
Research Article
CSO-DRL:ACollaborativeServiceOffloadingApproachwithDeep
Reinforcement Learning in Vehicular Edge Computing

Yuze Huang , Yuhui Cao , Miao Zhang , Beipeng Feng , and Zhenzhen Guo

School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Correspondence should be addressed to Yuze Huang; huangyz@cqjtu.edu.cn

Received 3 April 2022; Revised 5 August 2022; Accepted 9 August 2022; Published 5 September 2022

Academic Editor: Ying Chen

Copyright © 2022 Yuze Huang et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In vehicular edge computing, vehicles move along the road and request the services from the nearest edge servers with low latency.
Due to the limitation of computation capacity of vehicular devices, the services should be o�oaded on RSUs equipped with edge
servers to provide service with low latency. Noticed that the location of service o�oading may a�ect the service requesting delay
directly, and it may exist some interrelationship between interacting services; all of these are rarely considered in recent studies. To
address such problems, we propose a collaborative service o�oading approach with deep reinforcement learning in vehicular edge
computing named CSO-DRL. Our approach �rst divides the road segments by k-means-based algorithm through analyzing the
trajectory data of vehicles, and then the o�oading location is determined by observing the vehicle running status. Secondly, the
interacting services are discovered by a parallel frequent pattern-based algorithm e�ciently. Furthermore, the collaborative
service o�oading algorithm is presented by the DDPG model for o�oading the interacting services, which can minimize the
service requesting delay and data communication delay between interacting services. Finally, the e�ciency of the algorithm is
evaluated by real-world data-based simulation experimental evaluations. �e results show our algorithm can obtain a lower delay
than other baseline algorithms in searching for the optimal service o�oading strategy.

1. Introduction

With the development of intelligent transportation tech-
nologies, the internet of vehicles (IoV) has raised public
attention and applications in the urban transportation
system, which can be regarded as the evolution of vehicular
ad hoc networks. In IoV, the vehicles equipped with in-
telligent devices are capable of vehicles to everything
communication (V2X) through the wireless network [1].
�rough the V2X communication, the vehicles can realize
the information interaction among vehicles, roadside units
(RSUs), and humans to assist the decision of auto-driving
and avoid the tra�c accidents [2]. In the IoV-based intel-
ligent transportation system, the data including vehicles
status information and tra�c information are collected by
numerous sensors for analysis and computation [3]. Since
the vehicles have limited computation capability to execute
complex computation tasks, the most direct approach is
transmitting the tra�c data to a cloud data center for

computing. Generally speaking, a cloud data center is far
away from the vehicles, which may bring some problems
such as network congestion, time-consuming, and data
privacy leaking [4]. With the complexity of urban tra�c, the
response time of cloud service will be increasingly di�cult to
satisfy the real-time decision for auto-driving. To solve such
problems, edge computing regarded as the supplement of
traditional cloud computing is used in IoV, which can ef-
�ciently provide service to users with low latency [5, 6].

In edge computing, the services are o�oaded on edge
servers (ESs) in close proximity to users, which mainly
undertake the capacity of data computing and most services
executions.While the intelligent devices are only responsible
for the services of raw data preprocessing and few non-
computation-intensive services executions, and then only a
small amount of intelligent computation services are de-
livered to remote cloud servers for execution [7–9]. As an
e�cient approach, service o�oading (also called compu-
tation o�oading) can address the problems of insu�cient

Hindawi
Scientific Programming
Volume 2022, Article ID 1163177, 15 pages
https://doi.org/10.1155/2022/1163177

mailto:huangyz@cqjtu.edu.cn
https://orcid.org/0000-0001-8837-5795
https://orcid.org/0000-0001-8604-7413
https://orcid.org/0000-0001-9959-7238
https://orcid.org/0000-0003-2511-5878
https://orcid.org/0000-0003-1724-8427
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1163177

devices and the high latency for cloud services, which has
raised public attention in edge computing [10–12]. During
the service offloading, the users’ experience may be greatly
affected by service requesting delays and the energy con-
sumption of intelligent devices [13, 14]. In such conditions,
some offloading approaches are produced to minimize the
latency and energy, but some defections are revealed in IoV
service offloading.

In vehicular edge computing, when the vehicles move
along the roads, the vehicles request the services from the
nearest edge server to gain low-latency services. Due to the
coverage limitation of the RSUs equipped with edge servers,
when the vehicles reach the boundaries of edge servers, the
edge servers must be switched to guarantee the continuity of
service, so the selection of edge servers may influence the
delay of service requesting to a large extent [15]. 'us, the
speed and location of vehicles must be considered in service
offloading. Moreover, the interrelationship between services
is another factor that must be considered in service off-
loading. Many services collaborate with different services to
complete a certain complex business goal, which may
produce lots of transmission data among the interacting
services. If the interacting services are offloaded separately,
the data communication delay between them will be in-
creased. As the number of data increases exponentially, the
communication delay between interacting services becomes
a nonignored problem for service offloading. 'roughout
the studies for services offloading [16, 17], although some
works have a focus on the collaborative problem of cloud
and edge servers [13, 18], a few studies considered the
collaboration of services. In summary, the mobility of ve-
hicles and the interrelationships between services bring new
challenges for service offloading.

To address the mentioned challenges, a collaborative
service offloading approach named CSO-DRL is proposed to
search optimal offloading strategy for interacting services. In
our approach, an algorithm for offloading location selection
is presented to consider the impact of speed and location of
vehicles. 'is algorithm divides the road segments by an-
alyzing the trajectory of vehicles, and then the location of
offloading is determined by the status of vehicles. Fur-
thermore, the interacting services are discovered based on a
parallel frequent pattern mining algorithm. Finally, we
constructed the system models and put forward a collabo-
rative offloading algorithm based on deep reinforcement
learning to offload the interacting services while considering
the optimization problem for minimizing the service
requesting delay and data communication delay between
interacting services. Specifically, the contribution of this
paper is threefold as follows:

(i) An offloading location decision algorithm is pre-
sented by analyzing the trajectory of vehicles, which
divides the road segments with the k-means clus-
tering algorithm first, and then the offloading lo-
cation is determined via the status of vehicles.

(ii) In order to reduce the service requesting delay and
data communication delay, the interacting services
are discovered by a parallel frequent pattern-based

algorithm first, and then the offloading models are
constructed by analyzing the communication en-
vironments and the computation models.

(iii) 'e collaborative service offloading algorithm with
deep deterministic policy gradient is put forward to
obtain the optimal service offloading strategy. 'is
algorithm reveals the interrelationship of interact-
ing services by minimizing the service requesting
delay and data communication delay in service
offloading.

'e rest of this paper is organized as follows. Section 2
introduces the related work of this research. Section 3
presents an overall framework of the collaborative service
offloading, and then an offloading location decision algo-
rithm and the systemmodel based on the interacting services
discovered are produced in this section. Furthermore, a
collaborative service offloading algorithm with deep deter-
ministic policy gradient (DDPG) model is proposed to
offload the interacting services in Section 4, which can re-
alize the optimization of minimizing the service requesting
delay and data communication delay between interacting
services. Finally, the experimental evaluations are conducted
in Section 5, and then we conclude this paper in Section 6.

