
Research Article
Concept Tree-Based Event Matching Algorithm in Publish/
Subscribe Systems

Zhi Yuan Zhang ,1 Yu Jie Wang,2 Xue Hu Huang,1 and Kai Leung Yung3

1School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
2State Key Laboratory of Air Traffic Management System and Technology, Nanjing 210014, China
3Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China

Correspondence should be addressed to Zhi Yuan Zhang; zyzhangcauc@163.com

Received 8 March 2022; Revised 23 June 2022; Accepted 12 August 2022; Published 31 August 2022

Academic Editor: Daniel Mo

Copyright © 2022 Zhi Yuan Zhang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Semantic-based publish/subscribe system has attracted a lot of attention in recent years due to its powerful description ability in
message dissemination scenarios. As a key part of semantic-based publish/subscribe systems, event matching needs to understand
the semantic meaning of subscriptions, especially the hierarchy of concepts. However, existing event matching algorithms are
severely affected by the complexity of concept hierarchy trees, some even cannot run due to high memory occupation.This article
proposes an event matching algorithm called CTPS (concept tree-based publish/subscribe system) to address it; specifically, we
build subscription indexes on concept hierarchy trees for the first time, employ bit arrays to avoid unnecessary matches, and use
faster bit operations to accelerate the matching speed. Experiments show that, compared with previous algorithms, CTPS has less
memory occupation and shorter event matching time, and its performance is not sensitive to the height of the concept
hierarchy tree.

1. Introduction

Sending and receiving messages are very common in many
scenarios, such as pushing restaurant or hotel information to
online users in location-based service systems. Different
from peer-to-peer message delivery methods, publish/sub-
scribe (pub/sub) systems use a decoupled messaging ar-
chitecture [1], in which a broker collects subscribers’
subscription interests and publishers’ published messages
(often referred to as events in pub/sub systems) and route
the events to corresponding subscribers automatically. In
this way, an event can be received by multiple subscribers at
the same time. Pub/sub systems can be classified into three
types according to the subscription model, namely topic-
based, content-based, and semantic-based. In topic-based
pub/sub systems, events need to carry topic information
when publishing, and subscribers also need to submit their
interesting topics, and the broker matches them simply
through topic information. IBM’s MQ [2] and Apache’s

Kafka [3] are popular topic-based pub/sub system products.
Event matching in topic-based pub/sub systems is highly
efficient, but its subscription granularity is coarse and its
description ability is weak. In content-based pub/sub sys-
tems, subscribers are no longer confined to topics but can
specify constraints on the content of events. For example, if
one wants to purchase a computer with a price less than
400$, in content-based pub/sub systems, he may send a
subscription message of (<string, target,� , “computer”> ∧
<string, currency,� , “$”> ∧ <int, price, ≤, 400>) to the
broker, where each constraint has a form of <data type,
attribute name, operator, value>, and ∧ is a conjunction
(logical and), which means every constraint must be satis-
fied. Content-based pub/sub systems such as SIENA [4, 5],
REIN [6], GEM [7, 8], H-Tree [9], and BE-Tree [10]greatly
enhance the description ability and make the system more
flexible and have been a research focus in recent years.

Content-based pub/sub systems can only match sub-
scriptions according to the structure information of events,

Hindawi
Scientific Programming
Volume 2022, Article ID 3943442, 13 pages
https://doi.org/10.1155/2022/3943442

mailto:zyzhangcauc@163.com
https://orcid.org/0000-0002-0974-3682
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3943442

which is not enough to understand their semantic meanings,
and thus may deviate from users’ original intentions. For
example, if there is a provider who is selling laptops with a
price of 350$, he may publish an event message of (<string,
target, “laptop”> <string, currency, “$”> ∧ <int, price, 350>)
to the broker. However, in content-based pub/sub systems,
without knowing the semantic relation between computer
and laptop, the broker only finds that laptop !� computer,
thus will inevitably fail to deliver this message to the above
subscriber. To address this problem, some researchers try to
incorporate semantic information into pub/sub systems,
such as S-ToPSS [11], which uses a very intuitive three-step
process to solve the semantic matching problem: At first, it
translates all attributes with different names but same
meaning to a root attribute.Then, it uses a concept hierarchy
tree to organize the hypernym-hyponym relations of con-
cepts, that is to say, if the attribute/value in the subscription
is the ancestor of the corresponding attribute/value in the
event, the matching condition is also satisfied. And finally, it
uses functions to express more flexible semantic equivalence
relations, such as “professional experience� present
date− graduation year.” S-ToPSS replaces each attribute of
an event with all its possible hypernym; in this way, one
event may become multiple new events when matching.
Obviously, this method artificially increases matching times
and is inefficient. In subsequent research of semantic-based
pub/sub systems, ontology is often used to model events, and
RDF (resource description framework) graph, which is
similar to ontology querying, is often used to model sub-
scriptions. As ontology is a general framework for knowl-
edge and concepts, the description ability of semantic-based
pub/sub systems such as OPS [12], G-ToPSS [13], MIC [14],
and iBroker [15]is further improved, and the users’ sub-
scription intention is better understood; therefore, it has got
much attention in recent years. However, all these methods
are severely affected by the complexity of the concept hi-
erarchy tree: S-ToPSS [11] expands one event to many events
with all attributes’ hypernym (ancestors), thus increasing
matching times; MIC [14] expands one subscription to many
subscriptions with all attributes’ hyponym (descendants),
thus increasing the memory usage of subscription index and
cannot manage a large number of subscriptions; and
G-ToPSS [13] and iBroker [15] traverse the hierarchy tree
and check them one by one when matching, thus the
matching efficiency is low.

