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Systems using biometric authentication ofer greater security than traditional textual and graphical password-based systems for
granting access to information systems. Although biometric-based authentication has its benefts, it can be vulnerable to spoofng
attacks. Tose vulnerabilities are inherent to any biometric-based subsystem, including face recognition systems. Te problem of
spoofng attacks on face recognition systems is addressed here by integrating a newly developed image encryption model onto the
principal component pipeline. A new model of image encryption is based on a cellular automaton and Gray Code. By encrypting
the entire ORL faces dataset, the image encryption model is integrated into the face recognition system’s authentication pipeline.
In order for the system to grant authenticity, input face images must be encrypted with the correct key before being classifed, since
the entire feature database is encrypted with the same key. Te face recognition model correctly identifed test encrypted faces
from an encrypted features database with 92.5% accuracy. A sample of randomly chosen samples from the ORL dataset was used
to test the encryption performance. Results showed that encryption and the original ORL faces have diferent histograms and weak
correlations. On the tested encrypted ORL face images, NPCR values exceeded 99%, MAE minimum scores were over (>40), and
GDD values exceeded (0.92). Key space is determined by u(2size(A0)) whereA0 represents the original scrambling lattice size, and u
is determined by the variables on the encryption key. In addition, a NPCR test was performed between images encrypted with
slightly diferent keys to test key sensitivity. Te values of the NPCR were all above 96% in all cases.

1. Introduction

Face recognition systems identify human faces and can
diferentiate between them by processing and storing visual
patterns in visual data [1]. A facial recognition system
provides users with a number of advantages, including
passive authentication [2], by which authenticity can be
established simply by being present. Video surveillance,
access control, forensics, and social media are some of the
security-related applications of facial recognition [3–11]. In
accordance with [12], facial recognition systems follow the
following stages: A preprocessing stage is frst performed on
the data. Aligning the area of interest after detecting faces in
visual input. Using the preprocessed input, face features are
extracted in a second step. To determine whether a face

matches a database of features, the features of the face are
compared. It is possible to verify a specifc target or identify a
facial feature based on matching results. Figure 1 shows a
diagram of the facial recognition process.

In terms of biometric authentication, face recognition
shares many advantages and disadvantages with other
biometric methods. Biometric authentication generally
provides greater security than traditional passwords [13].
Every individual has unique biometric traits, which make
biometric forgeries difcult [14], and it also prevents false
authentication because the registered person must be
present to verify authenticity [15]. For example, a biometric
authentication system could be used to protect the integrity
of results obtained by studies that involve analysis of medical
patterns obtained from samples taken from a predetermined
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set of subjects such as in the works of [16, 17]. Subjects
involved in such studies can be identifed and verifed with
biometric authentication systems before proceeding with
subsequent medical analysis procedures thereby ensuring
that the subject does belong to the main group under study
or any subset of that group that requires special procedures.
Te disadvantage of biometric authentication systems is that
they are vulnerable to attacks involving deep learning and
machine learning models that spoof the biometrics [13].

False testimony about biometrics is submitted by at-
tackers to gain authenticity [18]. In addition to artifcial
synthesis and reply attacks, there are also wolf attacks [13]
and replay attacks [19]. In addition to a number of adver-
sarial attacks [13] and poisoning attacks [20], machine
learning and deep learning models are also susceptible to
poisoning attacks.

A method is presented in this paper for preventing
spoofng attacks on facial recognition systems by integrating
an image encryption model into the process. To train and
test a face recognition model based on principle component
analysis (PCA), preprocessed face images are encrypted
using an image encryption model. A feature extracted from
an input face image has to match the key used to encrypt the
image in order to be correctly identifed or verifed. Te
extracted features enrolled in the features database are
encrypted. Attackers must encrypt face images with the
correct key in addition to copying and submitting au-
thenticated individuals’ images to a system to minimize the
efectiveness of spoofng attacks.

In addition to ofering high encryption performance and
resistance to brute-force attacks, the image encryption
model provides an added layer of security. An image en-
cryption model is developed that is based on outer totalistic
cellular automatas (OTCAs) and gray code for use in rec-
ognition processes. Pixels are replaced with Gray Code,
while images are scrambled using CA. Using mathematical
operations, a pixel’s substitution changes its values, then
reverses those operations to return its values [21]. As part of
the process of scrambling images, pixels are moved on the
image in order to break the high correlation between ad-
jacent pixels [22]. CA is an excellent choice for image
scrambling applications [23], since it can generate complex
structures from simple structures. Following is the order in
which the remaining sections of this paper are presented.
Second, the study reveals its work in image scrambling;
third, it explores the methodology it used; fourth, it sum-
marizes the results; and last, it presents its conclusions.

2. Related Work

CAs consist of an infnite array of discretely updating cells,
with each cell changing its state according to a universal rule
depending on its present state and the states of its neighbors.
Based on [24], CA-based image encryption uses direct
operations on the pixels of the image to encrypt the data.
Tere are several advantages to CA image encryption, in-
cluding its ease of implementation and high security [24]. As
CA-based image scrambling methods [25–30] were devel-
oped, according to these methods, CA scrambling can break
highly correlated pixels while remaining high-performing
and resistant to a variety of attacks.

A proposal in [26] uses CA for watermarking and
scrambling. CA rules are studied using fractal box dimensions
in order to determine chaotic characteristics. After the image
has been scrambledwith a specifc lattice and its evolution over
a certain number of generations, it is scrambled according to
the selected CA. Tis method of scrambling images was frst
used for watermarking. Using this scheme, watermarked
images are more resistant to attacks such as noise, cropping,
and JPEG compression. A gray image encryption scheme was
developed by [30] using 2D CA. A binary image represents a
bit, and eight images are created. With the B3/S1234 CA rule,
eight binary images were generated as an initial confguration
lattice. As 8 binary lattices are developed based on 8 binary
images of the original image, both the value and position of
pixels are simultaneously changed.

