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In the recent years, the subject of Golgi classification has been studied intensively. It has been scientifically proven that Golgi can
synthesize many substances, such as polysaccharides, and it can also combine proteins with sugars or lipids with glycoproteins and
lipoproteins. In some cells (such as liver cells), the Golgi apparatus is also involved in the synthesis and secretion of lipoproteins.
-erefore, the loss of Golgi protein function may have severe effects on the human body. For example, Alzheimer’s disease and
diabetes are related to the loss of Golgi protein function. Because the classification of Golgi proteins has a specific effect on the
treatment of these diseases, many scholars have studied the classification of Golgi proteins, but the data sets they used were
complete Golgi sequences. -e focus of this article is whether there is redundancy in the Golgi protein classification or, in other
words, whether a part of the entire Golgi protein sequence can be used to complete the Golgi protein classification. Besides, we
have adopted a newmethod to deal with the problem of sample imbalance. After experiments, our model has certain observability.

1. Introduction

Golgi is an organelle found in eukaryotic cells [1]. -e Golgi
was initially defined by Camilo-Golgi in 1897 and was
named after Golgi in 1898 [2–4]. Considering its large size
and unique structure, the Golgi apparatus can be treated as
the first organelles which are discovered and observed in
detail [5–7]. As part of the inner membrane system, Golgi
proteins are encapsulated in membrane vesicles [8], which
are sent to their destination. Golgi is located between the
secretory pathway, the lysosome, and the endocytosis
pathway [9]. Golgi plays an essential role in protein se-
cretion. Meanwhile, such an issue contains a series of related
glycosylases [10]. -e subcellular position of the Golgi ap-
paratus is different from that of various eukaryotic cells. In
most eukaryotic cells, the Golgi apparatus includes cis-Golgi
and trans-Golgi [11, 12]. Cis-Golgi is mainly composed of
vesicles and multiple vesicles form the Golgi pile. Trans-
Golgi is the final vesicle structure, where proteins are en-
capsulated in transport vesicles and sent to the lysosome,

secretory pathway, or cell surface. -e Golgi apparatus is
closely related in the areas of structure and function [13, 14].
Each independent Golgi stack can contain several types of
enzymes. -ese abovementioned enzymes can process
several biological issues [15].

Disorders of proteinmetabolism are the core link leading
to the development of many neurodegenerative diseases
[16]. -e Golgi apparatus is an essential organelle in the
material metabolic pathway and must be closely related to it.
Parkinson’s disease [17] and Alzheimer’s disease [18] are
typical of neurodegenerative diseases. Experiments have
shown that β-amyloid protein plays a central role in the
pathological changes of Alzheimer’s disease [19], and its
metabolic disorder is closely related to the loss of a certain
function of the Golgi apparatus. However, in order to un-
derstand the mechanism of Golgi function, an essential step
is to find a Golgi-resident [20] and use the types and
functions of the Golgi-resident protein to determine the
principles of the disease. For example, the cause of the
diseases is likely to be a lack of a Golgi-resident protein
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[21, 22], resulting in a loss of Golgi function. -erefore, it is
important to correctly judge the type of Golgi apparatus
[23, 24].

With several years’ effort, the prediction of the Golgi type
has become one of the most significant hot subjects [25] in
the field of computational biology and bioinformatics.
Currently, simply knowing whether a protein is a Golgi-
resident protein is not enough to fully explain the function of
the Golgi body [26–28]. Further analysis of the specific type
of Golgi-resident protein is needed. For now, some methods
are applied to this subject. Ding et al. proposed the improved
Mahalanobis Discriminant (MD) algorithm to predict
Golgi-resident protein types in 2011 [29]. Dijk proposed the
prediction of the Golgi-resident protein type of type II
membrane proteins using structural information and trans-
membrane domain information in 2008 [30]. Jiao and Du
proposed that the general form of Chou pseudoamino acids
to predict the Golgi-resident protein type in 2016 [31]. Ding
and Jiao used a relatively small data set with 150 Golgi
proteins. Yang et al. created a new data set with 304 sub-
Golgi proteins for training and 64 sub-Golgi proteins for
testing classification models [21]. Ahmad and Hayat [32]
proposed a Golgi protein classification model using multi-
voting feature selection. Zhou [33] proposed XGBoost
conditional covariance minimization based on multifeature
fusion to predict Golgi protein types. Whether it is based on
an amino acid feature extraction method or after multiple
amino acid feature extractions and voting or multifeature
fusion, they all use the complete amino acid sequence to
extract features, and because they use the complete amino
acid sequence to extract features, their models obtain
considerable accuracy. However, we all know that the amino
acid sequence of a Golgi is very long, and it will take a lot of
effort to extract feature information on the entire amino acid
sequence.

