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Computationally expensive optimization problems are often solved using surrogates and a common variant is the radial basis
functions (RBF) model. It aggregates several basis functions which all depend on a hyperparameter afecting their individual
outputs and consequentially the overall surrogate prediction. However, the optimal value of the hyperparameter is typically
unknown and should therefore be calibrated.Tis raises the question how does the hyperparameter afect the overall optimization
search efectiveness (and not just the stand-alone surrogate accuracy) and to what extent is such a calibration benefcial, which is
an important consideration both for end-users and algorithm researchers alike. To rigorously address this issue this paper presents
an analysis based on an extensive set of numerical experiments with an RBF surrogate-assisted evolutionary algorithm. It follows
that the hyperparameter strongly afected performance and that the extent of its impact varied depending on the basis function,
objective function modality, and problem dimension. Overall, calibration of the hyperparameter was typically highly benefcial to
the search performance while dynamically optimizing the hyperparameter during the search yielded additional
performance gains.

1. Introduction

Industrial optimization problems often involve functions
whose evaluation is computationally expensive, for example,
in engineering design optimization candidate products could
be evaluated by a computer simulation (instead of real-world
experiments) to improve the design process efciency. Tis
simulation-driven setup introduces several optimization
challenges: (i) the simulation acts as a “black-box function”,
namely, it assigns an output value to each input vector
(candidate product) through involved numerical procedures
or proprietary codes but there is no analytic expression for
this functional relation thereby necessitating derivative-free
optimization methods, (ii) each simulation run is typically
computationally intensive so only a small number of vectors
can be evaluated, and (iii) such “black-box functions” often
have complicated features (such as multimodality) which
exacerbate the search difculty.

A framework which has shown to be efective in such
problems combines an evolutionary algorithm (EA) with a

surrogate model (also termed in the literature as a “meta-
model”) yielding the surrogate-assisted EA (SAEA). Te
evolutionary algorithm is a heuristic search algorithm which
seeks an optimum by using operators inspired by the process
of evolution and applies them to a population of candidate
solutions, while the surrogate model approximates the true
expensive black-box function and provides estimated
function values at a much lower computational cost when
compared to the true expensive function. A common sur-
rogate variant is the radial basis functions (RBFs) model
which uses a set of functions whose values are linearly
aggregated. RBFs rely on a hyperparameter (HP) which
afects their individual outputs and consequentially the
surrogate prediction and the overall SAEA performance.Te
optimal HP value is typically unknown, and therefore it
needs to be calibrated, which raises the following question:
how signifcant is the impact of the HP on the search and does
the numerical efort spent on such calibration yield signifcant
performance gains?.Te impact of the HP has been examined
in the literature with respect to the stand-alone surrogate
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prediction accuracy but hardly so in the context of the
overall surrogate-assisted search, which is a signifcantly
more involved relation [1]. To address these open questions
this study presents an extensive set of numerical experiments
and analysis which examine how the HP afects the overall
SAEA performance both when a fxed HP is selected a-priori
and when it is dynamically calibrated during the search.
Based on the large volume of results, the analysis clarifes in
which instance does the HP strongly afect the SAEA per-
formance. Te remainder of this paper is organized as
follows: Section 2 surveys the relevant literature, Section 3
explains the methods used, Section 4 presents the numerical
experiments and their analysis, and lastly Section 5 con-
cludes the paper.

2. Literature Survey

SAEAs have shown their efectiveness across a variety of
problems ranging from drug formulation to aircraft design
[2, 3]. Te success of such algorithms stems from the
combination of the EA, which is both derivative-free and
capable of handling functions with complicated features,
with the surrogate which provides approximate function
values efciently. In this setup the EA searches for an op-
timum of the surrogate while the latter is updated during the
search. A basic SAEA is presented in Algorithm 1.