A study by [27] investigated how other 2D-OTCA rules
would perform when scrambling images besides Game of
Life. By using Von Neumann neighborhood confguration
instead of Moore’s law, the authors reduce rules space and
computation time. A number of generations and boundary
conditions are used to evaluate scrambling performance
using GDD (gray diference degree) OCTA rules. As a part of
the proposed method, a random lattice is generated and
evolved k times over the course of time. A matrix is used to
scramble the subject image based on the evolving lattice. Te
initial lattice is empty. Ten, starting from the top-leftmost
cell, the locations of the pixels in the original subject image
are used to identify the active cells. When pixels corre-
sponding to dead cells are scrambled, rows major are copied
to pixels corresponding to dead cells. Tis technique
achieved the highest GDD on Rule 171 when compared to
other proposed techniques. In addition, the technique was
much faster than the other methods when it came to
computation time.
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Figure 1: Stages of the facial recognition system [12].

2 Scientifc Programming



Image scrambling was achieved using 2D CA in [25]. In
their study, the authors looked at diferent confgurations,
such as the number of evolved generations, neighborhood
confguration, boundary conditions, and rules with lambda
values close to critical values, when scrambling performance
was determined. A lattice from which an image is scrambled
is developed using all the lattices obtained from the initial
lattice. Te lattice is initially empty, and then pixel values
from the original subject image are multiplied by the pixel
locations corresponding to the live cells in the frst
scrambling matrix, starting with the top-leftmost cell. Te
pixels in locations that have already been flled are skipped
after the matrices have been scrambled. Dead pixels on the
scrambling matrix are copied to corresponding pixel loca-
tions on the original image in row-major order. Compared
to scrambling with fewer generations, scrambling with more
generations results in a better GDD. Te Moore confgu-
ration with periodic boundary conditions could also be used
to increase GDD. Te lambda values tested ranged from
0.20703 to 0.41404. According to the image tests, Rule 224:
Game of Life achieved the highest GDD value.

A 2D CA image scrambling technique proposed by [25]
was modifed by [28] to achieve better GDD scrambling.
Similarly, scrambling occurs in all evolutionarily evolved
lattices. A row-major lattice is constructed from the pixels in
the original image that correspond to the live cells in the
scrambling matrix. Additionally, the remaining pixels are
copied to the remaining row-major locations. Te same
procedure is repeated if there are more scrambling matrices.
Scrambled lattices are created by applying Game of Life 224
rules. To improve GDD, periodic boundary conditions,
Moore’s neighborhood, and eight generations are used. It
was the combination of periodic boundary conditions,
Moore’s neighborhood, and eight generations that produced
the highest GDD of 0.9551.

According to [31], images can be scrambled with ECA.
In this study, ECA rules were used to test scrambling per-
formance on classes 3 and 4 rules. Scrambling was used to
convert the original images into 1D vectors. During the
scrambling process, a 1D lattice generated at random is
evolved for k generations. A 1D lattice corresponding to the
locations of live cells on the scrambling lattice is created by
copying pixels from the original image. In the same way, the
remaining scramble matrices that have previously been flled
are skipped. After the original image is scrambled, the
remaining pixels are copied to dead cells. Matrixes are then
created by transforming the 1D vector into 2D. When
combined with ECA scrambling, GDD can be just as ef-
fective as 2D CA and, in some cases, may even be more
efective. As a result of combining Rule 22 with boundary
conditions and ten generations, the GDD was high. Com-
pared to the tested ECA rules for class 3 (22, 30, 126, 150, and
182), class 4 rule 110 achieved a higher GDD.

In [29], an image encryptionmethod based on 2DOTCA
is proposed. When rules 534 and 816 are applied to the
original image, pixels values and locations are simulta-
neously changed. Te method’s robustness is demonstrated
by histograms and entropies. Tere is a large key space and a
high degree of sensitivity. Tere was a NPCR of about 100%,

an entropy of more than 7.2, and a correlation of almost zero
on all test images. It is not possible to identify encrypted
images from original images using histogram analysis.

Tere are many linear techniques for face recognition,
but PCA is one of the most widely adopted [32]. According
to [33], PCA is used to recognize faces. A PCA transforms
data linearly into a new coordinate corresponding to the
maximum variance direction [34]. PCA’s application to face
recognition is described in this document [32]. Face images
can be modeled using PCA to extract features, creating eigen
faces based on eigenvectors. Eigen values with high values
and their corresponding eigen vectors are determined from
face data vectors using the covariance matrix.

Using PCA and ANFIS (adaptive neuro-fuzzy inference
system), an efcient pose-invariant face recognition system
was developed in [35]. An ANFIS classifer is used to rec-
ognize images from a variety of poses using PCA as a feature
extractor. Data sets of training images of faces are scored by
PCA algorithms to enable classifcation. Correct recognition
rates are greatly improved by using ANFIS.

Based on PCA and logistic regression, [36] proposed a
face recognition system. An experimentation dataset is used
in the face recognition pipeline to reduce the dimensions of
features. A logistic regression classifer was proposed for
accurate face recognition. A two-dataset analysis was con-
ducted to determine the classifcation’s efciency.

An automatic attendance system was created by [37] to
track and record the attendance of individuals within an
organization. By eliminating the need to manually take
attendance, automated attendance systems enable organi-
zations to optimize their processes. In order to implement
the system, a face recognition system is used. As part of the
system, Haar cascades are used to detect faces. In order to
test the system’s capability to recognize faces, PCA and LDA
were applied to the Olivetti dataset.

Image encryption cannot yet be integrated into face
recognition processes because there are not enough studies in
this area. A great deal of research is being conducted on
improving the accuracy of face recognition or deploying it
efectively in a wide variety of applications. Tis work inte-
grates OTCA and Gray Code facial recognition algorithms
with a new image encryption scheme. Terefore, the recog-
nition system can correctly identify encrypted faces as a result.

3. Methodology

A description of the methods and confgurations used in the
image encryption scheme is presented in this section. In the
following step, we demonstrate a short PCA face recognition
algorithm as well as integrate an image encryption scheme
into the recognition process.