2. Related Work

With the advent of the internet of everything, the data
produced and collected by the various sensors in IoT are
experiencing a steep rise [19–21]. 'ough the traditional
cloud computing paradigm can solve the inefficient com-
putation capacity of intelligent devices, it can also bring
some problems, such as high latency, network congestion,
and data privacy leaking. In order to address such problems,
a new computing paradigm named edge computing is in-
troduced [22]. In edge computing, the data are preprocessed
by intelligent devices, and the edge servers nearby users
undertake the majority of tasks for computing data and
executing the services, while the remote cloud servers are
only responsible for the training of deep neural network
models [23, 24]. Due to the resource-constrained of end
devices, the services should be offloaded on edge servers or
cloud servers [25].

Service offloading (also called computation offloading)
aims to address the inefficient storage capacity, computing
resources, and energy of numerous devices at the user level
[26]. In the depth of offloading researches, the service off-
loading mainly contains offloading decisions and offloading
optimization. Offloading decision is mainly studies on
whether the service should be offloaded or not, and which
service should be offloaded. 'e main studies can be divided
into two types, which are 0/1 offloading and partial off-
loading [27, 28]. 0/1 offloading means the service can be
executed either locally or on the other devices fully, which
cannot archive the optimal delay. In partial offloading, the
service can be split into a quantity of subservices. 'e off-
loading strategy is responsible for determining which sub-
services should be executed locally and which part should be
executed on edge or cloud. During the service offloading,

2 Scientific Programming

latency and energy are the main factors considered by re-
searchers. For time-sensitive services, for example, VR
gaming and multimedia services, the researchers mainly
focus on how to reduce the latency [16]. Some studies have
examined the optimization of latency and energy together,
which is difficult to search for the balance optimal result in
latency and energy consumption [29]. Some studies noticed
that deep reinforcement learning (DRL) is a better way to
search for the optimal offloading strategy than the tradi-
tional optimization algorithm. Since then, the task off-
loading approaches with deep reinforcement learning are
increasingly, and some efficient approaches based on various
DRL algorithms are introduced to get the optimal latency or
energy [30–32]. Besides these studies, the load balance
brings new challenges for resource allocation; some effi-
ciency approaches are presented to address these challenges
[33, 34].

Internet of vehicles (IoV) is a typical IoT, which connects
vehicles and RSUs through wireless communication tech-
nologies. As the number of vehicles increases exponentially,
as a complex system, the cloud computing-enabled IoV
cannot meet the real-time demands for vehicular service,
while vehicular edge computing (VEC) can provide lower
data process delay and a more stable network transmission
rate. Some studies have introduced for VEC framework and
task scheduling in VEC [35, 36]. In IoV, since the vehicles
move along the roads, the task offloading in VEC is a dy-
namic process. 'e new challenges for task offloading in
VEC have been produced, and some efficient approaches
have been introduced. Wang et al. [37] put forward a so-
lution for task offloading in the fog-based IoV system, which
decomposes the offloading optimization problem into two
subproblems and schedules the traffic queue between dif-
ferent edge servers, the experimental evaluation results show
that the algorithm can obtain the lower latency than other
algorithms. In [38], the privacy conflicts of offloading are
considered, and the NSGA-II algorithm is designed to solve
the multiobjective optimization for reducing the service
computation delay and the energy consumption of devices
while guarding against privacy conflicts. He et al. [39]
considered the QoE of services, and then a DRL-based al-
gorithm is introduced to save energy consumption and
improve the QoE value.

In the sight of these studies, few works have examined
the location selection and the data communication delay
between interacting services, which are the nonignored
factors for service offloading. In view of the importance of
location decisions for offloading and the interrelationships
between services, this paper proposes a collaborative service
offloading approach with deep reinforcement learning to
address the above challenges.

3. System Model and Problem Formulation

In this section, we present the framework of the collaborative
service offloading approach first, and then the algorithm for
offloading location selection is produced. Finally, the system
model, contained communication model, and computation
model for our approach are put forward to formulate the

offloading problem, which should be solved in the following
sections.

3.1. Framework of Collaborative Service Offloading. In ve-
hicular edge computing, the vehicular devices collect the
data from numerous sensors and then transmit the pre-
processed raw data to RSUs equipped with edge servers. 'e
RSUs receive the data and execute the service to send back
the decisions to vehicle users. Due to the limitation of
computation capacity of vehicular devices, the computing-
intensive services should be offloaded to the edge servers,
and the vehicular devices only undertake the task of pre-
processing the raw data and execute the noncomputing-
intensive services. 'us, how to offload the services with low
latency is important for vehicular edge computing.

As Figure 1 shows, the vehicles move along the road and
communicate with RSUs through a wireless network. Due to
the coverage limitation of RSU, the vehicle cannot request
the service from a fixed RSU. When the vehicle moves at the
boundary of RSU, the network should be handoff and the
vehicle accesses another RSU nearby the vehicle. 'erefore,
the mobility of the vehicles may affect the service requesting
a delay. In the sight of the studies for service offloading, most
of them focus on the optimization of service requesting a
delay, and few of them study the location selection for
service offloading. In order to obtain a lower delay, during
the process of service offloading, the location selection for
offloading is an important problem, which must be con-
sidered. Besides offloading location selection, the interre-
lationship of services is another nonignored problem for
service offloading. We noticed some services may interact
with each other to complete a complex business goal, which
may produce lots of transmission data among them. If the
interacting services are offloaded separately, the data
communication delay between them will be increased. 'us,
the data communication between these interacting services
is a nonignored factor.

In order to address the problems mentioned above, we
propose a collaborative service offloading approach with
deep reinforcement learning named CSO-DRL to offload the
interacting services. As Figure 2 shows, the k-means-based
road segments dived algorithm is presented first, and then
the suitable RSU for offloading is selected based on the
mobility of vehicles. Furthermore, the interacting services
are discovered by analyzing the service requesting log to
reveal the relationship between interacting services. Finally,
a DDPG-based collaborative service offloading algorithm is
presented for offloading the interacting services, which can
optimize the service requesting delay and data communi-
cation delay between interacting services, the detailed
process can be expressed as follows.

Step 1. 'e trajectory data of vehicles are collected, and then
a k-means-based road segments dividing algorithm is put
forward to obtain the road segments information. For each
segment, an RSU is deployed as the location of service
offloading in this segment.

Scientific Programming 3

Step 2. A vehicle is randomly selected to observe the run-
ning status. When the vehicle reaches the boundary of this
segment, the RSU should not be switched to reduce the time
consumption produced by network handoff; otherwise,
another RSU is selected for offloading.

Step 3. 'e service requesting log is exacted to discover the
interacting relationship for services. A parallel frequent

pattern-based algorithm is presented to mine the frequent
service 2-itemsets for interacting services, which can be
found in our previous works [40, 41].

Step 4. A DDPG-based collaborative service offloading al-
gorithm is proposed to offload the interacting services,
which can optimize the service requesting delay and data
communication delay between interacting services. In this

Location 3

Location 2
Location 1

Serives

Figure 1: Vehicular edge computing scenario.

