].

Furthermore, according to dependency on a learning model,
feature selection algorithms can be classified into three categories
of Wrapper, Embedded, and Filter [10]. As it was mentioned by
Brahim and Limam [11], the algorithms of the filter category
have more generality than those of the other categories. Besides,
these algorithms utilize a statistical criterion for feature evalu-
ation resulting in a decrease of the computational cost.

Ensemble learning is based on the assumption that the
combination of the output of several models obtains better
results than the output of any individual models. Further-
more, ensemble learning algorithms have an inherent ability
of distributing so that any base learners can be executed
independently in separate workers or threads which is a
useful characteristic in confronting a large scale dataset.
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The ensemble learning broadly has been applied in the
classification discipline in the last decade; however, its ef-
fectiveness is imaginable in other machine learning disci-
plines such as feature selection as well [12]. The ensemble
learning approach for feature selection technique, which is
called Ensemble Feature Selection (EFS), has received in-
creased attention in recent years [13-17]. In another point of
view, feature ranking as a subfamily of the feature selections
is a common approach when the number of features is
substantial. Hence, in this paper, the feature ranking algo-
rithms (FRAs) are applied in EFS as basic learners and called
ensemble feature ranking (EFR) henceforth. Furthermore,
owing to what is known as the label of training instances, it is
a supervised EFR.

To sum up, the EFR approach has three advantages: first,
applying feature ranking has a lower computational cost
than feature selection, and it is more sensible when the
number of features is high. Second, the ensemble learning
approach has inherent scalability because each base learning
model can be processed independently, and this ability is
essential to cope with large scale datasets. Third, we hope to
make a more accurate result by applying several models
instead of a single model.

Generally, an EFR has three steps. First, data diversity of
training datasets is provided by a subsampling method,
second, several rankings of features are determined by
several base FR algorithms, and, third, the intermediate
rankings are fused to generate the final ranking of the
features. In the last decade, several rank fusion algorithms
have been introduced in various scopes, such as opinion
mining and information retrieval [18, 19].

The main purpose of this paper is studying the role and
effectiveness of the different rank fusion methods as a part of
homogeneous EFR approaches. For this purpose, seven
FRAs belong to the filter category as base rankers combined
with nine rank fusion methods in independent scenarios.
Eventually, the experimental results are analyzed by statis-
tical methods to respond to this question: is there a big
difference in the rank fusion method applied in EFR? If so,
which one can make more accurate results than others?

The remainder of the article is organized as follows:
Section 2 introduces some background knowledge of the
ensembles feature selection. Section 3 will describe the ex-
perimental framework, and, in Section 4, the experimental
results will be presented. Section 5 offers some discussing
remarks. Finally, concluding remarks will be given in
Section 6.

2. Related Work

One of the most important techniques in data analyzing and
processing is feature selection applied to broad scopes such
as machine learning, pattern recognition, and data mining
[20-24]. Furthermore, this technique can be more beneficial
and sensible when the dataset is high-dimensional [25, 26].
The data often has lots of dimensions in some scopes, such as
gene analyzing [27, 28], cancer classification [29], robotics
[30], satellite images processing [31], and big data [32-34],
which makes feature selection technique essential.
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In the last years, several papers were published on EFS in
different fields. In general, published articles can be classified
into two groups. In the first group, the output of the pro-
posed methods is a set of features, and, in the second group,
it is a rank of features. In this section, ten state-of-the-art
articles are considered so that the first three items belong to
the first group and the rest belong to the second group.

A method called MCF-RFE was proposed by Yang and
Mao [35], in which the outputs of several FR algorithms are
fused to generate the final ranking of features. Then, the
irrelevant features are removed by using the SVM-RFE al-
gorithm. In this method, both the classification performance
and the stability of the feature selection result are improved
simultaneously. Although the proposed method used FR
algorithms as base learners, its final output is a set of selected
features.

