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Deduplication is a popular data reduction technology in storage systems which has significant advantages, such as finding and
eliminating duplicate data, reducing data storage capacity required, increasing resource utilization, and saving storage costs. )e
file features are a key factor that is used to calculate the similarity between files, but the similarity calculated by the single feature
has some limitations especially for the similar files. )e storage node feature reflects the load condition of the node, which is the
key factor to be considered in the data routing. )is paper introduces a multifeature data routing strategy (DRMF). )e routing
strategy is made based on the features of the cluster, including routing communication, file similarity calculation, and the
determination of the target node. )e mutual information exchange is achieved by routing communication, routing servers, and
storage nodes. )e storage node calculates the similarity between the files stored, and then the file is routed according to the
information provided by the routing server. )e routing server determines the target node of the route according to the similar
results and the node load features. )e system prototype is designed and implemented; also, we develop a system to process the
feature of cluster and determine the specific parameters of various features of experiments. In the end, we simulate the mul-
tifeature data routing and single-feature data routing, respectively, and compare the deduplication rate and data slope between the
two strategies. )e experimental results show that the proposed data routing strategy using multiple features can improve the
deduplication rate of the cluster and maintain a lower data skew rate compared with the single-feature-based routing strategy
MCS; DRMF can improve the deduplication rate of the cluster and maintain a lower data skew rate.

1. Introduction

According to the International Data Corporation (IDC)
report, global data spheres will grow from 33 ZB in 2018
to 175 ZB in 2025 [1]. With the amount of stored data
growing constantly and exponentially, and storage costs
are increasing dramatically, economical storage solutions
are needed. In recent years, data storage has attracted
more and more attention; how to reduce the maintenance
cost and improve storage efficiency is a new hot research
point in storage system. Deduplication works by repre-
senting files and their chunks with hash values and
comparing these values against hashes of previously
processed files and chunks [2]. If a matching hash entry
exists, then the data the hash represents is a duplicate;

otherwise, it is considered unique. Duplicates are
replaced with links to old data while data belonging to
unique hashes are stored [3].

However, these backup systems with data deduplication
usually can only delete duplicate data onto a single node, and
the storage capacity of a single node is low, and it is difficult
to meet large-scale storage requirements [3]. An effective
solution to solve the single-node low-throughput and dif-
ficult-to-expand defects is to create a cluster of multiple
storage nodes. Each storage node in the cluster can inde-
pendently perform deduplication work [3,4]. Deduplication
clusters can meet increasing data backup needs [5]. Since
2010, the international academic community has focused on
deduplication clusters [6–8] and applied many popular data
routing strategies to deduplication clusters. Although the
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deduplication cluster improves the data operation
throughput of the storage backup system, it reduces the
deduplication rate of a single node in the cluster. If there are
64 nodes in the cluster, the data reduction rate of the cluster
is about 50% of the single node. If the backup data is e-mail
information, the data reduction rate is reduced to about 20%
of the single node. Moreover, as the number of nodes in-
creases, the data reduction rate of the cluster will further
decrease [9]. Using a suitable data routing strategy in the
cluster aimed to route files containing duplicate data to the
same node can ensure a high deduplication rate for the
cluster nodes.

Single-node data storage is difficult to meet the needs of
large-scale data storage. )e deduplication cluster in a
distributed environment can manage the huge throughput
of massive data storage backup. However, the deduplication
rate of each node in the deduplication cluster is much lower
than that of a single node. )e main reason is that it is
difficult to deduplicate data globally in the entire cluster and
can only perform deduplication on independent nodes.
)erefore, it is important to use appropriate routing strat-
egies to distribute similar or related data to the same nodes as
much as possible. )is paper studies the multicharacteristic
data routing strategy in the deduplication cluster, using the
cluster’s multicharacteristics to make routing decisions,
improving the single-characteristic data routing strategy,
and verifying it through experiments. )e main research
works are shown as follows:

(1) For the problem that the file label dimension is too
large, feature dimensionality reduction is performed
based on similar hash. Using the node’s disk storage
utilization as the node’s load characteristics: multi-
feature-based data routing strategies are used for
multifeature fusion. )e effects of file characteristics
on similarity are compared through experiments to
determine the value of each parameter.