Service
Request Log

Interacting Services Discovery

Interacting
Services

Road Segments

Vehicles
trajectory

Offloading
Location Decision

Road
Segment 1

Road
Segment 2

Road
Segment n

Interacting
Services

Interacting
Services

Interacting
Services

EviromentState

Offloading
Stategy
Eviroment

State

Offloading
Stategy

Eviroment

State

Offloading Stategy

DRL Model

Figure 2: Framework of CSO-DRL in VEC.

4 Scientific Programming

algorithm, the training model is deployed on the cloud
servers to receive the vehicle running environment state, and
then the optimal offloading strategy is obtained and per-
formed after numerous interaction computing.

3.2. Offloading Location Decision. In VEC, the mobility of
vehicles may affect the service requesting a delay. Due to the
coverage limitation of each RSU, the vehicles access the dif-
ferentRSUswhen the vehicles reacheddifferent locations.'e
selection of offloading location is an important problem,
which should not be ignored during the service offloading. In
this section, we put forward a service offloading location
selectionapproach toassist serviceoffloadingactiondecisions.

In reality, it is difficult to deploy the edge servers on all
the RSUs, as it is a time-consuming and resource-consuming
process. Hence, a k-means-based algorithm is introduced to
divide the road segment and select the RSU to deploy the
edge server as the offloading location. In this algorithm, the
trajectory data of vehicles are collected as the input of our
proposed algorithm, and then the segments of the road are
divided by a k-means clustering-based algorithm. In our
algorithm, the distance of time ti and tj can be expressed as
dij, which is computed by the Euclidean distance as follows:

dij �

������������������������

lonti
− lontj

􏼒 􏼓
2

+ lati
− latj

􏼒 􏼓
2

􏽳

, (1)

where lonti
denotes the longitude of the vehicles in time

episode ti and the latitude of the vehicle in time episode ti

can be denoted as lati
.

'e mobility of vehicles may produce the dynamic of
service requesting delay. During the services offloading, the
main purpose is deciding the strategy of offloading and
optimizing the service requesting delays, but the location
decision is also a nonignore problem, which may affect the
time delay. 'us, we put forward an algorithm for dividing
road segments based on the k-means clustering algorithm
[42]. Details of this algorithm can be found as Algorithm 1
shows.

With the road segments divided, we select an RSU in
each segment to equip with the edge server, which mainly
undertakes the task of receiving the data transmitted from
vehicles and executing the computing-intensive services
requested by the vehicles running in the area of this road
segment. For each segment, a vehicle is randomly selected as
the observed object. When the vehicle moves in the segment
and the corresponding edge server is selected as the off-
loading location. With the running of the vehicle, the ve-
hicle may reach the boundary of the segment; the edge
server should not be switched to reduce the time con-
sumption produced by the network handoff. In each road
segment, the vehicle is observed, and the environment states
are transferred to the collaborative offloading model, which
is deployed on the cloud server. After the iteration com-
puting, the offloading actions are obtained and sent to the
vehicle for performing. If the vehicle moves out of the
coverage of the current segment, the edge server must be
switched and another RSU will be selected as the offloading
location, and then the training steps are adopted as previous
actions.

Input. Data set of vehicles trajectory Vt; number of road segments k

Output. Road segments R � r1, r2, . . . , rk􏼈 􏼉

(1) Select the k samples as the initial vector u1, u2, . . . , uk􏼈 􏼉.
(2) while True do
(3) num � 0
(4) for i � 0, 1, . . . , k do
(5) Ci � Φ
(6) end for
(7) for j � 1, 2, . . . , n do
(8) Compute the distance of vj from each vector ui(1≤ i≤ k) according to equation (1).
(9) Determine the clusters’ label according to the nearest vector, τj � argmini∈ 1,2,...,k{ }dji

(10) rτi
� rτi
∪ vj

(11) end for
(12) for i � 1, 2, . . . , k do
(13) ui

′ � 1/Ci􏽐x∈Ci
x

(14) if ui
′ ≠ ui then

(15) ui � ui
′

(16) else
(17) num + +

(18) end if
(19) end for
(20) if num� k then
(21) break
(22) end if
(23) end while
(24) returnR � ri, r2, . . . , rk􏼈 􏼉

ALGORITHM 1: Algorithm for dividing road segments.

Scientific Programming 5

3.3. System Model. In this section, the system model, con-
tained communication model, and computation model are
presented to formulate the problem of our approach.

Compared with previous studies, our approach offloads
the interacting services to optimize the service requesting
delay and data communication delay. In our previous
works [40, 41], a parallel frequent pattern-based algorithm
is presented to discover the interacting services. In this
algorithm, the service requesting log denoted as EL≜ cid,{

Ts, 􏽑} is adapted as the input of the interacting services
discovery algorithm, where cid denotes the nonempty set
of service requesting case ID and the Ts denotes the finite
serial of time stamps. 'e 􏽑 is the finite serial of services.
We noticed that a composition service is composed of a
series subservices to complete a certain complex business
goal, which can be denoted as Si � s1, s2, . . . , sn􏼈 􏼉. In these
subservices, it may exist the interrelationships between
subservices. In our algorithm, the fine-grained frequent 2-
itemsets of services (also called interacting services pairs)
are discovered by a parallel frequent pattern-based algo-
rithm directly, which can reveal the interrelationships
between them. 'e details can be found in our previous
works [40, 41]. Finally, the interacting services are off-
loaded by our CSO-DRL algorithm, which can be found in
Section 4.

3.3.1. Communication Model. In order to make this paper
clear, we give the important notations in our paper first,
which can be found in Table 1.

Since the signal will be affected Gaussian white noise
during the transmission process, we construct the com-
munication model with Gaussian white noise to reflect the
real communication channel. Here, we assume the trans-
mission power is fixed, which can be denoted as P. 'e
standard path loss propagation index can be denoted as θ. In
IoV, the vehicles move along the road and access the service
from the nearest edge server at RSU; thus, the distance
between the vehicle and edge server in a time slot t can be
denoted as dt. 'e signal-to-noise ration (SNR) of the
communication channel can be expressed as follows:

SNR �
PHd−θ

t

σ2
, (2)

where σ2 is the power of Gaussian white noise andH denotes
the channel gain. So the transmission rate can be given as
follows:

R � Wlog(1 + SNR), (3)

where W denotes the channel bandwidth.

3.3.2. Computation Model. In this paper, we considered the
interrelationships between interacting services. If some
services are offloaded to remote cloud servers, which may
produce lots of data communications between them. In the
VEC system, due to the computation limitation of vehicular
devices, the vehicular devices offload the portion services to
RSUs equipped with edge servers, while the remaining
services are locally executed at devices.'e RSUs will receive
the preprocessed data and execute the computing-intensive
services, and then the decision will be sent back to vehicular
users. Hence, the partial service offloading manner is
adapted in each time slot T. 'e offloading manner contains
three parts, which are locally computing, partial offloading
on edge servers, and fully edge computing. Next, we will give
the service delay model for these three parts:

(A) Locally computing. In our approach, the services
without high computation capacity can be com-
puted on the devices directly. So the computation
delay can be given as follows:

T
local
i �

Ci

fdev
, (4)

where fdev denotes the computation capacity of the
vehicular device and the computation capacity for
executing the service si can be denoted as Ci.