To address these problems, this article proposes CTPS
(concept tree-based pub/sub system) model, which makes
the matching efficiency effectively improved. The main
contributions of this article are as follows: (1) We propose a
new event matching algorithm called CTPS, which is the first
time to build a subscription index on concept hierarchy
trees. By CTPS index structure, a subscription does not need
to store multiple times, thus memory occupation is dra-
matically reduced. Also by CTPS index structure, an event
does not need to match multiple times either, and un-
matched subscriptions can be quickly filtered, thus event
matching efficiency is greatly improved. (2) Instead of using
complex RDF graphs, we use simple <attribute, value> and
<attribute, constraint> pairs as event and subscription

models, respectively, and together with the concept hier-
archy tree, the description ability is powerful enough for
semantic-based pub/sub systems.

2. Related Works

In semantic-based pub/sub systems, events and subscrip-
tions are usually modeled by RDF graphs. OPS [12] takes
event matching as a subgraph isomorphism problem, in
which all nodes in the subscription graph are thought to be
variables, so the algorithm complexity is very high. In
G-ToPSS [13], only ?x in form of (?x, op, v) is regarded as a
variable, where op may be a relational operation used for
literal value comparison or may be a hypernym-hyponym
relational operation used for concept/class comparison. For
example, “laptop”< “computer” means the former is a
hyponym or descendant concept of the latter. G-ToPSS
builds a two-level hash index for all edges in the subscription
graphs. The first level is the start and end vertices of an edge,
and the second level is the edge label, together with a
subscription list. G-ToPSS applies two processing stages for
event matching: In the first stage, a completed graph is
constructed for each edge (s, p, o) in the event graph, which
means no matter the corresponding secondary index con-
tains p or not, G-ToPSS will always search the following pairs
in the index space:so, s∗i, ∗io, and ∗i ∗j (∗i and ∗j are var-
iables), and the matched subscriptions are added to a
processing set. In the second stage, for each subscription in
the processing set, the variables are set with proper values to
check whether the constraints are satisfied. If the checks are
about hypernym-hyponym constraints, it will take a lot of
time to traverse the concept hierarchy tree. MIC [14]
(multidimensional index matching count) algorithm builds
a three-level hash index for subscriptions, different from
G-ToPSS, the edge labels are stored in the first level, and the
vertex pairs are stored in the second level. If the second-level
index contains variable vertices, the variable range will be
divided into multiple intervals organized by a binary tree as
the third level. For hypernym-hyponym constraints, MIC
uses the hyponym expansion operation, that is, for any edge
(s, p, o) in the subscription graph, new edges in the form of
(Ts, Tp, To) will also be added to the index, where Ts, Tp, and
To are descendants of s, p, and o, respectively. Therefore,
there is no need to worry about the hypernym-hyponym
problems when matching events; however, the index space
increases dramatically, especially when the concept tree is
high. In [16], subscriptions are translated into SPARQL
queries, and the query condition is also extended as in MIC.
In iBroker [15], both classes and attributes are stored in the
first-level hash index, and the second-level index stores the
next class or attribute to be matched, thus pulling the
constraints of each subscription into a linked list. In essence,
it merges identical vertices/edges in different subscription
graphs into the same node, and the node value is then set to
be true or false in the subsequent matching process. Finally,
the list is traversed to get the matching result.

The above pub/sub systems are all centralized, that is,
there is a broker who manages all subscriptions and is re-
sponsible for event message routing. There are also

2 Scientific Programming

decentralized peer-to-peer pub/sub systems, such as
OpenPubSub [17], which proposes a hybrid event routing
model that combines rendezvous routing and gossiping over
a structured peer-to-peer network. The network is built
based on a high-dimensional semantic vector space. This
article only focuses on centralized pub/sub systems.

3. CTPS Model

To better understand the relation of concepts involved in
events and subscriptions, concept trees must be defined at
first, then events and subscriptions can use terms defined in
these concept trees. Thereafter, the matching algorithm can
use the concept tree to say whether an event’s attribute/value
is satisfied with a subscription constraint.The concept model
is used to express concept relations, and the event/sub-
scription model is used to express the event/subscription
message structure sent to the broker.

3.1. Concept Model. The concept model reflects the hierar-
chical relation of classes and attributes, such as “computer”
is the parent of “laptop PC,” as shown in Figure 1. Similarly,
attributes may also have hierarchical relations. For example,
both “cellphone number” and “email” are subattributes of
contact information. If there is only one node in the concept
tree, it is called an independent concept, such as “Money-
Value” in Figure 2. In this way, each attribute could be an
independent attribute or a hierarchical attribute, and also the
attribute value could be an independent class or a hierar-
chical class. The xsd:string and xsd:decimal, which are
frequently used in ontology, are regarded as independent
classes. We specify that the attribute name is unique, and the
attribute value type is determined by the attribute name,
which can be obtained by domain(attribute) function, for
example domain(target)� product, domain(contact
information)� xsd:string. In addition, root(name) function
can be used to obtain the corresponding root node’s name,
for example root (computer)� product. As for independent
concepts, the root node’s name is itself, for example
root(MoneyValue)�MoneyValue.