3.1. Image Encryption Scheme. In this process, gray code-
based pixels are substituted, followed by 2D OTCA-based
pixels scrambling. Pixel values are replaced with Gray Code
representations in the pixel substitution process. A random
lattice is generated to scramble pixels using the OTCA
Conway’s Game of Life rule.
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3.1.1. Gray Code Pixels Substitution. Tis phase involves
replacing the Gray Code integer corresponding to a given pixel
at coordinates (i, j). XOR operations are applied on adjacent
binary bits in the binary representation of integers to generate
Gray Code, which is then appended to the left of the string that
contains the frst bit. Images can be formatted with diferent bit
depth.Tis bit depth represents the number of bits contained in
each pixel; therefore, bit depth is the length of the binary string
n used to represent pixels.Te higher the value of an image’s bit
depth (or length of binary string n) is, the more space (fle size)
is required to store the image. Note that bit depth does not
afect an image’s resolution. (Algorithm 1) is applied on binary
pixels values of images to convert them to their Gray Code
representations

To perform pixel substitution, the original image is
processed to replace any pixels at positions (i, j) by equiv-
alent gray codes corresponding to the corresponding gray
levels. Tus I′(i, j) � integer[GrayCode(I(i, j))].

3.1.2. Image Scrambling with CA. After Gray Code pixels
substitution in phase one, the image is scrambled using an
evolved 2D-OTCA lattice. According to the method used,
the type of 2D CA used is outer totalistic cellular automata
(2D OTCA). OTCA rules work by updating cells based on
the current state of a cell and its neighboring cells, as de-
scribed in [23]. As a result of OCTA rules, it is possible to
describe the new state of cells using a transition function v as
follows:

I
t+1

(i, j) � υ I
t
(i, j), 

i′,j′

I
t
(i’, j’)⎛⎜⎝ ⎞⎟⎠, (1)

where It(i’, j’) are cells in It(i, j) neighborhood.

(1) Neighborhood Confguration. Once the OCTA transition
function is defned, neighborhood confguration needs to be
specifed for any cell in 2D lattice. Der von Neumann
neighborhood scheme andMoore neighborhood scheme [38]
are popular neighborhood schemes depicted in Figure 2. In
Von Neumann’s neighborhood (NvN) a cell at coordinates
(i′, j′) is a neighbor to cell (i, j) if it is an adjacent cell on one of
the four directions north, east, west, or south to central cell (i,
j). Range of cell’s neighborhood can be extended given a
radius r, with that a cell at coordinates (i′, j′) is a neighbor to
cell (i, j) at radius r if it satisfes the following rule:

i′, j′(  ∈ NvN(i, j, r)if i′ − i


 + j′ − j


≤ r. (2)

As forMoor’s neighborhood (NM) a cell at coordinates (i′,
j′) is a neighbor to cell (i, j) if it is an adjacent cell on one of the
four directions north, east, west, or south or on a diagonal
direction as well as to the central cell (i, j). Similarly range of
neighborhood for a cell at coordinates (i, j) can be extended
for a given radius r. With that, a cell at coordinates (i′, j′) is a
neighbor to cell (i, j) at radius r if it satisfes the following rule:

i′, j′(  ∈ NM(i, j, r)if i′ − i


≤ r an d j′ − j


≤ r. (3)

(2) Boundary Conditions. As 2D lattices with CA rules are
fnite, neighboring cells at lattice bounds should be specifed.

A closed boundary condition (CBC) or a periodic boundary
condition (PBC) can be applied to cells at extremes [40]. In
CBC, adjacent cells considered naught are those adjacent to
the extreme cells [41]. As for the PBCs, the cells at the
extremes become adjacent to one another, so in a 2D
rectangular lattice the leftmost cells are next to the rightmost
cells, the top row cells are next to the bottom row, and the
cells on corners are also adjacent, thus forming a toroid
shape lattice [25].

(3) Conway’s Game of Life. Conway’s Game of Life (CGL) is
the most famous universal automaton [42] ever invented by
John Conway in 1970. OTCA describes a cell’s state based on
its current status and eight nearby cells. CGL applies Moor’s
Neighborhood confguration to its OCTA transition func-
tion. According to [43] in the CA GoL (Game of Life) rules
(CGL and other discovered GoL rules) neighboring cells are
cells that are directly touching a candidate cell. Terefore in
CGL neighborhood confguration is strictly confned to
Moor’s neighborhood confguration in square grid. Tere
are other investigated shapes of grids such as hexagonal,
pentagonal, and triangular grids, that may or may not have
their own set of discovered GoL rules [44], but CGL does not
satisfy the requirements to be a GoL rule in such grids. In
CGL, cells can either be alive or dead based on their state and
the states of neighboring cells. In CGL, the transition of cells
between available states is governed by the following rules
(see Figure 3 for an example):

(i) For a cell at coordinates (i, j) such that It(i, j) � 0 if
i′ ,j′I

t(i’, j’) � 3 for (i′, j′) ∈ NM(i, j, r) then
It+1(i, j) � 1 otherwise It+1(i, j) � 0.

(ii) For a cell at coordinates (i, j) such that It(i, j) � 1 if
2≤i′ ,j′I

t(i’, j’)≤ 3 for (i′, j′) ∈ NM(i, j, r) then
It+1(i, j) � 1 otherwise It+1(i, j) � 0.

3.1.3. Scrambling Algorithm. Using the proposed scram-
bling algorithm, the original image is frst transformed with
Gray Code, then it is scrambled using an evolved 2D lattice
with CGL OTCA rules on a network with PBC. Te fol-
lowing sections describe the steps in encrypting and
decrypting data.

(1) Encryption Process

(1) Convert original image to its grayscale version, and
then transform all pixels in I to its corresponding
Gray Code integer equivalent in I′. Tat is value of
pixel at coordinates (i, j) in I′ can be determined
by:

I′(i, j) � integer[GrayCode(I(i, j))]. (4)

(2) Generate random lattice A0 with exactly the same
width and height as I. Values of lattice pixels can
either be 1 (alive) or 0 (dead).