(B) Partial offloading. Due to the computation capacity
limitation of the vehicular devices, the services are
offloaded by a partial offloading strategy. In these
composition services, some subservices are executed
on vehicular devices, but some computation-in-
tensive subservices should be offloaded on RSUs
equipped with the edge servers; therefore, the data
produced by these services should be transmitted to
the edge servers. 'e time delay can be expressed as
follows:

Table 1: List of important notations.

Notations Description
H Channel power gain
P Transmission power
σ2 Noise power
W Transmission bandwidth
Ci Computation capacity for executing service si

fdev Computation capacity of devices
fedge Computation capacity of edge servers
Doff

i Data transmission size from devices to edge servers
Coff

i Computation capacity for executing the offloaded service
Clocal

i Computation capacity for executing the service deployed on the devices
Dre

j Data communication size between interacting services

6 Scientific Programming

T
par
i � max T

local
i , 2T

tran
i + T

edge
i􏼐 􏼑, (5)

where Ttran
i denotes the transmission delay for data

transmitting and T
edge
i denotes the computation

delay for the edge computing part. 'ese can be
found as follows:

T
tran
i �

D
off
i

R
,

T
edge
i �

C
off
i

fedge
,

(6)

where Doff
i denotes the transmission data to edge,

Coff
i denotes the computation capacity for executing

the offloaded services, and fedge denotes the com-
putation capacity of the edge server. 'us, the delay
for partial offloading can be expressed as follows:

T
par
i � max

C
local
i

fdev
,2

D
off
i

R
+

C
off
i

fedge
􏼠 􏼡, (8)

where Clocal
i denotes the computation capacity for

executing the services deployed on devices.
(C) Fully offloading. For the computation-intensive

services, all of these should be offloaded on edge
servers; thus, the delay can be expressed as follows:

T
full
i � 2

Di

R
+

Ci

fedge
, (9)

where Di is the data for executing these services and
the Ci denotes the computation capacity for exe-
cuting the service.

3.4. Problem Formulation. Based on the description of the
system problem in the above section, the delay can be
expressed as follows:

Ti �

Ci

fdev
,

max
C
local
i

fdev
, 2

D
off
i

R
+

C
off
i

fedge
􏼠 􏼡,

2
Di

R
+

Ci

fedge
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Besides the system computation model produced in the
above section, we noticed that the data communication delay
between interacting services is the nonignore problem. In
this system, we assume the number of interacting service
pairs is n, and the number of interacting service pairs ex-
ecuted on vehicular devices is a; thus, the latency of the
system can be described as the following equation:

Ti �

Ci

fdev
,

max
C
local
i

fdev
, 2

D
off
i

R
+ 􏽘

n−a

j�1

D
re
j

R
+

C
off
i

fedge

⎛⎝ ⎞⎠,

2
Di

R
+ 􏽘

n

j�1

D
re
j

R
+

Ci

fedge
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where Dre
j denotes the data communication size between the

interacting services.
In our approach, we let λ ∈ [0, 1] denotes the ratio of

service offloading. So Doff
i � λ∗Di. Finally, the latency of

our system can be given as follows:

T
sum
i � max (1 − λ)

C
local
i

fdev
,􏼠

λ 2
Di

R
+

C
off
i

fedge
􏼠 􏼡 +􏽘

n−a

j�1

D
re
j

R
⎞⎠.

(12)

In this paper, the purpose is to optimize the latency,
which combines the service requesting delay and data
communication delay between interacting services.'us, the
optimization function can be given as follows:

Min T
sum
i(􏼁. (13)

Based on the analysis of the environments, the constraint
conditions can be expressed as follows:

C
local
i ≤Ci ≤fdev,

C
off
i ≤Ci ≤fedge.

(14)

4. Algorithm for DRL-Based Collaborative
Service Offloading

In this section, an algorithm of collaborative service off-
loading based on DDPG is presented to offload the inter-
acting services.'e details of this algorithm can be described
in the next contents.

Deep reinforcement learning is the algorithm mixed
with deep learning and reinforcement learning. 'e rein-
forcement learning model is an iteration process, which can
be divided into environment and agent. For each step, the
agent observes the state st and takes actions according to the
current policy π. When the state of the environment changes
to st+1, the reward value rt is received in the next step. 'e
process for state transition of the environment and the
reward computing can be constructed as a Markov process;
thus, the probability and reward of the state transition only
depend on the environment state st and action at. 'e agent
receives these quantities according to the decision policy and
interacts with the environment, and then the state is back
propagated for maximizing the expected reward rt.

Scientific Programming 7

'e DDPG algorithm is a model-free nonpolicy action-
critic algorithm based on DNN ideas, which can learn
policies in the continuous action spaces [43]. 'e action-
critic algorithm consists of the policy function and the q-
value function, where the policy function undertakes the
task to generate actions like an actor and the q-value
function undertakes the task to evaluate the actor’s per-
formance and direct the actor’s following actions.

As Figure 3 shows, the structure of DDPG is similar to
actor-critic algorithm [44]. DDPG can be divided into actor
network and critic network, which continues the idea of a
fixed target network such as DQN [45]. First, the actor
network generates μ(si) after the training step, and then the
action space with Gaussian noise is constructed. After
performing the at in the environment, the agent observes the
next state and the immediate reward. Second, the transition
is stored in the experience replay butter, and N transitions
are selected by the model to make up a minibatch, which can
be transferred into the actor network and critic network.
With the minibatch, the actor target network outputs the
action to the critic target network, and then the critic
network calculates the target value. Furthermore, the critic
network will be updated, and the actor network gives the
minibatch action to the critic network to achieve the action’s
gradient. Finally, the DDPG agent updates the critic target
network and the actor target network. 'e details can be
found in [43].

Compared with the traditional DDPG algorithm, we
adapt a state normalization algorithm to preprocess the
observed states and add the behavior noise to the envi-
ronments, which takes the difference between the maximum
and minimum of each variable as the scaling factor [46]. 'e
state normalization algorithm can solve the problem of the
magnitude difference of input variables. According to the

previous work [46], we can find that after normalizing the
state and adding the behavior noise, our algorithm can
obtain a better performance than the traditional algorithm.

4.1. State Space. In our approach, the users’ requirements,
network conditions, and channel and resource conditions
are used as the state of the system, which will produce the
state space explosion problems. In order to simplify the
system, we only consider the offloading requirement in a
single user scenario, which can reduce the dimension of the
state space increasingly and make the algorithm easy to
converge. So the state space can be expressed as follows:

St � q(t), p(t), Dremain(t), D(t), Dre(t)(􏼁, (15)

where q(t) represents the location information of the edge
server and p(t) denotes the location information of the
vehicle. 'e data size of the remaining subservices is Dremain,
and D(t) denotes the task size requested by the vehicle;
finally, Dre(t) denotes the data communication size between
the interacting services.

4.2. Action Space. We define the action space as the size of
the offloading task, which can be expressed as follows:

at � (k(t), λ(k)), (16)

where k(t) indicates the edge server that undertakes the task
for executing the services and λ(k) denotes the service
offloading ratio.

