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+e interactions between proteins play important roles in several organisms, and such issue can be involved in almost all activities
in the cell. +e research of protein-protein interactions (PPIs) can make a huge contribution to the prevention and treatment of
diseases. Currently, many prediction methods based on machine learning have been proposed to predict PPIs. In this article, we
propose a novel method ACT-SVM that can effectively predict PPIs. +e ACT-SVM model maps protein sequences to digital
features, performs feature extraction twice on the protein sequence to obtain vector A and descriptor CT, and combines them into
a vector. +en, the feature vectors of the protein pair are merged as the input of the support vector machine (SVM) classifier. We
utilize nonredundant H. pylori and human dataset to verify the prediction performance of our method. Finally, the proposed
method has a prediction accuracy of 0.727897 for H. pylori data and a prediction accuracy of 0.838799 for human dataset. +e
results demonstrate that this method can be called a stable and reliable prediction model of PPIs.

1. Introduction

Proteins are thematerial basis of all life composed of 20 types
of amino acids in the level of biology [1]. +ere are several
kinds of proteins with different properties and functions,
which play a pivotal role in the cells and tissues of various
biological species. Not only is it an important part of the
living organism, but also it participates in and carries all
important life activities in the life process. However, most
proteins often do not perform their functions alone. Instead,
it is more common that two or more proteins work together
by forming a protein complex, and a large protein-protein
interaction network is finally built [2–6]. Obviously, PPIs
play a key role in cellular processes and are involved in many
important biological processes such as immune response,
material transport, and gene expression regulation. +ere-
fore, exploring the interactions between proteins has become
one of the most important links in researching the function
and mechanism of proteins [7–9]. In addition, PPIs are a
major molecular mechanism of virus pathogenic, which

makes them one of the important research objects for disease
discovery and treatment.

+e importance of researching PPIs has advanced the
methods for predicting and identifying PPIs [10–13]. In
recent years, some high-throughput laboratory biotech-
nology has been widely utilized in PPIs, such as yeast two-
hybrid (Sato et al.; Schwikowski et al.; Coates Hall ) [14–16]
and coimmunoprecipitation (Free et al.) [17]. However, they
all have some defects in common or personality. For ex-
ample, some methods fail to overcome higher proportion of
false negatives and false positives, and somemethods require
more sample material to extract proteins, which is sur-
prisingly expensive. At the same time, methods such as
protein phylogenetic profile (Kim et al.) [18, 19], natural
language processing (Daraselia et al.) [20], and protein
tertiary structure (Aloy and Russell) [21] have also been
favored by researchers. However, if there is no known
protein-related biological knowledge, these kinds of
methods are difficult to implement, and some of them
cannot fully predict PPIs [22, 23].
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In addition, with the tireless efforts of researchers, it was
found that PPIs can be predicted based on the amino acid
sequence of the protein [24–27]. At the same time, machine
learning has been utilized by researchers far and wide. +en,
a large number of prediction methods based on protein
sequences and machine learning algorithms have appeared
[13, 28–32]. For example, Cui et al. [33] utilized support
vector machine classifier to predict human proteins that
interact with viral proteins [34–37]. +e L1-logreg classifier
proposed by Dhole et al. can effectively predict PPIs and
advance related research such as drug design. Xia et al. [38]
proposed a sequence-based multiclassifier system called
Spinning Forest to infer PPIs [39]. +e performance of their
method on the Saccharomyces cerevisiae and H. pylori
datasets is better than previously published literature
methods. And as an effective machine learningmethod, deep
learning is also utilized in the prediction of PPIs (Du et al.)
[40].

In this paper, we propose a novel prediction model
which is based on support vector machine to predict PPIs
named ACT-SVM. Two different methods were utilized to
extract features from protein sequences, and finally we
reconstruct them into a feature vector. First, we extract an
A vector for each protein sequence in the dataset.
Hereafter, we construct composition (C) and transfor-
mation (T) descriptors to describe protein sequences.
Last, we utilize their combination as the input of the
classifier. In general, the area under curve (AUC), accu-
racy (Acc), specificity (Sp), and Matthew correlation
coefficient (Mcc) are utilized to evaluate the performance
of our prediction method.