(3) Apply CGL OTCA transition function υCGL on A0
with NM and PBC for k generations yielding Ak.
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(4) Combine Ak and An(0< n< k) on an initially empty
lattice Z such that Z(i, even(j)) � Ak(i, j) and
Z(i, odd(j)) � An(i, j).

(5) Transform I′ into a stack such that elements in stack
from top to bottom are values of pixels in I′ in row
major order.

(6) Scramble I′ and search Z in columnmajor order and
if Z(i, j) � 1 pop an element from top of stackI′)
into initially empty scrambled image SI at same
coordinates (i, j). After search is complete search Z
again in row-major order this time and if Z(i, j) � 0
pop an element from top of stackI′) into scrambled
image SI at same coordinates (i, j).

With that encryption key for algorithm is CA rule used
for evolving randomly generated A0, the number of gen-
erations k used to yield Ak, and chosen value n where
(0< n< k) it determines An that is combined with Ak to
generate scrambling lattice Z. Generation of scrambled
image SI for proposed algorithm can be expressed as en-
cryption function e: SI � e(I′, A0, υCGL, k, n).

(2) Illustration of the Encryption Algorithm. Assume Ak and
An are evolved from same initial latticeA0.Ten according to
demonstrated algorithm Z is generated in the same manner
as shown Figure 4 for instance.

Scrambling I′ with Z gives SI as illustrated in Figure 5.
Assume the values of I′ pixels are diferent colors for now.

(3) Decryption Process. As for decryption algorithm it in-
volves generation of scrambling lattice Z from provided
keys. Steps for decryption are as follows:

(1) Generate Z from provided keys where
Z � f(Ak, An).

(2) Search Z in column major order if Z(i, j) � 1 then
SI(i, j) is added to stack(SI).

(3) Search Z in row-major order if Z(i, j) � 0 then
SI(i, j) is added to stack(SI).

(4) Reverse stack(SI) then pop elements from stack in
an initially empty lattice generating I′.

Decryption algorithm for proposed algorithm can be
expressed as function d: I′ � d(SI, A0, υCGL, k, n).

After obtaining I′ it needs to be transformed back to
original grayscale version of image I. Recreation of original
binary bits from Gray Code is not as straight forward as the
generation process. Since pixels in grayscale can assume
values ranging from 0 to 255 then any value in that range can
be expressed in 8 bits maximum and this is true as well for its
corresponding Gray Code version. (Algorithm 2) that
demonstrates the steps required for converting Gray Code to
original binary values.

3.2. Face Recognition with PCA. PCA objective is expressing
points in higher dimensional space in lower dimensional
subspace [45]. Satisfying this objective is done by achieving
PCA goals which are according to [46] extraction of most
important information from data, compression due to ex-
traction of most important information, simplifcation of
data description, and analysis of observations and variables
structure. Steps for PCA features extraction are elaborated
by [47] with Euclidean distance classifer as shown as
follows:

(1) Convert 2D face images data into set of vectors as
training data {F1, F2, . . ., FN}.

(2) Find average of training data by
F � (1/2)  i � 1NFi

(3) Covariance matrix is determined with
C � (1/2)  i � 1N(Fi − F)(Fi − F)T

(4) Find eigenvectors corresponding to eigenvalues by
� λV, λ is eigenvalue and V is set of eigenvector.

(5) Image projection into eigenspace is found by
Wi � VT

i (Fi − F)

(6) Test image is projected with 5 and classifed based on
distance measured.Tis distance measures similarity
between test image and faces database.

(7) Here Euclidian distance is used as classifer for
projected data. It is found by

i2+1

i2

i2-1

i1-1 i1 i1+1

(a)

i2+1

i2

i2-1

i1-1 i1 i1+1

(b)

Figure 2: Neighborhood confgurations. (a) Van Neumann’s neighborhood at r� 1. (b) Moore’s neighborhood at r� 1 [39].
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xi − yi( 
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. (5)

3.3. Encrypted Face Recognition with PCA. In order to rec-
ognize encrypted faces, PCA is used. Te encrypted face
images used for training and testing come from PCA, which
is used to extract encrypted face images. By using encrypted
images for face recognition, authentication processes can be
prevented from being compromised, and credential spoofng
can be prevented. Terefore, the pipeline of the face rec-
ognition scheme has been revised to include OTCA’s CGL
and Gray Code algorithms for image encryption. Te
pipeline of the proposed scheme for face recognition is
shown in Figure 6. A face detection and alignment step is
performed frst in order to preprocess the image. Te face
image is then encrypted with the same key as the cipher for
encrypting stored information. An encrypted image can be
verifed or identifed by the PCA features extractor. Te
classifcation of the data and decisions are made using
Euclidean distance classifers.

4. Results and Discussion

Experiments and implementations of proposed OTCA CGL
Gray Code image encryption technique and Encrypted Face
PCA Recognition were conducted on Laptop with specif-
cations 8GB RAM, Intel(R) Core(TM) i5-3230M CPU @
2.60GHz and Microsoft Windows 10 Home 64 bits using
Python3.

Face recognition model uses ORL faces dataset for
training and testing the model. Training model uses 80% of
database and 20% is used for testing. ORL dataset is already
preprocessed; that is faces are already dedicated and
aligned therefore preprocessing step is skipped on model
implementation. Faces archive is encrypted with same key
using proposed OTCA CGL Gray Code image encryption
model. Using same key is better for keys management and
reduces dataset encryption computational time. Using
same key or diferent keys does not ease up or increases
difculty for distinguishing encrypted images due to high
sensitivity of encryption key shown by NPCR evaluations.
However, having a single key requires securing encryption
key, otherwise the integrity of entire dataset could be
compromised.

