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With the development of technology, the hardware requirement and expectations of user for visual enjoyment are getting higher
and higher. +e multitype tree (MTT) architecture is proposed by the Joint Video Experts Team (JVET). +erefore, it is necessary
to determine not only coding unit (CU) depth but also its split mode in the H.266/Versatile Video Coding (H.266/VVC).
Although H.266/VVC achieves significant coding performance on the basis of H.265/High Efficiency Video Coding (H.265/
HEVC), it causes significantly coding complexity and increases coding time, where the most time-consuming part is traversal
calculation rate-distortion (RD) of CU. To solve these problems, this paper proposes an adaptive CU split decision method based
on deep learning and multifeature fusion. Firstly, we develop a texture classification model based on threshold to recognize
complex and homogeneous CU. Secondly, if the complex CUs belong to edge CU, a Convolutional Neural Network (CNN)
structure based on multifeature fusion is utilized to classify CU. Otherwise, an adaptive CNN structure is used to classify CUs.
Finally, the division of CU is determined by the trained network and the parameters of CU. When the complex CUs are split, the
above two CNN schemes can successfully process the training samples and terminate the rate-distortion optimization (RDO)
calculation for some CUs.+e experimental results indicate that the proposed method reduces the computational complexity and
saves 39.39% encoding time, thereby achieving fast encoding in H.266/VVC.

1. Introduction

With higher requirements for video compression, more
effective video coding standards have become critical. +e
JVET has developed a next-generation video coding stan-
dard called the H.266/VVC [1]. +e H.266/VVC Test Model
(VTM) [2] has implemented many novel technologies,
which can significantly enhance the coding efficiency.
Specifically, the H.266/VVC uses a quad-tree with nested
multitype tree (QTMT) coding architecture for CU partition
[3], which shows better coding performance, but leads to the
extremely coding computational complexity. And the
coding complexity may be 5 times that of the H.265/HEVC
[4]. Figure 1 shows 67 intraprediction modes, where Planar
and DC mode are in line with H.265/HEVC. +erefore, the
prediction modes are very dense, which can gain more
precise prediction, but the computational complexity is
significantly high. In addition, other additional tools are

introduced to enhance the coding efficiency, such as Position
Dependent Intraprediction Combination (PDPC) [5] and
Multiple Transform Selection (MTS) [6]. In short, the novel
technologies, which include QTMT partitioning structure,
extended intraprediction mode, PDPC, and MTS, signifi-
cantly enhance performance of H.266/VVC but lead sig-
nificantly to the computational complexity. +e intracoding
complexity of the VTM is 18 times that of the H.265/HEVC
test Model (HM) in “All Intra” configuration condition [7].
+us, it is essential for H.266/VVC to exploit a fast coding
algorithm which suffices the actual requirements of the
potential market.

+e H.266/VVC proposes some novel technologies for
intracoding based on H.265/HEVC and extends some pre-
vious methods, where the key concept in these tools is MTT
structure [8]. +e flexible block size can achieve excellent
coding performance, and the CU partition structure is the
core of the coding layer.+eQTMTpartition structure is used
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by H.266/VVC, which causes most of the increase in com-
plexity. Specifically, the coding tree unit (CTU) is firstly
partitioned by a quad-tree (QT). Afterwards, the quad-leaf
node is further divided by MTT structure. +ere are four
partition types in MTT structure, including vertical binary
tree partition (BV), horizontal binary tree split (BH), vertical
ternary tree split (TV), and horizontal ternary tree split (TH).
+erefore, the MTTstructure supports more CU shapes than
QT, which obtains more efficient encoding performance.
Moreover, once the CU is partitioned byMTTstructure, QTis
no longer valid in the subsequent partition process, which can
simplify the CU partition process. +e QT and MTT size are
restricted by some defined encoding parameters. +e CU size
is changed from maximum 128 × 128 to minimum 8 × 4 or
4 × 8 based on these parameters and the split type. 128 × 128
refers to the normal size, and the maximum accepted size is
64 × 64 in “All Intra” configuration.

Many types of leaf nodes which are called CU are used
for prediction and transformation. +erefore, the QTMT
structure eliminates the hierarchical structure of CU, PU,
and TU. As shown in Figure 2, the solid black line indicates
QT partition and the dotted line indicates MT partition in
QTMT architecture. As we all know, the H.265/HEVC
searches for the best CU partition, which can suffer from the
high complexity by using QT structure. Compared to QT
structure of H.265/HEVC, the process of obtaining the best
CU is more complex in QTMT structure of H.266/VVC.
Furthermore, more CU shapes greatly increase the com-
plexity of intraprediction and have longer encoding time but
greatly improve the encoding efficiency in H.266/VVC.