4.3. RewardFunction. In this paper, the main purpose of our
algorithm is to minimize the latency, which contains the
service requesting delay and communication delay. 'e rt is

Gaussian
Noise

Enviroment

Action

Actor
Network

μ (st)

Optimizer Optimizer

Online Policy Network
Parameter θμ

Online Q Network
Parameter θQ

So� Update So� Updateyi

Actor target Network
Parameter θμ’

Critic target Network
Parameter θQ’

Update θμ Update θQPolicy
gradient w.r.t. Q gradient

Store (si, ai, ri, si+1)
N∗ (Sj, Aj, Rj, Sj+1)

(sj, rt, St+1)

Experience
Buffer

μ' (sj+1)

a = μ (sj)

gradient w.r.t.

Sample
mini-batch

Critic
Network

Figure 3: Deep deterministic policy gradient (DDPG) model.

8 Scientific Programming

defined as the reward when the action at is performed at
state st. In order to reduce the system latency while
guaranteeing the sufficient computation resources of de-
vices, the reward function can be given as follows:

rt � −T
sum
i . (17)

'e action value function is used to describe the expected
return of policy π at time episode t in the reinforcement
learning algorithm, which can be expressed as follows:

Q
π

st, at(􏼁 � Ert
, st+1

∼ E rt st, at(􏼁 + cEat+1
∼ π Q

π
st+1, at+1(􏼁􏼂 􏼃􏽨 􏽩.

(18)

'erefore, if the update of the target policy is continuous,
the target policy can be described as a function μ: A←S,
which can be expressed as follows:

Q
π

st, at(􏼁 � Ert
, st+1

∼ E rt st, at(􏼁 + cEat+1
∼ π Q

π
st+1, at+1(􏼁􏼂 􏼃􏽨 􏽩.

(19)

Algorithm 2 demonstrates the details of our CSO-DRL
algorithm, which is an iteration process. During the training
process, the parameters of the critic network and the actor
network are trained with the iteratively update process, and
then the trained actor network parameters are adopted to
offload the interacting services.

5. Experimental Evaluation

In this section, we conduct experiments to evaluate the
performance of our algorithm. First, all the simulation
parameters are indicated, and then the efficiency of our
algorithm is conducted to compare with other baseline al-
gorithms in the same simulation environment.

5.1. Experiment Setup. To ensure the practicability of the
algorithm, we use a real-world data set of taxi trajectories in
Shanghai (https://cse.hkust.edu.hk/scrg/) to evaluate the
experiment in this paper. 'is data set records the GPS
trajectory data on February 20, 2007, in Shanghai, which
contains the longitude and latitude of 4316 taxies. Here, we

Input. Training data set I; critic learning rate λc; actor learning rate λa; discount factor c; soft update factor τ; experience replay
buffer Bm; minibatch size N; Gaussian noise ni, current state qi, pi, Dremain(i), D(i), fi; state parameters with normalized
cDremain

, cDue
, cx, cy

Output. Reward ri

(1) Initialize the critic network and the actor network with weights θQ and θμ

(2) Initialize the target network with weights θQ′⟵θQ, θμ′⟵θμ

(3) Empty the experience replay buffer Bm

(4) for episode� 1 to M do
(5) Reset the simulation parameters and receive the initial observation state s1
(6) for t� 1, 2, . . ., T do
(7) Initialize st as the current state
(8) Normalize state st

′⟵st, and obtain the feature vector ϕ(s′)
(9) Get the action at � πθμ(ϕ(s′)) + nt

(10) Execute the action to get the reward ret, and observe the next state st+1
(11) Normalize state st+1′⟵st+1
(12) if Bm is not full then
(13) Store (st

′, at, rt, st+1′) to Bm

(14) else
(15) Randomly replace a transition in Bm with (st

′, at, rt, st+1′)
(16) Randomly sample a mini-batch from Bm

(17) yj � rj + cQ′(sj+1′, μ′(sj+1′|θ
μ′), θQ′)

(18) L(θQ) � 1/N 􏽐
N
j�1(yj − Q(sj

′, (aj|θ
Q))2)

(19) Update θμ by the sampled policy gradient
(20) Soft update the critic target network and actor target network
(21) end if
(22) end for
(23) end for
(24) Get μ(s′|θμ)

(25) for episode� 1, 2, . . ., E do
(26) Reset the VEC parameters and receive the initial observation s1
(27) for t� 1, 2, . . ., T do
(28) Normalize state st

′⟵st

(29) at � μ(s′|θμ)

(30) Execute the action at and get the reward rt

(31) end for
(32) end for

ALGORITHM 2: Algorithm for collaborative service offloading with DDPG.

Scientific Programming 9

https://cse.hkust.edu.hk/scrg/

conduct the experiment in the real world to obtain the road
segments and determine the location of service offloading.
Furthermore, the simulation experiments are conducted to
compare the latency with other baseline algorithms, which
are described as follows:

(i) Local-only: executing all services locally
(ii) Offload-only: offloading all services to RSUs

deployed with edge servers
(iii) AC: actor-critic-based service offloading algorithm

[44]
(iv) DQN: DQN-based service offloading algorithm [45]

We set the channel power gain H � −50 dB when the
distance is 1m, and the transmission bandwidth is
W � 100MHz. 'e noise power accepted without signal
blocking is σ2 � −100 dBm. 'e computation capacity of the
vehicular devices and edge servers are set to fdev � −0.8GHz
and fedge � 3GHz, respectively. We set the distance between
the vehicular devices and the edge servers dt randomly.'e size
of the task is randomly assigned, and fi � ϵDi is the required
computation resource, where ϵ is set at 0.5Gcyles/MB. 'e
detailed simulation parameters are listed in Table 2.

Since the data set records the location information of the
vehicles every 60 s, so the time slot is set t � 60 s, and the
total time is 24 hours. For fairness, we conduct all the al-
gorithms in the same simulation environment. During the
time slots, all the services are offloaded continually by our
CSO-DRL algorithm, and then the delay is conducted to
evaluate the efficiency of our algorithm.

5.2. Experimental Results. 'e hyperparameters in our al-
gorithm affect the overall performance of the algorithm
seriously. 'e experiments are conducted to determine the
optimal values of these hyperparameters in our algorithm.
First, we conduct experiments to select the optimal hyper-
parameters. Figure 4 shows the convergence of the CSO-DRL
algorithm under different learning rates. In the DDPG
model, there are two training networks, which are the actor
network and the critic network. We set the learning rates of
the critic network and actor network separately. According to
the training, we find that the algorithm cannot converge
when the learning rate is λa � 0.1 and λc � 0.2. When the
learning rate is λa � 0.001 and λc � 0.002, the algorithm can
get a better convergence value. 'erefore, the optimal
learning rate of actor network λa � 0.01, and the learning rate
of critic network λc � 0.02.

Next, the convergence of the algorithm under different
discount factors c are conducted, which can indicate the
weight of the value for the next action. 'e value of c can
affect the efficiency of the algorithm. As Figure 5 shows, the
trained service offloading strategy performs best when the
discount factor c � 0.5.'erefore, we set the value c � 0.5 in
the following experiments.