(2) According to the multifeature processing results of
the cluster, a multifeature data routing strategy is
proposed. )e routing strategy mainly includes
routing communication, file similarity calculation,
and routing decision.

(3) )e experiment simulated the multicharacteristic
data routing strategy and the popular single-char-
acteristic data routing strategy. )e experiment
showed that the multicharacteristic data routing
performed better in cluster deduplication rate and
load balancing.

2. Related Work

In single-node deduplication schemes like ALG-Dedupe [10]
and ADMAD [11], different types of chunkingmethods were
utilized for files of different application types. In HPDV [12],
global shared fingerprint index is divided into subindexes
according to the type of operating systems that a virtual
machine is hosting. )is approach is intended to reduce the
scope of fingerprint index search. In AppDedupe [13], the
type of files is used to decide where to route its chunks.

DRMF creates groups of files based on their application type.
Independent index space and its bloom filters are then used
for each group throughout all the nodes in the system.
Moreover, DRMF uses file size to filter small-sized files and
create file segments from these small files. )e file segments
are used for deduplication instead of the small files. A similar
technique of filtering files using their size is utilized in [13]
but their intention is only to increase data transfer rate over
the network and they completely ignore these small files
from the deduplication process. In [11–16], super chunks are
created from chunks to minimize disk index-lookup bot-
tleneck and exploit data locality. DRMF also exploits locality
and improves disk index-lookup performance by first
chunking files into segments using Content-Defined
Chunking (CDC) and then further chunking these segments
into fine-grained chunks.

In [11, 13, 14, 17, 18], a stateful routing is utilized for
routing data to minimize the effect of deduplication node
information island. In [11], a set of representative hand-
prints are selected from each super chunk and the similarity
of super chunks is decided by comparing representative
handprint chunks. In [14], super chunks are routed as a unit.
Counting bloom filters are used in every node to trace the
number of times a fingerprint is stored in the nodes. )is
approach can achieve a considerable duplicate removal
performance, but it is susceptible to high communication
cost, high memory consumption, and computational
overhead. In [13], a two-tiered internode routing and an
application-aware intranode deduplication are performed to
tackle the issue of deduplication node information island
effect. In this system, the director-node first selects a group
of storage nodes for each file using file type as criteria; the
client node then chooses a representative chunk for each
super chunk and broadcasts it to all the selected nodes with
the node containing a matching chunk chosen as the des-
tination. )e communication cost of this system is high
because it floods the network with representative chunk
fingerprints for every super chunk. DRMF introduces a
drastic reduction of communication overhead because
multifeature-based data routing strategy is utilized. )e
strategy represents a whole data stream and is sent only to
network for similarity computation.

3. DRMF: Multifeature-Based Data
Routing Strategy

3.1. System Architecture. )e system architecture of a
deduplication cluster has a significant impact on the system’s
throughput and deduplication performance. By increasing
the parallelism between data processing in the system, the
system throughput can be effectively improved. At the same
time, by performing multifeature preprocessing on the
deduplication cluster, the similar or duplicate data is routed
to the same node to improve the deduplication rate. )e
system needs to consider a load of each storage node while
ensuring the deduplication rate. )e load imbalance of the
storage node will make it a performance bottleneck of the
entire system, resulting in a decrease in the overall per-
formance of the system. )erefore, the load characteristic
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value of the cluster is considered in the cluster feature
preprocessing. )e system architecture of the deduplication
cluster studied in this paper is shown in Figure 1.