3.2. Event Model. In semantic-based pub/sub systems,
events are usually represented as RDF graphs. Figure 2
shows an example, indicating that John is selling a HP
desktop PC with a 40G IBM hard disk for $450. This article
uses a more concise event model, which is composed of
<attribute, value> pairs, where attribute is the attribute
name defined by the attribute hierarchy tree, and value is the
attribute value, which can be a class name defined by the
class hierarchy tree or a literal value. With a specification
that attribute name is unique and it can determine its value
type, for example price.value and hardDisk.size.value are
both numeric, and target is of “product” type (see Figure 1),
we can then use the following nine pairs to represent the
event graph in Figure 2. Note that if the value type is an
independent class, which means that we can exactly know its
value type by the attribute name, then the pair for describing
its value type can be omitted, such as< price.type,

MoneyValue>. It can be seen that, compared with the
original RDF event graph, our model is more concise. In
addition, because event data are often drawn from relational
databases in most cases, our model reduces the workload for
there is no need to additionally convert events into RDF
graphs.

<seller.name, John>
<seller.cellPhoneNumber, 123456789>
<price.value, 450>
<price.currency, units:$>
<target, Desktop PC>
<target.manufacture.name, IBM>
<target.hardDisk.size.value, 40>
<target.hardDisk.size.units, units:G>
<target.hardDisk.manufacture.name, IBM>

3.3. Subscription Model. In semantic-based pub/sub sys-
tems, subscriptions are often represented as graphs. As an
example, Figure 3 shows a subscription graph about pur-
chasing a computer with a price less than $400. In the graph,
each vertex consists of 2 or 3 components; the first is the
vertex ID, the second is the value type, and the third is an
optional constraint. The subscription model in this article is
also< attribute, constraint> pairs, where attribute is the
attribute name and constraint is the constraint condition.
There are two kinds of constraint: one is literal value con-
straint on basic data types such as numeric or string, and the
other is type value constraint on class data types. For type
value constraints, it is specified that the constraint condi-
tions are only satisfied when the event value is the constraint
value itself or is its subclass. For example, let “Desktop PC”
and “computer” be event and constraint value, respectively,
since “Desktop PC” is a subclass of “computer,” the con-
straint is satisfied. The subscription graph in Figure 3 can be
represented as the following four pairs, where interval
[lower, upper] is used to denote numeric constraints. As we
assume that the attribute name can be used to determine its
value type, so if the attribute value type is unique, its type
value constraint will be excluded.

<target, Computer>
<price.currency, units:$>
<price.value, [0,400]>

4. Index Structure

There may be several ways to express one thing, such as
“Desktop PC” and its Chinese term “台式机,” or “US” for
short of “United States.” To translate attributes and values in
different names but with the same meaning, a synonym hash
table in the form of <key, value> is designed, where “value”
is the root words and “key” is all possible statements of them.
In this way, the attribute names/values in events and sub-
scriptions are easy to be replaced with their corresponding
root words before processing. In addition, the unit types in
events and subscriptions are also unified before processing,

Scientific Programming 3

such as “target.hardDisk.size.units” is transformed to G. By
doing this, pairs about attribute unit can also be omitted,
such as <price.currency, units:$> and <target.hardDisk.si-
ze.units, units:G> in the above event and <price.currency,
units:$> in the above subscription. At the same time, a
unique ID is assigned to each subscription.

4.1. Hierarchy Tree Index. An index is built on each concept
hierarchy tree. As shown in Figure 4, the index consists of
three parts: The left part is a hash table, where the key is
attribute name/value and the value is linked to its corre-
sponding node of the tree; the right part is a hierarchy tree,
where each node consists of an attribute name/value and a
list of subscription IDs, and each node is linked to its parent
node; and the last part is the total subscription list of the
hierarchy tree, as shown in the figure, SID: {1,4,5,10}. The
subscription lists of nodes and the total subscription list SID
are all stored in bit arrays, like BitSet in Java. Different from

integer list which needs to be compared one by one, the bit
array uses bit operations and greatly speeds up the matching
speed. It should also be noted that, unlike the child node
representation used in Figure 1, we use the parent node
representation here, because only ancestor searching is
needed in our algorithms.

Data Structure:

TreeNode{
String name;
TreeNode parentNode;
BitSet sid;

}
TreeIndex{

Map< String, TreeNode> hashTable;
BitSet SID;

};
Map< String, TreeIndex>m1, m2;

The hierarchy index tree is built by Algorithm 1:
buildTreeIndex. For each concept hierarchy tree, if it is an
attribute tree, such as the right part of Figure 1, we build
and initialize the corresponding index tree, and put it into
m1 so we can quickly find it by the attribute name (2–6). If
it is an attribute value tree, such as the left part of Fig-
ure 1, we build and initialize the corresponding index
tree, and put it into m2 for subsequent search (7–11). The
algorithm initTreeIndex recursively traverses the concept

computer

desktop pc laptop pc

book

paper book e-book

product

telephone
Number

homephone
Number

cellphone
Number

Email

contact
Information

Figure 1: Example of hierarchy tree for classes (a) and attributes (b).

_:H

target

Desktop PC

rdf:value

IBM

Company

manufacture

rdf:type

name

price

MoneyValue

units:$

450

currency

rdf:type

Selling

rdf:type

John

123456789

Customer

rdf:type
name

cellPhoneNumber

seller

units:G

QualifiedValue

DiskInformation

40

HardDisk
rdf:type

rdf:type

units rdf:value

size
manufacture

rdf:type

Figure 2: Example of an RDF event graph.

