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A novel random biased-genetic algorithm (NRB-GA) load-balancing algorithm that exhibits the characteristics of both genetic
algorithms and biased random algorithms is designed and developed to improve the processing time and response time metrics of
the cloud computing environment. Te NRB-GA is designed to discover a virtual machine with fewer loads by applying a genetic
algorithm with a ftness function that is inversely proportional to the average load over a period of time for each virtual machine
and with biased parent selection to maximize the ftness values of ofspring. Te developed NRB-GA load-balancing algorithm is
evaluated by analysing its performance for various simulated scenarios in a cloud computing environment with diferent user
bases and data center confgurations.Te analysis of the experimental results of NRB-GA indicates that the average response time
is reduced by 27.22%, 21.15%, and 22.34%, and the processing time is reduced by 25.73%, 16.14%, and 18.82% for one, two, and
three data centers, respectively. It is evident that the proposed NRB-GA algorithm for load balancing outperforms other existing
algorithms signifcantly.

1. Introduction

Te cloud computing environment enables convenient on-
demand access for sharing a pool of confgurable computing
resources (e.g., servers, network storage, applications, and
services). With minimal service provider interaction and less
management efort, shared resources can be rapidly provi-
sioned and released [1, 2]. Before the emergence of modern
cloud computing, all software applications, data, and con-
trols resided on a centralized server. Te clients request a
service from the servers, which is called as client-server
computing. Following client-server computing, distributed
computing evolves, where all computers are networked and
resources are shared as per need. Afterward, diferent types
of distributed systems emerged, including grid computing,
utility computing, and cluster computing. Te concept of
cloud computing emerged later, on top of the foundation of
grid computing, utility computing, and virtualization

technology [3, 4]. Te evolution of cloud computing opens
up challenges in privacy, security, performance, availability,
scalability, portability, interoperability, and load balancing.
Te primary challenge in cloud computing is load balancing,
which ensures that no single node is overwhelmed by dis-
tributing the dynamic workload across multiple nodes in a
balanced way [5]. Various load-balancing algorithms, such
as the round-robin algorithm, the equally spread current
execution (ESCE) algorithm, the ant colony algorithm, the
honey bee behavior (HBB) algorithm, the grey wolf tech-
nique, the genetic algorithm, and the biased random algo-
rithm, have been proposed for cloud computing
environments. Te related works section of this article
elaborates on some recent and related research in load
balancing in cloud computing environments.

On studying various state-of-the-art load-balancing al-
gorithms for cloud computing environments, we found that
the performance of the cloud with respect to processing time

Hindawi
Scientific Programming
Volume 2022, Article ID 3042173, 13 pages
https://doi.org/10.1155/2022/3042173

mailto:karpaga.selvi@mu.edu.et
https://orcid.org/0000-0003-1123-7882
https://orcid.org/0000-0002-9125-6778
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3042173


and response time metrics could be improved by hybridising
the existing load-balancing algorithms by adopting the
advantages of two or more algorithms that are combined
together. Hybridisation with more algorithms is computa-
tionally inefective, and there is a chance of degrading the
performance of the cloud.Tis trade-of could be neutralised
by a careful selection of algorithms that can be hybridised
and by limiting the number of algorithms that are combined.
We strongly believe that the combination of a genetic al-
gorithm and a random-biased algorithm could be used to
develop a hybrid load-balancing algorithm that improves the
processing time and response time in a cloud computing
environment. Te genetic algorithm is used as an optimized
scheduler, and a biased random method is used to select
parents with high ftness for crossover and mutation op-
erations of the genetic algorithm. In our proposed solution, a
biased random selection of parents accelerates the conver-
gence of the genetic algorithm, reducing the processing time
and response time. Te genetic algorithm identifes the
virtual machine with less load over a period of time (not on
the instant); hence, reducing the migration between virtual
machines and, in turn, improving the response time and
processing time metrics. In the following section, we discuss
the basics of genetic algorithms and biased random
algorithms.

1.1. Background Study

1.1.1. Biased Random. A random sampling of the system
domain is being used to achieve the self-organization that
balances the load among all nodes in the system. A virtual
directed graph is constructed with nodes representing the
load on the server and in-degree representing the free re-
sources of that node [6]. Each process is associated with a
threshold value representing the maximum walk length. Te
defnition of a walk is traversing from one node to another
until the destination. Walk length is defned as the number
of nodes traversed in the walk. On receiving a request, the
load balancer selected a node randomly and compared the
current walk length with the threshold. If the current walk
length is the same or greater than the threshold, then the
request is processed in that respective node, and its in-degree
value is reduced by one; if not, the current walk length is
incremented, and another neighbour node with a minimum
of one in-degree is selected randomly. Upon completion of
the process, the node’s in-degree value is incremented by
one. Te drawback of this algorithm is that its overall
performance is inversely proportional to the number of
servers and population diversity.