Multiple routing servers in the cluster make routing
decisions at the same time. )e routing server preprocesses
multiple features of the cluster and completes routing de-
cisions based on these characteristics.)emaster node in the
cluster collects operational information such as the load of
the storage nodes and sends this information to the routing
server. )is runtime information is the key factor affecting
routing decisions. )e routing server feeds back the routing
information of the file to the master node, and the master
node records the target node of the file to facilitate later file
recovery. )e master node monitors the running status of
the storage node. When the load of the storage node exceeds
the threshold, the master node marks the storage node as a
high load, and the routing server will not use this node as the
destination node of the route in the next routing decision.

Each storage node in the cluster has the function of
deduplication. )e minimum granularity of deduplication is
data blocks. In order to improve the efficiency of dedupli-
cation, storage nodes use local caches and Bloom Filter data
structures. )e local cache stores the data recently stored in
the node. When duplicate data is detected, the node first
searches for duplicate data in the cache area. If duplicate data
is found, there is no need to query disk data, which improves
data retrieval efficiency. When the cache misses, the node
performs data filtering through the Bloom Filter to deter-
mine whether the data is new. If the data is determined to be
new data, the node directly stores the new data stream to
avoid further disk operations. )e structure of the storage
node is shown in Figure 2.

)e storage node uses the content-based segmentation
algorithm to divide the routed file data stream into multiple
data blocks and calculates unique fingerprint values for each
data block. According to these fingerprint values, it is de-
termined whether the routed file data block and the local
data are duplicated. If repeated, the data block does not need
to be stored; only relevant metadata is saved. Otherwise, the
file data block is new data and needs to be stored on disk.)e
data flow in deduplication meets the principle of locality: in
the same backup data flow, if the previous data block is
duplicated, then the next data block is also likely to be
duplicated [19].

When finding duplicate data blocks, the storage node
uses the principle of localities of duplicate data to avoid a
large number of index lookups on the disk on the data
onto the cache, which greatly reduces the performance
loss caused by I/O bottlenecks and improves the system
throughput. When the cache misses, the storage node
uses the Bloom Filter to determine whether the data is
new. )e Bloom Filter can determine that data is not
duplicated, but it cannot be determined if data is du-
plicated. )e cache hit ratio has a great impact on search
efficiency. In order to improve the cache hit ratio when a
storage node loads data from disk to the cache, it selects
the most recently stored piece of data at the same time,
because these data meet the principle of deduplication
localities.

3.2. DRMF Data Routing. DRMF (Data Routing Strategy
Using Multiple Features) uses cluster multiple features to
make routing decisions. Unlike stateless data routing
strategies such as MCS (Minimum Chunk Signature based
Routing Strategy), DRMF is a stateful data routing strategy.
It needs to interact with candidate target nodes and obtain
the runtime information of candidate nodes to determine
the final target node. )e processes required by DRMF to
complete file routing mainly include routing communica-
tion, file similarity calculation, and routing decision.

3.2.1. Route Communication. To improve the deduplication
rate of the cluster, the routing server needs to route similar
files to the same storage node. DRMF uses multiple features
of files for similarity detection.)erefore, when determining
similar files, it needs to pass themultiple features of the file to
be routed to the storage node. When the routing destination
node is determined, the routing server needs to consider the
load of the storage node, and the storage node needs to pass
its own load characteristics to the routing server.)e routing
communication is mainly the transfer of the characteristics
of the file to be routed and the storage node load charac-
teristics. Figure 3 shows the specific routing communication.

In Figure 3, during routing communications, the routing
server and storage nodes pass related features to each other.
)e storage node receives multiple features of the file to be
routed. Based on the multiple features of the file, it finds the
file data that is most similar to the file to be routed and passes
the maximum similarity and load characteristics of the
storage node to the routing server. After receiving the in-
formation returned by the storage node, the routing server
fuses the similarity and the load characteristics of the storage
node to determine the destination node of the route.