An Ak Z

0

1

2

3

Figure 4: An example of generating Z by combining Ak and An.
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(a)
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(b)

Figure 3: An example of 2D lattice (alive cells are white and dead cells are black) evolved with CGL, NM, and PBC. (a) From left initial
lattice. (b) Evolved lattice.
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4.1. Face Archive Encryption. Entire ORL faces database is
encrypted with proposed image encryption method. Single
encryption key is used for encryption of faces images.
Figure 7 shows some of the faces encrypted with the pro-
posed method.

Key: SI � e(I′, A0, υCGL, 13, 8)

With that, the performance of image encryption scheme
is evaluated for the histogram, correlation, number of pixels
change rate (NPCR), mean absolute error (MAE), and gray
diference degree (GDD). In addition a key analysis of the
proposed encryption scheme is performed as well. Testing is
implemented on encrypted ORL faces with the same key as
in Figure 7.

4.1.1. Histogram. Histogram shows how pixels are distrib-
uted in an image and statistical characteristics as well
[48–50]. Encrypted image should have a diferent histogram
from the original image [51]. Having diferent histograms
prevents identifcation of the original image from the
scrambled version. Te histogram represents the distribu-
tion of diferent pixels intensities across the image. Since
Gray Code pixels substitution is applied on the image before
scrambling, there will be a diference between the original
image and the scrambled image histograms. Tis eliminates
the possibility of identifying an original image from the
scrambled image histogram, given that a database of original
and scrambled images became available to an attacker.
Figure 8 shows the comparison between original image and
scrambled image histograms using a randomly selected
subject image from the ORL face dataset.

4.2. Correlation. Correlation indicates similarity between
original image and its scrambled version. In Table 1, cor-
relation is calculated with Karl Pearson’s formula [29]:

�
 xy

����

 x
2

 ����

 y
2

 , (6)

where x � (X − X) and y � (Y − Y).

Correlation coefcient values are in the range of −1 to 1
inclusively. Having 0 correlation is a good indication for
encryption robustness as it means there is no correlation
between the scrambled image and the original image.
Correlation values of plain images are usually closer to 1
(strong positive correlation). Value of −1 means a strong
negative correlation in variables.

4.2.1. Number of Pixels Change Rate. NPCR (number of
pixels change rate) fnds the diferent percentage of pixels
between the two encrypted images whose corresponding
original images are diferent in one pixel only [24]. Te
higher the NPCR value, the more resilient the encryption
against diferential attacks [52]. Te NPCR ideal value is
99.6094% [53]. NPCR is found by [54–56]. Where SI1 is
encrypted image of plain image I1 and SI2 is encrypted image
of plain image I2. I2 difers from I1 in one pixel only. Same
key is used for encryption in NPCR test [57]. However, it is
clear from proposed scrambling algorithm that it contains
no actual difusion stage. Difusion stage emphasizes on
establishing a dependent relationship between the encrypted
image and original image in a complicated manner; where a
change in one pixel in the original image changes encrypted
image almost entirely [58]. As such in NPCR evaluation, a
slight change is made on encryption key such that values of
k, n, or both are changed. With that NPCR can be obtained
as follows:

NPCR SIk, SIk′(  �


width(I)−1
i�0 

height(I)−1
j�0 x(i, j)

resolution(I)
,

if SIk(i, j) � SIk′(i, j) then x(i, j) � 0,

if SIk(i, j)≠ SIk′(i, j) then x(i, j) � 1,

(8)

where SIk is encrypted image with original key. SIk′ is
encrypted image with modifed k′ lattice. NPCR is also

I′ SI

Figure 5: Generating SI by scrambling I′ with Z.
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utilized for fnding change rate between original image and
its scrambled version as in work of [29, 59]. With that NPCR
between the original and scrambled image is as follows:

NPCR(I, SI) �


width(I)−1
i�0 

height(I)−1
j�0 x(i, j)

resolution(I)
,

if I(i, j) � SI(i, j) then x(i, j) � 0,

if I(i, j)≠ SI(i, j) then x(i, j) � 1.

(9)

NPCR is used to test percentage of pixels that change
between the original image and encrypted images and to test
the sensitivity of the algorithm to slight changes in keys. In
the frst case NPCR should be large between the original
image and its encrypted version. On second case, a slight
change is made on the encryption key, and two encrypted
images from the same original image are tested for difer-
ences. Tables 2 and 3 show NPCR values between original
and encrypted images and NPCR for sensitivity test,
respectively.

Figure 7: Sample of encrypted ORL faces taken from random subjects.
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8 Scientifc Programming



NPCR SI1, SI2(  �


width(I)−1
i�0 

height(I)−1
j�0 x(i, j)

resolution(I)
,

if SI1(i, j) � SI2(i, j) then x(i, j) � 0,

if SI1(i, j)≠ SI2(i, j) then x(i, j) � 1.

(7)

Keys: SI � SIk � e(I′, A0, υCGL, 13, 8)

SIk′ � e I′, A0, υCGL, 13, 7( , e I′, A0, υCGL, 12, 8( , e I′, A0, υCGL, 12, 7(  . (10)

4.2.2. Mean Absolute Error. MAE (mean absolute error) is
used to determine how diferent is the encrypted image from
the original image [60]. It is calculated with [61] as follows:

MAE �
1

size(I)


width(I)−1

i�0


height(I)−1

j�0
|I(i, j) − SI(i, j)|. (11)

Te values of MAE are in range [0, 2N − 1]. N is number
of pixels bits. Higher MAE indicates more diferences

Input: Gray Code string GC with length n.
Output: Original Binary string B

(1) Set n � Length(GC)

(2) Set B � GC[0]

(3) Set i � 0
(4) while(i< n − 1)

B � B + B[i]⊕GC[i + 1]

i � i + 1
(5) Return B

ALGORITHM 2: Converting gray code to binary values.

Table 1: Correlation between randomly selected ORL images and
their scrambled versions.

Test image Correlation
S16/8 0.282
S3/9 0.142
S12/7 0.119
S28/8 0.037
S29/2 0.074
S10/1 0.158
S35/6 0.139
S20/10 0.072

Table 2: NPCR between randomly selected ORL images and their
scrambled versions.