1.1.2. Genetic Algorithm. Te genetic algorithm (GA) is
inspired by the evolution of law, which searches for the
optimized solutions from a population that eventually
evolved in consecutive generations. Te search direction
adjusts toward the optimized solution by selecting the more
probable candidates with a high ftness value to generate the
next population [7]. Te selected individuals were crossed
over andmutated to generate a new population, representing

a new solution set. Te disadvantage associated with GA is
that the individuals are chosen completely randomly from
the population, which leads to the possibility of choosing
both bad chromosomes and having poor-quality ofspring in
the next generation. In our proposed method, this drawback
is overcome by applying a biased random selection of
parents with high ftness values. State-of-the-art load-bal-
ancing algorithms and their advantages and limitations are
discussed in the following section.

2. Related Works

Ragmani et al. proposed a method to enhance load balancing
by introducing a fuzzy logic module to calculate the pher-
omone value in ant colony optimization. It is proved by
experimental results that this method is more appropriate to
handle complex networks [8]. Akawee et al. present some
resource allocation problems and issues that can be solved
with the help of load-balancing techniques and algorithms.
Tis paper focused on highlighting the importance of re-
source allocation and its relationship with load balancing,
and it also discussed the limitations of resource allocation in
cloud computing [9].

Sethi et al. proposed a load-balancing algorithm that
used fuzzy logic and round-robin scheduling. Workload
assignment was based on various parameters, like pro-
cessor speed and the number of currently allocated re-
quests to each virtual machine (VM). Whenever a new
request arrived, the scheduler looked for a minimum
loaded VM for assigning the new workload. In the case
where more than one virtual machine was identifed, then
the workload assignment was carried out depending on
the processor speed and current load in the VM [10] by a
fuzzy logic algorithm.

Hwang and Wood enhanced the user experience by
proposing a soft real-time scheduler that employed fexible
priority designations and automated scheduler class detec-
tion. Te implemented scheduler was deployed in the Xen
virtualization platform and established that the overhead
could be reduced by less than 2% from 66% with existing
schedulers. Te efect of a smaller scheduling time quantum
in a virtual desktop infrastructure (VDI) setting was cal-
culated and proved that the order of average overhead time
per scheduler call remained unchanged [11].

Begam et al. proposed a method for the selection of
routing path and server selection based on a prediction of
trafc type and response time of the server under current
load, response time, bandwidth, and server utilization by
multiple regression-based searching [12].

A load-balancing algorithm based on ant colony opti-
mization was proposed by Mishra and Anant [13]. Te
selection of the optimal path to the target depends on the
strength of the ant’s pheromone. Similarly, each node held a
pheromone. Every row in the pheromone table represented a
preferred path to the destination node, and every column
represented the probability of choosing a neighbour as the
next hop. At the choice point, the next hop node with the
highest probability was chosen, and a random node was
chosen if no pheromone was present. Te table was updated
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by increasing the probability of the chosen node and de-
creasing the probability of all other nodes.

Ouhame and Hadi proposed a modifcation in the local
search section and ftness function value in the grey wolf
optimization algorithm to improve throughput, energy
consumption, and average network execution time in VM
for cloud computing [14]. Load-balancing algorithms that
distributed the load among a number of heterogeneous
servers were developed by Kaur and Jain [15]. VMs from
diferent data centers were created with a host specifcation
that detailed the core processor, processing speed, memory,
storage, etc. Each VM has been characterised by a weighted
count proportional to the amount of RAM allocated to it and
the current allocation count. Te selection of VMs for load
assignment is carried out by identifying an available VM
with higher RAM. Once an assignment is made, the virtual
machine ID is returned to the data center controller for
updating the allocation count of VMs and the busy list. On
fnishing the request, the algorithm deallocates the VM and
updates the busy list by removing the VM ID.

Honey bee behavior (HBB) in search of a food source
was modeled as a scheduling algorithm in cloud computing
by Miriam et al. [16]. Te virtual machine workload was
calculated by the HBB algorithm and classifed as over-
loaded, balanced, and light-weighed. Te task with high
priority was removed from overloaded VMs and assigned to
lightweight VMs. Tese tasks were playing the role of scout
bees in the next step.

Ziyath and Subramaniyan consider the current status of
the virtual machine (VM) in a cluster for calculating the
placement value of the task in the queue and reshufing.Te
performance of the system is validated by the time taken to
allocate 1000 jobs but not by the response time or processing
time of the jobs [17]. Kofani et al. have measured the
performance of their priority-based optimized data center
selection method with processing time and response time
[18]. Jena and Mohanty proposed a two-phase load bal-
ancing technique in which the frst phase is genetic algo-
rithm-based resource allocation and the second phase is
shortest task-frst scheduling [19]. Hafz proposed a load-
balancing algorithm for heterogeneous cloud computing
environments that improves efciency and performance
based on randomization and a greedy algorithm [20]. A
short summary of important literature is tabulated in
Table 1.

After a deep study of load-balancing algorithms dis-
cussed in various scholarly articles [21–24], genetic algo-
rithms could be used for optimization, and biased parent
selection will help the genetic algorithm to converge faster.
Hence, the combination of a genetic algorithm and a biased
random strategy are the probable candidates to improve the
performance of load balancing in a cloud computing
environment.