_:H, Purchasing

?1, Computer

target

?2, MoneyValue

price

units:$, daml:Thing ?3, xsd:decimal, ?3<400

rdf:valuecurrency

Figure 3: Example of a subscription graph.

4 Scientific Programming

hierarchy tree, uses the parent node representation to
initialize the index tree, and adds hash table entries as
shown in the left part of Figure 4 so as to quickly access
the corresponding index node and its ancestors by the
attribute name.

Algorithm 2: insertSubscribe adds each constraint of
subscription s into the index structure. First, we add the
attribute name into the attribute index tree (2–3), and
then add it into different index structures according to
the type of the attribute value: string and numeric types
are added to the literal constraint index (5–10), and other
types are added into the attribute value index tree
(11–13). Algorithm 3: insertTreeConstraint adds sub-
scription ID into the subscription list of the node
according to the attribute name/value and also adds it
into the total subscription list in the index tree (2–4). As
an example, for constraint <target, computer>, there is no
need to add an index for target because it is an inde-
pendent attribute (line 1), while “computer” is not, so we

find its node in the hashtable (line 2), and then for the
node subscription list and the total subscription list of the
tree, we set its corresponding element to be 1(3–4).

4.2. Literal Constraint Index. We only consider two literal
types: string and numeric. For string types, we only
consider the equivalent constraint, and its index is a two-
level hash table, where the first level is the attribute name,
and the second level is the string value of the attribute
with a subscription list, which is also stored in a bit array,
as shown in Figure 5. A special item ∗ is added to the
second-level index to match all possible string values of
the attribute name. Algorithm 4 shows how to insert
string constraints. Although there may be many nodes in
an attribute hierarchy tree, they have the same value type,
so we build only one string index by its root node.

Data structure is as follows:

Map< String, Map< String, BitSet>>m3;

computer, {1,5}

desktop pc, {4} laptop pc, {10}

book

paper book e-book

productproduct

computer

desktop pc

laptop pc

SID: {1, 4, 5, 10}

Figure 4: Example of a hierarchy tree index.

buildTreeIndex(){
(1) for each hierarchy tree{
(2) if it is an attribute tree pt{
(3) TreeIndex ptree� new TreeIndex();
(4) initTreeIndex(pt, null, ptree);
(5) for each node name pname of pt, m1.put(pname, ptree);
(6) }
(7) if it is an attribute value tree vt{
(8) TreeIndex vtree� new TreeIndex();
(9) initTreeIndex(vt, null, vtree);
(10) for each node name vname of vt, m2.put(vname, vtree);
(11) }
(12) }

}
initTreeIndex(ct, pNode, tree){

(1) node� new TreeNode();
(2) node.name� ct.name;
(3) node.parent� pNode;
(4) tree.hashtable.put(node.name, node);
(5) for each childNode of ct{
(6) initTreeIndex(childNode, node, tree);
(7) }

}

ALGORITHM 1: Build and initialize a hierarchy index tree.

Scientific Programming 5

The numerical constraint index is also a hash table, in
which the key is an attribute name, and the value is a GEM
[7] index, as shown in Figure 6. Each cell of the GEM index
has a subscription list, which is also stored in a bit array. The
x-axis of the GEM index is the lower bound of interval
constraints, and the y-axis is the upper bound of interval
constraints. Since the lower boundmust be less than or equal

to the upper bound, constraints satisfying this condition all
fall into the upper triangular region in the plane. The value
range Rm is divided evenly into T boxes both on the x-axis
and y-axis, and in this way, a constraint will only fall into one
cell. Each cell is denoted as a coordinate (y, x), where y and x
are calculated as follows:

y �

upper
Rm/T

, upper≠Rm

T − 1, otherwise

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x �

lower
Rm/T

, lower≠Rm

T − 1, otherwise

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

. (1)

Assuming a constraint of [0, 20], Rm � 100, and T� 5,
then the cell index is (1,0). Since the calculation of the cell
index is independent of the number of constraints, the
subscription insertion speed of GEM is a constant.

Data structure is as follows:

GEMCell{
BitSet sid;
Map< id, constraint> list;

}
GEMIndex{

int T, Rm; GEMCell cell[T][T]; }
Map< String, GEMIndex>m4;

insertSubscribe(s){
(1) for each pair< attribute, constraint> of s{
(2) ptree�m1.get(attribute);
(3) insertTreeConstraint(ptree, attribute, s.id);
(4) switch(domain(attribute)){
(5) case xsd:string:
(6) insertStringConstraint(attribute, constraint, s.id);
(7) break;
(8) case xsd:decimal:
(9) insertGEMConstraint(attribute, constraint, s.id);
(10) break;
(11) default:
(12) vtree�m2.get(attribute);
(13) insertTreeConstraint(vtree, constraint, s.id);
(14) }
(15) }

}

ALGORITHM 2: Insert subscription.

insertTreeConstraint(tree, pvName, id){
(1) if tree is null, return;
(2) node� tree.hashtable.get(pvName);
(3) node.sid.set(id);
(4) tree.SID.set(id);

}

ALGORITHM 3: Insert attribute name/value class constraint.

target.manuafa
cture.name

*, {1, 3, 5}

IBM, {3}

target.color

Lenovo, {1, 5}

*, {1, 2, 4}

black, {2}

blue, {1, 4}

Figure 5: Example of string constraint indexes.

6 Scientific Programming

Algorithm 5: insertGEMConstraint inserts a numerical
constraint in the form of [lower, upper] into the cell of GEM.
First, we need to find the corresponding GEM index by the
root name of the attribute in m4 (1–2). If it is not found, a
new hash table entry should be inserted (3–6). Then, we
calculate cell index according to the formula and set the
corresponding ID of the subscription list to be 1(7–8).

