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In the cloud computing era, a paper recommender system is usually deployed on the cloud server and return recommendation
results to readers directly. However, considering the paper recommender system, processing tremendous paper citation data on
the cloud cannot provide fine-grained personalized and real-time recommendations for each reader because these recommended
papers from the cloud are far from readers and probably not correlated strongly with each other for helping each reader research
further and deeper in the interested field. Recently, the edge-cloud collaboration-based recommender system has been used for
releasing parts of the cloud computing task to the edge and provides the recommendation near the client. Based on the edge
computing recommender system, a keywords-driven and weight-aware paper recommendation approach is presented, namely,
LP-PRk+ w (link prediction-paper recommendation), to enable intelligent, personalized, and efficient paper recommendation
services in the mobile edge computing environment. Specifically, the whole paper recommendation process mainly covers two
parts: optimizing the existing paper citation graph via introducing a weighted similarity (i.e., building a weighted paper correlation
graph) and then recommending a set of correlated papers according to the weighted paper correlation graph and the users’ query
keywords. Experiments on a real-world paper correlation dataset, Hep-*, show the capability of our proposal for improving the
paper recommendation performance and its superiority against other related solutions.

1. Introduction

Generally, recommender system is based on the cloud-client
structure that raises the risk of delays due to network
bandwidth and latency, data leakage during remote trans-
mission, and recommending uncorrelated results for users
by processing tremendous multivariate heterogeneous data.
In recent years, edge-cloud collaboration-based recom-
mender systems are proposed to solve these problems [1, 2].
In the mobile edge computing environment, the recom-
mender system can utilize the real-time information of users
on the edge end to provide better recommendations.

Currently, the paper recommender system is one of the
major tools and ways for readers to find their required

papers. For example, popular academic paper search tools on
the mobile edge end (e.g., Baidu Academic and Google
Scholar) allow readers to look for their interesting papers
from massive papers registered on the web, based on a set of
desired keywords. In practice, one paper only covers readers’
partial query keywords. *erefore, the paper search tools
probably recommended a set of papers that contain all the
query keywords to meet the readers’ tastes for papers.

As shown in the right part in Figure 1, the fundamental
paper recommendation process mainly consists of three
phases in the cloud computing environment. First, a reader
types a set of query keywords into the paper recommender
system (e.g., {k1, k2, k3, k4, k5}). *e second phase is papers’
discovery, in which vast candidate papers can be identified
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by using traditional keyword search methods [3]. *e
third phase is papers’ recommendation, in which the
recommender system will output all candidate papers to
the reader.

However, finding a set of desirable papers from
massive candidates on the cloud server for the reader is
often a sophisticated job even for an experienced reader.
*e reasons are mainly threefold, which are clarified as
follows:

(1) As the paper recommender system usually returns
recommendation results to readers directly in the
cloud computing, the paper recommender system
cannot provide fine-grained personalized and real-
time recommendation for readers.

(2) *e returned paper list should meet the following
conditions. First, these papers collectively cover all
the query keywords from the reader. Second, the
recommended papers should own certain correla-
tions with each other so as to aid the reader in
launching in-depth and continuous research on an
identical idea.

(3) Traditional keywords-based paper recommendation
approaches hardly analyze the possible correlations
among different papers. Although paper citation
graphs provide a good indicator of paper correlation
relationships, they still face the serious problem of
sparse data.

Currently, link prediction approaches are the best al-
ternatives to address the sparse data problem of graphs
(networks) [4], which aims to find the missing links and
forecast future links based on known graphs (networks)
information [5]. Specifically, link prediction approaches

estimate the likelihood of building a new link among two
unconnected nodes according to their graph structure and
attribute information. Hence, applying link prediction to
paper recommendations is of theoretical and practical
significance.

To satisfy readers’ requirements on paper search, we
propose a novel keywords-driven and weight-aware paper
recommendation approach deployed on the mobile edge
end, that is, LP − PRk+w (link prediction-paper recom-
mendation). As shown in the left part in Figure 1, LP −

PRk+w integrates multiple operations: query keywords, link
prediction, papers’ discovery, and papers’ recommendation.
On the mobile edge end [6], through analyzing a reader’s
query keywords, LP − PRk+w can return a set of correlated
papers (depicted by a connected subgraph) by mining the
potential correlation patterns hidden in the weighted paper
correlation graph. As output, the returned subgraph is
interconnected by the target papers (containing query
keywords) and bridging papers (containing no query key-
words). Particularly, we consider interchangeability of one
paper and its corresponding node in this paper, denoted as p
or v.

Generally, we achieve the following main contributions:

(1) We propose a novel keywords-driven and weight-
aware paper recommendation approach based on the
mobile edge computing framework, i.e., LP − PRk+w,
which enables intelligent, personalized, and efficient
paper recommendation services in the mobile edge
computing environment.

(2) We optimize the existing paper citation graph model
by introducing weighted similarity-based link pre-
diction. *us, we construct a weighted paper cor-
relation graph.
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Figure 1: *e recommendation process on the cloud computing and the mobile edge computing.
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(3) To evaluate the usefulness and feasibility of
LP − PRk+w, we conduct a group of experiments on a
real-world paper citation dataset, Hep-*.