3. Problem Statement

Load balancing is a major concern and leads to performance
degradation in resource allocation in cloud computing.
Presently, in a cloud computing environment, the

scheduling of virtual machines is carried out by consid-
ering only the current system state and ignoring the
previous state of the system, which leads to load imbal-
ance. While balancing loads the associated cost increases
with a number of virtual machine migrations due to a
granularity of VM resources and suspension of VM ser-
vice during an enormous amount of data transfer in the
migration process. A better solution, NRB-GA, is pro-
posed for VM resource scheduling in cloud computing
environments to improve performance. NRB-GA is a
hybrid approach based on biased random and genetic
algorithms. NRB-GA predicts the impact on the system of
assigning a new task to VMs by utilizing historical data
and the current state of the system. Te solution that has
the least efect on the system is picked. Tis solution
ensures better load balancing by reducing the number of
dynamic VM migrations during load balancing. Te de-
tailed design and implementation of NRB-GA for cloud
computing environments that exhibit meritorious char-
acteristics of both biased random algorithms and genetic
algorithms are discussed in the following section.

4. NRB-GA Load-Balancing Algorithm

In the NRB-GA load-balancing algorithm, the population of
virtual machines is divided into two groups based on their
ftness. Te top group is the best group because it contains
the best individuals, and the bottom group is the nonbest
group with the remaining candidates.Te GA is restricted to
choosing one individual randomly from each group for
future genetic operations like crossover and mutation. Each
member of a group has an equal probability of being se-
lected. Tis biased the selection of at least one individual
from the best group, which propagated to the next gener-
ation. Two important steps of the proposed NRB-GA load-
balancing algorithm are explained here.

Te frst step is the distribution of virtual machines over
physical machines (hosts) according to physical machine
CPU capacity and processor speed. Te largest number of
virtual machines was housed in a host with highly qualifed
CPU capacity. For illustration, let us assume we need 6 VMs
and have 3 hosts. Te frst host has one CPU with a pro-
cessing speed of 10000 MIPS.Te second one has two CPUs,
each with a processing speed of 10000 MIPS. Te third host
has three CPUs, each with a processing speed of 10000MIPS.
Based on the host capacity, the frst host takes one VM, the
second host takes two VMs, and the third host takes three
VMs.

Te second step is the construction of an index table that
records the loads of each virtual machine. Te load balancer
would update this index table upon assigning a load to a VM
and that VM completing the request. Whenever the data
center receives a request from a user, the NRB-GA load
balancer algorithm initializes a population of nodes (VMs)
randomly and evaluates the ftness of each populated VMs.
After sorting the initialized VM in decreasing order of ftness
value, the algorithm groups the VMs into two groups, with
the top individuals as the best group and the remaining
individuals as the nonbest group.
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A biased random strategy is applied to generate a new
population from both groups for crossover and mutation.
Te best VM found from the operation is chosen for the job,
and the NRB-GA algorithm returns the VM ID number to
the data center. Te data center assigns the load to the
selected VM and updates the index table.

4.1. Mathematical Model. Let P be the set of host machines
in the whole system and represented as
P � P1 , P2, P3, . . . , PN􏼈 􏼉 where N is the total number of
physical host systems and Pi is the individual host machine
with identifcation number of i.

Each physical machine Pi is having a set of virtual
machines Vi � Vi1, Vi2, Vi3, . . . , Vim􏼈 􏼉, where m is the
number of VMs on the physical server Pi.

Let Si is the distribution structure of the VM V arranged
in physical machine Pi. Let S � S1, S2, S3, . . . , SN􏼈 􏼉, repre-
sents the distribution solution set. Te sum of all running

VMs on a physical machine Pi represents the load on a
physical machine.

Let T be the duration to monitor historical data. At any
point in time, the last Tminutes are called the historical data
zone, which would be used in solving the load balancing
problem. Te physical machine load of the duration T could
be divided into n subsequent time intervals as
[(t1 − t0), (t2 − t1), (t3 − t2), . . . , (tn − tn−1)] by applying
variation law.

Let VL(i, k) be the load of VM i in the interval k only
when the load of VM V is stable in all periods of the interval
(tk − tk−1). Te average load of VM on physical server Pi
during the period T is defned by the following equation:

VL(i, T) �
1
T

􏽘

n

k�1
VL(i, k)∗ tk − tk−1( 􏼁. (1)

Load of a physical machine Pi, during the duration T, is
defned as the summation of the average load of all VMs

Table 1: A short summary of important literatures.