+e remainder of this paper is organized as follows:
Section 2 shows the related work. In Section 3, the proposed
fast CU partition method is described in detail, which in-
cludes observations and motivations, texture classification
model based on threshold, an adaptive CNN structure, and a
CNN structure based on multifeature fusion. Section 4
shows the experimental results. Finally, the conclusion is
provided in Section 5.

2. Related Work

In view of the above problems, there are some works on CU
partition decision of H.266/VVC to reduce the coding
complexity. Recently, many fast CU partition methods have
been proposed in literatures, which include heuristic and
learning-based method. +ere are heuristic schemes: a fast
intracoding method based on H.266/VVC is presented in
[9], which combines a low-complexity CTU architecture
derivation method and a fast intramode decision method to
accelerate running speed.+e local constrained CU partition
decision methods are illustrated in [10]. An effective QTBT
partition decision method is designed in [11] to achieve a
good balance between the computational complexity and
RD performance. A fast intra-CU partition decision method
based on spatial characteristics is introduced in [12], where
an adaptive threshold is obtained by adjusting the error rates
of OS_BTD2 and ES_BTD3. Several fast intra-algorithms
which improve the overall balance between complexity and
gain in H.266/VVC are proposed in [13] to reduce the

number of tests. A new fast CU partition algorithm based on
Bayesian decision rule is proposed in [14]. Using the average
depth information of the adjacent largest coding unit (LCU)
is devised in [15] to determine whether the CU split is
terminated in advance or not. Moreover, the unnecessary
RDO is effectively eliminated by using the coding mode of
the adjacent CUs to accelerate encoding in H.266/VVC. A
pruning algorithm based on the prediction CU size is in-
troduced in [16] to reduce the redundant MTT partition. A
method which can skip the redundant MTT pruning for
H.266/VVC is presented in [17]. A fast split algorithm based
on variance and gradient is designed in [18] to solve the
rectangular spilt problem in H.266/VVC.

Recently, the learning-based methods have attracted
more and more attention and have made significant im-
provements in performance, which are divided into two
parts to present. One is the learning-based algorithm in
H.265/HEVC. In [19], the CU partition process is modeled
as a two-class classification problem for H.265/HEVC. A
deep CNN structure is presented in [20] to predict the CTU
partition instead of RDO calculation. +e deep learning
approaches are proposed in [21, 22] to predict the CU
partition for reducing the complexity of H.265/HEVC. +e
other part is that some experts propose algorithms based on
deep learning and machine learning (ML) to accelerate the
coding process of H.266/VVC. A fast QTBT partition
method based on ML technology is introduced in [23],
which utilizes random forest classifiers to determine the
partition modes of each CU. Fast CU depth decision al-
gorithms based on CNN are proposed in [11, 24] to model
the QTBTpartition depth range as a multiclass classification
problem. A fast intraprediction mode decision algorithm
based on ML technology is introduced in [25], which can
reduce encoding time. An adaptive CU split decision
method based on H.266/VVC is designed in [26], which uses
a variable CNN to avoid the calculation of full RD. A light-
weight and adjustable QTBT partition scheme based on ML
technology is presented in [27], which achieves an adjustable
compromise between reduced complexity and reduced video
quality in H.266/VVC. A technical overview of a deep-
learning-based method aiming at optimizing next-
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Figure 1: 67 intraprediction modes of VVC.
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generation hybrid video encoders is provided in [28] for
driving the CU partition. A CNN oriented fast QTBT
partition decision scheme is introduced in [29] for inter-
coding. +is method analyzes the QTBT in a statistical way,
which effectively guides us to design the structure of CNN.

Previous methods on CNN in H.266/VVC are generally
for QTBT structure. However, the structure of H.266/VVC
has developed into QTMT structure, which makes the high
computational complexity. Furthermore, since the depth of
CTU has no efficiency and RDO is an operating of time
consumption, the depth of CTU and RDO of CU partition
decision are difficult in the practical applications. To resolve
these issues in the existing algorithms, this paper proposes
an adaptive CU split decision method based on deep
learning andmultifeature fusion.We use multifeature fusion
in combination with deep learning to solve the problem of
coding complexity. +e division depth and shape of CU in
QTMT architecture are closely related to the texture com-
plexity. Moreover, the deep learning can better summarize
and analyze the data, which utilizes this knowledge to build
models to support decisions Firstly, we develop a texture
classification model based on threshold to recognize com-
plex and homogeneous CU. Secondly, if the complex CUs
belong to edge CU, the CNN structure based onmultifeature
fusion is used for classification. Otherwise, the adaptive
CNN structure is utilized to classify CUs. Finally, the di-
vision of CU is determined by the trained network and the
parameters of CU.When the CU is split, the above two CNN
training schemes can successfully process the training
samples and avoid the whole RDO calculation.