Furthermore, the convergence of the algorithm under
different exploration parameters σ is also conducted. No-
ticed that, the larger value for σ allows the agent to choose a
prudent strategy, and make the evaluation of the q-value
become more accurate, and then the training process will
become more stable. As Figure 6, when our algorithm
converges at σ � 0.1, the delay fluctuates at 35s. 'e initial
delay with the σ � 0.1 is lower than the situation with
σ � 0.01. We noticed that when σ � 1, the algorithm de-
creases at 280 episodes, but the convergence is unstable.
Hence, we set σ � 0.1 to obtain better performance in the
following experiments.

With the parameters determined, we compare the delay
of our algorithm with baseline algorithms. Figure 7 shows
the performance of different algorithms. From this figure, it
can be observed that the delay of the CSO-DRL algorithm is
lower than the other baseline algorithms significantly under
the same service size. As the number of iterations increases,

Table 2: Simulation parameters.

Parameters Numerical value Unit
Channel power gain, H −50 dB
Transmission bandwidth, W 100 MHz
Noise power, σ2 −100 dBm
Devices computation capacity, fdev 0.8 GHz
Edge computation capacity, fedge 3 GHz
Task size with random values, Di < 60 Mbit
Data communication size between interacting services, Dre

j <Mi Mbit

D
el

ay
s (

s)

200 400 600 800 10000
Episodes

30

35

40

45

50

55

60

65

70

λa=0.001, λc=0.002
λa=0.01, λc=0.02
λa=0.1, λc=0.2

Figure 4: Convergence of CSO-DRL under different learning rates.

10 Scientific Programming

the AC algorithm cannot converge, while the DQN algo-
rithm and CSO-DRL algorithm can achieve convergence.
Because the actor network and critic network of the AC
algorithm are updated at the same time, the action selection
of the actor network depends on the value function of the
critic network, but the critic network is difficult to converge.
In contrast, since both DQN and DDPG have a dual network
structure. While DQN is only suitable for discrete action
spaces and the state space for service offloading is contin-
uous, DQN cannot search the optimal offloading strategy
accurately. On the other hand, the CSO-DRL algorithm
explores a continuous action space and takes precise actions,
which may result in an optimal policy and make the delay

reduce significantly. We can also find that the CSO-DRL
algorithm and the DQN algorithm can converge at 300
episodes, and the CSO-DRL algorithm obtains a better delay
thanDQN and converges at 35, which is more stable than the
DQN algorithm.

Besides the comparison with the AC algorithm and the
DQN algorithm, we also conduct the experiments by
comparing the CSO-DRL algorithm with the local-only
algorithm and the offload-only algorithm. In Figure 7, it is
obvious that the delay of local computing is too large due to
the limitation of the computation capacity of the vehicular
devices. Since the offload-only algorithm depends on the
running state and the computation resources of the edge
server, and the vehicles keep the state with resource com-
petition for a long time, the CSO-DRL algorithm can obtain
a better delay than offload-only algorithm.

We also conduct the experiment under different service
sizes (also called task sizes). Since the AC algorithm cannot
converge, we compare the delay with other algorithms. As
Figure 8 shows, with the task sizes increased, the delay of the
CSO-DRL algorithm is always lower than the other baseline
algorithm for the same task size. We notice that the delay of
CSO-DRL increases much slower than other baseline al-
gorithms, which is significant when the task sizes increase
doubled.

In order to explore the effect of the number of edge
servers for the delay, we compare the delay of our proposed
algorithm with other algorithms under different numbers of
edge servers. As Figure 9 shows, the delay of all algorithms
except DQN is almost constant as the number of edge
servers increases. With the increase in the number of edge
servers, the DQN algorithm fluctuates at about 40 s. Besides,
the proposed CSO-DRL algorithm achieves the lowest delay.
'e reason is DDPG model can find the optimal value in the
continuous action and obtain the optimal control policy.

Besides the delay comparison with other algorithms
under different numbers of edge servers, we compare these

200 400 600 800 10000
Episodes

D
el

ay
s (

s)

30

35

40

45

50

55

60

65

70

γ=0.1
γ=0.5
γ=0.9

Figure 5: Convergence of CSO-DRL under different discount
factors.

0 200 400 600 800 1000
Episodes

30

35

40

45

50

55

60

65

70

D
el

ay
s (

s)

AC
DQN
CSO−DRL

Local−only
Edge−only

Figure 7: Convergence performance of different algorithms.

0 200 400 600 800 1000
30

35

40

45

50

55

60

65

70

Episodes

D
el

ay
s (

s)

σ=1
σ=0.1
σ=0.01

Figure 6: Convergence of CSO-DRL under different exploration
parameters.

Scientific Programming 11

algorithms under different computing capabilities of edge
servers and computing capabilities of devices, which can be
found in Figures 10 and 11, respectively. Due to the non-
convergence of the AC algorithm, we only compared our
proposed CSO-DRL algorithm with the DQN algorithm.

Figure 10 shows the same group of experiments in terms
of convergence performance and delay under different
computing capabilities of edge servers. We vary the com-
putation capabilities of edge servers from 2GHz to 4GHz.
Figure 10(a) shows the convergence performance of the
DQN algorithm and our CSO-DRL algorithm. We find that
when the computation capability of the edge server is 3GHz,
the delay of two algorithms is higher than that when the
computation capability of the edge server is 4GHz.'us, the
smaller the computation capability of the edge server, the
slower the service execution speed of the system at the same

time, which results in a larger delay of the algorithm.We also
notice that the CSO-DRL algorithm obtains a lower delay
than DQN and converges at 35 s, which is stable than DQN
algorithm. Figure 10(b) shows the delay comparison be-
tween the DQN algorithm and the CSO-DRL algorithm
under different CPU frequency of edge servers. It is obvious
that the CSO-DRL algorithm achieves a lower delay than
DQN. As the CPU frequencies of edge servers increase from
2GHz to 4GHz, the delay decreases following and remains
at 27 s when the CPU frequency of edge server is 4GHz.

Figure 11 shows the same group of experiments in terms
of convergence performance and delay under different
computation capabilities of edge servers. We vary the
computation capabilities of edge servers from 0.6GHz to
1GHz. Figure 11(a) shows the convergence performance of
the DQN algorithm and our CSO-DRL algorithm. We find

4 5 6 7 8 9 10
20

25

30

35

40

45

50

55

60

65

70

Numbers of Edge Servers

D
el

ay
s (

s)

CSO−DRL
DQN

Edge−only
Local−only

Figure 9: Delay comparison under different numbers of edge servers.

100 120 140 160 180 200
20

40

60

80

100

120

140

Task sizes (Mbits)

D
el

ay
s (

s)

CSO−DRL
DQN

Local−only
Edge−only

Figure 8: Delay comparison under different task sizes.

12 Scientific Programming

that when the computation capability of devices is 0.8GHz,
the delay of two algorithms is higher than that when the
computation capability of devices is 1GHz.'us, the smaller
the computation capability of devices, the slower the service
execution speed of the system at the same time, which results
in a larger delay of the algorithm. We also notice that the
CSO-DRL algorithm obtains a better delay than DQN and
converges at 35 s, which is stable than the DQN algorithm.
Figure 11(b) shows the delay comparison between the DQN
algorithm and the CSO-DRL algorithm under different CPU
frequencies of devices. 'e delay of CSO-DRL algorithm

increases slowly from 34.5 s to 35 s as the CPU frequency of
devices increases from 0.7GHz to 0.8GHz and remains at
about 34.3s when the CPU frequency is 1GHz. It is obvious
that the CSO-DRL algorithm achieves a lower delay than
DQN under the same CPU frequency of devices.