3.2.2. File Similarity Calculation. File similarity calculation
is calculating the similarity between the files to be routed and
the file data stored by the node. However, calculating the
similarity between the files to be routed and each file stored
by the node is time consuming and reduces system effi-
ciency. )is article stores the similar files in the node in a
“box.” During the similarity calculation, only the similarity
between the files to be routed and the “box” representative
file is calculated, and the calculated similarity is regarded as
the file to be routed and each in the “box.” )e similarity of
files. In addition, before similarity calculation, very dis-
similar “boxes” are excluded to avoid unnecessary calcula-
tion overhead. )e file similar calculation is designed as
given in Algorithm 1.

)e amount of data stored by a node can reflect the
workload of the node, which is suitable as the storage load
characteristic of the node. However, in a deduplication
cluster, the hardware resources of each storage node are
different, and the disk storage capacity may be different.
)erefore, the disk storage usage of a node cannot be used to
compare workloads between nodes. )is article uses the
node’s disk storage usage as a feature of node loaded to
eliminate the impact of node hardware differences.
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By viewing the runtime information of a storage node, it
can obtain the disk storage capacity and current disk usage of
the node and then calculate the disk storage utilization of the
node by the following formula:

μ �
Duse

Dtotal
. (1)

In formula (1), μ is node disk storage utilization, Duse is
the disk storage usage of the node, and Dtotal is the disk
storage capacity of the node.

Based on the minimum w data block signatures of the
file, there are some limitations of using formula (1) to
calculate the file similarity. When the file is small, a slight
modification of the file may cause the signatures of the
smallest w data blocks to change, and the calculated simi-
larity may be biased. Also, the accuracy of the similarity is
related to the size of the data block. )e smaller the data
block size, the smaller the data granularity calculated by
formula (2), and the more accurate the calculated similarity:

psim(A, B) �
MINw(M(A)∪M(B))∩M(A)∩M(B)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

MINw(M(A)∪M(B))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
.

(2)

In formula (2), M(A) is the set of the smallest w data
block signatures in file A, M (B) is the set of the smallest w

data block signatures in file B, MINw function is the smallest
A set of w elements, and psim(A, B) is the approximate value
of the similarity between file A and file B.

Broder and others have shown that psim(A, B) is an
unbiased estimate of sim (A, B) [14]. )erefore, this article
chooses the smallest w data block signatures as the char-
acteristics of the file. w affects the accuracy of psim(A, B)
estimation; it needs to be set according to the size of the set
and the actual situation.

)is article converts multiple tag characteristics of a file
into a hash value, which is a similar hash. )e traditional
hash value is used to distinguish files. If the contents of file
are slightly modified, the file hash will be different. )e main
difference between similar hashes and traditional hashes is
that the more similar the files are, the more similar the hash
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is. )e similarity calculation formula is shown in the fol-
lowing formula:

sim(A, B) � 1 −
diff(A, B)

N
. (3)

In formula (3), sim(A, B) is the similarity of filesA and B,
diff(A, B) is the number of different bits corresponding to the
similar hash of A and B, and N is the number of bits in a
similar hash.

Use the weight function to fuse file data block features
and label features to improve the accuracy of file similarity
calculation. )e weighting function that fuses the features of
the file is shown in the following formula:

sim(A, B) � w1•sim1(A, B) + w2•sim2(A, B). (4)

In formula (4), sim(A, B) is the similarity of files A and B
after fusing block features and label features, sim1(A, B) is
the file similarity calculated by equation (2), sim2(A, B) is the
similarity of the file calculated by equation (3), w1 is the
weight of data block signature, and w2 is the weight of the
label feature.

3.2.3. Target Node Determination. DRMF uses the maxi-
mum similarity and the load status of the storage node
between the node storage file and the file to be routed to
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Input: load the “box” indexes of the storage node into memory as the main index of the node. Each index entry of the main index is
“boxing” information. Compared to creating an index entry for each file, the main index can reduce the index size.