5. Event Matching Algorithm

In event matching, we delete unmatched subscriptions as
early as possible. First, we initialize a bit array with a length

of subscription number and set all its elements to be 1. Then
we match each pair of the event in turn; if a constraint is not
satisfied, then the location of its subscription ID in the bit
array is set to be 0, which means it would not be matched
anymore, and, finally, those subscriptions that are 1 in the bit
array are matched. Since subscriptions are no longer
matched after being set to 0, lots of invalid matching op-
erations are avoided, so the matching efficiency is improved.
As shown in Algorithm 6, for each pair <attribute, value> of
an event, at first we find the index tree by the root name of
the attribute (3–4), then we match the attribute if the index
tree is not null (5–7), and then we match the value according

insertStringConstraint(attribute, value, id){
(1) name� root(attribute);
(2) map�m3.get(name);
(3) if map is null{
(4) map� new Map< String, BitSet>();
(5) m3.put(name, map);
(6) }
(7) sid�map.get(value);
(8) if sid is null{
(9) sid� new BitSet();
(10) map.put(value, sid);
(11) }
(12) sid.set(id);
(13) aid�map.get(∗);
(14) if aid is null{
(15) aid�new BitSet();
(16) map.put(∗, aid);
(17) }
(18) aid.set(id);

}

ALGORITHM 4: Insert string constraint.

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

(3, 0) (3, 1) (3, 2) (3, 3)

(2, 0) (2, 1) (2, 2)

(1, 0) (1, 1)

(0, 0)

0 Rm

Rm

low

F

high

B

A

C

D

Eprice.value

target.size.value

Figure 6: Example of a numerical constraint index.

Scientific Programming 7

to the value type of the attribute (8–20), and, finally, the
matching result is returned (line 22).

5.1. Hierarchy Tree Matching Algorithm. If the constraint’s
attribute name is the child node of the event’s attribute
name, they cannot match. Similarly, if the constraint’s at-
tribute value is the child node of the event’s attribute value,
they cannot match either. Algorithm 7: treeMatch performs
event matching on attribute names/values. First, we find the
corresponding node of the attribute name/value in the index
tree and save the subscription list of the node and its an-
cestors in a temporary bit array tmpid (1–6). Then we
perform bit operations and get the matching result sid (7–9).
The resize function on line 7 sets tree.sid to the same length
as sid by padding zeros. For example, tree.sid� {0,1,1}, sid�

{0,1,1,1}, which means there are 4 subscriptions and only the

first and second subscriptions (index starting from 0) are
indexed in the tree, and after resize function, tree.sid�

{0,1,1,0}. Supposing that tmpid� {0,1}, that is, only the first
subscription matches, so the second subscription should be
set to 0, and the result of the calculation is (∼{0,1,1,0} |
{0,1,0,0}) & {0,1,1,1}� {0,1,0,1}. If the length alignment is not
performed, the system will take the ∼ operation first, which
may get a wrong result.

5.2. StringMatching Algorithm. Algorithm 8: stringMatch is
used for attribute values of string type. First, we get the hash
table fromm3 according to the attribute name, and if we get
nothing, further operation will not be required, for there is
no string constraint on it at all (lines 1–2). Then, we get
subscriptions matching the attribute value (line 3) and
subscriptions matching all possible values of the attribute

insertGEMConstraint(attribute, constraint, id){
(1) name� root(attribute);
(2) gem�m4.get(name);
(3) if gem is null{
(4) gem�new GEMIndex();
(5) m4.put(name, gem);
(6) }
(7) compute index y, x by [lower, upper] of the constraint
(8) gem.cell[y][x].set(id);

}

ALGORITHM 5: Insert numeric constraint.

match(e){
(1) initial a BitSet sid with a length of subscription number, and set all its elements to be 1
(2) for each pair <attribute, value> of e{
(3) name� root(attribute);
(4) ptree�m1.get(name);
(5) if ptree is not null{
(6) sid� treeMatch(ptree, attribute, sid);
(7) }
(8) switch(domain(attribute)){
(9) case xsd:string:
(10) sid� stringMatch(name, value, sid);
(11) break;
(12) case xsd:decimal:
(13) sid� gemMatch(name, value, sid);
(14) break;
(15) default:
(16) vtree�m2.get(name);
(17) if vtree is not null{
(18) sid� treeMatch(vtree, value, sid);
(19) }
(20) }
(21) }
(22) return sid;

}

ALGORITHM 6: Event matching algorithm.

8 Scientific Programming

(line 4) and perform bit operations similar to algorithm 7
(lines 5–7).

5.3. Numeric Matching Algorithm. Algorithm 9: gemMatch
is used for attribute values of numeric type. First, we get the
GEM index according to the root name of the attribute (line
1). If it does not exist, which means that there is no numeric
constraint on this attribute at all, we just return without
doing anything (line 2). Otherwise, unmatched subscrip-
tions should be removed. Using formula in 4.2, the cell index
r of the value is calculated (2–4), and the index structure is
divided into 5 parts by r, labeled as A to E as shown in
Figure 6. As an example, let Rm � 100, T� 5, and value� 45, it
is easy to know that r is 2.