In [36], Das et al. developed a method called EFSGA by
applying a 7 biobjective genetic algorithm. Boundary region
analysis of rough set theory and multivariate mutual in-
formation of information theory are employed as two ob-
jective functions in the proposed method. In their method,
several subdatasets are prepared by the subsampling of the
original dataset. Then, for each of the subdatasets, the
biobjective genetic algorithm is executed, and several subsets
of selected features are produced. Eventually, one of the
selected feature subsets is determined as the final subset of
features by using a heuristic method. It must be mentioned
that both objective functions and also the genetic algorithm,
as a population-based algorithm, are time-consuming and
have high computational cost.

Hoque et al. in 2018 [37] proposed an algorithm called
EFS-MI. EFS-MI applies some FR algorithms as base
learners, and it tries to fuse the output of several FR algo-
rithms at the final step. During the fusion step, the algorithm
attempts to determine the final selected features set, so that it
has both the maximum relation to class label and the
minimum relation to the other features. This way causes the
redundant features to have fewer chances to be a member of
the final selected features set. The prominent note is that the
proposed method uses the incremental approach at the
fusing step that might reduce the distributing ability.

Despite both methods of MCF-RFE and EFS-MI, the
base learners are of the FR type; their outputs were a set of
selected features similar to the output of EFSGA. Some
proposed methods, whose outputs are a feature ranking, are
given in the following.

In the bioinformatics scope, an EFR method developed
by Abeel et al. [38] uses the SVM-RFE as an incremental FR.
In this paper, two rank fusion algorithms called CLA and
CWA are introduced. In [39], a heuristic method is de-
veloped in which a given dataset is sent to 5 different FR
algorithms. Then, based on the outputs of the FR algorithms,
five classification models are made, and, eventually, the
classifier’s outcomes are combined by a simple voting. It is
noteworthy that, in this method, the outputs of FR algo-
rithms are not fused directly.

According to Brahim and Limam in 2013 [40], a fusion
method named ROB-EFS for fusing the base feature rank-
ings is introduced. In their method, the selected features are
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fused based on two criteria of confidence and reliability. For
assessing the confidence criteria, the method is applied to the
SVM classification error rate that is thoroughly time-
consuming.

Boucheham and Batouche proposed a method named
MEES for fusion feature ranking [41]. In this method, the
feature rankings are fused in two steps. At the first step, the
base feature rankings are generated in parallel, and then they
are fused. In the second step, all actions of the first step are
repeated incrementally.

A heterogeneous EFR algorithm is proposed by Seijo-
Pardo et al. [42]. In this algorithm, all instances of a given
dataset are considered by the six FR algorithms. Conse-
quently, the six feature rankings are generated which are
fused by the SVM-Rank for acquiring the final ranking of the
features.

The authors of [40] published their next work [11] in
which a new rank fusion method named RAA is proposed.
The RAA method, similar to the Rob-EFS, utilizes the
classification performance as a confidence criterion.
Therefore, both articles have the same weaknesses.

3. Experimental Framework

In this section, the performances of different rank fusion
algorithms applied in the homogeneous EFR algorithm are
comparatively analyzed. Some aspects of experimental
studies should be considered. These matters will be
explained in the following.

3.1. Homogenous Ensemble Feature Ranking. In this paper,
as mentioned before, rank fusion algorithms are applied in
a homogeneous ensemble feature ranking, which is exe-
cuted in a parallel approach. Therefore, explaining this
algorithm is essential. In the EFR, at the first step, a given
dataset is sampled S times and created S subdatasets. In the
second step, each subsample is processed by an FRA in a
separated thread independently, and then intermediate
feature rankings are produced. At the final step, the
intermediated rankings will be fused by utilizing a rank
fusion algorithm to produce the final feature ranking. The
details of the EFR are explained in Figure 1 and Algorithm
1. Note that, in Algorithm 1, DS € R¥*P refers to the given
dataset and the input variable S determines the number of
local datasets that is assumed to 30 in the experimental
studies. Also, the input variable I refers to the number of
records in each local dataset, the input variable, A refers to
an FRA that can be one of the algorithms introduced in
Section 3.2, the input variable F refers to a rank fusion
algorithm that can be one of the algorithms introduced in
Section 3.3, and, finally, the output variable O refers to the
feature ranking result.