Test image NPCR(I, SI) (%)
S15/8 99.665
S33/8 99.505
S1/5 99.673
S11/5 99.537
S23/9 99.585
S15/9 99.346
S12/10 99.553
S7/7 99.649

Input: binary string B with length n.
Output: Gray Code representation of binary string GC.

(1) Set n � Length(B)

(2) Set GC � B[0]

(3) Set i � 0
(4) while(i< n − 1)

GC � GC + B[i]⊕B[i + 1]

i � i + 1
(5) Return GC

ALGORITHM 1: Converting binary string to gray code representation.
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between encrypted image and original image which is a
desirable trait for encryption robustness. Table 4 shows
MAE for randomly selected encrypted images.

4.2.3. Gray Diference Degree. Gray diference degree
(GDD) measures performance of scrambling on an original
image. Introduced by [26] GDD is calculated using the
following steps:

(1) For each pixel P where P(i, j) ∈ I and edge

ofI(P(i, j), I) � False fnd Gray Diference (GD) by
GD(i, j) � (1/4)i′,j′[P(i, j) − P(i′, j′)]2 where
(i′, j′) ∈ NvN(i, j, 1)if|i′ − i| + |j′ − j|≤ 1,

(2) Find average neighborhood GD for all pixels in I

using GDs calculated in 1 using function Avg(GD

(i, j)) � (
wideth(I)−2
i�1 

height(I)−2
j�1 GD(i, j)/(width

(I) − 2) × (height(I) − 2)).
(3) Repeat steps 1 and 2 for SI to obtain

AvgSI(GDSI(i, j)),
(4) Compute GDD using GDD � (AvgSI(GDSI(i, j)) −

Avg(GD(i, j))/AvgSI(GDSI(i,j)) + Avg(GD(i, j))).

Table 5 shows obtained GDD values for randomly se-
lected subject images from ORL dataset.

4.2.4. Key Analysis. Encryption keys are fundamental
components for implementing encryption on subject
images. Encryption keys’ resistance to attacks should be
high. Encryption keys should have a large key space and a
high sensitivity [62]. Keys with larger key space are more
resistive to brute force attacks [63]. Resisting brute force
attacks requires key space to be >2100 [64]. As for keys
sensitivity test, a small change in encryption key should
have large diference on the generated encrypted image
[65]. NPCR is utilized in key analysis test in similar
manner to work of [66].

To test the efectiveness of the image encryption key
space must be large enough to withstand brute-force
attacks [29]. For the proposed algorithm, the key is
composed of an initial A0 lattice of size width ∗ height,
number of generations k, and value n such that 0 < n < k.
Since n is selected randomly based on k, and pixels on
initial A0 lattice can assume one of two states (alive or

dead) then key space is u(2size(A0)) where u � (k(k − 1))/2)
is the size of unique pairs of k and n set. Key space is
exceptionally wide, and large enough k value (which in
turn increases the size of u) can be selected to efectively
encrypt images of smaller size. At minimum for an image
of size (10 ×10) key space is u (2100) > 2 100 which exceeds
the brute force resistivity limit.

To test the sensitivity of the key, a random subject
encrypted image is decrypted using Ak and An only. Ten
keys with diferent values of k and n are tested to decrypt
the image. Results on Figure 9 show that decrypting
image is only possible with the correct key. Given that A0
is available, decrypting an image with Ak or An only yields
no useful information, and the same can be concluded for
diferent values of k and n. Also, the NPCR test in Table 3
shows a high change rate between images encrypted with
a slight change in encryption keys (>96% on minimum)
which proves the high sensitivity of encryption keys.

Table 3: NPCR scrambling key sensitivity test.

Test image
NPCR(SIk, SIk′ )

NPCR(SIk, SIk′[0]) (%) NPCR(SIk, SIk′[1]) (%) NPCR(SIk, SIk′[2]) (%)

S15/8 98.022 96.643 98.628
S33/8 98.014 96.348 98.437
S1/5 97.656 96.061 98.477
S11/5 97.720 96.372 98.254
S23/9 98.126 96.197 98.628
S15/9 97.863 96.109 98.325
S12/10 98.309 96.859 98.971
S7/7 97.823 96.301 98.557

Table 4: MAE values for encrypted images.

Test image MAE
S9/8 68.728
S23/5 60.517
S23/6 57.734
S12/8 66.906
S29/1 43.580
S34/10 59.224
S10/3 77.005
S35/8 66.644

Table 5: GDD values for encrypted images.

Test image GDD
S1/10 0.9753
S14/1 0.9350
S32/9 0.9491
S18/1 0.9582
S28/1 0.9469
S9/10 0.9682
S13/6 0.9502
S3/2 0.9687
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Figure 9: Decrypting a random ORL subject image with diferent values of k and n. From left encrypted image, decryption with Ak only,
decryption with An only, decryption with k� 13, n� 7, and decryption with k� 12, n� 8.
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Table 6: Encrypted faces classifcation report.