3. The Proposed Algorithm

+e CNN tools are applied by many applications in the field
of video coding. +e proposed method introduces an
adaptive CU split decision method based on deep learning
and multifeature fusion. Firstly, we develop a texture clas-
sification model based on CU size, QP, and texture

complexity to identify complex and homogeneous CUs in
advance by calculating the texture metric. Specifically, if
standard deviation (SD) which measures the texture com-
plexity is less than the threshold that is calculated from the
texture classification model, the CU is considered as ho-
mogeneous CU and is nonsplit. On the contrary, the CU is
considered as complex CU. Secondly, if the CUs belong to
edge CU, CNN structure based on multifeature fusion is
performed to classify CUs. Otherwise, adaptive CNN
structure is performed to classify CUs. Finally, according to
the above CNN structure inference result, if the current CU
is nonsplit and is the smallest CU, the CU division process is
termination. Otherwise, the SD and threshold of the sub-CU
are recalculated until the end. Figure 3 shows the flowchart
of the proposed method based on deep learning and mul-
tifeature fusion. In this section, we will mainly show texture
classification model based on threshold, the adaptive CNN
architecture, and CNN structure based on multifeature
fusion.

3.1. Observations andMotivations. +e previous algorithms
always input the original block for intraprediction in CNN
structure, because the original blocks contain some features
of the block. +e concept of intra-subpartition (ISP) is
introduced in H.266/VVC, which can divide the intra-CU
into several subblocks. +e ISP may prevent the original
block from correctly displaying the CU split function. In
addition, the shapes of CUs are square in H.265/HEVC,
while there are both square and rectangle in H.266/VVC.
+e solutions which have some disadvantages about CU
partition in H.265/HEVC cannot be directly used in H.266/
VVC. Specifically, the solution is that we use the same size
which is obtained using downsampling of all CUs as input
in CNN structure, which will lose valuable original in-
formation. +e other method is that we train numerous
CNNs for all kinds of CU size, but these CNNs networks are
not efficient.
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Figure 2: QTMT structure: (a) QTMT partition for CTU; (b) the corresponding tree representation.
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In addition, the optimal CU size depends on the com-
plexity of adjacent blocks in intracoding of H.266/VVC.
+erefore, the pixels of adjacent blocks are significant for
high prediction preciseness. In adaptive CNN structure, only
the residual blocks of neighboring blocks are used as input.
Although the input size is different, the input size will change
into the same before the fully connected layer (FCL).
Compared with the traditional CNN classifiers with similar
network structure, the proposed CNN classifier is designed,
which can perform better classification for all kinds of CU
size in H.266/VVC. Moreover, we have also designed a CNN
structure based on multifeature fusion for the case that the
edge CU may be misclassified, which utilizes the texture
complexity and depth feature of edge CUs as input, thereby
improving the accuracy of classification. +e CNN classifier
is used to classify CUs, which may not be essential for CUs in
homogeneous regions. +us, before performing adaptive
CNN structure and CNN structure based on multifeature
fusion, we use heuristic method to avoid unnecessary cal-
culation, which can obtain good efficiency.

Based on the above observation and motivations anal-
ysis, a texture classification model based on threshold is
developed to recognize CUs in homogeneous region, and the
homogeneous regions are determined to be nonsplit. To
further reduce the coding complexity, an adaptive CNN
structure and CNN structure based on multifeature fusion

are designed and trained for CUs in complex regions.
Moreover, the loss function (LF) is used to improve the
classification accuracy, thereby improving the coding
property.

3.2. Texture Classification Model Based on ,reshold. +e
texture classification model based on threshold is developed
to enhance split precision in this paper, which has no ad-
ditional complexity. We calculate the texture complexity for
CUs by utilizing SD and perform a large number of ex-
periments. +en, a threshold model which can improve split
accuracy is established based on the empirical function of
QP and depth.