In this paper, we propose a new model, dubbed sub-
RF_seq. In detail, if we do not use a complete protein se-
quence in feature extraction, some of them can also get
considerable accuracy. -roughout this article, our work is
summarized as follows: firstly, we propose 529 types of
cutting sequences. -e training set and test set are cut
according to these 529 cutting types. -en, the 529 training
sets are encoded. We use EAAC technology to extract
features and put them into the RF classifier to train the
model. Finally, we use the split to equal validation to balance
the data set and test the classification effect of the Golgi
apparatus. We use the random forest classifier to get the top
5 cutting sequence methods, and then put the features of
these five cutting methods into other classifiers we have
constructed and compare which classifier is the best classifier
with the partial Golgi protein sequence.

Our workflow is as follows.

2. Methods and Materials

2.1. Data. -is experiment uses a new data set created by
Ahmad [12]. -ere are 87 cis-Golgi protein sequences and
217 trans-Golgi protein sequences in the training set. No
protein has more than 40% pairing with any other protein in

the data set. -e 64 sub-Golgi protein sequences were in-
dependently used for testing the effect of the classifier, of
which 13 were cis-Golgi protein sequences and 51 were
trans-Golgi protein sequences. It should be noted that there
is no connection between the training set and the test set.

Our work flow chart is shown in Figure 1. Specifically, we
need to process the complete sub-Golgi protein sequence. In
this step, the 304 sub-Golgi protein sequences in the training
set are cut.-e cutting method is to cut three positions in the
front and three positions from the back to form a new
protein sequence.-is forms the first partial Golgi sequence.
-en, the front three digits are unchanged, the back cleavage
digit is increased by one, and it is added to the back cleavage
25 to form 23 new protein sequences and form 23 partial
Golgi training sets. -en, the number of front-end cuts is
increased by one, and the number of rear-end cuts is from
3–25, until the last front-end cut is 25 digits and the back-
end cut is 25 digits. -ere are 23× 23 different cutting
methods. 23× 23 incomplete Golgi protein sequences were
formed. -e test set adapts the same cutting methods. -en,
use EAAC to extract protein sequence features, input to the
classification model to train the model, and then test the
effect on an independent test set.

2.2. Feature Extraction

2.2.1. Amino Acid Composition Encoding. -e sequence
information of the Golgi apparatus contains the types and
arrangement order of 20 amino acids [34, 35]. -erefore, the
feature extraction algorithm based on the amino acid
composition is the simplest and most intuitive method. -e
amino acid composition simply represents the probability of
20 kinds of amino acids appearing in the sequence [36, 37]. It
is a basic Golgi sequence feature extraction algorithm. -e
amino acid composition maps the Golgi sequence to a point
in the 20-dimensional European space. -e vector is
expressed as follows:

Vaac � v1, v2, v3, . . . , v20( 􏼁T,

Vi �
f i

􏽐
20
j�1f i

,

􏽘

20

j�1
vj � 1.

(1)

Here, fi is the number of times the ith amino acid
appears in the sequence (i � 1, 2, 3, . . . , 20). -e amino acid
composition is easy to calculate, and it is the most commonly
used sequence feature extraction algorithm in Golgi clas-
sification research.

2.2.2. Enhanced Amino Acid Content Encoding (EAAC).
Chen et al. [38] proposed a new encoding method based on
AAC encoding, dubbed EAAC. EAAC coding directly re-
flects the distribution frequency of 20 amino acid residues.
EAAC coding differs fromAAC coding in that EAAC coding
defines a sliding window of length 8 and calculates the
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frequency of 20 amino acid residues that appear in each 8-
dimensional subsequence segment [39]. -e frequency of 20
amino acid residues is continuously sliding in the window
from the N-terminus to the C-terminus of each Golgi se-
quence in the dataset. -erefore, the vector dimension
corresponding to a Golgi sequence of x residues is

Ls � x − Lv + 1,

Ds � Ls × 20.
(2)

Here, Lv is the size of the sliding window we defined. In
EAAC encoding, the value of Lv is 8, x is the length of the
Golgi sequence, and the Ds is the dimension of the feature
vector.