Enc. face test image Classifcation result Evaluation
S1/9 S1 with Euclidean distance 5373.228051 True
S1/10 S1 with Euclidean distance 5748.435552 True
S2/9 S2 with Euclidean distance 4473.023282 True
S2/10 S2 with Euclidean distance 3973.352329 True
S3/9 S4 with Euclidean distance 5274.349620 False
S3/10 S3 with Euclidean distance 5051.268398 True
S4/9 S4 with Euclidean distance 3942.744650 True
S4/10 S4 with Euclidean distance 4165.568529 True
S5/9 S5 with Euclidean distance 4215.311359 True
S5/10 S40 with Euclidean distance 5483.203667 False
S6/9 S6 with Euclidean distance 4393.905716 True
S6/10 S6 with Euclidean distance 2908.963330 True
S7/9 S7 with Euclidean distance 3823.492582 True
S7/10 S7 with Euclidean distance 4425.482036 True
S8/9 S8 with Euclidean distance 4497.363225 True
S8/10 S8 with Euclidean distance 3792.915907 True
S9/9 S9 with Euclidean distance 3860.873395 True
S9/10 S9 with Euclidean distance 4905.702679 True
S10/9 S8 with Euclidean distance 6003.611492 False
S10/10 S8 with Euclidean distance 5835.079534 False
S11/9 S11 with Euclidean distance 4116.744312 True
S11/10 S11 with Euclidean distance 3838.417882 True
S12/9 S12 with Euclidean distance 4765.491458 True
S12/10 S12 with Euclidean distance 5292.675978 True
S13/9 S13 with Euclidean distance 5053.542112 True
S13/10 S13 with Euclidean distance 3449.380342 True
S14/9 S14 with Euclidean distance 4563.140665 True
S14/10 S14 with Euclidean distance 5607.276628 True
S15/9 S15 with Euclidean distance 3238.105065 True
S15/10 S15 with Euclidean distance 3376.481119 True
S16/9 S16 with Euclidean distance 6413.669511 True
S16/10 S16 with Euclidean distance 4447.723711 True
S17/9 S17 with Euclidean distance 4208.686506 True
S17/10 S17 with Euclidean distance 3669.955253 True
S18/9 S18 with Euclidean distance 4666.727826 True
S18/10 S18 with Euclidean distance 5171.592818 True
S19/9 S15 with Euclidean distance 6058.791313 False
S19/10 S19 with Euclidean distance 3402.706098 True
S20/9 S20 with Euclidean distance 4136.461436 True
S20/10 S20 with Euclidean distance 3870.016443 True
S21/9 S21 with Euclidean distance 4272.902692 True
S21/10 S21 with Euclidean distance 4118.266490 True
S22/9 S22 with Euclidean distance 2636.987145 True
S22/10 S22 with Euclidean distance 3540.276387 True
S23/9 S23 with Euclidean distance 4589.453589 True
S23/10 S23 with Euclidean distance 3602.207713 True
S24/9 S24 with Euclidean distance 5087.230445 True
S24/10 S24 with Euclidean distance 4895.659062 True
S25/9 S25 with Euclidean distance 4225.148892 True
S25/10 S25 with Euclidean distance 3716.330952 True
S26/9 S26 with Euclidean distance 4325.390877 True
S26/10 S26 with Euclidean distance 3035.202458 True
S27/9 S27 with Euclidean distance 3366.186844 True
S27/10 S27 with Euclidean distance 4494.598557 True
S28/9 S28 with Euclidean distance 5812.395899 True
S28/10 S28 with Euclidean distance 4965.903614 True
S29/9 S29 with Euclidean distance 4324.022162 True
S29/10 S29 with Euclidean distance 3714.952745 True
S30/9 S30 with Euclidean distance 3970.182573 True
S30/10 S30 with Euclidean distance 4164.566874 True
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4.3. PCA Implementation. Te ORL faces database contains
400 pictures of 40 diferent subjects. Each subject has 10
faces in various poses.Tus, face images are classifed into 40
classes in the ORL database and labeled accordingly. 8
images from each subject are taken for training the PCA
model, and 2 images are left for testing.

Training face images are converted to vectors, and these
vectors are then processed with PCA to reduce features and
generate principal components that explain most variance.
Te original number of features in grayscale training face
images is 12544 which is to be reduced according to a se-
lected number of principle components. Figure 10 shows the
number of generated principle components versus explained
variance. Initially, the frst few principal components
explained most variations in encrypted facial features, but as
the number of principal components increased, the variance
explained by subsequent principles decreased. From Fig-
ure 10, 250 components are selected as the number of
principal components, which account for 96% of the vari-
ance in the extracted features. In order to distinguish
encrypted faces, these 250 components are used to create
eigen faces. Figure 11 shows the resulting eigen faces.

4.3.1. Classifcation Results. A Euclidean distance classifer is
used to classify test encrypted face images into the correct
class labels. Table 6 shows the classifcation results for testing
data on extracted features.

Table 6 provides a classifcation report for which 74 out
of 80 classifcations were correct. Based on that, the model
was able to identify 92.5% of the encrypted faces in the
database correctly.

In the second test, decrypted images were used, and we
performed the same classifcation test. Te objective is to
demonstrate that in order to perform correct facial recog-
nition, the subject image must be encrypted with the correct
key; otherwise, the result is faulty. Table 7 shows the results
of the classifcation of decrypted face images taken from the
encrypted images database.

Table 7 on the classifcation report shows only 3 correct
identifcations out of 80, an accuracy of only 0.0375%. Tis
highlights the purpose of encrypted face recognition with
PCA. A method for protecting authentication processes
against spoofng attacks, so that identifcation requires
encrypting the input image with a correct key so it can be
recognized correctly.

4.3.2. Execution Time. For the identifcation of a single face,
a script was run in python3 using a single face query. With
the timeit method in Python, identifcation time was
measured for 10,000 iterations. It took 28.0455 seconds to
perform 10,000 iterations. Te average execution time for a
single iteration is 0.0028045 seconds or 2.8045 milliseconds
(milliseconds).

Table 6: Continued.

Enc. face test image Classifcation result Evaluation
S31/9 S31 with Euclidean distance 4281.472462 True
S31/10 S31 with Euclidean distance 4148.592567 True
S32/9 S32 with Euclidean distance 5129.574047 True
S32/10 S32 with Euclidean distance 4362.000327 True
S33/9 S33 with Euclidean distance 4391.321723 True
S33/10 S33 with Euclidean distance 1855.914736 True
S34/9 S34 with Euclidean distance 4046.684219 True
S34/10 S34 with Euclidean distance 3364.459445 True
S35/9 S35 with Euclidean distance 5574.973183 True
S35/10 S35 with Euclidean distance 5012.925485 True
S36/9 S36 with Euclidean distance 4977.578999 True
S36/10 S36 with Euclidean distance 5861.877623 True
S37/9 S37 with Euclidean distance 2572.658060 True
S37/10 S37 with Euclidean distance 3477.025249 True
S38/9 S38 with Euclidean distance 3935.824694 True
S38/10 S38 with Euclidean distance 2906.621539 True
S39/9 S39 with Euclidean distance 3409.791218 True
S39/10 S39 with Euclidean distance 4106.191621 True
S40/9 S40 with Euclidean distance 5729.986808 True
S40/10 S23 with Euclidean distance 5469.463603 False
Note. Sn/y means subject number/test image name. Each subject has 2 test images named 9 and 10.
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Table 7: Decrypted faces classifcation report.