Output: bsim and the “box” b address.
(1) Reading the file signature chain of the main index. )e file signature is the hash value of the entire file. If the same file signature as

the file to be routed is found, it means that the file to be routed is a duplicate file with a similarity of 1, and no subsequent operations
are required. Only the metadata of the file to be routed is saved. If the same file signature is not found, proceed to the next step.

(2) Comparing the similar hash of the file to be routed with the “box” representing the similar hash of the file.)e “box” represents the
first file saved to the “box.” A similar hash is a binary number. If the number of different corresponding bits of two similar hash
reaches η, it means that the two files are very similar, and the similarity of the two is set to 0 directly, and there is no need to
calculate the similarity. Otherwise, mark the “box” as “to be compared.”

(3) For all “boxes” marked as “to be compared,” reading the “box” on the disk at one time represents the file corresponding to the
minimum w data block signatures.

(4) Fusing the files with similar hash file and the minimum w data block signatures, calculating the similarity between the “box”
representative files and the files to be routed, and obtaining the “box” b and the corresponding similarity bsim that are most similar
to the file to be routed.

ALGORITHM 1: File similarity calculation algorithm.
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make routing decisions. Considering only the file similarity
will improve the deduplication rate of the cluster as a whole,
but it will increase the probability of cluster loaded im-
balance and reduce the performance of the cluster. If the
routing strategy only makes routing decisions based on the
similarity of the files, then if the node storing data is much
higher than other nodes, the data is more easily routed to
that node, and this causes a node load imbalance and
therefore more duplicate data because the node contains
more data. )e DRMF routing is designed as given in
Algorithm 2.

)e traditional multifeature-based data routing strategy
usually uses the node ε where the file most similar to the file
to be routed is the target node. )is approach will cause
more and more files to be routed to node ε, resulting in node
load imbalance. DRMF does not take the similarity between
the node and the file to be routed as the sole criterion for
routing decisions when making target node decisions and
also considers the load characteristics of the nodes. )rough
the fusion of node load characteristics and similar charac-
teristics of files, DRMF not only ensures a high cluster
deduplication rate, but also reduces the probability of cluster
load imbalance. DRMF does not necessarily select the node
where the file most similar to the file to be routed is the target
node, because the node may have an unbalanced load. A
specific DRMF routing decision example is shown in
Figure 4.

Figure 4 illustrates an example of a routing decision for
DRMF. )e maximum similarity between the file stored in
node 1 and the file to be routed is 0.5, and the maximum
similarity corresponding to nodes 2, 3, and 4 is 0.6, 0, and
0.3, respectively. Because node 2 has a larger load, DRMF
multiplies its similarity by a factor less than 1 to reduce its
routing benefit. )erefore, although the node 2 storage file is
the most similar to the file to be routed, DRMF has not made
it the final target node. )e route benefit value of node 1 is
0.5, which is the maximum route benefit value. DRMF uses
node 1 as the destination node of the route.

4. Experimental Evaluation

4.1. System Prototype. )e system prototype simulates a
deduplication cluster consisting of many nodes. )e cluster
contains multiple routing servers. Multiple routing servers
can distribute data onto the nodes on the entire cluster in
parallel. )e routing server program executes the data
routing algorithm, and the program implements the MCS
algorithm and the DRMF algorithm. )e data routing al-
gorithm analyses the characteristics of the input file and
storage nodes to determine the target node for the final
routing of the file. At the same time, the simulated dedu-
plication cluster also contains many storage nodes. Each
storage node performs deduplication tasks on its node. Each
deduplication storage node in the cluster is no different from
deduplication in a stand-alone environment. )e storage
node stores a master index containing “box” information
[20]. When deduplication of files is performed, in order to
reduce the performance loss caused by frequent I/O oper-
ations, the data block signatures are first filtered in memory

by Bloom Filter to determine the new data blocks of the
routing file. )en look up the data block in the cache. If the
cache hits, it means that the data blocks are duplicating data.
If neither the Bloom Filter nor the cache can confirm
whether the routing file is new data or duplicate data, it is
needed to be retrieved on the local disk of the storage node.
)e simulator contains a file feature analysis module.)e file
features analysis module extracts and analyses multiple
features of the file data to obtain the minimum w data block
signatures of the file and the label features of the file.