2.3. Construction of the Classifier. -is experiment mainly
uses a classifier of random forests. Random forests are called
“representative methods for ensemble learning” [40], which
is easy to implement and has relatively low overhead.
Random forests are an extension of Bagging’s idea [41],
which is based on decision tree learning, and the algorithm
further introduces random attribute selection in the training
process of the decision tree [42–44]. -e basic idea of
random forest is to train the model with data, then get
multiple decision trees, and then merge the decision trees to

get more stable predictions. In random forests, the per-
formance becomes better as the number of trees increases,
and the error becomes smaller. In this experiment, we se-
lected 1000 decision trees to build a random forest model. In
addition, we also constructed KNN (K nearest neighbor
classification algorithm), SVM (Support Vector Machine
Algorithm), CNN (Convolutional Neural Network), and
ANN (Artificial Neural Network) classifiers to compare
which is in the best classifiers with the part of Golgi protein
sequences.

2.4. Evaluation Methods. -e positive and negative samples
of the training set of this experiment are imbalanced, and the
ratio of positive and negative samples is about 1 : 2. In the
binary classification problem, the imbalance of positive and
negative samples will have a certain impact on the classi-
fication effect. It will cause the prediction category towards
the category with many samples. -erefore, for the evalu-
ation method, we chose an SE verification method proposed
by Sun et al. [45]. -e advantage of this verification method
is that data processing and cross-validation can be imple-
mented at the same time.

Performance measurement is an evaluation standard for
measuring the generalization ability of the model, which
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Figure 1: Illustration of the process of the proposed method.
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reflects the needs of the task. -e use of different perfor-
mance metrics often leads to different evaluation results.
-erefore, it is essential to choose a good set of performance
indicators to predict the performance of the model. In this
experiment, ACC and AUC were selected for evaluation.
ACC and AUC performance indicators have evolved from
the confusion matrix [46–51]. In the binary classification
problem, when the real situation of data classification in the
test set is a positive example, the model prediction result is a
positive example, which is called the real example (TP).
When the predicted outcome is a counterexample, it is a false
counterexample (FN). Similarly, when the true situation of
the data classification of the test set is a counterexample,
there are false positive examples (FP) and true counterex-
amples (TN). -e accuracy rate formula is

Precision �
TP

TP + FP
. (3)

-e recall formula is

Recall �
TP

TP + FN
. (4)

-e formula for the accuracy rate (ACC) is

Accuracy �
TP + TN

TP + FP + TN + FN
. (5)

-e value of AUC is the area of the ROC curve. We often
use the value of AUC as the criterion for judging the quality
of the model because the ROC curve cannot intuitively see
the quality of the model [52, 53]. ROC is a curve drawn with
sensitivity as the vertical axis and 1 minus specificity as the
horizontal axis.

-e formula for sensitivity is

Sens �
TP

TP + FN
. (6)

3. Results and Discussion

In this section, we mainly describe the effect of the 529
incomplete Golgi sequences we have defined for training the
model. Besides, we chose the top 5 cutting methods for
classification effects in the sub_RF_seq model for compar-
ison experiments.

3.1.Results. In this experiment, we recorded the AUC values
of 529 different cutting methods. In order to intuitively
understand the classification effect of these 529 cutting
methods, we made a three-dimensional histogram based on
the AUC values.-e X-axis represents howmany bits are cut
from the front end of the protein sequence, and the Y-axis
represents the number of bits cut from the rear end of the
protein. -e X-axis represents how many bits are cut from
the front end of the protein sequence, and the Y-axis rep-
resents the number of bits cut from the back end of the
protein. In this way, this three-dimensional histogram shows
the classification effect using incomplete Golgi protein se-
quences. Figure 2 shows that, among these 529 Golgi se-
quence cutting methods, 202 of the cutting methods have an

AUC value greater than or equal to 0.6, and 426 of the
cutting methods have a value greater than or equal to 0.5.

In addition, we used the random forest classifier to select
the top 5 cutting methods for Golgi classification. -e values
of AUC and ACC for these five cutting methods are shown
in Table 1.

3.2. Discussion

3.2.1. Comparison of Model Effects under Different Classifiers.
We put the cutting sequence of the top 5 classification
effects in the model into the SVM, KNN, CNN, and ANN
classifiers and compared which classifiers used the partial
Golgi sequence to achieve the best Golgi classification.
From Table 2, we found that the RF classifier performs
better than several other classifiers. For example, under the
premise of a certain cutting sequence method, EAAC
coding is selected for the feature coding method. In the
20 + 3 Golgi sequence, the value of ACC in the RF classifier
is as high as 82.81%, and the value of AUC is as high as
0.854. -e values are better than several other classifiers.
However, the classification effect of partial Golgi sequences
in other classifications is still considerable. In Table 2, the
AUC and Acc values of most classifiers are above 70%,
which further to confirm that there is a certain redundancy
in the Golgi sequence when it is used to determine the Golgi
types.