*e rest of the paper is organized as follows. Related
researches are summarized in Section 2. Paper motivation is
demonstrated in Section 3. In Section 4, we introduce the
weighted similarity-based link prediction approach. Section
5 answers readers’ keywords query via the proposed LP −

PRk+w solution. Section 6 analyzes and evaluates LP − PRk+w

through experimental comparisons. Finally, we summarize
the paper and point out the future research directions in
Section 7.

2. Related Work

2.1. Paper Recommendation. In general, Collaborative Fil-
tering (CF) approach can calculate the similarity scores
among different items; thus, paper recommender systems
apply the CF approach and focus on ratings matrices.
Furthermore, the CF approach can also calculate the ratings’
matrixes that are created on a paper citation graph [7].
*erefore, the early works of paper recommendation mainly
used the CF approach to recommend papers. With the
application of the CF approach in the paper recommen-
dation, researchers found that the CF approach is generally
restricted to cold-start and data sparsity problems [8]. In
addition, Content-Based Filtering (CBF) approach is similar
to the CF approach.*e CBF [9] approachmainly focuses on
the content relevance [10, 11] among papers to recommend
papers. However, these recommended papers hardly match
readers’ deep and continuous research around an identical
focus. Furthermore, the CBF encounters the semantic am-
biguity problem.

As the citation relationships between papers can reflect
the correlations among papers’ research content, a graph-
based approach becomes research focus. For example, Meng
et al. [12] regarded authors, papers, topics, and keywords as
nodes and multiple relationships as edges; the approach
executed a random walk on the constructed four-layer
heterogeneous graph to recommend papers. Furthermore,
[13] proposed a graph-based PageRank-like paper recom-
mendation approach, which mainly executed a biased
random walk on paper citation graphs to recommend pa-
pers. Although [12] and [13] take papers’ citation rela-
tionships into account, these approaches do not tackle the
data sparsity in the existing paper citation graphs.

2.2. Link Prediction. Link prediction [14] is an important
approach of resolving links’ sparsity problem as it can
compute the likelihood of building new links between two
unconnected nodes. At present, three types of link predic-
tion have been identified, that is, similarity-based method,
maximum likelihood approach, and probabilistic method.
*e similarity-based method was used in large-scale net-
works as it could compute the similarity score among any
two nodes. *e maximum likelihood approach predicted
links by utilizing specific parameters, and the probabilistic
method could employ the trained model to forecast links

[15]. However, these two approaches did not apply to the
large-scale networks. In the paper, our proposal mainly
employs the similarity-based method considering that an
existing paper citation graph is a large-scale paper rela-
tionships network [16].

Currently, more researchers considered utilizing the
weight of links in link prediction approaches. For example,
the work of [17] tried to identify strong ties (e.g., spouses or
romantic partners) in social network, and these strong ties
were considered as the different link weight among users.
Furthermore, [18] investigated the use of link strength on
link prediction approaches; their proposed weighting cri-
terion was based absolutely on topological data (i.e., the
frequency of interactions among nodes). In addition, link
prediction model could be categorized into two types: an
unsupervised link prediction model and a supervised link
prediction model. For example, [18] and [19] made use of
user’s attributes information (i.e., gender, age, and sex) and
interactive activities to estimate the social relationships
strength on unsupervised link prediction model. Further-
more, [20] proposed a supervised link prediction model that
used similarity metrics to calculate the similarity eigen-
vectors between a pair of nodes, and these eigenvectors were
regarded as new databases for constructing the supervised
model in predictive tasks [21].

In view of the above research content, a novel keywords-
driven and weight-aware paper recommendation approach,
that is, LP − PRk+w, is proposed in the paper, to cope with
the sparse data problem and recommend a set of correlated
papers. Next, actual examples are presented in Section 3 to
further demonstrate the research motivation of the paper.

3. Research Motivation

In this section, the examples of Figures 2 and 3 are recruited
to directly demonstrate our research motivation. Figure 2
describes a scenario that a reader needs to perform five
keywords research before he creates a new paper: (1) key-
word search (i.e., k1) is used by readers to search for in-
teresting papers by typing query keywords; (2) paper citation
graph (i.e., k4) is for finding the correlation relationships
among different papers (i.e., mining the potential correlation
patterns); (3) link prediction (i.e., k2) is to solve the data
sparsity of paper citation graph; (4) Steiner tree (i.e., k3) [22]
is utilized to find a set of correlated papers; and (5) dynamic
programming (i.e., k5) [23] is applied to solve the Steiner tree
problem. *us, the reader obtains five corresponding query
keywords, Q� {k1, k2, k3, k4, k5}.

Figure 3 is a part of an undirected paper citation graph. It
contains 14 nodes (papers), that is, v1, . . . , v14, covering
diverse keywords. *e notation v13 {k11, k13} {2021} {a1}
indicates that node v13 offers keywords k11and k13, an author
a1, and the published time 2021. e(v1, v10) indicates that
nodes v1 and v10 generate an undirected citation
relationship.

According to the query keywords, the reader easily
obtains a set of papers in Figure 3 (i.e.,
Rp � {v1, v2, v3, v4, v5, v6, v11, v12}). However, these returned
papers fail to satisfy the reader deep and continuous

Scientific Programming 3



academic research around an identical focus. In fact, a
paper recommender system generally recommends a
larger number of candidate papers to readers; further-
more, the correlation relationships among candidate
papers are transparent to readers. *erefore, readers
hardly select a set of correlated papers from these can-
didate papers. Luckily, a paper citation graph depicts
citation relationships among diverse papers, so it provides
a promising way to mine the potential correlation pat-
terns. However, the paper citation graph faces to the
sparse data problem; that is, it does not consider the
potential correlations among different papers not con-
nected in the graph. For example, nodes v11 and v13 have
common research content, while they fail to build a
correlation relationship in Figure 3.