Various SAEA implementations have been explored in
the literature, for example in [4], a multifdelity setup was
proposed where several simulations of diferent accuracy
were combined for design optimization of hydraulic tur-
bines. In [5] the authors used an RBF-based SAEA for
design optimization of a mechanical controller, while in [6]
a multiobjective SAEA based on a Kriging surrogate was
proposed. In [7] the authors used a SAEA to optimize the
layout of a wind turbine farm with the goal of maximizing
energy production while accounting for wind regimes and
turbine wakes. More intricate frameworks include [8]
which combined an EA with machine-learning techniques
to handle vectors in which the simulation fails and [9, 10] in
which ensembles of multiple surrogates were used con-
currently to improve the prediction accuracy. Elaborate
surrogate updating procedures were studied in [11, 12],
while a dynamic in-search selection of the surrogate type
was studied in [9, 13]. Recently in [14] the authors pro-
posed a dual surrogate-assisted algorithm which uses a
global surrogate and a group of local surrogates for ap-
proximation and a dual-population cooperative particle
swarm algorithm to explore the surrogates to better handle
highly multimodal functions. Other studies have proposed
ensembles of surrogates [15] and more recently in [16] the
authors proposed using an ensemble of local surrogates and
selecting the subset that provides the most accurate ap-
proximation. Also related is [17] in which the authors
proposed a surrogate-assisted particle swarm algorithm in
which the sampled points are split into multiple subsets and
a diferent surrogate is trained based on each sample. Te
surrogates are then managed to improve the global and
local search capabilities of the algorithm. Also using
multiple surrogates, in [18] the authors proposed a

surrogate-assisted algorithm which used both a Kriging
surrogate for localized modelling and a global quadratic
model to approximate the overall function trend. Te al-
gorithm also uses two optimization algorithms (“grey wolf”
and a multistart search) to identify good solutions from
each surrogate.

Various studies have also examined the impact of the
HP on the stand-alone surrogate. In [19] a Kriging sur-
rogate was used along with several HP calibration methods
to achieve diferent balances between global and local
prediction accuracies. In [20], the authors proposed esti-
mating the optimal Kriging HP by using a multistart
gradient search on the cross-validation error function,
while in [21], calibrating the HP was found to afect the
accuracy of various surrogates. In [22], the authors found
that the size of the initial sample afected the calibration of
the HP. However, the mentioned studies examined the
impact of the HP only on the prediction accuracy of the
stand-alone surrogate while this study analyzes the impact
on the overall SAEA performance.

3. Methods

3.1.TeRBFSurrogate. Te RBF surrogate used in this study
is a linear combination (superposition) of basis functions
(BFs), namely,
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where σ is the HP which determines the BF shape and
consequentially the overall surrogate prediction m( x

→
). Tis

relation is visualized in Figure 1.
Given its impact, various studies have examined how to

calibrate the HP based on the stand-alone surrogate accu-
racy. In [24], the authors used an empirical fxed value
derived from themean distance between the sampled vectors
but without accounting for the observed function values. In
[25], the HP was calibrated by minimizing the root mean
square error (RMSE) of the RBF prediction by using a
gradient descent. A related leave-one-out cross-validation
procedure was proposed in [26–29] with various
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modifcations explored in [30–33]. In [34] the HP was
calibrated based on a least-squares ft procedure, while in
[35], MARS interpolating polynomials were used. More
recently, [36] proposed using an EA for the HP calibration.
In the numerical experiments performed in this study, both a
fxed and a dynamically optimized HP were used as
explained in Section 4.

3.2. Te SAEA Algorithm. A representative SAEA was
implemented for the numerical experiments. It begins by
sampling an initial random population and training the
RBF surrogate. Te main loop then begins in which a real-
coded EA seeks an optimum of the surrogate. Every g

generations the best q percent of the population members
are evaluated with the true objective function and are added
to the cache of sampled vectors. Te surrogate is retrained
based on the updated cache and the EA population is re-
evaluated with the new surrogate. Following [37] the set-
tings g � 4 and q � 20% were used. Te loop repeats until
either the true (expensive) function evaluations reach 50d

(where d is the function dimension), or 1000 EA genera-
tions have occurred. Algorithm 2 provides the complete
SAEA workfow.

For the real-coded EA a representative variant with a
population size of 20 was used which operates as follows: (i)
vectors are ranked by ftness, (ii) parents are selected by
stochastic universal selection (SUS) and recombined with a

Input: initial sample size, max evaluations, EA parameters;
Generate an initial set of vectors and evaluate with the true function;
Repeat
Train a surrogate model by using the vectors evaluated so far;
Search for an optimum of the surrogate by using an EA;
Evaluate the predicted solution (and possibly additional vectors) with the true function;

until max evaluations;
Output: the best solution found;

ALGORITHM 1: A basic SAEA.
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Figure 1: Te impact of the hyperparameter on (a) univariate and (b) bivariate Gaussian and MQ basis functions.
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uniform crossover operator with a probability of 0.7 to
produce ofspring, and (iii) the latter are mutated with the
breeder genetic algorithm operator with a probability of 0.1.