In the encoding process, the larger CUs are used to the
single area of image content. In contrast, the smaller CUs are
used to areas with rich details. +is phenomenon can mo-
tivate us to use the texture complexity of the current CU to
determine whether CU is directly split or skipped, and the
variance of CU indicates the degree of energy dispersion
between the two pixels of CU. +erefore, we classify CUs
according to the texture complexity. In addition, we use SD
to calculate the texture complexity according to the method
of calculating texture complexity in [30], which is calculated
as follows:
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where Wand H represent the width and height of CU, re-
spectively. p(x, y) represents the pixel value at (x, y).

According to a lot of simulation experiments, we dis-
cover that the threshold is related to depth and QP of CU.
+e best CU depth distribution in four different sequences is
calculated in experiments. We find that the CUs at each
depth do not exceed about 40% and the percentage of CU is
smaller when the depth value is smaller. According to the
statistical results, we consider that the CU depth should be
applied to the threshold model and should record the effect
of depth in the threshold model.

In different types of frame, the depth distribution of CU
is different.+e calculation method of the depth is defined as

PCU Depth � HCU Depth × WCU Depth, (2)

PFrame � HFrame × WFrame, (3)

RCU Depth �
PCU Depth × NCU Depth

PFrame
× 100%, (4)

EDepth � 􏽘
4

Depth�0
Depth × RCU Depth, (5)

where W, H, and Depth represent width, height, and depth
of CU, respectively. PCU Depth and PFrame denote pixel in
depth level and in frame, respectively. EDepth represents the
CU depth expectation of different frame types.
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Figure 3: Flowchart of the proposed method.

4 Scientific Programming



We can visualize the CU coded video sequences. +e CU
partition in a certain frame of FourPeople video sequence is
shown in Figure 4. According to a large number of ex-
periments, we conclude that the CU size will increase as the
QP increases. When QP value is small, the probability of
smaller CU is high to avoid larger distortion. Furthermore,
other video sequences also have similar phenomenon. Based
on the above analysis, it concludes that QP, similar to CU
depth, is also an essential element in the texture classification
model based on threshold.

Figure 5 demonstrates the correlation in QP, CU depth,
and threshold. It is observed that the threshold decreases as
QP and CU depth decrease, which can further validate the
above analysis. In order to increase the probability of de-
termining the texture region, the threshold will also become
smaller when QP becomes smaller. +erefore, an empirical
texture classificationmodel based on threshold is established
in this paper, where the threshold is a function modeled by
the empirical function of QP and CU depth.+e threshold is
defined as

Th � F(QP) × G(Depth), (6)

F(QP) �
QP

������������
100 − 1.7 × QP

√ ,

G(Depth) � 􏽘
3

Depth�0
Depth × RCU Depth,

(7)

where Th denotes the threshold of texture classification.
Depth denotes the depth of the current CU. F(QP) and
G(Depth) represent the empirical function. Generally, the
threshold depends on two empirical functions and it is hard
to make the rigorous proof. +erefore, we change the pa-
rameters in two empirical functions and observe the per-
formance. Finally, we gain the threshold.

We compare the calculated SD with threshold in the
proposed algorithm. If SD is less than the threshold, the CU
belongs to homogeneous area and no longer split. Other-
wise, the proposed adaptive CNN classifier and CNN
classifier based on multifeature fusion are utilized to classify
the complex CUs. In our series of comprehensive tests, the
CUs in homogeneous region are identified through the
threshold-based texture classification model to skip division.
+e proposed method does not need to save the external
time of CNN, because a part of CU is determined as nonsplit
by heuristic method.

3.3. Adaptive CNN Structure. +e QTMTpartition structure
which gets CUs with square and rectangular is one of ef-
fective tools in H.266/VVC. In this case, embedding CNN
into the encoding step will cause problems because of
various sizes in H.266/VVC. Since the general input is a
fixed-size CU in the previous research on H.265/HEVC such
as [21], the method of downsampling for the input block
causes a lot of valuable classification information to be lost.
Obviously, this method does not have the optimal solution
to solve the problem of various sizes in H.266/VVC. +e
other method is that we train numerous CNNs for all kinds

of CU sizes, but the efficiency of these CNNs network is not
high. +erefore, this is also not the best method to settle this
problem.