According to the above examples, in the mobile edge
computing environment, we firstly address the data sparsity
of paper citation graph and then recommend a set of cor-
related papers, these contents are presented in detail in
Section 4 and Section 5, respectively.

4. Link Prediction of LP-PRk + w

4.1. Weighted Similarity-Based Link Prediction Approach.
According to the analysis of the research motivation, we
propose a weighted similarity-based link prediction schema
that follows tasks’ sequence [24]. In Figure 4, the link
prediction process mainly comprises the following activities:

Activity 1. Preprocessing of Graph. For simplicity, a
directed paper citation graph is treated as an un-
directed graph.
Activity 2. Nodes’ Weighting. *is activity mainly
calculates the actual weight (i.e., wij) between all
nodes of the undirected paper citation graph. Here,
the weights of two connected nodes and two un-
connected nodes are both computed by employing
the following KTA weighting criterion.
Criterion.Keywords, Time, and Authors (KTA).Here,
the number of common keywords of two papers
increases and their published time are relatively
close; thus, their weight (i.e., wij) will be larger.
Furthermore, the theory of [25] states that two
different papers containing common authors tend to
refer to each other. *us, the KTA weighting cri-
terion is as follows:
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where β, λ, and α are arbitrary parameter values, i.e.,
β, λ, and α ∈ (0, 1). Higher (or lower) values of β, λ,
and α intensify (or attenuate) the influence of key-
words, published time, and authors in the weighting
criterion, respectively. Kvi

(Kvj
) and Avi

(Avj
) denote

a set of keywords and authors, respectively. Avi
∩Avj

and Kvi
∩Kvj

represent co-authors and common
keywords, respectively. cosine(Avi

, Avj
) and

cosine(Kvi
, Kvj

) denote that the method computes
the similarity authors of and keywords between two
nodes, respectively. tvi

and tvj
indicate the published

time of two nodes, respectively.
Activity 3. Score Calculation and Ranking.

(1) Firstly, we get the actual weight of two connected
nodes (e.g., vi and vz, vj and vz). *en, we calculate
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Figure 2: *e paper research and creation tasks: an example.
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the weight of two nonconnected nodes (e.g., vi and vj)
by using the weighted similarity function (i.e.,
weighted common neighbor). Finally, we sort a
descending list in order, and the maximum score [26]
is saved in wmax (vi, vj).
Weighted Common Neighbor—WCN (vi, vj) [20]. It
computes the average weight between two non-
connected nodes vi and vj; that is,
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(2)

where (6) calculates the weight of two nonconnected
nodes vi and vj by using the WCN. |Γ(vi)∩ Γ(vj)|

represents the number of common neighbor nodes.
Equation (2) obtains a maximum weight (i.e., the
maximum score) over the undirected paper citation
graph.

(2) Here, we directly use the actual weight of all un-
connected nodes to produce a descending-ranking
list.
Activity 4. Links Establishment.*is activity connects
a pair of unconnected nodes. LP (link prediction) is
defined as

LP � wij ≥wmax vi, vi( 􏼁􏽮 􏽯. (3)

4.2. Weighted Paper Correlation Graph. In the mobile edge
computing environment, LP − PRk+w builds a weighted
paper correlation graph by using the weighted similarity-
based link prediction. *e weighted paper correlation graph
is defined as follows.

Definition 1 (Nodes). For one paper p, the weighted paper
correlation graph has a mapped node v. And the node covers
diverse keywords (i.e., k1. . . kz), where these keywords
denote its main research content.

Definition 2 (Edges). For any pair of nodes (vi, vj), the
weighted paper correlation graph has a corresponding edge
e(vi, vj). And e(vi, vj) denotes the fact that two papers have
a correlation relationship.

Definition 3 (Weights). For any two connected nodes vi and
vj, the weight of wij/wij (larger than 0) directly indicates the
strength of correlation between nodes vi and vj. For ex-
ample, considering two edges e(v1, v2) and e(v2, v3), if
w1,2 > w2,3, then node v2 has better “similarity” (correlation)
with node v1 instead of node v3.

Definition 4 (Weighted Paper Correlation Graph (W-PCG)).
*e W-PCG is expressed in Gw(Vp, Ep, Wp), where Vp, Ep,
and Wp represent a set of nodes, edges, and weights.

According to Definition 1, each node of Gw contains
diverse keywords. To expediently answer the keywords query
of Section 5, LP − PRk+w needs to preestablish an inverted
index Sk. Concretely, given a query keyword k, we can faster
search for all papers containing keyword k. For example,
nodes v1 and v2 cover keywords k1 (i.e., Sk{k1}� {v1, v2}).

5. Paper Recommendation of LP-PRk+w

5.1. Problem Formalization of Keyword-Driven Pattern
Mining. On the mobile edge end [27], according to reader’s
query keywords, we will introduce our paper recommen-
dation approach based on a W-PCG (i.e., Gw). Specifically,
given a queryQ containing l (l≥ 2) query keywords (i.e.,Q�

{k1, · · · , kl}), our proposal can find optimal answer trees on
Gw, denoted as Tw (Q), where Tw (Q) is not only a connected
tree containing all query keywords (i.e., Q) but also having
highest correlation. To better clarify the paper, we sum-
marize the symbols in Table 1.