3.2. Feature Ranking Algorithms as the Base Ranker.
Seven FRAs are used in the EFR as base rankers. All these
algorithms belong to the filter category, and they have a
much lower computational cost than the algorithms that
belonged to the wrapper and embedded categories. The

algorithms that belonged to the filter category are divided
into multivariate and univariate methods. In general, one
can say that most of the classical feature selection ap-
proaches are univariate; each feature is considered sep-
arately, having an important advantage in scalability, but
at the cost of ignoring feature dependencies, thus perhaps
leading to weaker performances than other feature se-
lection techniques. In order to improve performance,
multivariate filter techniques are proposed, but at the cost
of reducing scalability [43]. The FRAs applied in exper-
iments are listed. The five first of these algorithms are
univariate, and two last are the multivariate algorithms.
According to predefined statements, there is an expec-
tation that the two last algorithms have a better perfor-
mance than others, which is a salient point depicted in
Figure 2.

(i) Information gain: this criterion is based on the
entropy measure that is used for feature ranking.
The more the information gain value, the more
important the feature [44-46].

(ii) Gain ratio: this is a normal form of information
gain. Although these ways are related to each other,
the final feature rankings as outputs of these ways
are different [47].

(iii) Fisher: the main idea of Fisher score is to find a
subset of features, such that, in the data space
spanned by the selected features, the distances
between data points in different classes are as large
as possible, while the distances between data points
in the same class are as small as possible [48-50].

(iv) Gini: Gini-index is used to measure the impurity of
a feature for categorizing. The smaller the value, i.e.,
the minor the impurity, the better the feature
[51, 52].

(v) OneRule: this method, named oneR, tries to build
one simple rule to predict the target class for any
feature, and then the algorithm sorts all the features
based on the error rate of their rule. For example, a
simple rule for a feature can be a set of feature
values bound to their majority class [53].

(vi) ReliefF: this method uses the ability of a feature
in separating similar instances. For a random
sample of the training set, the nearest hit and
the nearest miss instances are found. Then, the
algorithm updates the weight of all features
based on the values of the hit and miss instances.
Any feature that has a larger weight value can
distinguish the instances of a class better
[54-56].

(vii) QPES: in this method, features are evaluated by
minimizing a multivariate quadratic function
subjected to linear constraints. The quadratic
function includes two components. The first one is
a matrix of similarity among the features. The
second one is a vector of dependency between the
features and the target class. The result is a weight
vector [57, 58].



Scientific Programming

First step: subsampling

Second step: generating intermediate feature ranking

Third step: fusing the intermediate feature rankings

Sampled dataset

i i
I I
i i
| i
! Dataset Sampling !
I |
' .
! I
I |
I |
I |
| - |
i i
I |
I |
i .
! Sampli

. ampling

I

i

i

i

I

i

i

-

|
|
|
i
i
1
s | —
I
i

Intermediate
feature ranking

Final feature ranking

Rank fusion

F1GURE 1: The scheme of ensemble feature ranking algorithm.

Input: DS € RN*P

(1) for i =0 to S do in parallel

(5) End for

(7) Return O

> the given dataset

> the number of selected instances in a subsampled where I <« N

Input: S > the number of sampling

Input: I

Input: A > the feature ranking algorithm

Input: F »> the rank fusion rank algorithm

Output: O »> the feature ranking result as the output

(2)  Create a local dataset DS, € R”P ¢ DS € RN*P by subsampling
(3) Send DS, to a worker node or worker thread
(4) IR, =generate the intermediate feature ranking by applying A algorithm

(6) O =fusion intermediate feature ranking IR,_, . by applying F algorithm

ALGorITHM 1: Pseudocode of ensemble homogeneous feature ranking.