In order to solve the above issues, we propose an
adaptive CNN structure, in which the max pooling layer that
is one of the effective tools of CNN is customized. Due to the
characteristics of adaptive CNN structure, the multishape
CUs are processed by only trained CNN and do not need
different CNN networks to handle different CU sizes, which
greatly improves the network utilization. At the same time,
the input of CNN is also adjusted appropriately, where we
use the residual of neighboring blocks of the current CU as
the input of CNNs. Figure 6 shows the locations of
neighboring blocks. In addition, the optimal CU size de-
pends on the complexity of neighboring blocks in intra-
coding of H.266/VVC. +erefore, the pixels of adjacent
blocks are important element for high prediction precision.
Before CU split in intraprediction, the trained CNN models
are embedded into the encoder. +e training time of CNN
model is not counted in the total coding time. +erefore, the
overhead generated by CNNs has no effect on the total
coding time. Furthermore, compared to the conventional
encoding process, the proposed method cannot cause the
redundant iterations for RDO, which can decrease the
computational complexity of intracoding.

In order to determine the most suitable multi-input CNN
structure, we evaluate the prediction accuracy based on the
difference in the number of inputs, where Class A and Class B
sequences are used to evaluate the number of adjacent blocks
and the number of parameters (Conv, kernel, and FCL), as

Figure 4: +e CTU partition in FourPeople.
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Figure 5: +e correlation in QP, depth, and threshold.
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shown in Table 1. It can be seen from Table 1 that the increase
of the number of adjacent blocks and kernels leads to im-
proving the prediction accuracy. On the other hand, com-
pared with the kernel, the accuracy of CNN does not fluctuate
significantly for the adjustment of the number of Conv and
FCLs. +erefore, the number of convolutional layers, kernels,
and FCLs will affect the prediction accuracy, where the kernel
is an effective parameter for extraction feature map.

According to the evaluation, we select the best perfor-
mance conditions for CNN model in the proposed method.
+erefore, the proposed adaptive CNN method, which
consists of two convolutional layers, two FCLs, and ten
kernels, utilizes the residual blocks of neighboring blocks of
the current CU as input, as shown in Figure 7.

Input layer: the input of adaptive CNN structure is the
residual blocks of neighboring blocks of the current CU
to maintain valuable original characteristics.
Convolutional layers and max pooling layer: the first
layer is convolutional layer with ten kernels. +e kernel
in this layer is considered a feature extractor. +e
second layer and fourth layer are the adaptive pooling
layer that is designed based on the problem of CU shape
in H.266/VVC, where two adaptive pooling layers are
used for CUs with width or height greater than 32 and
16, respectively. +e pooling layer is used in CNN
transmission, which can retain useful information to
gain the same size before FCL. +e size of the adaptive
pooling layer is various by size of residual blocks of the
input to maintain valuable original features. Similarly,
the third and fourth layer implement convolution layer
and adaptive pooling layer.
Fully connected layer: after convolutional layer and
pooling layer, all input blocks will be converted into
4× 4 block and then enter the FCL. Each neuron in the
FCL connects with all neurons in the previous layer.
FCL can incorporate specific local information in
convolutional layer or pooling layer. Furthermore, the
width, height, and QP of CU are added as neuron of
FCL, because the width, height, and QP will affect the
final CU split decision, which can obtain better clas-
sification accuracy.
Activation function: in order to improve the perfor-
mance of the adaptive CNN network, the rectified

linear units (ReLU) function is generally used as the
activation function of each neuron in FCLs. It is worth
mentioning that all convolutional layers and hidden
FCLs are activated with ReLU.
Loss function: for a specific classification task, we need to
choose a suitable LF to improve the accuracy of clas-
sification. Because QP is a significant factor in the above
simulation tests, the adaptive CNN structure employs
the cross-entropy LF based onQP.+erefore, the penalty
can be adjusted by using QP, and LF will make CNN
structure more accurate. Based on the above analysis, the
classification result of the current CU is obtained from
the information of the neighboring blocks of the current
CU, and the LF is defined as

Jl � −
1
m

􏽘

m

i�1
ρ1 × s

i
llog

􏽢yi
l􏼒 􏼓 + ρ2 × 1 − s

i
l􏼐 􏼑log 1 − 􏽢si

l􏼒 􏼓􏼔 􏼕,

(8)

ρ1 �
QP

��������
QP + 800

√ ,

ρ2 �
1
ρ1

,

(9)

where si
l and 􏽢si

l denote the actual sample value and the
predicted sample value by the adaptive CNN structure,
respectively. m denotes the number of samples; ρ1 and ρ2
denote weighted modulus.