Figure 5 is a part of Gw and contains the same nodes of
Figure 3 (i.e., v1, · · ·, v14). And a new link e(v11, v13) (i.e., blue
line) is added in Figure 5. According to the query keywords
of Figure 2, i.e.,Q� {k1, k2, k3, k4, k5}, nodes v1 and v2 contain
keywords k1 and k1, nodes v3, v4, and v11 contain keyword
k2, nodes v5 and v6 contain keywords k3 and k5, and node v12
contains keyword k5. *us, an answer tree Tw (Q) connects
one node from {v1, v2}, one node from {v3, v4, v11}, one node
from {v5, v6}, and one node from {v5, v6, v12}; furthermore,
Tw (Q) may connect nodes that do not contain any query
keywords, i.e., v10, v13, and v14.

Paper citation graph

Undirected paper
citation graph

Weighted
paper correlation graph

Score calculation
and ranking

The Maximum
Score

Unconnected
nodes weighted

The descending
ranking list

A list of scores
≥ The Maximum Score

Links
establishment

Score calculation
and ranking

Connected nodes
weighted

Figure 4: Process of the weighted similarity-based link prediction:
overview.
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*erefore, the reader will obtain a set of papers that is
different from Figure 3 (i.e., Rp � {v1, v10, v13, v11, v14,

v12, v16}).
According to the above example, in the mobile edge

computing environment, the reader initially pursues a weighted
Steiner tree Tw (Q) [28], and the definition is as follows.

Definition 5 (Weighted Steiner Tree). Given aW-PCG (i.e.,Gw)
and a set of nodesVp

′⊆Vp, whenTw (Q) is a connected subgraph
covering all nodes of Vp

′, Tw (Q) is a weighted Steiner tree.
Considering the inverted index of Section 4, we recog-

nize multiple groups of nodes according to diverse query
keywords from Q� {k1, . . ., kl}, denoted as Vp1, . . . , Vpl,
where Vpn (1≤ n≤ l) is a set of nodes covering a query
keyword kn (1≤ n≤ l). Next, we need to find a group
weighted Steiner tree that covers all query keywords. *e
definition is as follows.

Definition 6 (Group Weighted Steiner Tree). Given Gw and
multiple groups of nodes Vp1, . . . , Vpl⊆Vp, when a
weighted Steiner tree wij (Q) selects nicely one node from
each group Vpn (1≤ n≤ l),Tw (Q) is a group weighted Steiner
tree.

*ere may be obtained multiple diverse group
weighted Steiner trees in answer to reader’s keywords
query. In fact, our recommendation goal, in the mobile
edge computing environment, is simply to recommend a
set of “most correlative” papers covering all query key-
words. Here, the weight Tw of Gw denotes the “similarity”
(correlations) of nodes vi and vi. Hence, the recommen-
dation goal is finding a group weighted Steiner tree with
maximal weight. In practice, LP − PRk+w considers the
weight-aware (i.e., correlation-aware) paper recommen-
dation problem as an optimization problem, and the
object function is of “the smaller weight the better” case.
Here, we transform Figure 5 into Figure 6. In Figure 6, the
weight wij of edge e(vi, vj) is represented by 1/wij. For
example, when w1,10 � 0.5 holds in Figure 5, w1,10 � 2 holds
in Figure 6. In the remainder of this paper, we only use a
converted W-PCG (i.e., Gw) as illustration. Next, we must
search for a group weighted Steiner tree with minimum
weight. *e definition is as follows.

Definition 7 (Minimum Group Weighted Steiner Tree).
Given a set of alternative group weighted Steiner trees, that
is, Tw1 (Q), . . ., Twm (Q), when w (Twi (Q))�min (w (Tw1
(Q)), . . ., w (Twm (Q))) (1≤ i≤m), Twi (Q) is a minimum
group weighted Steiner tree.

5.2. Searching for Optimal Answer via Pattern Mining.
According to readers’ keywords query Q, LP − PRk+w must
search a minimum group weighted Steiner tree Tw (Q)
representing final solution for readers via mining on a
W-PCG (i.e., Gw). However, the computation of the Tw (Q)
is the NP-complete problem. *erefore, we will utilize a
dynamic programming (DP) technique [28] to solve this
problem.

Generally, the DP technique firstly divides the MGWST
(minimum group weighted Steiner tree) problem into a set
of easier subproblems. Next, each same subproblem is
addressed only once and the DP technique stores the cor-
responding result. Finally, the DP technique can exactly
provide optimal solutions to readers by combining previ-
ously saved results.

In DP model, Tw (v, K′) (K′ ⊆K�Q) is a state, which
covers a set of query keywords K′. Furthermore, w (Tw (v,
K′)) denotes the weight of Tw (v, K′). *e model state
transitions equations are defined as follows.w(Twmin

∀v∈Vp(v, K′)) �∞
if Twmin
∀v∈Vp

(v, K′) does not contain any query keywords:

Table 1: Symbol definition.