(1) For cells in part A, y< 2, that is, upper< 40, it is
impossible to match the event, so subscriptions in
these cells will be removed (5–7);

(2) For cells in part B, x> 2, that is, lower> 60, it is
impossible to match the event, so subscriptions in
these cells will also be removed (8–10);

(3) For cells in partC, x< 2, that is, lower< 40, there is no
need to check the lower bound, so only subscriptions
with constraint whose upper bound is less than 45
will be removed (11–17);

(4) For cells in part D, y> 2, that is, upper> 60, there is
no need to check the upper bound, so only sub-
scriptions with constraint whose lower bound is
greater than 45 will be removed (18–24);

(5) There is only one cell (x� y� 2) in part E, each
constraint in it should be checked, and if it does not
meet the condition, its corresponding subscription
will be removed (25–30);

(6) For cells in part F, y> 2 and x< 2, that is, upper> 60
and lower< 40, the event is certainly matched, so
there is no need to deal with it.

Different from the original GEM event matching algo-
rithm, when processing partsA and B, the original algorithm
needs to traverse all subscriptions in each cell, while it is
changed to bit operations in this algorithm to speed up
matching. And also, when dealing with parts C,D, and E, the
original algorithm needs to check every subscription in each
cell, regardless of whether it is invalid or not, while this
algorithm first finds the intersection of sid and the sub-
scription list of the current cell (lines 12, 19, 26), and then
only valid subscriptions are checked. Thus, the number of
comparisons is reduced and the matching efficiency is
improved.

5.4. Algorithm Analysis. Index maintenance complexity
analysis: For any subscription, attribute of every constraint
should be inserted into the hierarchy tree index m1, and
value of every constraint should be inserted into m2 (for
class value),m3 (for string value), orm4 (for numeric value).
For m1 and m2, each insertion includes 1 hash operation, 2
bit operations; for m3, each insertion includes 3 hash op-
erations and 2 bit operations; form4, each insertion includes

treeMatch(tree, key, sid){
(1) node� tree.hashtable.get(key);
(2) tmpid� new BitSet();
(3) while node is not null{
(4) tmpid� tmpid | node.sid;
(5) node�node.parentNode;
(6) }
(7) resize(tree.sid, sid.length);
(8) sid � (∼tree.sid | tmpid) & sid;
(9) return sid;

}

ALGORITHM 7: Tree matching algorithm.

stringMatch(key, value, sid){
(1) map�m3.get(key);
(2) if map is null, return sid;
(3) tmpid�map.get(value);
(4) aid�map.get(∗);
(5) resize(aid, sid.length);
(6) sid � (∼aid | tmpid) & sid;
(7) return sid;

}

ALGORITHM 8: String matching algorithm.

Scientific Programming 9

1 hash operation, 1 GEM index computation, and 1 bit
operation. Operations are same for subscription deletion.
Note that none of these operations are proportional to
subscription numbers, and the maintenance complexity is
nearly O(1).

Space complexity analysis: It mainly includes the hier-
archy tree index of attribute names m1, the hierarchy tree
index of attribute values m2, the string index m3, and the
numeric index m4. Suppose the number of root attributes is
a. There are a1 of them whose attribute name has a hier-
archical class, a2 of them whose attribute value has a hi-
erarchical class, a3 of them whose attribute value type is a
string, and a4 of them whose attribute value type is a nu-
meric. There is a1≤ a and a2 + a3 + a4≤ a. We suppose that
there are n subscriptions in total. Each hierarchy tree has at
most k nodes, and each string attribute takes at most b
values. Then the space complexity is a1kn+ a2kn+ a3(b+ 1)
n+ a4T2n� ((a1 + a2)k+ a3(b+ 1) + a4T2)n�O(n), which is
proportional to the number of subscriptions.

Time complexity analysis: Suppose the height of the
hierarchy tree is h. Matching an attribute name of hierar-
chical class requires 2 hash operations, and a maximum of

h + 1 “|” operations, one “∼”operation, and one “&” oper-
ation, that is, a total of 2 hash operations and h + 3 bit
operations are required to match the attribute name hier-
archical class. The match of an attribute value hierarchical
class is similar to this procedure. Matching a string value
requires 3 hash operations and 3 bit operations. For numeric
index matching, if the constraints are evenly distributed,
each cell contains about 2n/T2 constraints: for each cell of
sections A and B, 2 bit operations are required. Considering
that A and B account for half of all cells on average, a total of
2T2/4�T2/2 bit operations are required. In the worst case,
one comparison operation is required for the constraints in
each cell of sectionsC andD, and two comparison operations
are required for the constraints in each cell of section E, that
is, a total of (T−1 + 2)∗2n/T2 � 2(T+ 1)n/T2≈2n/T com-
parison operations. Supposing that the cost of one hash
operation is p, the cost of one bit operation to is βn (the
longest bit array is n, so the cost of bit operations is pro-
portional to n), and the cost of one comparison operation is
q. Hence, the time cost is (a1 + a2) (2p+ (h+ 3)β
n) + a3(3p+ 3βn) + a4(βn∗T2/2 + q∗2n/T) � (2a1 + 2a2 + 3a3)
p+ [(a1 + a2) (h+ 3)β+ 3a3β+ a4T2β/2 + 2a4q/T]n, and the