We have additionally constructed 5 different classifiers
for comparing the predictive performance, including k-
nearest neighbor (KNN), artificial neural network (ANN),
random forest (RF), naive Bayes (NB), and logistic regres-
sion (LR). We utilized H. pylori and human datasets to
evaluate our novel predictor. Experimental results demon-
strate that the novel model based on support vector machine
which is proposed by us is performs best.

2. Methods and Materials

In scientific research, it is extremely important to first
define the workflow. Our working flow is demonstrated in
Figure 1. First, we obtained nonredundant H. pylori and
human datasets. +en, we map each protein sequence to
digital features by constructing A vector, composition,
and transformation (CT) and combine them into one
feature vector as the input of the classifier. +e following
process is to input the extracted digital feature into dif-
ferent classifiers to train different classification models
and evaluate them by 5-fold cross-validation, 8-fold cross-
validation, and 10-fold cross-validation, respectively.
Finally, on the independent test datasets, we sequentially
verified the 6 trained models. In addition, we utilize AUC,
Acc, Sp, Sn, and MCC indicators to evaluate the per-
formance of our novel predictive silver and five models
utilized as a comparison.

2.1. Dataset. As people pay an increasing attention to PPIs,
the number of databases utilized to research PPIs is in-
creasing, such as BioGRID, GeneMANIA, and DIP. How-
ever, there is inevitable redundancy in the data in these
existing databases. To make our prediction tool more ef-
fective, we derived nonredundant H. pylori and human PPIs
dataset utilized by Kong et al. [41]. +ey downloaded the
H. pylori and human PPIs dataset from the DIP database and
utilized the cd-hit tool to construct nonredundant sequences
for these two datasets. After removing redundancy, the
H. pylori dataset contains 1458 interacting protein pairs and
1457 noninteracting protein pairs, while the human dataset
has 3899 interacting protein pairs and 4262 noninteracting
protein pairs.

2.2. Sequence Feature Vectors

2.2.1. Construct a Vector. When constructing the A vector,
we refer to the physical and chemical properties of the
protein. +e 20 amino acids that make up the protein se-
quence are divided into 6 classes, as demonstrated in Table 1.

In this way, according to the category, we replace each
amino acid in the sequence with the corresponding C1,
C2, . . ., C6. +en, we can obtain a simplified sequence. We
utilize fi to describe the frequency of occurrence of each
element in the simplified sequence (i� 1, 2, ..., 6) and finally
get the A vector. +e detailed definitions of fi and A vector
are illustrated by equations (1) and (2).

fi �
mi

l
, (1)

where l is the length of the protein sequence, mi is the
number of type i amino acids in the protein sequence, i� 1,
2, ..., 6. For example, if there is a sequence
“MGPDDSKRYE,” it can be replaced with C1, C6, C6, C5, C5,
C3, C4, C4, C2, and C5. We can see that there are one C1, one
C2, one C3, two C4, three C5 and two C6 in the simplified
sequence. +us, f1 � 1∗ 100%/10�10%, f2 � 1∗ 100%/
10�10%, f3 � 1∗ 100%/10�10%, f4 � 2∗100%/10� 20%,
f5 � 3∗100%/10� 30%, and f6 � 2∗100%/10� 20%.

A vector can be constructed as

A � f1, f2, . . . , fi, . . . , f6( 􏼁. (2)

+en, we got a 6-dimensional A vector to describe the
feature of the protein.

2.2.2. Sparse Matrix and Descriptor. First, we construct a
20× n sparse matrix B, where n is the number of amino acids
in the protein sequence. We assume that there is a protein
sequence S � S1, S2, . . . , Sn. At the same time, we put 20
amino acids in E, E� {A, V, L, I, M, C, F, W, Y, H, S, T, N, Q,
K, R, D, E, G, P}. When the i-th amino acid in E is the same
as the j-th amino acid in S, the corresponding element bij in
the sparse matrix takes 1; otherwise, it takes 0. +e sparse
matrix of this protein sequence is demonstrated in the
following:
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B20×n �

b11 b12 b13 . . . b1n

b21 b22 b23 . . . b2n

b31 b32 b33 . . . b3n

⋮ ⋮ ⋮ ⋱ ⋮

b20,1 b20,2 b20,3 . . . b20,n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

bij �
0, E(i)≠ S(j)

1, E(i) � S(j)

⎧⎨

⎩

(3)