Authors [ref] Title/year Methods Findings/remarks

Ragmani
et al. [8]

An improved hybrid fuzzy-ant colony
algorithm applied to load balancing in
cloud computing environment/2019

Fuzzy logic module to calculate
pheromone values for any

colony optimization

Hybrid load-balancing algorithm
Empirical results proved appropriate for

handling complex networks

Akawee et al.
[9]

Using resource allocation for seamless
service provisioning in cloud

computing/2022
Survey of recourses allocation

Highlights the importance of resource
allocation and its relationship with load
balancing, and discusses the limitations of
resource allocation in cloud computing

Sethi et al.
[10]

Efcient load balancing in cloud
computing using fuzzy logic/2012

Fuzzy logic and round-robin
scheduling

Hybrid method
Fuzzy logic is used to identify the virtual
machine with the minimum load. Round-

robin scheduling for virtual machine
assignment for requests

Hwang and
Wood [11]

Adaptive dynamic priority scheduling
for virtual desktop infrastructures/2012 Soft real-time scheduler

Te efect of a smaller scheduling time
quantum in a virtual desktop infrastructure
(VDI) setting was calculated and proved that

the order of average overhead time per
scheduler call remained unchanged

Begam et al.
[12]

Load balancing in DCN servers through
SDN machine learning algorithm/2022 Multiple regression

Server selection is based on a prediction of the
response time of the server as a function of
current load, response time, bandwidth, and

server utilization

Ouhame and
Hadi [14]

Enhancement in resource allocation
system for cloud environment using
modifed grey wolf technique/2020

Grey wolf optimization
algorithm

Metrics studied are throughput, energy
consumption, and average network execution

time in VM for cloud computing

Miriam et al.
[16]

An efcient job scheduling in isometric
HPCLOUD using ZBLA optimization/

2015
Honey bee behavior

Te virtual machine workload was calculated
by the HBB algorithm and classifed as

overloaded, balanced, and light-weighed. Te
task with high priority was removed from

overloaded VMs and assigned to lightweight
VMs. Tese tasks were playing the role of

scout bees in the next step
Jena and
Mohanty
[19]

GA-based customer-conscious resource
allocation and task scheduling in

multicloud computing/2018

Genetic algorithm and shortest
task frst scheduling

Hybrid load-balancing algorithm
Two-phase approach

Hafz [20] Efcient load balancing algorithm in
cloud computing/2015

Randomization and greedy
algorithm

Hybrid load-balancing algorithm
A load-balancing algorithm for
heterogeneous cloud computing

environments that improves the efciency
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present in the physical machine Pi and is expressed as the
following equation:

PL(i, T) � 􏽘
mi

j�1
VL(j, T). (2)

By knowing the resource information of the virtual
machine V, the load on the virtual machine V could be
estimated as V′ while distributing the VM to the system.
Whenever the VM V is assigned to a physical server, the load
of each Pi is calculated by the following given equation:

PL(i, T)′ �
PL(i, T) + V′, after  distribute V′,
PL(i, T), otherwise.

⎧⎨

⎩ (3)

After assigning VM V with Pi, system load is altered and
the load adjustment factor should be calculated for load
balancing. Te load deviation σi(T) in system due to so-
lution Si is obtained by the following equation:

σi(Si, T) �

��
1
N

􏽲

􏽘

N

i�1
PL(T)′( −PL(i, T)′􏼁2, (4)

where PL(T)′ � 1/N 􏽐
N
i�1 PL(i, T)′.

Te migration cost or cost advisor ρ(Si) for achieving load
balancing with a solution is defned as the ratio of the number of
virtual machines that need to be migrated (M′) over the total
number of virtualmachines (M).Te equation is given as follows:

ρ(Si) �
M′
M

. (5)

4.2. System Model. Te proposed NRB-GA algorithm fol-
lows the same structure as the genetic algorithm with respect
to population initialization but also introduces the following
two methods to improve the processing time and response
time metrics:

(1) A biased random technique to select individuals
from the population for crossover and mutation.

(2) Te ftness function used in our proposed method is
considering the load on each virtual machine over a
period of time (not on the instance) for reducing the
number of migrations.

In GA, binary codes are used to mark the chromosome
structure of genes [25]. We choose to represent every dis-
tribution solution as a tree structure that forms the chro-
mosomes of genes. Te root node of the tree represents the
scheduling and managing node of the system, and the
children of the root nodes (N-nodes) are the physical ma-
chines. Te leaf nodes (M-nodes) of the tree are virtual
machines. Te virtual machines housed in one physical
machine are represented as the children of that physical
machine node in the tree.

4.2.1. Population Initialization. A spanning tree is used to
initialize the population. Te spanning tree is constructed
with a physical machine set and a virtual machine set:

(i) Te root node is the predefned management source
node.

(ii) All physical machines are children of the root node.
(iii) All leaf nodes are VM nodes. VMs belong to the

physical machines, and Pi are children of the node
Pi.

4.2.2. Fitness Function. Te genetic ftness of any individual
is proportional to the number of descendants produced. In
the NRB-GA load-balancing algorithm, the ftness function
should be related to the quality of the solutions in the
population. Solutions with a higher ftness value perform
better, and vice versa. In the consecutive generations of the
GA, the solutions with higher ftness values grew while
solutions with fewer ftness values extinct. Te ftness
function chosen for the NRB-GA load-balancing algorithm
should reduce the average load of the virtual machines and is
defned by the following equation:

f i(Si, T) �
1

VL(i, T)
, (6)

where VL(i, T) is the average load of VM Vi.