Symbol Definition
p/v A paper
k1, . . ., kz *e paper contains keywords
e(vi , vj) A correlation relationship
Q/K A set of query keywords
Avi

/Kvi
A set of authors/keywords

Vp A set of nodes
Ep A set of edges
Wp A set of weights
Gw(Vp, Ep, Wp) W-PCG
Sk An inverted index
Tw (Q) An optimal answer tree
Q1/Q2 Two queues

Twmin (v, K′) A minimum group weighted Steiner tree rooted
at v

RP Recommendation result
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Figure 5: LP − PRk+w: the same paper recommendation example.
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w Twmin
∀v∈Vk⊆Vp

v, K′( 􏼁⎛⎝ ⎞⎠ � 0 if Twmin
∀v∈Vk⊆Vp

v, K′( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 1, (4)

w Twmin v, K′( 􏼁( 􏼁 � min w Twg v, K′( 􏼁􏼐 􏼑, w Twm v, K′( 􏼁( 􏼁􏼐 􏼑, (5)

w Twg v, K′( 􏼁􏼐 􏼑 � min
u∈N(v)

w Twmin u, Ku
′( 􏼁( 􏼁 + wu,v􏽮 􏽯, (6)

w Twg v, K′( 􏼁􏼐 􏼑 � min
Ku
′∩K′≠Ku

′&&Ku
′∩K′�K′

‖ Ku
′∩K′≠K′&&Ku

′∩K′�Ku
′

􏼠 􏼡

w Twmin v, K′( 􏼁( 􏼁 + w Twmin u, Ku
′( 􏼁( 􏼁􏼈 􏼉,

(7)

w Twm v, K′( 􏼁( 􏼁 � min
Ku
′⊆K&&K′⊆K&&

Ku
′∩K′≠K′&&Ku

′∩K′≠Ku
′

􏼠 􏼡

w Twmin v, K′( 􏼁( 􏼁 + w Twmin u, Ku
′( 􏼁( 􏼁􏼈 􏼉,

(8)

where N(v) is a set of neighbor nodes of node v; u, v

∈∈Gw(Vp, Ep, Wp), u ∈∈N(v), e(u, v) ∈ Ep, and wu,v ∈∈Wp.
Since tree Twmin (v, K′) does not contain any query key-
words, the weight of the tree is infinite in formula (3). In
formula (10), a tree covers one query nodes and its weight is
0. Formula (5) denotes that tree Twmin (v, K′) is acquired by
doing the following operations: tree growth operation (i.e.,
formulas (7) and (8)) and tree merging operation (i.e.,
formulas (9) and (10)). In Figure 7(a), the tree growth

operation creates new tree Tw (v, K′) by adding new node u,
and the pseudocode of the tree growth operation is specified
in Algorithm 1. In Figure 7(b), the tree merging operation
creates new tree Tw (v, K′) by merging two trees; these two
trees are both rooted at v. And the pseudocode of the tree
merging operation is specified in Algorithm 2. When K′�K,
LP − PRk+w searches for a minimum group weighted Steiner
tree Twmin (v, K′) in formula (11), and Twmin (v, K′) contains
at least one node.

w Twm v, K′( 􏼁( 􏼁 � min
K1′∩K2′�Φ

K1′∪K2′�K′

w Twmin v, K1′( 􏼁( 􏼁 + w Twmin v, K2′( 􏼁( 􏼁􏼈 􏼉,

Tw(Q) � Twmin v, K′( 􏼁 if K′ � K.

(9)

According to formulas (4)–(11), Tw (Q) is returned by
repeating the tree growth and the tree merging operations,
and the pseudocode of the MGWSTalgorithm is specified in
Algorithm 3. Furthermore, the algorithm maintains two
queues: Q1 and Q2: the queue Q1 records intermediate trees

only containing partial query keywords, and the queue Q2

records qualified trees covering all query keywords K.
Note that, in the worst-case scenario, the MGWST al-

gorithm may return the entire W-PCG as its output. In
addition, the algorithm does not take into account the role of
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Figure 6: *e W-PCG converted from Figure 5.
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the synonymy and word inflections in the paper recom-
mendation [29–35] process.

6. Experiments

To evaluate the usefulness and feasibility of LP − PRk+w, the
large-scale experiments are tested on Hep-* dataset [36].

6.1. Experimental Environment

Dataset. We select part of the Hep-* data set for the
experiment (i.e., these papers are published between
1997 and 2003); the partial data contains 8721 papers
and forms a paper citation graph. Here, each paper
node stores paper published time and authors’

T (u1,K1) T (u2,K1) T (u3,K1)

v1 v2 v3

v
T (v,K1)

(a)

T (v,K1) T (v,K2) T (v,K1 K2)

v v v

(b)

Figure 7: Tree operations. (a) Tree growth. (b) Tree merging.

Input: K� {k1, k2, . . . , kl
}, Q1 � V

Output: Q1

(1) For each u ∈N(v) do
(2) If wu,v + w(Twmin(u, Ku

′)) <w(Twmin(v, K′))
(3) Twmin(v, K′)= e(u, v)+Twmin(u, Ku

′)
(4) enqueue Twmin(v, K′) into Q1
(5) update Q1
(6) End If
(7) If (Ku

′ ∩K′ ≠K′&&Ku
′ ∩K′ =Ku

′ || Ku
′ ∩K′ ≠Ku

′&&Ku
′ ∩K′ =K′)

(8) w(Twmin(u, Ku
′))+w(Twmin(v, K′)) <w(Twmin(v, K′))

(9) w(Twmin(v, K′))=w(Twmin(u, Ku
′)) +w(Twmin(v, K′))

(10) enqueue Twmin(v, K′) into Q1
(11) update Q1
(12) End If
(13) Return Q1
(14) End For

ALGORITHM 1: Tree growth.