Next, we divide each of the 20 row vectors in the sparse
matrix into P subvectors. +e descriptor consists of
composition (C) and transformation (T), and they are
extracted from each subvector. Among them, the com-
position (C) is composed of two parts, including the
frequency of 0 and 1 in the subsequence. +e transition
(T) consists of three parts: the sum of the number of 01
and 10 in the subvector, the number of “11” and the
number of “111.” Suppose P � 4, and the first subsequence
of a protein sequence is “MYAHQAAA.” +en, the first
subvector of the first row vector in the sparse matrix is {0,
0, 1, 0, 0, 1, 1, 1}. Obviously, there are four “0,” four “1,”
two “01,” one “10,” two “11,” and one “111.”+erefore, the
five parts of the composition and transformation (CT) are
4 ∗100%/8 � 50%, 4 ∗100%/8 � 50%, 3 (2 + 1 � 3), 2, and 1.
+us, a protein sequence is mapped into a 400-dimen-
sional (4 ∗ 20∗5 � 400) vector.

2.2.3. Reconstruction of Feature Vectors. For each protein
sequence, we extracted two feature vectors, including a 6-
dimensional vector A and a 400-dimensional descriptor.
+en, we combined them into a 406-dimensional vector as
the feature vector of a protein. Finally, the feature vectors of
two proteins are connected as a 812-dimensional feature
vector, describing the PPIs between them.

2.3. Classifier Construction. Our model is based on SVM. As
a linear classifier, SVM is widely utilized in classification
problems. Its learning strategy is to maximize the interval.
Finally, it can find a geometric hyperplane with the largest
distance in the feature space to segment the sample. SVM is
extremely stable and sparse. +e partitioning hyperplane in
the sample space can be described as

ωTx + b � 0. (4)

Among them, the direction of the hyperplane is deter-
mined by ω, and b represents the distance from the origin to
the hyperplane. If the hyperplane can correctly classify the
samples, one side of the hyperplane is positive samples and
the other side is negative samples. Assume that the samples
in the sample space are (xi, yi), yi ∈ +1, −1{ }, which can be
expressed as

ωT + b≥ + 1, yi � +1

ωT + b≤ − 1, yi � −1.

⎧⎨

⎩ (5)

+e distance from any point in the sample space to the
hyperplane can be described by equation (6):

d �
ωTx + b

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

‖ω‖
. (6)

+e closest sample point to the hyperplane is called the
support vector. +e sum of the distance from the positive
sample support vector to the hyperplane and the distance
from the negative sample support vector to the hyperplane is
called the interval, which can be expressed as

Composition (C) and transformation (T)

5-fold cross-validation

Datasets

A vector

Reconstruction feature vector

KNN&ANN&RF&NB&LRSVM

8-fold cross-validation 10-fold cross-validation

AUC, Acc, Sp, Sn, MCC

Figure 1: +e working flow.

Table 1: Classification of proteins.

Category Property Amino acid
C1 Aliphatic A, C, I, L, M, V
C2 Aromatic F, H, W, Y
C3 Polar N, Q, S, T
C4 Positive K, R
C5 Negative D, E
C6 Special conformations G, P
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c �
2

‖ω‖
. (7)

+e ultimate goal of support vector machine is to find a
hyperplane that maximizes the interval, so the support
vector machine can be described as

max
ω,b

2
‖ω‖

, (8)

s.t. yi ωTxi + b􏼐 􏼑≥ 1, i � 1, 2, . . . , n, (9)

wherem is the number of samples. Formulas (8) and (9) can
also be rewritten as

min
ω,b

1
2

ω2����
����,

s.t. yi ωTxi + b􏼐 􏼑≥ 1, i � 1, 2, . . . , n.

(10)

+rough continuous experimentation, we finally set the
kernel function of the SVM classifier to a linear kernel
function. And combined with our proposed feature ex-
traction method ACT, it showed superior prediction per-
formance on H. pylori and human dataset.

2.4. Evaluation of the Predictor. In order to verify the re-
liability and stability of our proposed predictor, we
trained 6 models using H. pylori and human dataset and
performed 5-fold cross-validation, 8-fold cross-valida-
tion, and 10-fold cross-validation [42]. In actual training,
the model usually fits the training data better, but it is not
particularly ideal for novel data outside the training data.
k-fold cross-validation can be utilized to evaluate the
generalization ability of models, so as to choose a better
model and prevent the model from being too complex
and causing overfitting. +e basic idea of k-fold cross-
validation is to divide the dataset into k parts in equal
proportions. +en each part of the data is utilized in turn
as the test dataset, and the other k−1 parts of the data are
utilized as training data. k-fold cross-validation is per-
formed for k trainings to ensure that the k parts of the
data have been the test data; the remaining k−1 parts have
been utilized as training data. +e obtained K experi-
mental results are equally divided as the final score of the
model ultimately. For k-fold cross-validation, we set k to
5, 8, and 10, respectively, to verify the performance of our
model.