4. Experiments

4.1. Fixed HP. A frst set of numerical experiments was
performed to analyze if and to what extent diferent fxed HP
values, namely, which are chosen a-priori, afect the overall
SAEA performance. Following the Design-of-Experiments
(DOE) framework [38] the numerical experiments were
formulated by using a single variable, namely the HP, which
was assigned diferent fxed values, and 3 factors (function
type, function dimension, and BF type). Accordingly, in each
combination of factors the numerical experiments were
repeated with the diferent HP values so that the HP impact
could be analyzed across a wide range of problem settings.
Te DOE setup is summarized in Table 1.

Te established set of test functions of [39] was used as it
includes functions with diverse features as shown in
Figure 2.

In each test case (namely, a combination of factors), the
SAEA was ran with four diferent HP settings and with 30
runs per setting to obtain an adequate sample, thereby
yielding a total of 2400 runs (5  functions × 2 dimensions ×

2 BF× 4 HP  settings × 30  repeats).
Tables 2–5 present the resultant statistics (mean,

median, standard deviation, min, and max) of the fnal
function values for each batch of 30 runs across the
diferent HP values and test cases. Also provided is the
p-value of the Mann–Whitney statistical signifcance test.
It was obtained by comparing the results corresponding to
the HP associated with the best mean to the results as-
sociated with the 3 remaining HP settings. Statistical
signifcance was measured at the 0.05 level, namely, for
p≤ 0.05. As such in each of the 20 combinations of factors
(function-dimension-BF), the number of signifcant
performance diferences observed (denoted s) varied
between 0 (no signifcant diferences observed) which
implies that the HP had no signifcant impact to 3 (all
comparisons had signifcant diferences) which implies
that the HP had a strong impact.

Te corresponding results are summarized in Table 6
from which it follows that in 1 combination of factors the

HP had no signifcant impact, in 3 cases it had only a minor
impact, and in the remaining 16 cases it had a signifcant
impact. Te cases showing a lessened HP impact are low-
dimensional and involve the Gaussian basis function.Tese
results are attributed to the relative simplicity of the lower-
dimensional cases which allowed for a good approximation
across a range of HP values. Also, the output of a Gaussian
BF surrogate approaches the sample mean faster than a MQ
surrogate due to the Gaussian BF behaviour and therefore
the RBF output was similar for diferent HP values which
results in fewer performance diferences, as observed. In
contrast, with the MQ basis function and with the high-
dimensional cases the HP consistently had a signifcant
impact. Tis is attributed to the MQ basis function, whose
output varies for a wider range of HP values. Also, in high-
dimensional cases, generating an accurate surrogate is
more challenging hence, diferent HP values resulted in
signifcantly diferent prediction accuracies. Tese aspects
are further addressed in length in the analysis which
follows.

Expanding on the preceding analysis an additional fne-
grained analysis was also performed to highlight how each
factor (BF, modality, dimension) afected performance and
the results are summarized in Table 7. It follows that the per-
factor infuence is as follows:

4.1.1. Basis Function. For a Gaussian BF in 4 cases varying
the HP had a negligible impact while the MQ BF variations
were always signifcant, namely, the sensitivity to the HP was
lower for a Gaussian BF than it was for a MQ one. Tis is
attributed to the mathematical formulation of each BF,
namely, for a Gaussian BF
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the expression decays to 0 rapidly for a wide range of HP
values which results in similar surrogate predictions for
diferent HP values and consequentially a lower HP impact.
In contrast, with a MQ BF,
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Input: initial sample size, max evaluations, EA parameters, g and s parameters;
generate and sample an initial random population;
repeat
train an RBF surrogate based on the evaluated vectors;
run one generation of the EA;
for eachgthgeneration do

evaluate with the best q% vectors with the true function;
retrain the surrogate and re-evaluate the population;

end
until max function evaluations or max EA generations;
output: the best solution found;

ALGORITHM 2: Te implemented RBF-based SAEA.
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the output varies over a wider range of HP values which
in turn afects the surrogate prediction and results in a more
signifcant HP impact. As an example Figure 3(a) shows a
plot of the RMSE of the surrogate prediction when using
Gaussian and MQ BFs with the Ackley-5D function. Te
error quickly rises for the Gaussian BF with HP values since
the individual BFs decay to zero and the surrogate prediction
approaches the sample mean. In contrast, there is a much

higher sensitivity to the HP values with the MQ BFs as
observed in the experiments.