gemMatch(key, value, sid){
(1) gem�m4.get(key);
(2) if gem is null, return sid;
(3) if value� gem.Rm, r� gem.T - 1;
(4) else r� value/(gem.Rm/gem.T);
(5) for each pair (x,y) that 0≤ x<�y< r{
(6) sid� sid & ∼gem.cell[x][y].sid;
(7) }
(8) for each pair (x,y) that r+ 1≤ x<�y< gem.T{
(9) sid� sid & ∼gem.cell[x][y].sid;
(10) }
(11) for (x� 0; x< r; x++){
(12) tmpid� sid & gem.cell[x][r].sid;
(13) for each bit 1 index of tmpid{
(14) if gem.cell.[x][r].list.get(index).upper< value
(15) sid.set(index, 0);
(16) }
(17) }
(18) for(y� r+ 1; y< gem.T; y++){
(19) tmpid� sid & gem.cell[x][r].sid;
(20) for each bit 1 index of tmpid{
(21) if gem.cell.[r][y].list.get(index).lower> value
(22) sid.set(index, 0);
(23) }
(24) }
(25) tmpid� sid & gem.cell[r][r].sid;
(26) for each bit 1 index of tmpid{
(27) c� gem.cell[r][r].list.get(index);
(28) if c.lower> value ||c.upper< value
(29) sid.set(index, 0);
(30) }
(31) return sid;

}

ALGORITHM 9: Numeric matching algorithm.

10 Scientific Programming

complexity isO(n). Due to the fast speed of the bit operation,
the β value is small and the matching time will grow rela-
tively slowly with the number of subscriptions.

6. Experiments

The CTPS prototype system is developed using JDK1.8.
Experiments are run on a Windows10 laptop with an Intel
i5-6200 2.40 GH CPU and 8G memory, and the experiment
data are synthetic. Parameter settings are listed in Table 1.

In Figure 7(a), we compare the memory occupation of
the four algorithms CTPS, G-ToPSS [13], OPS [12], andMIC
[14] and the height of tree is 1 (one root node with two child
nodes). Since MIC algorithm expands the original sub-
scription, even when the tree height is only 1, it will expand
3∗3∗3� 27 times. It can also be seen that with the increase in
subscription number, the memory space of the MIC in-
creases sharply. When the subscription number is greater
than 8500, the memory of MIC overflows, while the growth
of CTPS and G-ToPSS is relatively slow. It should be pointed
out that the OPS index only stores all possible vertices and
edges, and the memory occupation has nothing to do with
the subscription number and only grows rapidly with the

height of the tree. When the tree height is 4, OPS occupies
about 505MB (Mega Byte), and it overflows when the tree
height is 5. As the tree height increases, the number of
subscriptions that MIC can handle also decreases rapidly.
When the tree height is 4, only 1000 subscriptions can be
handled in MIC, and when the tree height is 5, this number
drops to less than 500. Therefore, in Figure 7(b), we only
compare the memory occupation of CTPS and G-ToPSS
when the tree height is 5. It can be seen that the memory
occupation of the two increases linearly with the number of
subscriptions. The growth rate of CTPS is smaller than that
of G-ToPSS, and the total amount is relatively small. When
the number of subscriptions is 10000, the memory is less
than 3MB.

In Figure 8, we compare the matching time of the four
algorithms CTPS, G-ToPSS [13], OPS [12], and MIC [14].
The number of events is 1000 and the number of sub-
scriptions varies from 500 to 10000. In Figures 8(a) and 8(b),
we compare the matching time of the four algorithms when
the tree height is 1. Since OPS matches subscriptions one by
one, its matching time is so much longer than others, so
graph 8(a) is drawn separately. It can be seen from
Figure 8(b) that when the number of subscriptions is greater

Table 1: Parameter settings.

Parameter name Parameter value Memo
Attribute number with concept tree 6
Attribute value number with concept tree 4
Attribute value number with basic type 2 xsd:decimal
Height of concept tree 1∼5 Tree with only root node has height 0
Width of concept tree 2 Each nonleaf node has 2 child nodes
Nodes (edges) of subscription/event graph 7(6) 7 nodes, 6 edges
Subscription number 500 ∼ 10000
Event number 1000

2000 4000 6000 8000 10000

0

200

400

600

800

1000

1200

1400

M
B

CTPS
G−ToPSS

OPS
MIC

(a)

2000 4000 6000 8000 10000

0.5

1.0

1.5

2.0

2.5

3.0

M
B

CTPS
G−ToPSS

(b)

Figure 7: Comparison of memory usage: (a) subscribe (height� 1); (b) subscribe (height� 5).

Scientific Programming 11

than 7000, the matching time of the MIC rises sharply,
possibly due to the sharp increase in its memory usage. The
matching time of G-ToPSS grows slowly with the number of
subscriptions, while CTPS does not change much. It should
be noted that since the matching time of CTPS is much
shorter than other algorithms, Figure 8(b) sets a right
vertical axis for CTPS alone. In Figure 8(c), we compare the
matching time of CTPS and G-ToPSS algorithms when the
tree height is 5, where G-ToPSS uses the blue vertical axis on
the left and CTPS uses the red vertical axis on the right, and
we can see that CTPS is about 70 times faster than G-ToPSS.
Compared with Figure 8(b), the matching time of G-ToPSS
increases as the tree height increases, while CTPS remains
basically unchanged. In Figure 8(d), we compare the time
used for CTPS under different matching rates. It can be seen

that the matching time of the CTPS algorithm grows slowly
with the increase of the matching rate, but the overall
matching time is still very short. To sum up, CTPS is su-
perior to other algorithms in terms of memory occupation
and matching time, and the performance is not affected by
the height of the concept tree.