4.2.3. Biased Random Strategy. In biased random sampling,
elements in the sample space are associated with some biased
probability, so that the accuracy of a few elements is higher
than that of others. Tis biased random sampling technique
is used in GA for the selection of parents with good ftness to
generate the consecutive population. In the NRB-GA load-
balancing algorithm, the ftness value of each solution in the
current population is calculated. After sorting the solution
candidates in decreasing order of their ftness value, they are
grouped as the best group and nonbest group. Te selection
of a solution to form the next generation of the population is
biased such that one solution from the best group is selected
and another solution from either the nonbest group or
population is used for crossover and mutation operations.

4.2.4. Crossover Operation. Since tree coding is used in the
solution set, the normal crossover operation (exchanging
some parts of the genes of the parents) does not work.
Instead, replication is performed so that the child takes the
same gene from the parents and assures the legitimacy of the
leaf nodes. Te crossover mechanism with a crossover
probability value of Pc � 0.9 is explained as follows:

(i) Two parental solutions T1 and T2 are selected by
applying the biased random strategy.

(ii) Two selected individuals are crossed over to get a
new individual tree T0. If the new individual
maintains the the child-parent relation of the leaf
nodes, then keep it, else discard it.

(iii) For diferent leaf nodes in the two parental indi-
viduals, frst compute their selection probability
according to the load of every VM, then based on
selection probability distribute them as leaf nodes to
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the least loaded nodes in the physical machine set until
the distribution is completed. Selection probability
based on ftness is defned in the following equation:

pi(S) �
fi(Si,T)

􏽐
D
i�1 fi(Si,T)

, (7)

where fi(Si, T) is ftness of VMVi in population and
“D” is scale of the population

(iv) Repeat the crossover as mentioned above until the
required next-generation population is produced T0.

4.2.5. Mutation Operation. Mutation operations are es-
sential in GA to preserve the diversity of the population and
to avoid prematurity. Self-adaptive mutation probability
(Pm) defned in the following equation, is used in the NRB-
GA load-balancing algorithm:

Pm �
exp (−1.5∗ 0.5t)

D∗
��
M

√ , (8)

where t is the number of generations; D the scale factor of
population; and M is the number of VMs.

4.3. Steps in NRB-GA Algorithm. Te proposed NRB-GA
algorithm goes through diferent steps to attain the fnest
system-level load balancing to ensure high performance in
the cloud system. Te fowchart of the NRB-GA load-bal-
ancing algorithm is shown in Figure 1.

Te NRB-GA algorithm steps are:

(1) (Start) Initialize random population V of VMs.
(2) (Fitness) Calculate the ftness value fi(Si, T) of every

VM in the given population using equation (6).
(3) (Group) Sort the population in decreasing order of

ftness and group it into two: say the top Vb indi-
viduals, the best group, and the bottom Vnb indi-
viduals, the nonbest group.

(4) Copy the best group Vb to the next generation; say Y.
(5) (Biased Random) Repeat the following steps until a

new population is created.

5.1 (Selection) Select one individual from the best
group Vb and another individual from either the
nonbest group Vnb or population V

5.2 (Crossover) Perform crossover operation
among the selected individuals by using the
crossover probability and generating the new of-
spring (Vo)

5.3 (Mutation) Perform mutation operation on
(Vo) with the probability of mutation given in
equation (9).

Start

Initialize Population V of VMs

While Not Maximum generation
(maxGen) reached

Calculate the ftness value for each
individual in population

Sort the population based
on individuals ftness value

Partition the population as best group
Vb and non best group Vnb

Copy best group Vb to next
generation population Y

Repeat until new
generation is created

Biased Selection of parents
Select one parent randomly from best group Vb

select second parent randomly from non best group Vnb

Perform Crossover operation on the selected parents
with crossover probability and generate new ofsprings Vo

Perform Mutation operation on the ofsprings Vo
with mutation probability

Add the ofspings to Population Y

Is Individual with highest
ftness value found

Return Virtual Machine with highest Fitness value
Assign task to best Virtual machine found

End

Figure 1: Flowchart for the proposed NRB-GA algorithm.
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5.4 (Accepting) Add new ofspring to the next
generation of population (Y � Y + Vo)

(6) (Replace) Assign the current generation to the new
generation (V←Y).

(7) (Test) Check if the individual with the highest ftness
value is found, and then

(a) Assign the task to the identifed VM with the
highest ftness value

(b) End algorithm

(8) (Loop) go to step 2.

5. Experimental Design

Te implemented NRB-GA load-balancing algorithm is tested
with the simulation toolkit CloudAnalyst by creating simulated
scenarios for social network applications such as Facebook. On
June 30, 2017, Facebook user base distribution with respect to
continents was as follows: North America: 263 million users;
SouthAmerica: 370million users; Europe: 343million users; Asia:
736 million users; Africa: 160 million users; and Oceania: 19
million users [26]. Tis data, reduced by a scale factor of 10, is
chosen to evaluate the performance of the implementedNRB-GA
load-balancing algorithm and to correlate the use of the cloud in
similar social networking applications. Te cloud analyst simu-
lator is used to create a hypothetical confguration that divides the
world into six regions to correspond to the six continents in the
world. Six user bases are modeled according to the collected data
to represent users from sixmajor continents.Te experiments are
limitedby assuming all regions are in the same time zone.Another
important assumption is 5% of registered users are online during
peak hours simultaneously and only 1/10 of these peak-time users
are online during of-peak hours. Te NRB-GA load-balancing
algorithm is tested by simulating a new request from each online
user every fve minutes.