4.1.2. Modality. Te HP impact was signifcant for the low
modality functions (Dixon, Rosenbrock, 2-3 signifcant
diferences per test case) but its impact was diminished for
the high modality functions (Ackley, Griewank, and

Table 1: Design of the numerical experiments.

Type Name Values

Factor
Function Ackley, Griewank, Powell, Rastrigin, Rosenbrock
Dimension 5, 10

BF Gaussian, MQ
Variable Hyperparameter 0.01, 0.1, 1, 10

Ackley Griewank Rastrigin Dixon Rosenbrock

Figure 2: Te test functions used.

Table 2: Statistics 5D, Gaussian.

Function Statistic κ� 0.01 κ� 0.1 κ� 1 κ� 10

Ackley-05

Mean 1.610e + 01 1.794e+ 01 1.811e+ 01 1.726e+ 01
SD 4.476e+ 00 2.037e+ 00 1.810e+ 00 2.225e+ 00

Median 1.770e+ 01 1.848e+ 01 1.872e+ 01 1.780e+ 01
Min 6.060e+ 00 1.199e+ 01 1.276e+ 01 1.231e+ 01
Max 2.033e+ 01 2.008e+ 01 1.996e+ 01 2.009e+ 01

p-value 9.412e− 02 7.791e− 02 4.412e− 01

Dixon-05

Mean 1.958e+ 02  .127e + 01 6.533e+ 03 3.398e+ 03
SD 2.114e+ 02 4.044e+ 01 6.211e+ 03 3.428e+ 03

Median 1.160e+ 02 3.938e+ 01 5.316e+ 03 2.334e+ 03
Min 1.566e+ 00 2.819e+ 00 1.831e+ 02 6.586e+ 00
Max 7.909e+ 02 1.554e+ 02 2.792e+ 04 1.292e+ 04

p-value 5.428e− 04 1.436e− 11 2.201e− 10

Griewank-05

Mean 4.513e+ 01 2.996e + 01 3.317e+ 01 3.225e+ 01
SD 2.180e+ 01 1.440e+ 01 1.911e+ 01 1.855e+ 01

Median 4.488e+ 01 2.803e+ 01 3.068e+ 01 2.675e+ 01
Min 5.703e+ 00 6.611e+ 00 3.571e+ 00 8.263e+ 00
Max 8.845e+ 01 5.749e+ 01 7.990e+ 01 6.709e+ 01

p-value 1.411e− 03 2.722e− 01 4.529e− 01

Rastrigin-05

Mean 4.009e+ 01 3.891e + 01 4.491e+ 01 4.131e+ 01
SD 9.180e+ 00 1.245e+ 01 1.033e+ 01 9.774e+ 00

Median 4.004e+ 01 3.789e+ 01 4.705e+ 01 4.243e+ 01
Min 2.457e+ 01 1.497e+ 01 2.215e+ 01 1.978e+ 01
Max 5.783e+ 01 6.491e+ 01 6.130e+ 01 5.762e+ 01

p-value 4.296e− 01 2.639e− 02 2.254e− 01

Rosenbrock-05

Mean 2.000e+ 01 9.07 e + 00 6.598e+ 01 1.609e+ 02
SD 2.152e+ 01 1.520e+ 01 9.548e+ 01 1.169e+ 02

Median 1.455e+ 01 4.323e+ 00 1.706e+ 01 1.353e+ 02
Min 1.188e+ 00 8.286e− 01 3.115e+ 00 3.038e+ 01
Max 1.023e+ 02 6.534e+ 01 3.413e+ 02 5.017e+ 02

p-value 2.247e− 05 9.656e− 06 2.886e− 11
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Table 3: Statistics 10D, Gaussian.