In this paper, we employ four evaluation indicators to
evaluate the predictive performance of our proposed
method, including accuracy (Acc), sensitivity (Sn), speci-
ficity (Sp), and Matthew correlation coefficient (Mcc).
Among them, Acc reflects the model’s ability to classify
positive samples correctly; Sn measures the classifier’s ability
to recognize positive samples; Sp reflects the model’s ability
to recognize negative samples; Mcc returns a value between
−1 and +1, which is an indicator often utilized to measure
the performance of binary classification models. +eir
definitions are as follows:

Acc �
TP + TN

TP + TN + FP + FN
,

Sn �
TP

FN + TP
,

Sp �
TN

FP + TN
,

Mcc �
TP × TN − FP × FN

����������������������������������������
(TP + FP) ×(TP + FN) ×(TN + FP) ×(TN + FN)

􏽰 ,

(11)

where TP is the number correctly divided into positive
samples, FP is the number incorrectly divided into positive
samples, FN is the number incorrectly divided into negative
samples, and TN is correctly divided into negative samples.
In addition, we still utilize the AUC value to evaluate the
performance of our proposed model. AUC is defined as the
area under the ROC curve. In many cases, the ROC curve
does not clearly indicate which classifier works better. As a
numerical value, the larger the corresponding AUC value,
the better the classifier.+us, we utilize the AUC value as one
of the evaluation criteria of the model.

3. Result and Discussion

3.1. Model Stability Analysis. K-fold cross-validation is
widely utilized to compare the performance of different
machine learning models on a specific dataset. +e principle
of k-fold cross-validation is to divide the dataset into equal k
shares for k trainings and finally take the average of the K
results. However, there may be outliers in the k-time results,
which means that this classifier may not have good stability
for the prediction of all samples. We utilized H. pylori and
human dataset to train 6models and performed 5-fold cross-
validation, 8-fold cross-validation, and 10-fold cross-vali-
dation to evaluate their performance. We draw boxplots to
reflect the stability of 5-fold cross-validation, 8-fold cross-
validation, and 10-fold cross-validation of the two datasets
in 6 classifiers. Six boxplots were drawn to describe the
results of 5-fold cross-validation, 8-fold cross-validation,
and 10-fold cross-validation of two datasets in 6 classifiers.
Among them, the ordinate of the boxplot is accuracy (Acc),
and the abscissa is 6 classifiers. +at is to say, each boxplot
has 6 boxes, and each box stores the Acc value in the k times
of k-fold cross-validation in the classifier.+e boxplots of the
H. pylori dataset on 6 classifiers for 5-fold cross-validation,
8-fold cross-validation, and 10-fold cross-validation are
demonstrated in Figure 2(a), and the boxplots for the human
dataset are demonstrated in Figure 2(b).

+e hollow dots appearing in the boxplots are outliers,
the size of the boxes reflects the degree of dispersion of the
data, and the height of the boxes represents the accuracy
value. From the 5-fold cross-validation box diagram in
Figure 2(a), we can see that there are outliers in the 5 Acc
values obtained by KNN, NB, and SVM in 5 trainings, while
the box of the RF classifier is too large that the data is more
discrete. +e box size of the ANN and LR classifiers is
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similar, but from the box height, it can be seen that the
accuracy of the ANN is higher. +erefore, on the H. pylori
dataset, the best performing model using 5-fold cross-val-
idation is ANN. Although the SVM classifier has an outlier
in the 8-fold cross-validation, the impact is not significant.
Since the outlier has a very small offset and the cabinet is
small in size and high in position, SVM still performs best. In
this way, we can see from Figure 2 in turn that, on the H.
pylori dataset, the best performing model using 10-fold
cross-validation is SVM. On human dataset, the most stable
classifiers with 5-fold cross-validation, 8-fold cross-valida-
tion, and 10-fold cross-validation are still SVM. +is can
prove that the predictor which is based in SVM we proposed
performs the most stability in k-fold cross-validation.