3.2.2. Classification Effect under Different Encoding Methods.
In this experiment, we chose two encoding methods, EAAC
and AAC, to see the effect of different amino acid sequence
encoding methods of the classification effect. In order to
explore the classification effect under different encoding
methods, we controlled the variable classifier. Only the RF
classifier is selected. From Table 3, we can see the AUC and
ACC values of the five cutting methods under the EAAC and
AAC. Table 3 shows that, in the EAAC encoding mode, the
values of Acc and AUC are higher than those in the AAC
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Figure 2: -ree-digit histogram of an AUC value of 529 cutting
methods.
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encoding method, which directly proves our guess that
different encodingmethods will affect the classification effect
of the model.

3.2.3. Performance of Imbalance of Positive and Negative
Samples of the Data Set on the Classification Effect. Due to
the imbalance of the positive and negative samples in the
data set we used, we used both the SEV verification method
and the 10-fold cross-validation method to verify the clas-
sification effect of the model. -e SEV verification method
can deal with the imbalance of the positive and negative
samples of the data set, and the 10-fold cross-validation does
not have the effect of data preprocessing. Table 4 proves that
processing the imbalance of the data set will improve the
model’s effectiveness. Using SEV is nearly 18% higher than a
simple 10-fold cross-validation.

4. Conclusions

In the past, when determining the type of Golgi apparatus,
many people used the entire Golgi protein sequence in
encoding; a complete Golgi protein sequence has a large
number of amino acids, which is very time-consuming when
encoding. In this article, we present subRF_seq, which can
complete the classification of Golgi using a part of the Golgi
protein sequence and has a considerable classification effect.
We cut the data set, extract the feature vector from the cut
sequence, and finally, train it in a random forest to dis-
tinguish trans-Golgi and cis-Golgi. Also, in the binary
classification problem, the proportion of positive and neg-
ative samples of many training sets cannot reach 1 :1, which
will cause the problem of falsely high AUC values. Our
model can effectively overcome this problem. We also used
other classifiers and feature extraction techniques to prove
our ideas, and the results show that our ideas of using part of
the Golgi sequence in feature extraction is feasible because
the values of AUC and ACC are considerable in different
classifiers and encoding methods. -e experimental results
prove that Golgi proteins can still be distinguished by using
partial Golgi sequences, In other words, there is a certain
degree of redundancy in Golgi protein classification on
Golgi classification. If we use part of the Golgi sequence in
Golgi classification, it will significantly reduce the time.
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Table 2: Comparison of the effects of different classifiers.

Cutting
RF SVM CNN KNN ANN

Acc (%) AUC Acc (%) AUC Acc (%) AUC Acc (%) AUC Acc (%) AUC
20+ 3 82.81 0.8544 67.19 0.6448 70.31 0.7179 62.5 0.549 78.13 0.4042
4 + 17 85.94 0.8492 76.56 0.7858 76.56 0.7451 67.19 0.6531 78.13 0.6456
18 + 25 82.81 0.7828 65.63 0.6365 78.13 0.7602 60.94 0.7451 68.75 0.4781
20 + 11 79.69 0.7828 68.75 0.7873 81.25 0.736 62.5 0.7572 60.03 0.7188
11 + 11 82.81 0.773 70.31 0.7451 73.44 0.7315 56.25 0.5038 68.75 0.4962

Table 1: Sub-Golgi protein sequence cutting methods ranked by the AUC value.

Classifier Encoding schemes Cutting method AUC ACC

RF EAAC

20+ 3 0.854449 0.828125
4 + 17 0.849170 0.859375
18 + 25 0.782805 0.828125
20 + 11 0.782805 0.796875
11 + 11 0.773002 0.828125

Table3: Classification effect under different encoding methods.

Cutting Classifier
EAAC encoding AAC encoding
Acc (%) AUC Acc (%) AUC

20+ 3

RF

82.81 0.8544 65.63 0.4434
4 + 17 85.94 0.8492 70.31 0.4894
18 + 25 82.81 0.7828 71.88 0.7549
20 + 11 79.69 0.7828 68.75 0.586
11 + 11 82.81 0.7730 64.06 0.4563

Table 4: Performance of imbalance of positive and negative
samples of the data set on the classification effect.

Cutting Classifier Encoding
SEV 10-flod CV

Acc (%) AUC Acc (%) AUC
20+ 3

RF EAAC

82.81 0.8544 78.13 0.7813
4 + 17 85.94 0.8492 67.95 0.6161
18 + 25 82.81 0.7828 79.69 0.4615
20 + 11 79.69 0.7828 77.75 0.7681
11 + 11 82.81 0.7730 80.06 0.5716
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