Function Statistic κ� 0.01 κ� 0.1 κ� 1 κ� 10

Ackley-10

Mean 2.018e+ 01 2.014e+ 01 1.971e + 01 1.977e+ 01
SD 4.794e− 01 3.787e− 01 5.736e− 01 5.120e− 01

Median 2.026e+ 01 2.025e+ 01 1.975e+ 01 1.995e+ 01
Min 1.851e+ 01 1.911e+ 01 1.767e+ 01 1.862e+ 01
Max 2.070e+ 01 2.080e+ 01 2.054e+ 01 2.047e+ 01

p-value 1.229e− 04 3.187e− 04 2.436e− 01

Dixon-10

Mean 3.84 e + 03 1.043e+ 05 1.234e+ 05 6.127e+ 04
SD 5.651e+ 03 5.375e+ 04 5.635e+ 04 3.290e+ 04

Median 2.158e+ 03 9.943e+ 04 1.128e+ 05 5.259e+ 04
Min 4.009e+ 02 2.091e+ 03 4.255e+ 04 6.235e+ 03
Max 2.456e+ 04 2.012e+ 05 2.567e+ 05 1.335e+ 05

p-value 1.027e− 10 1.436e− 11 2.614e− 11

Griewank-10

Mean 1.546e+ 02 1.171e+ 02 1.129e + 02 1.170e+ 02
SD 3.277e+ 01 2.659e+ 01 3.387e+ 01 3.271e+ 01

Median 1.510e+ 02 1.137e+ 02 1.129e+ 02 1.159e+ 02
Min 1.012e+ 02 7.288e+ 01 4.410e+ 01 3.683e+ 01
Max 2.346e+ 02 1.883e+ 02 1.624e+ 02 1.920e+ 02

p-value 2.551e− 05 3.503e− 01 2.973e− 01

Rastrigin-10

Mean 1.0 3e + 02 1.187e+ 02 1.220e+ 02 1.109e+ 02
SD 1.923e+ 01 2.090e+ 01 1.541e+ 01 1.389e+ 01

Median 1.097e+ 02 1.154e+ 02 1.229e+ 02 1.102e+ 02
Min 6.244e+ 01 7.789e+ 01 8.795e+ 01 8.355e+ 01
Max 1.325e+ 02 1.546e+ 02 1.598e+ 02 1.370e+ 02

p-value 2.066e− 02 5.718e− 04 2.166e− 01

Rosenbrock-10

Mean 1.907e+ 02 8.191e + 01 1.215e+ 03 1.092e+ 03
SD 1.141e+ 02 6.346e+ 01 4.582e+ 02 4.177e+ 02

Median 1.513e+ 02 6.880e+ 01 1.234e+ 03 9.760e+ 02
Min 5.047e+ 01 9.250e+ 00 3.200e+ 02 5.115e+ 02
Max 5.253e+ 02 3.307e+ 02 2.156e+ 03 2.018e+ 03

p-value 4.590e− 07 1.588e− 11 1.436e− 11

Table 4: Statistics 5D, multiquadric.

Function Statistic κ� 0.01 κ� 0.1 κ� 1 κ� 10

Ackley-05

Mean 1.489e+ 01 1.083e+ 01 1.032e + 01 1.134e+ 01
SD 3.841e+ 00 4.928e+ 00 2.644e+ 00 2.648e+ 00

Median 1.589e+ 01 9.730e+ 00 1.041e+ 01 1.203e+ 01
Min 5.115e+ 00 3.771e+ 00 5.193e+ 00 5.197e+ 00
Max 1.971e+ 01 1.851e+ 01 1.447e+ 01 1.477e+ 01

p-value 2.829e− 06 4.238e− 01 4.888e− 02

Dixon-05

Mean 1.228e+ 02 4.939e + 00 8.916e+ 01 3.662e+ 02
SD 1.155e+ 02 7.272e+ 00 1.376e+ 02 6.810e+ 02

Median 8.671e+ 01 2.390e+ 00 5.086e+ 01 1.050e+ 02
Min 7.622e+ 00 4.486e− 01 1.659e+ 00 1.686e+ 00
Max 5.362e+ 02 3.944e+ 01 7.063e+ 02 3.443e+ 03

p-value 5.208e− 11 2.883e− 08 5.554e− 08

Griewank-05

Mean 3. 26e + 00 9.077e+ 00 1.900e+ 01 1.316e+ 01
SD 2.545e+ 00 8.885e+ 00 1.387e+ 01 9.310e+ 00

Median 2.610e+ 00 6.687e+ 00 1.620e+ 01 1.282e+ 01
Min 6.409e− 01 2.856e− 01 1.048e+ 00 2.213e+ 00
Max 1.007e+ 01 4.335e+ 01 5.363e+ 01 5.079e+ 01

p-value 6.053e− 05 1.748e− 08 2.654e− 08

Rastrigin-05

Mean 3.636e+ 01 3.500e+ 01 1.314e + 01 1.367e+ 01
SD 1.156e+ 01 1.030e+ 01 8.408e+ 00 8.820e+ 00