14 14
0.9 -
0.8 -
0.7 -
0.6 -
0.5 1
0.4-/
1 3 5 7 9 11 13 15 17 19 21 23 25 1 3 5 7 9 11 13 15 17 19 21 23 25
—~— Fisher —4— OneR —— Fisher —4— OneR
—%— GainRatio —=— QPFS —%— GainRatio —=- QPFS
Gini —o— Relief Gini —o— Relief
InfoGain InfoGain

(a)

(b)

Ficure 2: Continued.
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N+ B3
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—~— Fisher —a— OneR —— Fisher —a— OneR
—%— GainRatio —&— QPFS —%— GainRatio —=— QPFS
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InfoGain InfoGain
(f)
1 -
0.9 1
0.8
0.7 A
0.6
0.5 A
0.4 ¢
1 3 5 7 9 11 13 15 17 19 21 23 25 1 3 5 7 9 11 13 15 17 19 21 23 25
—~— Fisher —a— OneR —— Fisher —a— OneR
—x— GainRatio —=- QPES —x— GainRatio —=- QPES
%~ Gini —o— Relief %~ Gini —o— Relief
InfoGain InfoGain
(g) (h)

FiGgure 2: Continued.
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FIGURE 2: FFA curves, USPS dataset, and categorized based on rank fusion algorithms. (a) B-Geom. (b) B-L2. (c) B-Mean. (d) B-Median. (e)

B-Min. (f) Kwik. (g) MC. (h) RRA. (i) Stuart.

3.3. Rank Fusion Algorithms. Rank fusion is called by dif-
ferent names such as rank aggregation, rank combination,
and preference aggregation, in various scopes. Generating a
final ranking by a set of base rankings is introduced as an
optimization problem known as Kemeny ranking problem
[59]. In the previous literatures, some algorithms, which are
collected in Figure 3, were suggested for solving this problem
[19, 60-63]. These solutions are categorized into two groups
of exact and approximate solutions, although all of these
algorithms are not suitable for applying in the EFR
approach.

The exact solutions, such as integer linear program (ILP),
have high computational cost and are time-consuming, so
these methods are improper when the number of features in
a given dataset is so large [62, 64]. For these reasons, none of
the rank fusion algorithms that belong to the exact category
are studied in this paper.

The approximate solutions have less computational cost
than exact ones, so all rank fusion algorithms considered in
the experiments belong to this category. Most of the rank
tusion algorithms that belong to the positional category
[65, 66] have low computational cost, are so fast, and are
used in many different scopes. Therefore, in this paper,
methods of Borda-Mean (B-Mean), Borda-Median (B-Me-
dian), Borda-Geometric-Mean (B-Geom), Borda-L2Norm
(B-L2), and Borda-Min (B-Min) are studied. The rank fusion
algorithms that belong to the sort based category [67-70] are
not pretty high computational cost, despite being applied
infrequently in the previous studies. Hence, just Kwik
method as a representative of this category is studied.

The computational cost of the graph-based methods is
not as high as the exact methods, although that is so no-
ticeable still. In this paper, just the Markov-Chain (MC4)
method is investigated because it has a better result than the
other methods in the graph-based category [71]. Two rank
tusion algorithms, robust rank aggregation (RRA) and Stuart
[72, 73] that belong to the statistical order based, were
applied a lot in the bioinformatics studies, and also the
computational cost of these methods is lower than that of the

methods in the exact and graph-based categories. Thus, in
experiments, both methods are studied.

Therefore, the computational cost, which is such a
crucial factor in processing high-dimensional dataset, and
popularity in the literature, are the two criteria to select
fusion algorithms in experimental studies. Also, at least one
fusion algorithm is selected except for the exact solutions
category in each category. It is worth mentioning that the
rank fusion algorithms, studied in the experiments, are
distinguished by the bold font and blue colour as a mind-
map in Figure 3.

3.4. Datasets. As mentioned before, the feature selection
technique for dealing with a high-dimensional dataset is
contemplated. For performing the experimental study, six
datasets from two popular repositories, UCI (https://archive.
ics.uci.edu/ml/datasets.php) and Scikit (https://github.com/
jundongl/scikit-feature/tree/master/skfeature/data), are
collected. These datasets have instances in a range of
1,440-21,048 and have features in a range of 179-1024, such
that they are sampled 30 times in the execution time of the
EFR algorithm. The characteristics of these datasets are
gathered in Table 1.