Input: K= {k1, k2, . . . , kl}, Q1 =V

Output: Q1
(1) For each u ∈N(v) do
(2) If (Ku

′ ⊆K&&K′⊆K&&Ku
′ ∩K′ ≠Ku

′&&Ku
′ ∩K′ ≠K′)

(3) Twmin(v, K′)=Twmin(u, Ku
′)+Twmin(v, K′)

(4) enqueue Twmin(v, K′) into Q1
(5) update Q1
(6) End If
(7) End For
(8) K1′= K′
(9) For each Twmwminin(v, K2′) in Q1 s.t(K1′ ∩K2′=V&&K1′⋃K2′= K′)
(10) If w(Twmin(v, K1′))+w(Twmin(v, K2′))<w(Twmin(v, K1′⋃K2′))
(11) Twmin(v, K1′⋃K2′)=Twmin(v, K1′)�Twmin(v, K2′)
(12) enqueue Twmin(v, K1′⋃K2′) into Q1
(13) update Q1
(14) End If
(15) Return Q1
(16) End for

ALGORITHM 2: Tree merging.
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information. Furthermore, the keywords’ informa-
tion of each paper is constructed by employing the
RAKE (rapid automatic keyword extraction)
technique.
Experiment Settings. To obtain an optimal W-PCG
(i.e., Gw), we execute the link prediction process
depicted in Figure 4. Furthermore, we also set the
parameters values of the KTA weighting criterion: α,
ß ∈ {0.3, 0.5, 0.7, 0.9}, λ ∈ {0.3, 0.9}.
In the keywords query experiments, three diverse
sets of the keywords are set, i.e., set A, set B, and set
C. In set A, the keywords of one paper are regarded
as the query keywords, where readers can provide all
query keywords for their research content. In set B,
the query keywords are randomly selected from
different papers (in excess of one paper) as the
readers’ research content covers diverse research
topics. In set C, the query keywords are randomly
selected from any two papers to further verify the
feasibility of the MGWST algorithm. Furthermore,
an author of each paper basically creates the number
of keywords with up to 6, so there are up to six query
keywords in each set. Each experiment is repeated
100 times and the average experiment results are
adopted.
Evaluation Criteria. We compare the following
evaluation criteria:

(1) Number of new edges: the larger, the better; that is,
more new edges denote that our link prediction
approach can better solve the sparse problems of the
existing paper citation graph.

(2) Number of nodes: number of recommended papers
(the smaller, the better, i.e., fewer papers denote that
high correlation). Note that the return solution
contains at least one paper.

(3) Success rate [37]: when the number of papers of a
recommendation result is less than twice the number
of the readers’ query keywords, the recommendation
result is successful (the larger, the better).

(4) Weight: the weight of a recommended result (the
smaller, the better).

(5) Computation time: the time for generating an an-
swer tree (the smaller, the better). Here, the com-
putation time can be well described by logarithmic
function (log2).

(6) Precision [20] is defined as

precision �
TP

Rp

, (10)

where TP denotes a set of papers containing query
keywords and Rp denotes a recommendation result.

(7) Recall [38] is defined as

recall �
1

|p|
􏽘

pa∈p

Rp ∩Tpa

Tpa

, (11)

where |p| is the number of papers (e.g., |p| � 2) in set
C. Tpa

is a set of papers cited by pa.
(8) F1 score is defined as

F1 score �
2∗ recall ∗ precision
recall + precision

. (12)

Here, we compare LP − PRk+w with several similar paper
recommendation approaches:

Baseline 1. Link Prediction-Random (LP-Random) [28].
*e approach is randomly finding a set of nodes from
the Gw, and these nodes collectively cover readers’
query keywords. Finally, this approach grows a mini-
mum weighted spanning tree.
Baseline 2. Link Prediction-Greedy (LP-Greedy) [28].
Likewise, the approach selects a set of nodes contained
all query keywords from the Gw. Next, this approach
regards these nodes as the initial root nodes and
continuously generates a tree until these nodes are
interconnected.
Baseline 3. Link Prediction-Random Walk (LP-RW)
[13]. First, using papers’ keywords and the correlation
relationships of Gw to build 2-layer graph, and then the
approach runs on the 2-layer graph to recommend
papers. Furthermore, each query only uses readers’
entered keywords: q� [0, qW].
Baseline 4. Link Prediction-Random Walk Restart (LP-
RWR) [12]. Likewise, the approach also uses the 2-layer
graph for paper recommendation. If the state vectors of
LP-RWR steadily grows linearly in the experiment,
then we consider the approach achieves linear
convergence.
Experimental Tools. All experiments are implemented
by python and executed with Intel® Core® CPU @
3.0GHz, 16GB RAM, and Windows 10 @ 1809, 64-bit
operating system.