Median 3.753e+ 01 3.636e+ 01 1.109e+ 01 1.101e+ 01
Min 1.281e+ 01 8.895e+ 00 2.029e+ 00 2.426e+ 00
Max 5.083e+ 01 5.855e+ 01 3.887e+ 01 3.784e+ 01

p-value 1.528e− 09 5.277e− 09 4.238e− 01
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Rastrigin). Tis is attributed to the fact that as the modality
was increased the surrogate prediction accuracy degraded
due to the more complicated function features up to a point
where the prediction accuracy was negligibly afected by
diferent HP values. To demonstrate this, numerical ex-
periments were performed with a modifed Rastrigin
function

f( x
→

) � 
d

i�1
xi( 

2
− 10 cos kπxi(  , (7)

where k is a prescribed parameter which determines the
function modality (higher values increase modality). Te
surrogate prediction accuracy was examined for a 5D function

Table 5: Statistics 10D, multiquadric.

Function Statistic κ� 0.01 κ� 0.1 κ� 1 κ� 10

Ackley-10

Mean 1.648e+ 01 1.224e + 01 1.470e+ 01 1.480e+ 01
SD 3.290e+ 00 3.485e+ 00 1.406e+ 00 1.286e+ 00

Median 1.751e+ 01 1.268e+ 01 1.464e+ 01 1.487e+ 01
Min 8.904e+ 00 6.471e+ 00 1.158e+ 01 1.213e+ 01
Max 1.993e+ 01 1.722e+ 01 1.766e+ 01 1.691e+ 01

p-value 5.271e− 06 1.014e− 02 5.497e− 03

Dixon-10

Mean 2.079e+ 03 1.294e + 03 1.114e+ 04 2.838e+ 04
SD 2.267e+ 03 1.340e+ 03 6.722e+ 03 2.301e+ 04

Median 1.320e+ 03 9.800e+ 02 9.620e+ 03 2.347e+ 04
Min 1.576e+ 02 2.490e+ 02 1.263e+ 03 6.460e+ 02
Max 1.097e+ 04 6.601e+ 03 2.647e+ 04 9.430e+ 04

p-value 3.450e− 02 1.244e− 10 3.866e− 10

Griewank-10

Mean 1.929e + 01 7.998e+ 01 1.000e+ 02 1.073e+ 02
SD 9.413e+ 00 3.160e+ 01 3.888e+ 01 2.896e+ 01

Median 1.962e+ 01 7.887e+ 01 9.844e+ 01 1.087e+ 02
Min 4.407e+ 00 2.108e+ 01 2.651e+ 01 5.450e+ 01
Max 4.322e+ 01 1.444e+ 02 1.720e+ 02 1.720e+ 02

p-value 1.822e− 10 6.329e− 11 1.436e− 11

Rastrigin-10

Mean 1.026e+ 02 9.370e+ 01 4.610e + 01 5.373e+ 01
SD 1.695e+ 01 1.896e+ 01 2.132e+ 01 1.790e+ 01

Median 1.036e+ 02 9.604e+ 01 4.194e+ 01 5.095e+ 01
Min 5.341e+ 01 4.806e+ 01 1.508e+ 01 2.598e+ 01
Max 1.338e+ 02 1.277e+ 02 8.833e+ 01 1.011e+ 02

p-value 7.685e− 11 2.000e− 09 3.926e− 02

Rosenbrock-10

Mean 1.150e+ 02 4.843e + 01 6.869e+ 01 1.815e+ 02
SD 6.459e+ 01 3.006e+ 01 3.263e+ 01 1.160e+ 02

Median 9.499e+ 01 3.763e+ 01 6.322e+ 01 1.751e+ 02
Min 2.865e+ 01 8.866e+ 00 2.229e+ 01 4.291e+ 01
Max 2.552e+ 02 1.298e+ 02 1.450e+ 02 6.382e+ 02

p-value 1.492e− 06 2.849e− 03 1.528e− 09

Table 6: Test cases grouped by signifcant diferences (s).

s Case Total
0 G-Ack-05 1
1 G-Gri-05, G-Ras-05, G-Gri-10 3
2 G-Ack-10, G-Ras-10, M-Ack-05, M-Ras-05, M-Ros-05 5
3 G-Dix-05, G-Ros-05, G-Dix-10, M-Dix-05, M-Gri-05, M-Ack-10, M-Dix-10, M-Gri-10, M-Ras-10, M-Ros-10 11

Table 4: Continued.