Dec. face test image Classifcation result Evaluation
S1/9 S24 with Euclidean distance 7435.847954 False
S1/10 S21 with Euclidean distance 7269.929589 False
S2/9 S29 with Euclidean distance 5365.385391 False
S2/10 S29 with Euclidean distance 5573.841664 False
S3/9 S29 with Euclidean distance 6084.440200 False
S3/10 S29 with Euclidean distance 6050.517050 False
S4/9 S29 with Euclidean distance 5450.521142 False
S4/10 S29 with Euclidean distance 6124.181955 False
S5/9 S29 with Euclidean distance 6609.509702 False
S5/10 S23 with Euclidean distance 6811.295543 False
S6/9 S15 with Euclidean distance 6793.770404 False
S6/10 S26 with Euclidean distance 6972.557627 False
S7/9 S29 with Euclidean distance 5848.651596 False
S7/10 S29 with Euclidean distance 6084.717652 False
S8/9 S22 with Euclidean distance 6256.912823 False
S8/10 S22 with Euclidean distance 6309.784462 False
S9/9 S29 with Euclidean distance 5528.818348 False
S9/10 S29 with Euclidean distance 5863.762005 False
S10/9 S29 with Euclidean distance 5343.583505 False
S10/10 S29 with Euclidean distance 6095.577903 False
S11/9 S22 with Euclidean distance 5353.236949 False
S11/10 S39 with Euclidean distance 5142.255364 False
S12/9 S29 with Euclidean distance 6191.075499 False
S12/10 S29 with Euclidean distance 6171.752094 False
S13/9 S29 with Euclidean distance 6530.273543 False
S13/10 S29 with Euclidean distance 6355.567702 False
S14/9 S39 with Euclidean distance 5167.465309 False
S14/10 S29 with Euclidean distance 5228.488687 False
S15/9 S29 with Euclidean distance 5205.926729 False
S15/10 S29 with Euclidean distance 5157.896387 False
S16/9 S29 with Euclidean distance 6243.478599 False
S16/10 S29 with Euclidean distance 5997.870417 False
S17/9 S29 with Euclidean distance 6046.541073 False
S17/10 S29 with Euclidean distance 6001.829722 False
S18/9 S23 with Euclidean distance 6924.760926 False
S18/10 S23 with Euclidean distance 6817.498247 False
S19/9 S22 with Euclidean distance 5740.461747 False
S19/10 S29 with Euclidean distance 5730.211884 False
S20/9 S29 with Euclidean distance 6113.835415 False
S20/10 S22 with Euclidean distance 4731.696099 False
S21/9 S29 with Euclidean distance 5022.505110 False
S21/10 S29 with Euclidean distance 5135.471721 False
S22/9 S22 with Euclidean distance 4561.435970 True
S22/10 S22 with Euclidean distance 4598.668918 True
S23/9 S29 with Euclidean distance 5379.050528 False
S23/10 S29 with Euclidean distance 5462.854064 False
S24/9 S22 with Euclidean distance 5599.986329 False
S24/10 S22 with Euclidean distance 5487.662594 False
S25/9 S29 with Euclidean distance 5782.152301 False
S25/10 S29 with Euclidean distance 6040.679113 False
S26/9 S29 with Euclidean distance 5831.873694 False
S26/10 S29 with Euclidean distance 6077.316626 False
S27/9 S22 with Euclidean distance 5566.636033 False
S27/10 S22 with Euclidean distance 5532.136618 False
S28/9 S29 with Euclidean distance 5560.095559 False
S28/10 S29 with Euclidean distance 5481.378496 False
S29/9 S22 with Euclidean distance 4438.010799 False
S29/10 S22 with Euclidean distance 4548.927352 False
S30/9 S22 with Euclidean distance 4994.185792 False
S30/10 S22 with Euclidean distance 4957.033765 False
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5. Conclusion

In conclusion, biometric authentication systems sufer from
vulnerabilities that render such systems insecure against
spoofng attacks. Tose vulnerabilities extend to facial rec-
ognition systems as well. In order to resolve the spoofng
issue, a new image encryption model was developed and
integrated on the recognition pipeline of the PCA-based face
recognition system.Te image encryptionmodel was used to
encrypt the ORL face dataset used to train and test the
model. With that, correct identifcation of face images re-
quires encryption of the input face image with the same key
used to encrypt the features database.

Testing encryption performance was carried out on
randomly selected encrypted samples from the ORL dataset.
Results showed that correlation was weak, histogram was
diferent, NPCR values were >99%, MAE score was >40 on
minimum and GDD values exceeded 0.92 on tested ORL
face images. As for the key space, it was more than the brute
force attack resistivity limit (2100), as the key space provided
by the method depends on image size. Key sensitivity was
tested as well, where an NPCR test was performed between
face images encrypted with slightly diferent keys. In all
cases, NPCR values were >96%.

After encrypting ORL faces dataset 80% of data was used
to train the PCAmodel and the remaining 20% was reserved
for testing. Te model was able to achieve 92.5% accuracy in
identifying encrypted test images from the encrypted fea-
tures database. Te same test was repeated again; however,
this time with test face images that were entirely decrypted.
In the second case, the system had an accuracy of 0.0375% in
identifying decrypted images on a database of encrypted
features. Tis shows the system’s ability to withstand
spoofng attacks, as the submitted input image is required to
be encrypted with the correct key before it can be correctly
recognized.
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