3.4. CNN Architecture Based on Multifeature Fusion. +e
input of the above mentioned adaptive CNN structure is the
residual blocks of adjacent blocks, but the edge CUs do not
have enough reference blocks. In order to improve the
accuracy of classification, we propose a CNN structure based
on multifeature fusion. Furthermore, we evaluate the pre-
diction accuracy based on the difference in the number of
parameters to determine the most suitable CNN based on
multifeature fusion. Table 2 shows the prediction accuracy of
CNN based on multifeature fusion under different param-
eter setting (Conv, kernel, and FCL).

Figure 8 shows a flowchart of CNN architecture. Based
on the traditional CNN structure, a CNN architecture
based on the fusion of texture and depth feature is
established, which uses the calculated SD and depth as the
input of the CNN architecture and is divided into two
channels. Each channel includes convolutional layers,
pooling layers, and FCLs. +e pooling layer is one of the
effective tools in the CNN architecture, where the type of
the pooling layer is the max pooling layer. In order to
improve the performance of the CNN network, all con-
volutional layers and hidden FCLs are activated with ReLU.
Moreover, the final output is classified by using the LF,
which is used to improve the classification accuracy. With
the above settings, the edge CUs in complex area are ac-
curately classified.

NB1 NB2

NB4

NB3

C

Neighboring block (NB)
Current CU

Figure 6: Neighboring block of the current block.
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3.5.CNNsTraining. In the traditional CNN training scheme,
all input feature sizes of the training samples are the same,
the training data will be divided into several batches, and the
training process is based on these batches. However, since
the shapes of CUs in H.266/VVC are different, it is im-
possible to train CNNs with the previous methods. In the
training process of the proposed adaptive CNN structure,
the same size in the training data is classified into the same
batch, and the different sizes are divided into different
batches. +erefore, the proposed adaptive CNN architecture
is trained in batches.

+e size of all input sizes of the training samples is fixed
in the traditional CNN training scheme. However, QTMT

structure divides the CU into square and rectangle, which
results in different shapes of the input CU. To solve this
issue, different CU shapes are classified into different batches
and the same shape CUs are grouped into a batch according
to the size of the input training data in the training process of
the proposed adaptive CNN method. We separately train
these different shapes of CU. In training process, the training
samples are firstly collected. +e training samples involved
in the training include the sequences “Tango2,” “Catrobot1,”
“Kimono,” “PartyScene,” “RaceHorses,” and “Johnny” un-
der four QPs (22, 27, 32, and 37); there are 60K in total. +e
videos with different resolutions make the training of CNN
structure more accurate. +en, different sizes of CUs will be
classified into different data sets. In addition, the input of the
adaptive CNN structure is the residuals of the neighboring
blocks of the current CU, which are separately trained in
Figure 7. And the parameters of the adaptive CNN structure
are not random, and the next training parameters are ob-
tained from the previous training. Finally, the training of
adaptive CNN structure is completed.

+e CNN structure based onmultifeature fusion uses the
same training samples to the adaptive CNN structure during
the training process. +en, the features are extracted from
the training samples. Further, the extracted sample features
are used as input of CNN structure based on themultifeature
fusion, which are divided into two-way training as shown in

Table 1: +e prediction accuracy of adaptive CNN under different parameter setting.

(%)
Number of parameters Number of inputs

Conv Kernel FCL NB2 and NB4 NB1, NB2, NB3, and NB4
Default parameter 2 6 2 73.43 76.82

Comparison of Conv 3 6 2 72.88 74.94
4 6 2 71.67 73.73

Comparison of kernel 2 8 2 80.55 82.76
2 10 2 88.96 91.67

Comparison of FCL 2 6 3 70.59 73.80
2 6 4 68.81 69.80

NB1

NB2

NB3

NB4

Input residual with 
various shape

input_width-cu_width
Input_height = cu_heighe

Conv1 (3 × 3 kernel)
+ Adaptive
pooling1

Conv1 (3 × 3 kernel)
+ Adaptive
pooling1

Conv2 (3 × 3 kernel)
+Adaptive
pooling2

Conv2 (3 × 3 kernel)
+ Adaptive
pooling2

Conv2 (3 × 3 kernel)
+ Adaptive
pooling2

Conv2 (3 × 3 kernel)
+ Adaptive
pooling2

Conv1 (3 × 3 kernel)
+ Adaptive
pooling1

Conv1 (3 × 3 kernel)
+ Adaptive
pooling1

FCL1

FCL1

FCL1

FCL1 FCL2

FCL2

FCL2

FCL2

Concatenate
FCL3

SizeX = int (input_width ≥ 32) + 1

SizeY = int (input_height ≥ 32) + 1

SizeX = int (input_width ≥ 16) + 1

SizeY = int (input_height ≥ 16) + 1
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Figure 7: +e proposed adaptive CNN structure.