Function Statistic κ� 0.01 κ� 0.1 κ� 1 κ� 10

Rosenbrock-05

Mean 2.763e+ 01 6.443e+ 00 3. 42e + 00 1.604e+ 01
SD 2.164e+ 01 8.784e+ 00 1.333e+ 00 2.136e+ 01

Median 1.593e+ 01 3.464e+ 00 3.613e+ 00 6.037e+ 00
Min 3.526e+ 00 6.503e− 02 7.370e− 01 1.503e− 01
Max 8.159e+ 01 4.343e+ 01 6.196e+ 00 9.069e+ 01

p-value 6.146e− 10 4.122e− 01 1.257e− 05
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Table 7: Signifcant performance diferences by factor.

(a) Signifcant diferences (s) by BF
BF s Test case

Gaussian

0 Ack-05
1 Gri-05, Ras-05, Gri-10
2 Ack-10, Ras-10
3 Dix-05, Ros-05, Dix-10, Ros-10

MQ

0
1
2 Ack-05, Ras-05, Ros-05
3 Dix-05, Gri-05, Ack-10, Dix-10, Gri-10, Ras-10, Ros-10

(b) Signifcant diferences (s) by modality
Modality s Test case

High

0 G-Ack-05
1 G-Gri-05, G-Ras-05, G-Gri-10
2 G-Ack-10, G-Ras-10, M-Ack-05, M-Ras-05
3 M-Gri-05, M-Ack-10, M-Gri-10, M-Ras-10

Low

0
1
2 M-Ros-05
3 G-Dix-05, G-Ros-05, G-Dix-10, G-Ros-10, M-Dix-05, M-Dix-10, M-Ros-10

(c) Signifcant diferences by function dimension (d)
Dimension s Test cases

5

0 G-Ack-05
1 G-Gri-05, G-Ras-05
2 M-Ack-05, M-Ras-05, M-Ros-05
3 G-Dix-05, G-Ros-05, M-Dix-05, M-Gri-05

10

0
1 G-Gri-10
2 G-Ack-10, G-Ras-10
3 G-Dix-10, G-Ros-10, M-Ack-10, M-Dix-10, M-Gri-10, M-Ras-10, M-Ros-10

10-3 10-2 10-1 100 101

0

20

40 G

MQ

HP (σ)

RM
SE

(a)

10-2 10-1 100 101
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SE

(b)
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100
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SE

(c)

Figure 3: Variation of the RMSE by factors. (a) Prediction RMSE by BF (Ackley-5). (b) Prediction RMSE by modality (modifed Rastrigin
function, k). (c) Prediction RMSE by dimension (Rosenbrock, d).
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and results are presented in Figure 3(b). It follows that the
surrogate prediction RMSE increased withmodality for all HP
values as observed in the numerical experiments. Conse-
quentially the impact of the HP was more pronounced for the
lower modality settings and diminished as the modality was
increased, as observed in the numerical experiments.

4.1.3. Dimension. In the lower dimensional cases (d � 5),
the HP had a signifcant impact in 7 cases, while in the higher
dimensional cases (d � 10) in 9 cases. Tese results are
attributed to the “curse of dimensionality,” namely in the
lower dimensional problems a more accurate surrogate
could be trained since the problems are simpler and hence

Table 8: Test cases grouped by signifcant diferences (s) and evaluations limits.

Evaluations s Case Total

50d

0 G-Ack-05 1
1 G-Gri-05, G-Ras-05, G-Gri-10 3
2 G-Ack-10, G-Ras-10, M-Ack-05, M-Ras-05, M-Ros-05 5
3 G-Dix-05, G-Ros-05, G-Dix-10, M-Dix-05, M-Gri-05, M-Ack-10, M-Dix-10, M-Gri-10, M-Ras-10, M-Ros-10 11

100d

0 Ack-05 1
1 G-Gri-05, G-Gri-10, M-Ack-05, M-Ack-10 4
2 G-Ras-10, M-Ras-05, M-Ros-05, M-Ros-10 4

3 G-Dix-05, G-Ras-05, G-Ros-05, G-Ack-10, G-Dix-10, G-Ros-10, M-Dix-05, M-Gri-05, M-Dix-10, M-Gri-10, M-
Ras-10 11

200d

0 0
1 G-Gri-05, G-Gri-10 2
2 G-Ack-05, G-Ras-10, M-Ack-05, M-Ros-05, M-Ack-10 5

3 G-Dix-05, G-Ras-05, G-Ros-05, G-Ack-10, G-Dix-10, G-Ros-10, M-Dix-05, M-Gri-05, M-Ras-05, M-Dix-10, M-
Gri-10, M-Ras-10, M-Ros-10 13

Table 9: Statistics, Gaussian.