A cloud environment is simulated with 5 hosts in each
data center, dedicated to applications.Te host machines are
having X86 architecture, VMmonitor, Xen, Linux operating
system, two GB RAM, and 100GB storage. Physical host
machines in data centers are diferent in terms of the number
of CPU cores and processing speed. It is assumed that the
frst host has 4 cores with a processing speed of 2000 MIPS,
the second host has 5 cores with a processing speed of 5000
MIPS, the third host has 3 cores with a processing speed of
9000 MIPS, the fourth host has dual cores with a processing
speed of 10000MIPS, and the ffth host has a single core with
a processing speed of 15000 MIPS. Te application image
size that occupies the VM is 100MB. Each virtual machine is
confgured to have 1GB of RAM and 10MB of available
bandwidth. Resources are scheduled to VMs by time sharing
policy. Users are grouped by a factor of 1000, and requests
are grouped by a factor of 100. It is assumed that 250 in-
structions need to be executed to process each user request.

6. Results and Discussion

Experiments were conducted on single, two, and three data
centers with 6 diferent cloud confgurations to evaluate the

performance in terms of processing time and response time
by using the CloudAnalyst simulator.

6.1.Experiment1: SingleDataCenter. In the frst experiment,
the performance of the proposed NRB-GA load-balancing
algorithm is studied without considering the efect of net-
work delay by assuming there is only one centralized data
center (DC) to process all user requests around the world.
All six user bases are in the same region and use the same
data centers (Table 2). Each machine has a diferent number
of CPU cores and processing speed, as shown in Table 3. Te
confguration data used in the experiment to confgure a
single data center having 50, 75, and 100 VMs, and its
specifcations, are shown in Table 4.

Te response time and processing time obtained by the
simulation are tabulated in Tables 5 and 6, respectively.
From Figures 2 and 3, it is easily comparable and observed
that the proposed NRB-GA algorithm outperforms the
existing algorithms in both response time and processing
time metrics.

6.2. Experiment 2: Two Data Center. In the second experi-
ment, the performance of the implemented NRB-GA load-
balancing algorithm is studied by considering the efect of
network delay using two data centers. In this setup scenario,
all user base confgurations are in two diferent data centers
and in diferent regions. Each machine within a DC is
heterogeneous, having a diferent number of CPUs and
speeds.

In this experiment, two data centers are defned in such a
way that each has 50, 75, or 100 VMs, with a combination of
each VM (i.e., 50 and 75, 50 and 100, 75 and 100) of the cloud
confguration allocated to the application. Te other DC
specifcations are the same as in experiment 1, (Table 3). Te
efect of network delay is tested by distributing the user base
among six regions: UB1 in NorthAmerica, UB2 in South
America, UB3 in Europe, UB4 in Asia, UB5 in Africa, and
UB6 in Oceania.

Te confguration fles used for simulation are shown in
Tables 7 and 8. Te simulated response time and processing
time obtained for experiment 2 are tabulated in Tables 9 and
10, respectively. Figures 4 and 5 show a comparison that the
proposed NRB-GA algorithm outperfoms the existing al-
gorithms in both response time and processing time metrics
when a network delay is introduced by having two data
centers and a user base from diferent regions of the globe.

6.3. Experiment 3: Tree Data Centers. Te objective of this
experiment is to study the efect of the NRB-GA load-bal-
ancing algorithm on network delay in a heterogeneous host
environment using three data centers. Six diferent user base
locations are raising requests to all three data centers. Each
machine within DCs is also heterogeneous, having a dif-
ferent number of CPUs and speeds, like in experiment 2 with
two DCs.

In this confguration scenario, three DCs are defned,
each having 50, 75, and 100 VMs, and a combination of each
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VM’s (i.e., 50, 75, and 100) cloud confguration is assigned to
the application. Other DC confgurations are shown in
experiment 1, (Table 3) and the user base confguration is
shown in experiment 2 (Table 7),. Te efects of network
delay with 3 data centers are studied by distributing the user-
based, as shown in experiment 2 and in Table 8. Te cloud
confguration of the three DCs is shown in Table 11. Te
simulated response time and processing time obtained for
experiment 3 are tabulated in Tables 12 and 13, respectively.
Figures 6 and 7 show that the proposed NRB-GA algorithm
outperfoms the existing algorithms in both response time

and processing time metrics when a network delay is in-
troduced by having three data centers and a user base from
diferent regions of the globe.

6.4. Discussion. In the frst experiment using a single data
center, the experiment showed that the NRB-GA algorithm
achieved a better result than the other existing algorithms.
Te NRB-GA algorithm using a single DC recorded the best
average response time, comprising 456.41 (ms) using 50
VMs, 456.28 (ms) using 75 VMs, and 452.14 (ms) using 100

Table 2: User base confguration for one data center.