3.2. Model Performances. To verify the reliability of our
proposed method, we constructed 5 traditional classifiers for
comparison, including KNN, RF, ANN, LR, and NB. We
utilizedH. pylori and human datasets and chose 8-fold cross-
validation to evaluate the classifiers we constructed. Finally,
we utilize 5 evaluation indicators (AUC, Acc, Sn, Sp, and
Mcc) to evaluate the predictive performance of each clas-
sifier. +e experimental results demonstrate that the SVM
classifier performs best, as demonstrated in Table 2.

In Table 2, the AUC, Acc, and MCC values of the SVM
classifier are the highest of the six classifiers, reaching
0.800963, 0.727897, and 0.455814, respectively, in the H.
pylori dataset. +e KNN classifier has the highest Sn value
0.794168, while the RF classifier has the highest Sp value
0.953052. Although the Sn and Sp values of the SVM

classifier are not the highest values, they are not much lower
than the highest value, which are 0.723842 and 0.731959,
respectively. More importantly, the Sn and Sp values of the
SVM classifier are the closest, which means that its ability to
correctly predict positive and negative samples is similar. In
human dataset, the Acc value of the SVM classifier reached
0.838799, and theMCC value was also the highest among the
six classifiers. Although AUC, Sn, and Sp are not the highest
values, they are close to the highest values. As in theH. pylori
dataset, the SVM classifier has the smallest difference in its
ability to identify positive and negative samples. From these
data, it is clear that the SVM classifier has higher accuracy,
pretty good stability, and higher reliability compared to the
other five classifiers. +us, the superior performance of our
proposed method has been further verified.

Helicobacter pylori 5-fold cross-validation Helicobacter pylori 8-fold cross-validation Helicobacter pylori 10-fold cross-validation

0.72

0.70

0.68

0.66

0.64

0.62

0.60

AC
C

0.72

0.70

0.68

0.66

0.64

0.62

0.60

AC
C

0.72

0.70

0.68

0.66

0.64

0.62

0.60

AC
C

ANN KNN LR NB RF SVM ANN KNN LR NB RF SVM ANN KNN LR NB RF SVM

(a)
Human 5-fold cross-validation Human 10-fold cross-validationHuman 8-fold cross-validation

AC
C

0.80

0.70

0.75

0.65

0.60

AC
C

0.80

0.70

0.75

0.65

0.60

AC
C

0.85

0.80

0.70

0.75

0.65

0.60

ANN KNN LR NB RF SVM ANN KNN LR NB RF SVM ANN KNN LR NB RF SVM

(b)

Figure 2: Cross-validated boxplots of H. pylori and human dataset.

Table 2: Performance comparison in classifiers.

Dataset Classifier AUC Acc MCC Sn Sp

H. pylori

ANN 0.7412 0.6738 0.3544 0.5780 0.7698
SVM 0.8010 0.7279 0.4558 0.7238 0.7320
KNN 0.7746 0.7055 0.4177 0.7942 0.6168
RF 0.7815 0.7030 0.4104 0.6312 0.7749
LR 0.6969 0.6266 0.2602 0.5129 0.7406
NB 0.6378 0.6043 0.2089 0.5780 0.6306

Human

ANN 0.8819 0.8008 0.6007 0.7883 0.8122
SVM 0.8938 0.8388 0.6791 0.7774 0.8950
KNN 0.9165 0.8118 0.6444 0.6575 0.9531
RF 0.8875 0.7849 0.5812 0.6511 0.9073
LR 0.8177 0.7505 0.5001 0.6915 0.8046
NB 0.6089 0.6105 0.2642 0.2527 0.9378
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3.3. Comparison of Features. For classification issues, the
performance of a model is determined by many aspects.
One of the very important factors is the choice of feature
extraction methods. Feature extraction can transform our
original data into features that can better represent the data,
improve the prediction accuracy of unknown data, and
directly affect the prediction results of the model. Nowa-
days, researchers have proposed many feature extraction
methods, which are dedicated to abstracting the most ef-
fective features for classification and recognition from the
data. In this paper, we will utilize 6 prebuilt classifiers to
compare our feature extraction method ACT with the
feature extraction method FCTP proposed by Kong et al.
Comparative experimental results are demonstrated in
Table 3.