Table 2: +e prediction accuracy of CNN based on multifeature
fusion under different parameter setting.

(%)
Number of parameters

Accuracy
Conv Kernel FCL

Default parameter 4 6 2 71.85

Comparison of Conv 2 6 2 74.88
3 6 2 79.67

Comparison of kernel 4 8 2 80.55
4 10 2 89.96

Comparison of FCL 4 6 3 70.59
4 6 4 73.81
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Figure 8. Finally, we gain the trained CNN structure based
on multifeature fusion.

4. Experimental Result

+is paper incorporates heuristic algorithm and CNN
methods. We compare SD value and threshold to effectively
identify homogeneous areas. In order to further assess the
accuracy of texture classification model based on threshold,
Pe is defined as follows:

Pe �
NSplit(h) + NNon split(c)

NSplit + NNon split
× 100%, (10)

where NSplit(h) is the number of homogeneous CUs and
NNon split(c) represents the number of complex CUs, which
are misclassified CUs. Split denotes CU split and Non split
denotes CU nonsplit. Furthermore, NSplit and NNon split
denote the number of split and nonsplit CUs, respectively.
+e texture classification model can achieve high classifi-
cation accuracy by verifying, which can precisely classify
textured areas, as shown in Table 3.

In order to evaluate the performance of the proposed
algorithm, this method has been embedded in VTM7.0 to
implement the simulation experiments. +e test video se-
quences are encoded with default parameters in “All Intra”
configuration. +e BD-rate reflects the performance of the
proposed method, and the time saving (TS) incarnates the
reduction in complexity, which is defined as

TS(%) �
TVTM7.0 − Tproposed

TVTM7.0
, (11)

where TVTM7.0 denotes the encoding time of VTM7.0 and
Tproposed denotes the encoding time of the proposed method.

Table 4 shows the coding performance of the proposed
scheme. In the proposed method, the trained CNN models
are embedded into the encoder to accelerate CU partition. In
addition, the training time of CNN model is not counted in
the total coding time. It is observed from Table 4 that the
proposed method can decrease 39.39% coding time and
increase the BD-rate to 0.86% compared with VTM7.0.
+us, the proposed method can effectively increase time
savings and have a good RD performance.

In order to assess the performance of the proposed
method, we compare the proposed method with state-of-
the-art fast methods of H.266/VVC, which use the same
configuration file to encode the test videos for fair com-
parison. +e experimental results of the proposed method
are compared with VTM7.0, while the experimental results

of these methods in FPIC [18], ACSD [26], and FCPD [31]
are compared with VTM4.0. It can be observed from
Table 5 that the experimental results of the proposed
method can save 39.31% coding time and maintain a
similar RD performance compared with VTM7.0. We can
see from Table 5 that FPIC, ACSD, and FCPDmethod have
good RD performance, but the coding time savings of
ACSD and FCPD method are less than the proposed al-
gorithm. Among the four methods, the BD-rate of the
proposed method is the smallest, while the BD-rate of the
FPIC method is the largest. It is observed that FPIC,
ACSD, and FCPD schemes have average BD-rate increase
of 1.39%, 0.99%, and 1.37%, respectively. Compared with
the proposed algorithm, the average BD-rate of FPIC,
ACSD, and FCPD method increases by 0.52%, 0.12%, and
0.50%, respectively. +e coding time saving of the pro-
posed algorithm is less than FPIC method, but the average
BD-rate increase is less than that of FPIC algorithm.
Furthermore, the coding time savings of the proposed
algorithm are better than ACSD and FCPD method. It can
be seen from Table 5 that the time savings of ACSD and
FCPD method increase by 5.82% and 9.78% compared
with the proposed method. +e experimental results may
fluctuate for different test videos, because high-definition
(HD) or ultra-high-definition (UHD) videos tend to have
larger CUs. And more misclassification results can lead to
more BD-rate. +e proposed algorithm attains better
coding property, which is primarily due to the threshold
model of the heuristic method and two improved CNN
structures.

Figure 9 shows RD performance for the proposed
method compared with VTM7.0 in test videos. It is observed
from Figure 9 that the proposed scheme can achieve con-
sistent performance in terms of RD performance compared
with VTM.