3.5. Performance Assessment Criterion. In FR as a subcate-
gory of FS, all features are ordered based on their importance
and then by using a threshold; some more important fea-
tures placed at the top of the ordered list are determined as
the selected features. Notice that there is no deterministic
way of determining the threshold value. Therefore, in this
paper, to assess a feature ranking such as
R=(fy,f2---> fn) k top features are evaluated by using a
stepwise method. The output of the stepwise evaluation
method is a feature-forward-addition (FFA) curve [74]. The
pseudocode for the stepwise evaluation method is given in
Algorithm 2. Note that the input variable R is a ranking of
features, the input variable k is the number of top features
that is set to 10%, and the output variable O includes the FFA
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FIGURE 3: The categorization of rank fusion algorithms in various scopes.
TaBLE 1: The characteristics of datasets used in experimental study.
# Name Instance# Features# Class# Repository
1 Epileptic Seizure Recognition 11,500 179 2 UcCl
2 USPS 9,298 256 10 Scikit
3 UJI (IndoorLoc) 21,048 521 3 UCI
4 HAR (Human Activity Recognition Using Smartphones) 10,299 561 6 UCI
5 Isolet 7,797 618 26 UCI
6 COIL20 1,440 1024 20 Scikit
curve points, and it is equal to the accuracy of a classifier 4, Experimental Results

when the various numbers of features (2 to 10% of all
features) are selected. Also, the random forest classifier
[75, 76] is applied for evaluation in this paper. The classifier’s
implementation can be found in the Cran Repository
(https://cran.r-project.org/web/packages/randomForest/ind
ex.html); its default settings, such as ntree = 500, are used
during experiments.

It is expected that the most important features which have
more effect on the performance of the classification algorithm
are placed at the top of a given feature ranking. Therefore, for
two feature rankings, r, and rg, the better feature ranking
reaches the maximum point on its FFA curve by a steeper
slope, and, as a consequence, it has a larger area under the
FFA curve, called AUFC henceforth. For example, in Figure 4,
both feature rankings r, and r have the same accuracy by
using their fourteen top features, but it is obvious that r, has
better performance than r; because it has a bigger area under
the curve. Therefore, for assessing a feature ranking perfor-
mance, the AUFC is used as a criterion [49]. A blue colour
hatches the AUFC of r criterion in Figure 4.

For performing the experimental study, some experiments
are done on six real datasets whose characteristics were
brought in Table 1. To this aim, nine rank fusion algorithms
determined in Section 3.3, and seven FRAs introduced in
Section 3.2 are applied in an EFR proposed in Algorithm 1
by 63 independent experiences (number of feature ranking
methods x number of rank fusion methods), for each
dataset. Then, for each experience, the corresponding FFA
curve is generated. Note that, for determining the training
and test datasets, the fivefold cross-validation is used.

As an instance, Figure 2 depicts FFA curves for the USPS
dataset, such that each subchart illustrates the FFA curve of
various FRAs by applying a specific fusion method. As an
example, the first subchart of Figure 2 illustrates FFA curves
for FRAs and the B-Geom ranking fusion method when they
are applied in an EFR.

As mentioned and expected, Figure 2 depicts that two
multivariate algorithms, QPFS and ReliefF, have a better
FFA curve than other methods in all subcharts. This matter is
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(4) Oli]=accuracy of RandomForest classifier by using S

ALGORITHM 2: Pseudocode of stepwise evaluation for the top-k feature ranking.

8
Input: R
Input: k
Output: O
(1) S= @ » selected features
(2) fori=1to k do
(3) S=SUR[i]
(5) End for
(6) Return O
0.8 o - -8=-=8--0-0
(e A7
Ry
7 /’/
0.7 - o /’
ﬁ// »
g /// ///
§ 0.6 — /’/ //’
< , /./
0.5 - 2
[ ] —‘;
0.4 —
I I I I I I I
2 4 6 8 10 12 14

# Features selected count

—o— Tz
-e- 1

FiGure 4: The FFA (Forward Feature Addition) curve and the
AUFC (Area Under FFA Curve).

related to considering the relation between features in these
algorithms, whereas other ranking algorithms evaluate
features independently and disregard the dependency
among them. It is evident that each dataset can generate a
figure similar to Figure 2.