User base
name Region Single user request

per hour
Data size per
request (bytes)

Start of peak
hours (local)

End of peak
hours (local)

Avg. peak-hour
users

Avg. of-peak
hour users

UB1 0 12 100 07 09 1315000 131500
UB2 0 12 100 07 09 1850000 185000
UB3 0 12 100 07 09 1715000 171500
UB4 0 12 100 07 09 3680000 368000
UB5 0 12 100 07 09 800000 80000
UB6 0 12 100 07 09 95000 9500

Table 3: Datacenter confguration.

Id RAM memory (Mb) Secondary storage (Mb) Available BW (Mb) Number of processor cores Processor speed VM policy
0 2048 102400 1024 4 2000 TIME_SHARED
1 2048 102400 1024 5 5000 TIME_SHARED
2 2048 102400 1024 3 9000 TIME_SHARED
3 2048 102400 1024 2 10000 TIME_SHARED
4 2048 102400 1024 1 15000 TIME_SHARED

Table 4: Application deployment confguration for one data center.

No. of data centers Cloud confguration No. of VMs Image size (MB) Memory (MB) BW (MB)

One
CC1 50 100 1024 10
CC2 75 100 1024 10
CC3 100 100 1024 10

Table 5: Response time—one data center.

Cloud confguration NRB-GA BRS RR ESCE GA
CC1 435.10 561.46 576.04 561.50 559.14
CC2 435.06 561.45 575.46 560.81 558.41
CC3 350.13 561.79 576.29 561.52 559.18
Average response time 406.7633 561.5667 575.93 561.2767 558.91
Average response time reduction percentage ((min (BRS, RR, ESCE, GA)-NRB-GA)/min (BRS, RR, ESCE, GA)) 27.22%
Proposed NRB-GA algorithms response time is compared with least response time of Existing algorithms and percentage of reduction in response time is
measured with this two quantities.

Table 6: Processing time—one data center.

Cloud confguration NRB-GA BRS RR ESCE GA
CC1 367.65 492.23 511.96 492.27 490.41
CC2 367.61 492.22 511.38 491.58 489.68
CC3 282.68 492.56 512.21 492.29 390.45
Average processing time 339.3133 492.3367 511.85 492.0467 456.8467
Average processing time reduction percentage ((min (BRS, RR, ESCE, GA)-NRB-GA)/min (BRS, RR, ESCE, GA)) 25.73%
Proposed NRB-GA algorithms response time is compared with least response time of Existing algorithms and percentage of reduction in response time is
measured with this two quantities.
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Figure 2: Response time comparison for one data center.
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Figure 3: Processing time comparison for one data center.

Table 7: Application deployment confguration for two data centers.

Number of data centers Cloud confguration Number of VMs Image size (Mb) Memory (Mb) BW (Mb)

Two

CC1 50 100 1024 10
CC2 75 100 1024 10
CC3 100 100 1024 10
CC4 50, 75 100 1024 10
CC5 50, 100 100 1024 10
CC6 75, 100 100 1024 10

Table 8: User base confguration for two data centers.

User base
name Region Single user request

per hour
Data size per
request (bytes)

Start of peak
hours (local)

End of peak
hours (local)

Avg. peak-
hour users

Avg. of-peak
hour users

UB1 N-
America 12 100 13:00 15:00 1315000 131500

UB2 S-
America 12 100 15:00 17:00 1850000 185000

UB3 Europe 12 100 20:00 22:00 1715000 171500
UB4 Asia 12 100 01:00 03:00 3680000 368000
UB5 Africa 12 100 21:00 23:00 800000 80000
UB6 Oceania 12 100 09:00 11:00 95000 9500
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VMs. It also recorded the best average processing time,
containing 388.96 (ms) using 50 VMs, 388.83 (ms) using 75
VMs, and 384.69 (ms) using 100 VMs.

In the second experiment using two DCs, by considering
the network delay, the NRB-GA algorithm recorded the best
response time, including 466.86 (ms) in CC1, 461.81 (ms) in
CC2, 461.45 (ms) in CC3, 456.71 (ms) in CC4, 457.69 (ms) in

CC5, and 458.14 (ms) in CC6. Te NRB-GA algorithm also
recorded average processing times such as 399.41 (ms) in
CC1, 394.36 (ms) in CC2, 394.00 (ms) in CC3, 389.26 (ms) in
CC4, 390.24 (ms) in CC5, and 390.69 (ms) in CC6.

With increased DCs to three in the third experiment, the
NRB-GA algorithm achieved the best response time of
456.41 (ms) in CC1, 456.28 (ms) in CC2, 452.14 (ms) in CC3,

Table 9: Response time—two data centers.