6.2. Experimental Results

(1) Profile 1: Ge Number of New Edges.
In this profile, we compare the number of new edges
to select a set of appropriate parameters values that
are better at solving the sparsity of an existing paper
citation graph in some extent. Tables 2–3 present that
we mostly gain different experimental results as
paper keywords, paper published time, and paper
authors’ information have a significant role in the
link prediction process. According to the above
experiments results, when α� 0.3, ß� 0.5, and
λ� 0.9, we get the best experimental results; that is,
the number of new edges is 348. *erefore, we select
the set of appropriate parameters values to build a
W-PCG.

(2) Profile 2: Ge Number of Nodes of Different
Approaches.

Scientific Programming 9



In the experiment, we test the number of recom-
mended nodes (papers) of different approaches.
Here, the number of readers’query keywords ranges
from 2 to 6. As shown in Figure 8, these experiment
results show that the number of recommended in-
cluding more papers can satisfy requirements of
readers on more keywords query. When readers can
accurately provide all query keywords, Figure 8(a)
presents that our approach can accurately answer
readers’ keywords query; that is, the number of
papers is 1. Furthermore, the experiment results of
Figure 8(b) demonstrate that LP − PRk+w can find
necessary bridging nodes between target nodes. In
the case of same keywords query, Figure 8 shows that
the number of recommended papers of LP − PRk+w

is fewer than that of the other two approaches (i.e.,
LP-Random and LP-Greedy). In fact, a recommended
result contains a handful of papers, which means
these recommended papers have higher correlation.

*us, the experiment results of Figure 8 can show
directly that our paper recommendation approach is
superior to LP-Random and LP-Greedy.

(3) Profile 3: Ge Success Rate of Different Approaches.
As shown in Figure 9, we compare the success rate of
different approaches in the different sets. According
to [39], if the number of query keywords equals 6,
then the number of papers of a successful recom-
mended result must range from 1 to 12. When
readers can accurately provide all query keywords,
Figure 9(a) presents that the success rate of our
approach is 100%. For the other keywords query
cases, the experiment results of Figures 9(b) and 9(c)
again present that the success rate of LP − PRk+w is
100%. However, LP-Random and LP-Greedy are
difficult to obtain successful paper recommendation
results, especially with the number of query key-
words equal to 6. In conclusion, the experiment

Input: K= {k1, k2, . . . , kl}, Q1 =V, Q2 =V

Output: Q1, Q2, Twmin(v, K)

(1) Let Q1=V, Q2 =V

(2) For each v ∈ Vp do
(3) If v contains any nonempty keyword set K′ ⊂ K

(4) w(Twmin(v, K′))≠‘

(5) enqueue Twmin(v, K′) into Q1
(6) End If
(7) End For
(8) While Q1 ≠V do
(9) dequeue Q1 to Twmin(v, K′)
(10) If K′ =K
(11) enqueue Twmin(v, K′) into Q2
(12) Continue
(13) End If
(14) Else tree growth
(15) Else tree merging
(16) Return Twmin(v, K)=Q2.top ()
(17) End While

ALGORITHM 3: MGWST (Gw, K).

Table 2: α, ß, and λ� 0.3 are employed in the link prediction to obtain the number of new edges.

αβ 0.3 0.5 0.7 0.9
0.3 190 192 136 160
0.5 264 270 276 238
0.7 258 258 264 310
0.9 258 258 258 264

Table 3: α, ß, and λ� 0.9 are employed in the link prediction to obtain the number of new edges.

αβ 0.3 0.5 0.7 0.9
0.3 208 152 160 168
0.5 348 234 216 176
0.7 342 342 314 226
0.9 288 288 288 294
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results of the set C can verify the feasibility of our
paper recommendation algorithm (i.e., the MGWST
algorithm). Furthermore, the experiment results of
Figure 9 can show that LP − PRk+w can recommend
more sets of papers with the higher correlations than
other two approaches.

(4) Profile 4: Ge Weight of Different Approaches.
In the paper, LP − PRk+w, LP-Random, and LP-
Greedy are both returning a tree containing all query
keywords to readers. Furthermore, the weight of a tree
can reflect the correlation of a set of papers; the
smaller the weight, the higher the correlation. Hence,
we compare the weight of different approaches in this
experiment. As shown in Figure 10, these experiment
results show that the weights of different approaches
increase with the number of query keywords in-
creasing, as these approaches need to find more pa-
pers to meet readers’ keywords query requirements.
In the case of the same keywords query, the weight of
our approach is less than the other two approaches
(i.e., LP-Random and LP-Greedy) as LP − PRk+w

adopts the weight optimization strategy. Furthermore,
Figure 10(a) shows that the weight of LP − PRk+w

equals 0, which further shows that our proposal can
find one corresponding paper containing all query
keywords. According to the above experiment results,
LP − PRk+w can guarantee to return a set of papers
with the minimum weight; that is, these papers have
the higher correlation.

(5) Profile 5: Ge Computation Time of Different
Approaches.
In the paper, a computation time is defined as the
time of finding paper recommendation results. *us,
we compare the computation time of different ap-
proaches. As LP-RW and LP-RWR only do iterative
operations and matrix operations in the process of
paper recommendation, the computation time of
these two approaches are both fixed values in the sets
B and C.
Moreover, we only count the time when LP-RW
achieves linear convergence, so the computation
time of the approach is smaller than that of our
approach. As shown in Figure 11, the computation
time of LP − PRk+w, LP-Random, and LP-Greedy
generally increases as the number of query keywords
increases; that is, these three approaches all take
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Figure 8: *e number of recommended nodes of different approaches. (a) *e number of recommended nodes in set A. (b)*e number of
recommended nodes in set B. (c) *e number of recommended nodes in set C.