+e experimental results demonstrate that, in the H.
pylori dataset, the five evaluation indexes of the six
classifier models using our proposed feature extraction
method are better than those using FCTP. In the human
dataset, the performance of the model constructed by our
method combining SVM and LR is better than that of
Kongs’ method. In particular, our proposed model ACT-
SVM has an Acc value which is 0.08 higher than that of the
model using FCTP. Although on the human dataset FCTP
performs better on ANN, KNN, RF, and NB, our method
also demonstrates good performance with a small gap in
indicators in all aspects. Overall, FCTP performed well on
the human dataset but performed poorly on the H. pylori
dataset. Our feature extraction method demonstrates
good prediction performance on both datasets and is
relatively stable. +erefore, the method we proposed is
further proved to be a reliable and stable prediction model
for PPIs.

4. Conclusions

In recent years, the problem of identifying PPIs has been
valued by researchers and in-depth research. Several efforts to
solve this problem have appeared one after another. Although
machine learning methods are widely utilized in the pre-
diction of PPIs, there is still a lack of predictors that can
accurately and efficiently make predictions. Our proposed
model ACT-SVM can effectively predict PPIs. We utilize a
combination of A vector, composition, and transition (CT)
descriptors as the digital features of the amino acid sequence
and utilize them as input to train the SVMmodel.We evaluate
the performance of our proposed method by constructing
multiple classifiers using 5-fold cross-validation, 8-fold cross-
validation, and 10-fold cross-validation. With these evalua-
tions, we can easily get the conclusion that the model we
proposed has the better performance in the majority of sit-
uations. +e prediction accuracy of our method for H. pylori
data reaches 0.727897, and the prediction accuracy for human
dataset reaches 0.838799. +e experimental results demon-
strate that our proposed model based on SVM can efficiently
predict PPIs. It has good performance on H. pylori and
human dataset and can be utilized as a research tool to
support biomedical and other fields.
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+e data used to support the findings of this study are
available from the corresponding author upon request.
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+e authors declare no conflicts of interest.

Table 3: Comparison of features.

Dataset Classifier Method AUC Acc MCC Sn Sp

H. pylori

ANN FCTP 0.6772 0.6137 0.2337 0.5009 0.7268
ACT 0.7412 0.6738 0.3544 0.5780 0.7698

SVM FCTP 0.7038 0.6549 0.3099 0.6535 0.6564
ACT 0.8010 0.7279 0.4558 0.7238 0.7320

KNN FCTP 0.5747 0.5554 0.1148 0.6913 0.4192
ACT 0.7746 0.7056 0.4176 0.7942 0.6168

RF FCTP 0.7553 0.6601 0.3372 0.5043 0.8162
ACT 0.7815 0.7030 0.4104 0.6312 0.7749

LR FCTP 0.6866 0.62578 0.2547 0.5489 0.7027
ACT 0.6969 0.6266 0.2602 0.5129 0.7406

NB FCTP 0.5186 0.5013 0.0024 0.6072 0.3952
ACT 0.6378 0.6043 0.2089 0.5780 0.6306

Human

ANN FCTP 0.8980 0.8275 0.6541 0.8024 0.8504
ACT 0.8819 0.8008 0.6007 0.7883 0.8122

SVM FCTP 0.8320 0.7582 0.5150 0.7274 0.7864
ACT 0.8938 0.8388 0.6791 0.7774 0.8950

KNN FCTP 0.9373 0.8557 0.7181 0.7652 0.9384
ACT 0.9165 0.8118 0.6444 0.6575 0.9531

RF FCTP 0.8950 0.8112 0.6247 0.7357 0.8803
ACT 0.8875 0.7849 0.5812 0.6511 0.9073

LR FCTP 0.8180 0.7444 0.4873 0.7146 0.7717
ACT 0.8177 0.7505 0.5001 0.6915 0.8046

NB FCTP 0.6472 0.6414 0.3525 0.2822 0.9701
ACT 0.6089 0.6105 0.2642 0.2527 0.9378
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and S. Hautaniemi, “Integrated network analysis platform for
protein-protein interactions,” Nature Methods, vol. 6, no. 1,
pp. 75–77, 2009.

[6] J. De Las Rivas and C. Fontanillo, “Protein–protein interac-
tions essentials: key concepts to building and analyzing
interactome networks,” PLoS Computational Biology, vol. 6,
no. 6, Article ID e1000807, 2010.