4.2. Data Set and Evaluation Indicator Test Environment.
)e data set of this experiment is a Linux source code kernel
archive, which contains a series of versions from 3.0.1 to
4.1.6, with a total of 723 versions of data [21]. )e dedu-
plication metrics for subsequent experiments are based on
the deduplication effect of a single node. )erefore, the
deduplication situation of a single node is listed here. Related
information is shown in Table 1.

4.3. Test Results and Analysis

4.3.1. Analysis of DRMF Data Routing Strategy Effectiveness.
In this paper, the similarity offset is used to determine the
values of w and n, and the evaluation function is used to
determine the weight of the data block signature and label
when calculating the similarity.

)e calculation of the similarity offset is shown in the
following formula:

ρ �
sim − simpart

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

sim
. (5)

In formula (5), ρ is the similar deviation degree, simpartis
the file similarity calculated using partial features, sim is the
similarity calculated using all eigenvalues, and |sim − simpart|

is the absolute value of the difference between sim and
simpart.

simpart can be the similarity calculated using the smallest
w data block signatures of the file, or the similarity calculated
using the key tags; sim can be calculated using the entire data
block signature of the file or all tags’ similarity.

When the minimum w data block signatures are used
as the characteristics of the file, w needs to be determined.
When w is small, there are too few features to accurately
calculate the similarity of the file; when w is large, al-
though the similarity can be calculated more accurately, it
will increase the load of the deduplication cluster. )is
article randomly selects the files in the 50 versions of the
Linux source code archives from the data set as the
training set. )e file blocker divides the file data in
training set; the data block signature calculator calculates
the signature of each data block, obtains the data block
signature set of each training file, and selects the smallest
w data block signatures as training characteristics of the
file. For files in training set, set w to 1/2560, 1/1280, 1/640,
1/320, 1/160, 1/80, 1/40, and 1/20 of the total number of
data blocks in the file, 1/10, 1/2, calculate the

6 Scientific Programming



corresponding file similarity offset. )e similarity in the
similarity offset between training files has a similar trend.
Figure 5 shows the similarity between different versions
of memory-barriers files in training set as w changes.

It can be seen from Figure 5 that when the ratio of w to
the total number of file data blocks is greater than 1/320, the
similarity offset is small. Moreover, the degree of similarity
shift is relatively stable, and the change is not obvious. When
the ratio is less than 1/320, the degree of similarity shift is
large, and the variation range is large and unstable.)e value
of w selected in this paper is 1/20 of the total number of data

blocks. At this time, the similarity offset is small, and the
number of data blocks that needs to be transmitted for
routing communication is small, which will not increase the
load on the system.

When n tags with higher frequencies are used as
features of the file, n needs to be determined. When n is
small, there are too few tags to accurately calculate the
similarity of the file; when n is large, the complexity of the
similarity calculation increases. In this paper, the files in
50 versions of Linux archives are selected as the training
set. )e feature label extraction module analyses the files

Input: when DRMF routing, avoid routing file data to storage nodes with high load. Before routing, the master node sends the disk
storage utilization of each node to the routing server, and the routing server calculates the average disk storage utilization of the
node µ.
Output: Indexid.

(1) Candidate nodes are determined. When the disk storage utilization of a node does not exceed a specific threshold σ, the node is
used as a candidate target node. Σ is usually set to 0.05; that is, when the node disk storage utilization does not reach 1.05 of μ, this
node is used as a candidate node.