Scientific Programming 11



150
140
130
120

Su
cc

es
s r

at
e (

%
) 110

100
90
80
70
60
50
40
30
20
10

0
2 3 4

Number of keywords
5 6

LP – PRk + w
LP-Greedy
LP-Random

(a)

150
140
130
120

Su
cc

es
s r

at
e (

%
) 110

100
90
80
70
60
50
40
30
20
10

0
2 3 4

Number of keywords
5 6

LP – PRk + w
LP-Greedy
LP-Random

(b)

150
140
130
120

Su
cc

es
s r

at
e (

%
) 110

100
90
80
70
60
50
40
30
20
10

0
2 3 4

Number of keywords
5 6

LP – PRk + w
LP-Greedy
LP-Random

(c)

Figure 9: *e success rate of different approaches. (a) *e success rate in set A. (b) *e success rate in set B. (c) *e success rate in set C.
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Figure 10: Continued.
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more time to find an answer tree with the increasing
number of query keywords. Furthermore, the
computation time of these three approaches in-
creases exponentially. As LP-Random and LP-Greedy

both use extremely simple heuristic for selecting the
bridging nodes from Gw, these two approaches find
the answer tree faster than our approach. In fact, the
recommended results of LP-Random and LP-Greedy
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Figure 10: *e weight of different approaches. (a) *e weight in set A. (b) *e weight in set B. (c) *e weight in set C.
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Figure 11: *e computation time of different approaches. (a) *e computation time in set A. (b) *e computation time in set B. (c) *e
computation time in set C.
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Figure 12: *e precision of different approaches. (a) *e precision in set A. (b) *e precision in set B. (c) *e precision in set C.
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Figure 13: Continued.
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are not ideal for readers as their recommended re-
sults contain some unnecessary bridging nodes (see
Figure 8). In most really cases, the computation time
of LP − PRk+w is allowable and receivable, which is
the price to pay if readers save more time and energy
on achieving their research goal.

(6) Profile 6: Ge Precision of Different Approaches.
For diverse paper recommendation approaches, we
compare the precision of their recommended results.
As shown in Figure 12, these experiment results
show that the precision of diverse approaches is very
different in the same keywords query cases. Whether
readers accurately or randomly provide their query
keywords, LP − PRk+w can accurately answer the
readers’ keywords query, and the precision equals
100%. However, the precision of LP-Random and
LP-Greedy has both a range from 22% to 33% in the
experiment. *erefore, the experiment results of
Figure 12 further show that readers will easily realize
their research aim by using our recommended
results.

(7) Profile 7: Ge Recall and F1 Score of Different
Approaches.
In this profile, we further compare the recall and F1
score of different approaches in sets B and C. Here,
the numbers of recommended papers of LP-RW and
LP-RWR are both equal to 20. As can be seen
Figures 13(a) and 13(b), the recall and F1 score of
LP − PRk+w range from 17% to 69% and from 29% to
81%, respectively; meanwhile, the other four ap-
proaches have smaller recall and F1 score than our
approach. Likewise, Figures 13(c) and 13(d) also
show that the recall and F1 score of other four ap-
proaches are smaller than LP − PRk+w.*erefore, the
experiment results of Figure 13 are not only dem-
onstrating that our proposal can satisfy readers’
keywords query requirements but also verifying

further the feasibility of the MGWST algorithm (i.e.,
Algorithm 3).

7. Conclusions

In this paper, a novel keywords-driven and weight-aware
paper recommendation approach based on the mobile edge
computing framework, that is, LP − PRk+w, is put forward to
address the sparsity and compatibility issues existing in
paper recommendations. *e recommended papers are not
only collectively containing readers’ query keywords but also
having the highest correlation degree. *erefore, the rec-
ommended papers can significantly promote readers’ in-
depth and continuous research around an identical focus.
Furthermore, our proposal indirectly solves the problem of
latency of recommendation results by adjusting the order of
paper recommendation in the mobile edge computing en-
vironment. Finally, the experimental results show the fea-
sibility of LP − PRk+w, in terms of multiple evaluation
metrics. In summary, our proposal can provide intelligent
and personalized paper recommendation services in the
mobile edge computing environment and further promote
the quality-of-retrieval experience of readers.

Although our work shows desirable results, there are still
several issues remaining unsolved. Firstly, our adopted link
prediction approach in recommender system [40–46] is a bit
naive and straightforward. *erefore, more refinements are
needed in the future. Second, readers’ paper search is often a
multiobjective decision-making problem that involves a
number of influencing factors [47–54] in the mobile edge
computing environment. We will further improve our
proposal by considering these factors.

Data Availability

*e experiment dataset Hep-* used to support the findings
of this study has been deposited in “http://snap.stanford.
edu/data/cit-Hep*.html.”
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Figure 13: *e recall and F1 score of different approaches. (a) *e recall in set B. (b) *e F1 score in set B. (c) *e recall in set C. (d) *e F1
score in set C.
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Additional Points

*is work is intended to improve and perfect the model in
[40]. *us, the work enables intelligent, personalized, and
efficient paper recommendation services in the mobile edge
computing environment.
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