[7] R. K. Barman, S. Saha, and S. Das, “Prediction of interactions
between viral and host proteins using supervised machine
learning methods,” PLoS one, vol. 9, no. 11, Article ID
e112034, 2014.

[8] Z.-H. You, J.-Z. Yu, L. Zhu, S. Li, and Z.-K. Wen, “A
MapReduce based parallel SVM for large-scale predicting
protein-protein interactions,” Neurocomputing, vol. 145,
pp. 37–43, 2014.

[9] S. Patel, “DeepInteract: deep neural network based protein-
protein interaction prediction tool,” Current Bioinformatics,
vol. 12, pp. 551–557, 2017.

[10] G.-H. Liu, H.-B. Shen, and D.-J. Yu, “Prediction of pro-
tein–protein interaction sites with machine-learning-based
data-cleaning and post-filtering procedures,” <e Journal of
Membrane Biology, vol. 249, pp. 141–153, 2016.

[11] P. Chatterjee, “PPI_SVM: prediction of protein-protein in-
teractions using machine learning, domain-domain affinities
and frequency tables,” Cellular and Molecular Biology Letters,
vol. 16, no. 2, pp. 264–278, 2011.

[12] Z.-H. You, “Prediction of protein-protein interactions from
amino acid sequences with ensemble extreme learning ma-
chines and principal component analysis,” BMC Bio-
informatics, vol. 14, 2013.

[13] L.Wei, P. Xing, J. Zeng, J. Chen, R. Su, and F. Guo, “Improved
prediction of protein-protein interactions using novel nega-
tive samples, features, and an ensemble classifier,” Artificial
Intelligence in Medicine, vol. 83, pp. 67–74, 2017.

[14] T. Sato, M. Hanada, S. Bodrug et al., “Interactions among
members of the Bcl-2 protein family analyzed with a yeast
two-hybrid system,” Proceedings of the National Academy of
Sciences, vol. 91, no. 20, pp. 9238–9242, 1994.

[15] B. Schwikowski, P. Uetz, and S. Fields, “A network of protein-
protein interactions in yeast,” Nature Biotechnology, vol. 18,
no. 12, pp. 1257–1261, 2000.

[16] P. Coates and P. Hall, “+e yeast two-hybrid system for
identifying protein-protein interactions,” <e Journal of Pa-
thology, vol. 199, no. 1, pp. 4–7, 2003.

[17] R. B. Free, L. A. Hazelwood, and D. R. Sibley, “Identifying
novel protein-protein interactions using co-immunoprecip-
itation and mass spectroscopy,” Current Protocols in Neu-
roscience, vol. 46, no. 1, pp. 5–28, 2009.

[18] Y. Kim and S. Subramaniam, “Locally defined protein phy-
logenetic profiles reveal previously missed protein interac-
tions and functional relationships,” Proteins: Structure,
Function, and Bioinformatics, vol. 62, no. 4, pp. 1115–1124,
2006.

[19] V. S. Rao et al., “Protein-protein interaction detection:
methods and analysis,” International Journal of Proteomics,
vol. 2014, Article ID 147648, 12 pages, 2014.

[20] N. Daraselia, A. Yuryev, S. Egorov, S. Novichkova, A. Nikitin,
and I. Mazo, “Extracting human protein interactions from
MEDLINE using a full-sentence parser,” Bioinformatics,
vol. 20, no. 5, pp. 604–611, 2004.

[21] P. Aloy and R. B. Russell, “InterPreTS: protein interaction
prediction through tertiary structure,” Bioinformatics, vol. 19,
no. 1, pp. 161-162, 2003.

[22] Y.-A Huang et al., “Sequence-based prediction of protein-
protein interactions using weighted sparse representation
model combined with global encoding,” BMC Bio-
informatics17, vol. 1, p. 184, 2016.

[23] S.-W. Zhang, L.-Y. Hao, and T.-H. Zhang, “Prediction of
protein-protein interaction with pairwise kernel support
vector machine,” International Journal of Molecular Sciences,
vol. 15, no. 2, pp. 3220–3233, 2014.

[24] L. Liu, Y. Cai,W. Lu, K. Feng, C. Peng, and B. Niu, “Prediction
of protein-protein interactions based on PseAA composition
and hybrid feature selection,” Biochemical and Biophysical
Research Communications, vol. 380, no. 2, pp. 318–322, 2009.