(2) Data routing in the initial state of the cluster. In the initial state, no storage node in the deduplication cluster stores any data. At this
time, MCS is used for routing decisions.

(3) Multifeature-based data routing.)e routing server performs routing communication with multiple candidate nodes to obtain the
maximum similarity between the candidate node storage file and the file to be routed, the disk storage utilization of the candidate
node, and the most similar “box” address of the node. According to the similarity, node load characteristics are fused based on the
benefit function, and the route benefit value of each candidate node is calculated.)e node corresponding to the maximum benefit
value is selected as the final target node.

(4) File storage. Route the file to the target node. If there is a specific “box” on the node, the “box” stores the file the most similar to the
routing file; then the routing file is stored in the “box.” Otherwise, create a new “box,” save the routing file in the “box,” use the
routing file as the representative file of the “box,” and add an index entry to the main index.

ALGORITHM 2: )e DRMF routing algorithm.

File
File to be routed

Node 1 Node 2 Node 3 Node 4
The similarity between the

file to be routed and the
storage file of the node

0.5 0.6 0 0.3

The ratio of node storage
utilization to the average

storage utilization of the cluster

Routing weight

Storage
node

0.5/1.0 = 0.5 0.6/1.35 = 0.44 0 0.3/1.03 = 0.29

Storage
node

Storage
node

Storage
node

Figure 4: Example of DRMF routing decision.

Table 1: Data set and related information.

Data set Number of files Data size (GB) Single-node deduplication rate
Linux source code 3186361 71.678 1.3296

Scientific Programming 7



in training set, extracts the label features of the file,
calculates the weight of each label of the file, and selects
the n labels that appear most frequently Feature as
training files. Set n to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
and 200 in turn. Use a similar hash to calculate the
similarity between files. )e similarity varies with n. )e
similarity between files varies with the number of selected
high-frequency tags. Figure 6 shows the similarity of
different versions of memory-barriers files with the
number of high-frequency words.

It can be seen from Figure 6 that when n is changed, the
similarity between files is constantly changing. )e maximum
value of similarity is 0.8593, and the minimum value is 0.7813.
)e difference between them is 0.078, and the difference is
small. In this paper, n is set to 20 by default.

)e experimental results show that when w is 1/20 of the
number of signatures of the entire data block, the similarity
offset is small and the dimensions are small; when 20 key tags
are selected, the similarity calculation result is more accu-
rate; the file has multiple features. In fusion, the effect is
better when the weights of the data block signature and file
label are 0.58 and 0.42, respectively.

4.3.2. Performance. )e metrics involved in the experiment
are as follows:

(1) Deduplication Rate (DR): the ratio of the size of the
original data to the size of the data after
deduplication.

(2) Data Skew (DS): the ratio of the largest node storage
usage in the cluster to the average node storage
usage. DS is used to measure the load balancing
status of the cluster. )rough the DS value, one can
observe the impact of routing policies on cluster load
balancing.

(3) Normalised Deduplication (ND): the ratio of the
deduplication rate of the entire cluster after dedu-
plication to the deduplication rate in a single-node
environment. ND is used to measure the gap

between the deduplication effect achieved by the
routing strategy and the optimal situation.

)e amount of data stored in the backup system is large.)e
amount of storage space used is one of the important factors
determining the cost of the system.)e deduplication rate is an
important indicator of the storage space efficiency of the backup
system. )e routing policy distributes the files across the nodes
of the cluster, and there is duplicate data between the storage
nodes. )erefore, the deduplication rate of the system in a
multinode environment is lower than the deduplication rate of a
single node. )is article uses ND to measure the impact of
routing policies on the deduplication rate. )e larger the ND
value, the closer the deduplication effect of routing policy is to a
single node, the better the deduplication effected is.)e optimal
ND value is 1. At this time, the cluster deduplication rate is the
same as the value in the single-node environment.