Cloud confguration NRB-GA BRS RR ESCE GA
CC1 466.86 597.88 617.31 607.73 610.49
CC2 461.81 592.18 613.53 603.91 606.01
CC3 461.45 592.18 611.4 602.64 605.91
CC4 456.71 589.17 609.53 600.95 604.88
CC5 457.69 589.76 609.53 599.31 603.31
CC6 458.14 542.61 606.69 593.09 594.54
Average response time 460.44333 583.96333 611.33167 601.27167 604.19
Average response time reduction percentage ((min (BRS, RR, ESCE, GA)-NRB-GA)/min (BRS, RR, ESCE, GA)) 21.15%
Proposed NRB-GA algorithms response time is compared with least response time of Existing algorithms and percentage of reduction in response time is
measured with this two quantities.

Table 10: Processing time—two data centers.

Cloud confguration NRB-GA BRS RR ESCE GA
CC1 399.41 528.65 553.23 538.5 541.76
CC2 394.36 522.95 549.45 534.68 536.28
CC3 394 522.95 547.32 533.41 437.18
CC4 389.26 519.94 545.45 531.72 436.15
CC5 390.24 520.53 545.45 530.08 434.58
CC6 390.69 520.34 542.61 523.86 425.81
Average processing time 392.993333 522.56 547.25167 532.04167 468.62667
Average processing time reduction percentage ((min (BRS, RR, ESCE, GA)-NRB-GA)/min (BRS, RR, ESCE, GA)) 16.14%
Proposed NRB-GA algorithms response time is compared with least response time of Existing algorithms and percentage of reduction in response time is
measured with this two quantities.
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Figure 4: Response time comparison for two data centers.
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Figure 5: Processing time comparison for two data centers.

Table 11: Application deployment confguration for three data centers.

No. of data centers Cloud confguration No of VMs Image size (Mb) Memory (Mb) BW (Mb)

Tree

CC1 50 100 2048 10
CC2 75 100 2048 10
CC3 100 100 2048 10
CC4 50, 75, 100 100 2048 10

Table 12: Response time—three data centers.

Cloud confguration NRB-GA BRS RR ESCE GA
CC1 456.41 589.26 607.21 594.73 594.73
CC2 456.28 587.28 608.53 594.91 594.01
CC3 452.14 583.18 602.8 593.64 596.51
CC4 452.11 582.46 602.83 592.95 596.38
Average response time 454.235 585.545 605.3425 594.0575 595.4075
Average response time reduction percentage ((min (BRS, RR, ESCE, GA)-NRB-GA)/min (BRS, RR, ESCE, GA)) 22.43%

Table 13: Processing time—three data centers.

Cloud confguration NRB-GA BRS RR ESCE GA
CC1 388.96 520.03 543.13 525.5 526
CC2 388.83 518.05 544.45 525.68 524.28
CC3 384.69 513.95 538.72 524.41 427.78
CC4 384.66 513.23 538.75 523.72 427.65
Average processing time 386.785 516.315 541.2625 524.8275 476.4275
Average processing time reduction percentage ((min (BRS, RR, ESCE, GA)-NRB-GA)/min (BRS, RR, ESCE, GA)) 18.81%
Proposed NRB-GA algorithms response time is compared with least response time of Existing algorithms and percentage of reduction in response time is
measured with this two quantities.
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and 452.11 (ms) in CC4, and the best processing time of
388.96 (ms) in CC1, 388.83 (ms) in CC2, 384.69 (ms) in CC3,
and 384.66 (ms) in CC4.

7. Conclusion

To improve the performance of cloud computing environ-
ments, we designed an NRB-GA load-balancing algorithm
that inherits the meritorious characteristics of both genetic
algorithms and biased random strategies. Te NRB-GA
load-balancing algorithm considers various factors that
include the previous state (historical data), current resource
information, the number of processor cores in the CPU, and
the processing speed of the CPU to achieve a low response
time and processing time.

From the three conducted experiments, analyses of the
results of the NRB-GA indicate that the average response
time is reduced by 27.22%, 21.15%, and 22.34%, and the
processing time is reduced by 25.73%, 16.14%, and 18.82%
for one, two, and three data centers, respectively. Tis
reduction in processing time and response time is
achieved in the load balancing algorithm NRB-GA by
considering the load of each virtual machine over a period

of time T instead of the current load on each virtual
machine. It is evident that the proposed NRB-GA algo-
rithm for load balancing outperforms other existing al-
gorithms signifcantly. In general, performance has
improved in a cloud computing environment with het-
erogeneity in processor processing capacity (processor
power).

8. Future Works

Load balancing is one of the major factors in improving the
performance of the cloud computing environment. We dis-
cussed only improving the performance of three data centers,
but there are still other approaches that can be applied to
balance the load in a cloud computing environment with more
data centers. It is planned to implement a new load-balancing
algorithm to improve the service broker policy. NRB-GA is
tested and studied to see how response time and processing
time are afected by various CPU capacities. As suggested,
perform a study on other factors such as memory, bandwidth,
and storage. Te study can be extended by analysing the other
parameters, such as efective utilization of resources, cost,
failover, etc. Te NRB-GA algorithms’ performance is studied
by simulating only the normal state, but there are still other
states that can be studied, such as the burst load state.
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