Figure 10 shows the simulation results of the proposed
scheme and state-of-the-art fast methods including FPIC,
ACSD, and FCPD method. Figures 10(a) and 10(b) show
the results of time savings and BD-rate, respectively.
Compared with ACSD and FCPD algorithm, the proposed
scheme has higher performance in reducing computational
burden, which can further save about 5.78%–9.82%
encoding time. Compared with FPIC, ACSD, and FCPD
algorithm, our proposed method has better coding effi-
ciency, which can further reduce 0.12%–0.52% BD-rate.
Such results show that the proposed scheme is effective for
all classifications of test videos and the computational
complexity is better than the state-of-the-art fast methods
of H.266/VVC.
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Figure 8: CNN architecture based on multifeature fusion.
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Table 3: +e classification probability of the texture classification model.

Test sequence Pe

Level (%) Depth� 0 Depth� 1 Depth� 2 Depth� 3

Class B (1920×1080) ParkScene 5.35 7.12 8.24 9.37
Cactus 4.13 6.22 5.68 5.18

Class C (832× 480) BQMall 2.14 4.95 5.12 6.3
PartyScene — 4.21 4.62 4.99

Class D (416× 240) BasketballPass — 6.76 5.81 4.75
RaceHorses — 5.11 6.15 7.04
Average 3.87 5.73 5.94 6.37

Table 4: +e coding performance of the proposed algorithm compared with VTM7.0.

Test sequence +e proposed method
BD-rate (%) TS (%)

Class A1
Tango2 0.78 38.87

FoodMarket4 0.82 39.96
Campfire∗ 0.89 41.55

Class A2
Catrobot1 0.92 40.14

DaylightRoad2 0.85 39.58
ParkRunning3∗ 0.81 38.22

Class B
Kimono 0.78 37.51
ParkScene 0.61 39.56
BQTerrace 0.76 41.79

Class C
PartyScene 0.37 36.73
RaceHorsesC 0.24 30.68
BasketballDrill 1.25 39.21

Class D
BlowingBubbles 0.83 40.87
RaceHorses 0.56 36.51
BQSquare 0.58 36.67

Class E
Johnny 1.56 43.78

FourPeople 1.34 46.51
KristenAndSara 1.57 40.85

Average 0.86 39.39

Table 5: +e coding performance of the proposed algorithm compared with VTM7.0 and previous works.

Test sequence +e proposed FPIC [18] ACSD [26] FCPD [31]
BD-rate (%) TS (%) BD-rate (%) TS (%) BD-rate (%) TS (%) BD-rate (%) TS (%)

Class B
1920×1080

Kimono 0.78 37.51 1.72 66.59 0.87 33.32 1.98 41.82
ParkScene 0.61 39.56 1.28. 56.28 0.83 35.41 1.38 31.60
BQTerrace 0.76 41.79 1.16 49.44 0.95 34.50 1.19 29.47

Class
C832× 480

PartyScene 0.37 36.73 0.28 41.71 0.55 31.10 1.05 35.23
RaceHorsesC 0.24 30.68 0.84 52.07 0.37 26.63 2.96 33.89
BasketballDrill 1.25 39.21 1.91 53.05 1.30 33.39 1.36 28.73

Class
D416× 240

BlowingBubbles 0.83 40.87 0.49 43.90 0.95 33.90 0.73 21.87
RaceHorses 0.56 36.51 0.54 44.93 0.71 31.79 1.59 31.83
BQSquare 0.58 36.67 0.17 32.34 0.68 30.73 -0.11 23.00

Class
E1280× 720

Johnny 1.56 43.78 3.07 62.55 1.63 38.73 1.51 24.44
FourPeople 1.34 46.51 2.55 62.18 1.38 38.01 1.37 26.65

KristenAndSara 1.57 40.85 2.56 60.82 1.61 34.84 1.53 25.32
Average 0.87 39.31 1.39 52.16 0.99 33.53 1.37 29.49
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5. Conclusion

+is paper proposes an adaptive CU split decision algorithm
based on deep learning andmultifeature fusion.+is method
develops a texture classification model based on threshold to
recognize complex and homogeneous CUs. According to the
adaptive CNN structure and CNN structure based on
multifeature fusion, the CUs of various shapes are classified.
+e CU partition is determined by the trained network and
various parameters of CU. +e proposed method can suc-
cessfully process the size of various training samples and
avoid the RDO calculation. +e experimental results show
the good performance of the proposed algorithm to achieve
fast encoding, which can save 39.39% of the encoding time.
Furthermore, the proposed method is superior to the state-
of-the-art methods with a better complexity reduction.
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