7. Conclusion

Semantic-based pub/sub system has powerful description
abilities, but its event matching algorithm is severely affected
by the complexity of concept trees. We propose a new index
structure called CTPS, which builds indexes on the concept
hierarchy tree, though which unmatched subscriptions can
be quickly filtered. By using bit arrays in the index, invalid

2000 4000 6000 8000 10000

5000

10000

15000

m
at

ch
tim

e (
m

s)

OPS

(a)

2000 4000 6000 8000 10000

200

400

600

800

1000

1200

1400

m
at

ch
tim

e (
m

s)

0

50

100

150

200

CTPS
G−ToPSS
MIC

(b)

2000 4000 6000 8000 10000

m
at

ch
tim

e (
m

s)

0

500

1000

1500

2000

2500

0

50

100

150

CTPS
G−ToPSS

(c)

0 5 10 15 20 25 30

30

40

50

60

70
m

at
ch

tim
e (

m
s)

CTPS

(d)

Figure 8: Comparison of matching time (number of events� 1000): (a) subscribe(height� 1); (b) subscribe(height� 1); (c) sub-
scribe(height� 5); (d) matchrate(%) and subscribenum� 10000.

12 Scientific Programming

matches are avoided, and by fast bit operations, the
matching time is further shortened. Experiments show that
the algorithm in this article is significantly superior to
existing algorithms in terms of memory occupation and
matching time.

Data Availability

Data are available on request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Zhiyuan zhang proposed CTPS algorithm and completed
the manuscript; Yujie Wang performed the experiments;
Xuehu Huang completed the coding of G-ToPSS algorithm;
and Kai Leung Yung improved the editing quality of this
article.

Acknowledgments

This work was supported by the States Key Laboratory of Air
TrafficManagement System and Technology of China (grant
no. SKLATM201902).

References

[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.M. Kermarrec,
“The many faces of publish/subscribe,” ACM Computing
Surveys, vol. 35, no. 2, pp. 114–131, 2003.

[2] I. B. M. RedBook, Internet application development with
MQSeries and Java, IBM, Armonk, NY.USA, 1997.

[3] J. Kreps, N. Narkhede, and J. Rao, “Kafka: a distributed
messaging system for log processing[C],” 6th International
Workshop on Networking Meets Databases (NetDB), vol. 11,
2011.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and
evaluation of a wide-area event notification service,” ACM
Transactions on Computer Systems, vol. 19, no. 3, pp. 332–383,
2001.

[5] A. Carzaniga and A. L. Wolf, “Forwarding in a content-based
network[C],” Proceedings of ACM SIGCOMM, pp. 163–174,
ACM, Karlsruhe, Germany, 2003.

[6] S. Qian, J. Cao, Y. Zhu, and L Minglu, “REIN: a fast event
matching approach for content-based publish/subscribe
systems,” in Proceedings of the IEEE INFOCOM 2014 - IEEE
Conference on Computer Communications, April 2014.

[7] W. Fan, Y. Liu, and B. Tang, “GEM: an analytic geometrical
approach to fast event matching for multi-dimensional
content-based publish/subscribe services,” in Proceedings of
the IEEE INFOCOM 2016, April 2016.

[8] W. Fan, P. Xiong, F. Wu, and Y Liu, “GEM-tree: tree-based
analytic geometrical multi-dimensional content-based event
matching,” IEEE Access, vol. 7, pp. 164089–164101, 2019.

[9] S. Qian, J. Cao, and Y. Zhu, “H Tree an efficient index
structure for event matching in publish/subscribe systems,” in
Proceedings of the IFIP Networking Conference, 2013, April
2013.

[10] M. Sadoghi and J. H. A. . BE-Tree, “An index structure to
efficiently match Boolean expressions over high-dimensional

discrete space,” Acm Sigmod International Conference on
Management of Data, ACM, Athens, Greece, 2011.

[11] M. Petrovic, I. Burcea, H. A. . S Jacobsen, and S. S. ToP,
“Semantic Toronto Publish/Subscribe System,” VLDB 2003,
pp. 1101–1104, Berlin, Germany, 2003.

[12] J. Wang, B. Jin, L. I. Jing, and S Dan Hua, “Data model and
matching algorithm in an ontology-based publish/subscribe
system,” Journal of Software, vol. 16, no. 9, pp. 1625–1635,
2005.

[13] M Petrovic, L Haifeng, and J Hans Arno, “G-ToPSS: Fast
filtering of graph-based metadata,”WWW 2005, pp. 539–547,
ACM, Chiba, Japan, 2005.

[14] X. Hu, “Matching algorithm for semantic-based publish/
subscribe system[J],” Journal of Zhejiang University, vol. 43,
no. 1, pp. 63–68, 2009.

[15] M. J. Park and C.W. Chung, “iBroker: an intelligent broker for
ontology based publish/subscribe systems,” 2009 IEEE 25th
International Conference on Data Engineering, in Proceedings
of the, pp. 1255–1258, Shanghai, China, March 2009.

[16] H. Zhang, X. Zhang, K. Ding, and L Ming, “A fuzzy matching
with reasoning publish/subscribe system based on ontology,”
in Proceedings of the 2022 2nd international conference on
consumer electronics and computer engineering (ICCECE),
pp. 150–156, Guangzhou, China, January 2022.

[17] T. Zaarour, A. Bhattacharya, and E. Curry, “OpenPubSub:
supporting large semantic content spaces in peer-to-peer
publish/subscribe systems for the internet of multimedia
things,” IEEE Internet of Things Journal, vol. 1, 2022.

Scientific Programming 13