4.1. Statistical Comparison among Rank Fusion Algorithms.
Nevertheless, the main purpose of this paper is to perform a
comparative analysis of the performance of rank fusion
methods applied in an EFR, so the FFA curves of Figure 2
should be categorized based on the FRAs, the same as what
Figure 5 depicts. As illustrated by the Fisher chart in Fig-
ure 5, all rank fusion methods make almost similar FFA
curves to each other when the Fisher algorithm is applied in
an EFR; however, the B-Min method has a little better curve
than others. By investigating the other subcharts, it can be
seen that this behavior has been repeated among the other
subcharts of Figure 5. Also, it is evident that each dataset can
generate a figure similar to Figure 5. In order to perform the
comparative analysis, the AUFC criterion is assessed for all
FFA curves in Figure 5. Then, the AUFC measures are

normalized by dividing them on maximum AUFC (number
of selected features x the maximum point among all curve
points). This process is repeated for all subcharts and for all
six experiments datasets.

If the experimental results on each dataset are
gathered, stacked column charts can be generated as
Figure 6. As an instance, the second chart in Figure 6 is
related to the performance of the B-Geom rank fusion
method on the USPS dataset. This column includes the
AUFS criterion values when the different FRAs are ap-
plied in the EFR in independent experiments, but all of
these experiments applied the B-Geom method as the
rank fusion algorithm. In other words, this column is a
sum of normalized AUFC criterion values of the B-Geom
curve in all subcharts of Figure 5. Therefore, the other
columns in Figure 6 can be generated in the same way.
The second chart in Figure 6 depicts that all of the rank
fusion methods have the same performance; however, the
B-Min method has a little better performance than the
others. This behavior is repeated in the remaining sub-
charts in Figure 5.

For more deep analysis, the experimental results are
collected in Table 2, such that the average value of each
column of Figure 6 is placed in the equivalent cell in Table 2.
As an instance, the average column values of the second
chart in Figure 6 are placed in the second column in Table 2.
The critical question is the following: is there a statistically
significant difference in the average value of the AUFC
among rank fusion algorithms when applied to an EFR?

To answer this question, at first, a one-way repeated
measure analysis of variance (ANOVA) with Greenhouse-
Geisser correction is conducted. The ANOVA test results
reveal that there is a statistically significant difference in
the mean AUFC values among rank fusion algorithms. At
second, pairwise comparison t-tests, named PCT hence-
forth, by applying a Bonferroni adjustment, are performed
to compare the mean AUFC values among rank fusion
algorithms. The results of the pairwise comparison tests
are shown in the columns in Table 2 by the letter-based
representation method. For each column of the table, if
there is no significant difference among rank fusion al-
gorithms, the values are marked with a shared superscript
letter. For example, in column USPS, the performance of
the B-Min has a statistically significant difference with all
of the other methods; consequently, it has none shared
letter.
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F1GURE 5: FFA curves for USPS dataset and different feature ranking and various fusion methods, categorized based on FR algorithms.
(a) Fisher. (b) GainRadio. (c) Gini. (d) InformationGain. (e) OneRule. (f) QPFS. (g) ReliefF.
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FIGURE 6: The stacked column charts of the AUFS criterion for each dataset. (a) Epileptic. (b) UPSP. (c) UJI. (d) HAR. (e) Isolet. (f) COIL20.

According to the first column in Table 2, the B-Min
method has a better result than the others, and PCT realized
that there is a statistically significant difference between the
B-Min method and the others, so there is no shared letter.
Consequently, in the Epileptic column in Table 3, the B-Min

method is set to 1 as the best fusion method in the Epileptic
dataset. Also, the PCT does not realize the statistically sig-
nificant difference among B-Median, Kwik, and RRA
methods, and then all of these methods are set to 2 in the
equivalent columns in Table 3.
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TaBLE 2: The performance average of the rank fusion algorithms based on AUFC criterion for all datasets.