[25] X. Li, B. Liao, Y. Shu, Q. Zeng, and J. Luo, “Protein functional
class prediction using global encoding of amino acid se-
quence,” Journal of <eoretical Biology, vol. 261, no. 2,
pp. 290–293, 2009.

[26] S. Martin, D. Roe, and J.-L. Faulon, “Predicting protein-
protein interactions using signature products,” Bio-
informatics, vol. 21, no. 2, pp. 218–226, 2005.

[27] L. Nanni, “Hyperplanes for predicting protein-protein in-
teractions,” Neurocomputing, vol. 69, no. 1-3, pp. 257–263,
2005.

[28] L. Burger and E. Van Nimwegen, “Accurate prediction of
protein–protein interactions from sequence alignments using
a Bayesian method,” Molecular Systems Biology, vol. 4, no. 1,
p. 165, 2008.

[29] L. Nanni and A. Lumini, “An ensemble of K-local hyperplanes
for predicting protein-protein interactions,” Bioinformatics,
vol. 22, no. 10, pp. 1207–1210, 2006.

[30] X.-Y. Pan, Y.-N. Zhang, and H.-B. Shen, “Large-Scale pre-
diction of human Protein−Protein interactions from amino
acid sequence based on latent topic features,” Journal of
Proteome Research, vol. 9, no. 10, pp. 4992–5001, 2010.

Scientific Programming 7



[31] G. Singh et al., “Springs: prediction of protein-protein in-
teraction sites using artificial neural networks,” PeerJ Pre-
Prints, 2014.

[32] S. Dohkan, A. Koike, and T. Takagi, “Prediction of protein-
protein interactions using support vector machines,” in
Proceedingsof the Fourth IEEE Symposium on Bioinformatics
and Bioengineering, May 2004.

[33] G. Cui, C. Fang, and K. Han, “Prediction of protein-protein
interactions between viruses and human by an SVM model,”
BMC bioinformatics, vol. 13, no. Suppl 7, 2012.

[34] J. R. Bradford and D. R. Westhead, “Improved prediction of
protein-protein binding sites using a support vector machines
approach,” Bioinformatics, vol. 21, no. 8, pp. 1487–1494, 2005.

[35] Y. Guo, L. Yu, Z. Wen, and M. Li, “Using support vector
machine combined with auto covariance to predict protein-
protein interactions from protein sequences,” Nucleic Acids
Research, vol. 36, no. 9, pp. 3025–3030, 2008.

[36] A. Koike and T. Takagi, “Prediction of protein-protein in-
teraction sites using support vector machines,” Protein En-
gineering Design and Selection, vol. 17, no. 2, pp. 165–173,
2004.

[37] Z.-H. You, “Detecting protein-protein interactions with a
novel matrix-based protein sequence representation and
support vector machines,” BioMed Research International,
vol. 2015, Article ID 867516, 9 pages, 2015.

[38] J.-F. Xia, K. Han, and D.-S. Huang, “Sequence-based pre-
diction of protein-protein interactions by means of rotation
forest and autocorrelation descriptor,” Protein & Peptide
Letters, vol. 17, no. 1, pp. 137–145, 2010.

[39] L. Wong et al., “Detection of protein-protein interactions
from amino acid sequences using a rotation forest model with
a novel PR-LPQ descriptor,” in Proceedings of the Interna-
tional Conference on Intelligent Computing, Springer, Cham,
Fuzhou, China, August 2015.

[40] X. Du, S. Sun, C. Hu, Y. Yao, Y. Yan, and Y. Zhang, “DeepPPI:
boosting prediction of protein-protein interactions with deep
neural networks,” Journal of Chemical Information and
Modeling, vol. 57, no. 6, pp. 1499–1510, 2017.

[41] M. Kong, “FCTP-WSRC: protein–protein interactions pre-
diction via weighted sparse representation based classifica-
tion,” Frontiers in Genetics, vol. 11, p. 18, 2020.

[42] Z. Lu, S. Lu, G. Liu, Y. Zhang, J. Yang, and P. Phillips, “A
pathological brain detection system based on radial basis
function neural network,” Journal of Medical Imaging and
Health Informatics, vol. 6, no. 5, pp. 1218–1222, 2016.

8 Scientific Programming