)is article simulates MCS routing strategy and
DRMF routing strategy in the simulator and uses the
deduplication tool to perform deduplication rate statis-
tics. )e number of nodes in the deduplication cluster is
set to 1, 2, 4, 8, 16, 32, and 64, respectively. Among them,
the experiment with a node number of 1 detects the
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deduplication rate in a single-node environment, which
does not involve data routing. )e deduplication rate is
the maximum value that the cluster can achieve in the
same environment, which is called “optimal deduplica-
tion Rate”; as shown in Table 1, the deduplication rate is
1.3296, and 17.7 GB of duplicate data is deleted. Figure 7
shows the normalised deduplication rates of clusters of
different routing strategies.

Figure 7 uses a normalised deduplication rate to
measure the impact of a routing strategy on the dedu-
plication rate on the cluster. Compared to the dedupli-
cation rate, the normalised deduplication rate more
intuitively reflects the routing strategy compared to a
single node on the cluster deduplication. Remove per-
formance impact. As shown in Figure 7, when the number
of cluster nodes increases, the deduplication rate of MCS
decreases rapidly. When the number of nodes is large,
MCS is not suitable as a data routing strategy. DRMF’s
deduplication rates decrease slowly with the number of
nodes and maintain a high value, indicating that DRMF
can better route similar files to the same node.

In the above experimental environment, this article
simulates the effects of MCS and DRMF on the cluster load.
)e experimental results are shown in Figure 8.

In this article, the threshold of load imbalance is set to 0.05.
When the data slope of the cluster is greater than 1.05, the
cluster will have an unbalanced load. As can be seen from
Figure 8 as the number of nodes increases, the data slope of both
the MCS routing strategy and the DRMF routing strategy
becomes larger, and the increasing rate becomes largely high.
When the number of nodes reaches 8, MCS has a load im-
balance. However, DRMF remains to be load balanced.
)erefore, DRMF can improve the deduplication rate while
reducing the probability of load imbalance.

)is article proposes a clustered multifeature stateful
data routing strategy DRMF algorithm. DRMF not only
considers the similarity in files, but also considers the
load characteristics of nodes to make routing decisions.
)e experimental results show that compared with the
single-feature-based routing strategy MCS, DRMF can
improve the deduplication rate of the cluster and
maintain a lower data skew rate.

5. Conclusions

)is paper focuses on the data routing strategy in clusters.
According to themultiple characteristics of the cluster, a DRMF
routing strategy is proposed. DRMF makes routing decisions
based on multiple features of the cluster. It not only considers
the similarity between the node storage file and the file to be
routed, but also takes into account the load balancing of the
storage node. Experimental results show that, compared with
the traditional single-feature data routing strategy MCS, DRMF
can improve the deduplication rate of the cluster and reduce the
probability of cluster load imbalance.

Data routing strategy is a research hotspot and difficulty in
deduplication clusters. In the past few years, academia has
studied the impact of data routing strategies on deduplication
rates and cluster load balancing and explored the performance
bottlenecks of data routing strategies. However, there are still
many problems that have not been completely solved. Research
work on multicharacteristic data routing strategies will be
carried out in the following areas:

(1) Research on stateless data routing based on multiple
features: multifeature-based data routing strategy
DRMF can take into account the cluster’s deduplication
rate and load balancing, but it is a stateful routing
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strategy and has a large system overhead. In future
research, a stateless data routing strategy based on
multiple features may be considered to reduce the
system overhead while guaranteeing a certain dedu-
plication rate.

(2) Diverse selection of features: the multifeatures se-
lected in this paper are content-based file data block
signatures, file labels, and disk storage utilization of
nodes. )ese features can be combined to better
guide data routing. However, there are many other
cluster multifeatures that can be used to extract,
merge, and route decisions from other categories of
features.

Data Availability

)e experimental data set used is the source code of Linux
from 3.0.1 to 4.1.6, with a total of 723 versions. Data source
address is https://www.kernel.org/.
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