Fusion
Dataset
Epileptic USPS UJI HAR Isolet COIL20
B-Geom 0.820 +0.019® 0.847 +0.039¥ 0.909+0.035°  0.906 +0.0679 0.759 +0.114 0.814 + 0.176'90
B-L2 0.821 +0.018® 0.833+0.039® 0.854 +0.053@ 0.867 +0.076® 0.747 +0.109@ 0.810 + 0.181>cdeD)
B-Mean 0.821 +0.019® 0.840 + 0.037 0.888 + 0.040" 0.886 + 0.067 0.752+0.111® 0.809 + 0.180?
B-Median  0.830+0.021®  0.843+0.040%°9  0.913+0.031°®  0.905 +0.068P 0.756 +0.114 0.802 + 0.178@9
B-Min 0.849 +0.015 0.866 +0.040 0.914+0.025°  0.941+0.036”  0.777+0.117%Y  0.830 +0.187cdeD
Kwik 0.829+0.018®  0.844+0.040%°)  0.915+0.027°9  0.904 +0.067P 0.754+0.115® 0.800 + 0.181@"
MC 0.820 +0.018@ 0.846 +0.037®9 0.893 +0.038® 0.890+0.064®  0.750 +0.111@Y 0.802 +0.184@0
RRA 0.827+0.022  0.840+0.035"Y  0.873+0.056  0.893+0.066°7  0.751 +0.096" 0.818 +0.171®°
Stuart 0.822 +0.018@ 0.842 +0.036® 0.901 +0.039Y 0.900+0.067°  0.755+0.105® 0.816 + 0.1714¢
STDEV 0.011 0.014 0.026 0.024 0.015 0.026
TaBLE 3: The abstraction of Table 2, ranking of the rank fusion methods.
. Dataset

Fusion

Epileptic USPS UJI HAR Isolet COIL20 Average
B-Geom 3 2 1 2 2 1 1.83
B-12 3 4 6 6 4 1 4.00
B-Mean 3 3 4 5 3 1 3.17
B-Median 2 3 1 2 2 1 1.83
B-Min 1 1 1 1 1 1 1.00
Kwik 2 3 1 2 3 1 2.00
MC 3 2 3 4 3 1 2.67
RRA 2 3 5 4 3 1 3.00
Stuart 3 3 2 3 2 1 233

In the USPS column of Table 2, the B-Min method has
better performance than the other methods, and the PCT
realized that this difference is statistically significant, so it is
set to 1 in Table 3, and also both B-Geom and MC methods
are set to 2 because there is no statistically difference between
them.

In the third column in Table 2, the PCT could not
recognize a significant difference between B-Geom, B-Me-
dian, Kwik, and B-Min; hence, all of these methods are set to
1 in the equivalent column in Table 3. Also, in HAR and
Isolet columns in Table 2, there is a statistically significant
difference between the B-Min method and the others, so this
method is set to 1 in equivalent columns in Table 3. In
contrast to the other columns, in the COIL20 column, the
PCT could not realize a statistical difference between all
methods. Therefore, all methods in the COIL20 column in
Table 3 are set to 1. According to these explanations, Table 3
is filled, and it depicts that the B-Min method has a better
result in all of the datasets, and it acquires the number 1 in
the Average column.

In summary, Figure 6 illustrates that, in the EFR algo-
rithm, there is a small difference in the performance of the
rank fusion methods, and also Table 3 proves that the
performance of the B-Min method has a statistically sig-
nificant difference with most of the other methods.

4.2. EFR opposite to Individual FRA. In another point of
view, investigating the performance of the EFR in a
competition of the individual FRAs can be interested. To

this aim, Table 4 is generated that depicts the AUFC
measures among EFR and individual feature rankings. As
an example, the first cell in Table 4 shows the AUFC values
of the EFR when the Fisher algorithm is applied as the base
rankers on it, and the Fisher feature ranker is used indi-
vidually. This cell depicts that the AUFC of the EFR (0.861)
is bigger than the AUFC of individual Fisher (0.812). Note
that highlighted values in bold style discriminate the better
results in each cell.

As aforementioned in Section 1, the inherent scalability
is the prominent advantage of the EFR to confront massive
datasets due to independent processing of each subdataset by
worker nodes or worker threads. Moreover, EFR can cause
acquiring more accurate results than individual FRA owing
to combining multiple models instead of a single model, and
it is founded on the old proverb “two heads are better than
one.” [12]. The latter is observable in Table 4. The results in
this table illustrate that EFR has a proper potential to make
more accurate results than individuals FRA ones, such that
in 43/47 items the EFR has better results and in the
remaining items 4/47 EFR has pretty comparable results
with individual FRAs.