6. Conclusion

In this paper, we propose a collaborative service offloading
approach with deep reinforcement learning in vehicular
edge computing named CSO-DRL. Our approach first

0 200 400 600 800 1000
30

35

40

45

50

55

60

65

70

Episodes

D
el

ay
s (

s)

CSO−DRL, fdev=1 GHz
CSO−DRL, fdev=0.8 GHz

DQN, fdev=1 GHz
DQN, fdev=0.8 GHz

(a)

0.6 0.7 0.8 0.9 1
34

34.5

35

35.5

CPU frequencies of Dev (GHz)

D
el

ay
s (

s)

CSO−DRL
DQN

(b)

Figure 11: (a) Convergence of different algorithms under different computation capabilities of devices. (b) Comparison between different
algorithms.

25

30

35

40

45

50

55

60

65

70

0 200 400 600 800 1000
Episodes

CSO−DRL, fedge=3 GHz
CSO−DRL, fedge=4 GHz

DQN, fedge=3 GHz
DQN, fedge=4 GHz

D
el

ay
s (

s)

(a)

2 2.5 3 3.5 4
25

30

35

40

45

50

55

CPU frequencies of Edge Servers (GHz)

D
el

ay
s (

s)

CSO−DRL
DQN

(b)

Figure 10: (a) Convergence of different algorithms under different computation capabilities of the edge server. (b) Comparison between
different algorithms.

Scientific Programming 13

divides the road segments by k-means-based algorithm
through analyzing the trajectory data of vehicles, and then
the offloading location is determined by observing the ve-
hicle running status. Secondly, the interacting services are
discovered by a parallel frequent pattern-based algorithm
efficiency. Furthermore, the collaborative service offloading
algorithm is presented by the DDPG model for offloading
the interacting services, which can reduce the service
requesting delay and communication delay together. Finally,
the efficiency of the algorithms is evaluated by real-world
data-based simulation experimental evaluations. 'e results
show our algorithm can get a better delay in obtaining the
optimal service offloading strategy than other baseline
algorithms.

Although our approach considers the mobility of ve-
hicles in service offloading and reveals the impact of in-
terrelationship between services on service offloading. 'ere
are some avenues for our future studies. In reality, the ve-
hicles are in a complex scenario with resource competition.
'us, how to design offloading strategies for multiusers VEC
by considering the computation resource competition is a
nonignored problem. We also noticed that due to the
limitation of device power, we will present the service off-
loading strategy to investigate the multiobjective optimi-
zation of reducing the energy consumption of vehicular
devices and latency in VEC.

Data Availability

'e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Acknowledgments

'is work was supported by the Young Project of Science
and Technology Research Program of Chongqing Education
Commission of China (Nos. KJQN201900708 and
KJQN202100738) and the National Natural Science Foun-
dation of China (No. 62101080).

References

[1] J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero-Ibanez,
“Internet of vehicles. Architecture, protocols, and security,”
IEEE Internet of :ings Journal, vol. 5, no. 5, pp. 3701–3709,
2018.

[2] X. Wang, Z. Ning, X. Hu et al., “Optimizing content dis-
semination for real-time traffic management in large-scale
internet of vehicle systems,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 2, pp. 1093–1105, 2019.

[3] D. Singh andM. Singh, “Internet of vehicles for smart and safe
driving,” in Proceedings of the International Conference on
Connected Vehicles and Expo, ICCVE, pp. 328-329, IEEE,
Shenzhen, China, October, 2015.

[4] R. Hussain, D. Kim, J. Son et al., “Secure and privacy-aware
incentives-based witness service in social internet of vehicles

clouds,” IEEE Internet of :ings Journal, vol. 5, no. 4,
pp. 2441–2448, 2018.

[5] L. Wu, R. Zhang, Q. Li, C. Ma, and X. Shi, “A mobile edge
computing-based applications execution framework for in-
ternet of vehicles,” Frontiers of Computer Science, vol. 16,
no. 5, Article ID 165506, 2022.

[6] J. Zhang and K. B. Letaief, “Mobile edge intelligence and
computing for the internet of vehicles,” Proceedings of the
IEEE, vol. 108, no. 2, pp. 246–261, 2020.

[7] Y. Chen, H. Xing, and M Zhuo, “Cost-efficient edge caching
for noma-enabled iot services,” China Communications, 2022.

[8] Y. Zhang, Mobile Edge Computing, Vol. 9, Springer, , Berlin/
Heidelberg, Germany, 2022.

[9] Z. Ning, J. Huang, X. Wang, J. J. P. C. Rodrigues, and L. Guo,
“Mobile edge computing-enabled internet of vehicles. Toward
energy-efficient scheduling,” IEEE Network, vol. 33, no. 5,
pp. 198–205, 2019.

[10] J. Wang, H. Ke, X. Liu, and H. Wang, “Optimization for
computational offloading in multi-access edge computing. A
deep reinforcement learning scheme,” Computer Networks,
vol. 204, Article ID 108690, 2022.

[11] F. Song, H. Xing, X. Wang, S. Luo, P. Dai, and K. Li, “Off-
loading dependent tasks in multi-access edge computing. A
multi-objective reinforcement learning approach,” Future
Generation Computer Systems, vol. 128, pp. 333–348, 2022.

[12] Y. Chen, F. Zhao, Y. Lu, and X. Chen, “Dynamic task off-
loading for mobile edge computing with hybrid energy
supply,” Tsinghua Science and Technology, vol. 10, 2021.

[13] I. Sarkar, M. Adhikari, N. Kumar, and S. Kumar, “A col-
laborative computational offloading strategy for latency-
sensitive applications in fog networks,” IEEE Internet of
:ings Journal, vol. 9, no. 6, pp. 4565–4572, 2022.

[14] X. Gu, G. Zhang, M. Wang, W. Duan, M. Wen, and P. H. Ho,
“Uav-aided energy-efficient edge computing networks. Se-
curity offloading optimization,” IEEE Internet of :ings
Journal, vol. 9, no. 6, pp. 4245–4258, 2022.

[15] J. Huang, Z. Tong, and Z. Feng, “Geographical poi recom-
mendation for internet of things. A federated learning ap-
proach using matrix factorization,” International Journal of
Communication Systems, vol. n/a, Article ID e5161, 2022.

[16] Q. Wu, H. Liu, R. Wang, P. Fan, Q. Fan, and Z. Li, “Delay-
sensitive task offloading in the 802.11p-based vehicular fog
computing systems,” IEEE Internet of :ings Journal, vol. 7,
no. 1, pp. 773–785, 2020.

[17] Y. Chen, F. Zhao, X. Chen, and Y.Wu, “Efficient multi-vehicle
task offloading for mobile edge computing in 6g networks,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 5,
pp. 4584–4595, 2022.

[18] Z. Tong, X. Deng, J. Mei, B. Liu, and K. Li, “Response time and
energy consumption co-offloading with SLRTA algorithm in
cloud-edge collaborative computing,” Future Generation
Computer Systems, vol. 129, no. 64–76, pp. 64–76, 2022.

[19] A. A. Shah, N. A. Bhatti, K. Dev, and B. S. Chowdhry,
“MUHAFIZ. iot-based track recording vehicle for the damage
analysis of the railway track,” IEEE Internet of :ings Journal,
vol. 8, no. 11, pp. 9397–9406, 2021.

[20] H. Attaullah, T. Kanwal, A. Anjum et al., “Fuzzy-logic-based
privacy-aware dynamic release of iot-enabled healthcare
data,” IEEE Internet of :ings Journal, vol. 9, no. 6,
pp. 4411–4420, 2022.

[21] J. C.-W. Lin, G. Srivastava, Y. Zhang, Y. Djenouri, and
M. Aloqaily, “Privacy-preserving multiobjective sanitization
model in 6g iot environments,” IEEE Internet of :ings
Journal, vol. 8, no. 7, pp. 5340–5349, 2021.

14 Scientific Programming

[22] R. Roman, J. López, andM.Mambo, “Mobile edge computing,
fog et al. A survey and analysis of security threats and
challenges,” Future Generation Computer Systems, vol. 78,
pp. 680–698, 2018.

[23] W. Chen and B. Yang, “Energy efficiency analysis of
e-commerce customer management system based on mobile
edge computing,” Scientific Programming, vol. 2022, Article
ID 5333346, 9 pages, 2022.

[24] S. Wang, Y. Li, and S. Pang, “A task scheduling strategy in
edge-cloud collaborative scenario based on deadline,” Sci-
entific Programming, vol. 2020, Article ID 3967847, 9 pages,
2020.

[25] Y. Zhou, L. He, B. Wang, Y Su, and H. Chen, “MCAF. de-
veloping an annotation-based offloading framework for
mobile cloud computing,” Scientific Programming, vol. 2020,
no. 9, Article ID 5304612, 9 pages, 2020.

[26] K. Gasmi, S. Dilek, S. Tosun, and S. Ozdemir, “A survey on
computation offloading and service placement in fog com-
puting-based IoT,” :e Journal of Supercomputing, vol. 78,
no. 2, pp. 1983–2014, 2022.

[27] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-
hop cooperative computation offloading for industrial iot-
edge-cloud computing environments,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 12, pp. 2759–
2774, 2019.

[28] Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading
and resource allocation in uav-enabled mobile edge com-
puting,” IEEE Internet of :ings Journal, vol. 7, no. 4,
pp. 3147–3159, 2020.

[29] F. Shan, J. Luo, J. Jin, and W. Wu, “Offloading delay con-
strained transparent computing tasks with energy-efficient
transmission power scheduling in wireless iot environment,”
IEEE Internet of :ings Journal, vol. 6, no. 3, pp. 4411–4422,
2019.

[30] Y. Chen, W. Gu, and K. Li, “Dynamic task offloading for
internet of things in mobile edge computing via deep rein-
forcement learning,” International Journal of Communication
Systems, vol. n/a, Article ID e5154, 2022.

[31] J. Chen and Z. Wu, “Dynamic computation offloading with
energy harvesting devices. A graph-based deep reinforcement
learning approach,” IEEE Communications Letters, vol. 25,
no. 9, pp. 2968–2972, 2021.

[32] J. Xu, D. Li, W. Gu, and Y. Chen, “Uav-assisted task offloading
for iot in smart buildings and environment via deep rein-
forcement learning,” Building and Environment, vol. 222,
Article ID 109218, 2022.

[33] J. Huang, C. Zhang, and J. Zhang, “Amulti-queue approach of
energy efficient task scheduling for sensor hubs,” Chinese
Journal of Electronics, vol. 29, no. 2, pp. 242–247, 2020.

[34] J. Huang, B. Lv, Y. Wu, Y. Chen, and X. Shen, “Dynamic
admission control and resource allocation for mobile edge
computing enabled small cell network,” IEEE Transactions on
Vehicular Technology, vol. 71, no. 2, pp. 1964–1973, 2022.

[35] X. Xu, R. Gu, F. Dai, L. Qi, and S. Wan, “Multi-objective
computation offloading for internet of vehicles in cloud-edge
computing,” Wireless Networks, vol. 26, no. 3, pp. 1611–1629,
2020.

[36] Q. Luo, C. Li, T. H. Luan, W. Shi, and W. Wu, “Self-learning
based computation offloading for internet of vehicles. Model
and algorithm,” IEEE Transactions on Wireless Communi-
cations, vol. 20, no. 9, pp. 5913–5925, 2021.

[37] X. Wang, Z. Ning, and L. Wang, “Offloading in internet of
vehicles. A fog-enabled real-time traffic management system,”

IEEE Transactions on Industrial Informatics, vol. 14, no. 10,
pp. 4568–4578, 2018.

[38] X. Xu, Y. Xue, L. Qi et al., “An edge computing-enabled
computation offloading method with privacy preservation for
internet of connected vehicles,” Future Generation Computer
Systems, vol. 96, no. 89–100, pp. 89–100, 2019.

[39] X. He, H. Lu, M. Du, Y. Mao, and K. Wang, “QoE-based task
offloading with deep reinforcement learning in edge-enabled
internet of vehicles,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 4, pp. 2252–2261, 2021.

[40] Y. Huang, J. Huang, B Cheng, T. Yao, and J. Chen, “Poster.
Interacting data-intensive services mining and placement in
mobile edge clouds,” in Proceedings of the 23rd Annual In-
ternational Conference on Mobile Computing and Networking,
MobiCom, pp. 558–560, ACM, Snowbird, UT, USA, October,
2017.

[41] Y. Huang, J. Huang, C. Liu, and C. Zhang, “PFPMine. A
parallel approach for discovering interacting data entities in
data-intensive cloud workflows,” Future Generation Com-
puter Systems, vol. 113, pp. 474–487, 2020.

[42] L. Rokach, “A survey of clustering algorithms,” in Proceedings
of the Oded Maimon and Lior Rokach, editors, Data Mining
and Knowledge Discovery Handbook, 2nd ed, pp. 269–298,
Springer, Berlin/Heidelberg, Germany, 2010.

[43] T. P. Lillicrap, J. J. Hunt, and P. Alexander, “Continuous
control with deep reinforcement learning,” in Proceedings of
the Yoshua Bengio and Yann LeCun, editors, 4th International
Conference on Learning Representations, ICLR 2016, Con-
ference Track Proceedings, San Juan, Puerto Rico, May, 2016.

[44] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with
function approximation,”vol. 12, pp. 1057–1063, in Pro-
ceedings of the Advances in Neural Information Processing
Systems, vol. 12, pp. 1057–1063, 'e MIT Press, Denver,
Colorado, USA, November, 1999.

[45] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level
control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[46] Y. Wang, W. Fang, Y Ding, and N. Xiong, “Computation
offloading optimization for uav-assisted mobile edge com-
puting. a deep deterministic policy gradient approach,”
Wireless Networks, vol. 27, no. 4, pp. 2991–3006, 2021.

Scientific Programming 15