5. Discussion

Figures 5 and 6 and Table 2 illustrate that there is no big
difference among rank fusion methods applied in a ho-
mogeneous EFR. This matter is related to two factors. First,
the homogeneous ensemble approach applies a similar
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TaBLE 4: The comparison AUFC among ensemble feature rankings and individual feature rankings.
Base FRA

Approach Epileptic USPS UJI HAR Isolet COIL20

EFR  Individual EFR Individual EFR Individual EFR Individual EFR Individual EFR Individual
Fisher 0.861 0.812 0.877 0.835 0.940 0.937 0.961 0.958 0.818 0.797 0.872 0.837
GainRatio 0.849 0.816 0.813 0.766 0.934 0.922 0.885 0.815 0.574 0.540 0.492 0.456
Gini 0.861 0.812 0.905 0.874 0.940 0.937 0.964 0.923 0.815 0.760 0.948 0.704
InfoGain  0.868 0.823 0.903 0.854 0.915 0.916 0.918 0.785 0.840 0.804 0.960 0.938
OneR 0.865 0.817 0.892 0.878 0.899 0.923 0.957 0.946 0.863 0.811 0.972 0.955
QPFES 0.834 0.838 0.904 0.908 0.949 0.940 0.976 0.837 0.868 0.836 0.985 0.983
ReliefF 0.860 0.777 0.895 0.838 0.904 0.875 0.958 0.907 0.855 0.749 0.942 0.932

feature ranker algorithm as base rankers. Thus, all base
feature ranking is generated based on a likewise procedure
and logic. This matter can cause generating similar base
feature rankings. Second, in a low noisy and real dataset,
though, each sampled subdataset has different data in-
stances, but there are no such diverse patterns among them.
Therefore, applying similar feature ranker algorithms causes
producing the base feature rankings whose most informative
features placed on top positions are almost similar to each
other, whereas the less informative features would be placed
in various bottom positions in feature rankings. According
to these two factors, various fusion algorithms make out-
comes such that their top positions are almost similar.

In another point of view, Table 3 and statistical test
results depict that B-Min method has a little better per-
formance than others. The B-Min method uses an opti-
mistic approach for the fusion of the base feature rankings.
In an optimistic approach, a feature placed in the top
positions at least in one base feature rankings would be a
top member of the final feature ranking. In other words, in
the optimistic approach, the base FRAs are assumed to be
trustworthy, which is an efficient approach in noiseless and
real datasets. Thus, most informative features of base
feature rankings should have a decent chance to be a top
placed informative feature in the final result. Generally, the
experiments depict that the optimistic approach for the
fusion of the base feature rankings which have almost
similar top features can cause generating a bit better result
than other fusion methods.

6. Conclusion

Feature selection is an essential preprocessing technique,
and its importance is more sensible when the number of
features of the given dataset is large that is an ordinary
matter in the big data era. Also, the ensemble learning
broadly has been applied in the classification discipline in the
last decade; however, its effectiveness is imaginable in other
machine learning disciplines such as feature ranking as well.
The ensemble learning has inherent scalability due to the fact
that each subdataset can be processed independently, and
this ability is more important to cope with a large scale
dataset. The EFR has three major steps, subsampling, gen-
erating intermediate feature ranking, and fusing the inter-
mediate feature rankings. Because the fusing phase is a
crucial step in the EFR, in this paper, a statistical analysis of

the performance of nine rank fusion methods is done when
they are utilized in an EFR.

In the statistical analysis, a one-way repeated measure
ANOVA with pairwise comparisons t-test applying a
Bonferroni adjustment was performed to compare the mean
of AUFC value among the rank fusion algorithms. The
results of the one-way ANOVA revealed that the difference
in the performance of the rank fusion methods is small,
though there is a statistically significant difference in their
performance when applied to the EFR algorithm. Addi-
tionally, the pairwise comparisons test showed that the “B-
Min” method had a bit better performance than the other
methods, at least on six real datasets that are examined in
this paper.
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