Function Statistic 5D 10D
Optimized Best fxed Optimized Best fxed

Ackley

Mean 1.452e+ 01 1.610e+ 01 1.400e+ 01 1.971e+ 01
SD 4.558e+ 00 4.476e+ 00 4.551e+ 00 5.736e− 01

Median 1.497e+ 01 1.770e+ 01 1.435e+ 01 1.975e+ 01
Min 5.417e+ 00 6.060e+ 00 3.632e+ 00 1.767e+ 01
Max 2.049e+ 01 2.033e+ 01 2.046e+ 01 2.054e+ 01

p-value 1.099e− 01 1.693e− 07

Dixon

Mean 1.445e+ 01 5.127e+ 01 1.422e+ 01 3.845e+ 03
SD 4.593e+ 00 4.044e+ 01 4.157e+ 00 5.651e+ 03

Median 1.434e+ 01 3.938e+ 01 1.498e+ 01 2.158e+ 03
Min 7.511e+ 00 2.819e+ 00 6.394e+ 00 4.009e+ 02
Max 2.032e+ 01 1.554e+ 02 2.021e+ 01 2.456e+ 04

p-value 3.950e− 05 1.436e− 11

Griewank

Mean 1.469e+ 01 2.996e+ 01 1.565e+ 01 1.129e+ 02
SD 4.021e+ 00 1.440e+ 01 4.288e+ 00 3.387e+ 01

Median 1.470e+ 01 2.803e+ 01 1.696e+ 01 1.129e+ 02
Min 6.577e+ 00 6.611e+ 00 6.330e+ 00 4.410e+ 01
Max 2.049e+ 01 5.749e+ 01 2.046e+ 01 1.624e+ 02

p-value 2.133e− 06 1.436e− 11

Rastrigin

Mean 1.618e+ 01 3.891e+ 01 1.653e+ 01 1.053e+ 02
SD 3.720e+ 00 1.245e+ 01 4.337e+ 00 1.923e+ 01

Median 1.738e+ 01 3.789e+ 01 1.862e+ 01 1.097e+ 02
Min 8.667e+ 00 1.497e+ 01 6.259e+ 00 6.244e+ 01
Max 2.050e+ 01 6.491e+ 01 2.057e+ 01 1.325e+ 02

p-value 1.165e− 09 1.436e− 11

Rosenbrock

Mean 1.583e+ 01 9.075e+ 00 1.407e+ 01 8.191e+ 01
SD 4.182e+ 00 1.520e+ 01 4.255e+ 00 6.346e+ 01

Median 1.662e+ 01 4.323e+ 00 1.270e+ 01 6.880e+ 01
Min 8.272e+ 00 8.286e− 01 5.874e+ 00 9.250e+ 00
Max 2.044e+ 01 6.534e+ 01 2.040e+ 01 3.307e+ 02

p-value 1.000e+ 00 7.386e− 10

Scientifc Programming 9



the sensitivity to the HP was lower. In contrast, in the higher
dimensional cases training an accurate surrogate was more
challenging and required more precise HP values hence the
higher sensitivity to the HP. To demonstrate this Figure 3(c)
shows the variation of the prediction RMSE for diferent
dimensions with the Rosenbrock function. It follows that for
lower dimensions changing the HP afected the RMSE much
less than for higher dimensions, as observed in the
experiments.

Beyond the above per-factor analysis, an additional
evaluation was performed to examine if and to what extent
the impact of the HP varied depending on the main algo-
rithm parameter of the limit of true (expensive) function
evaluations. Accordingly, beyond the baseline 50 d evalua-
tions limit the full set of numerical experiments was repeated
also for a limit of 100 d and 200 d. Table 8 summarizes the
obtained results for the number of cases in which the HP had
a signifcant impact. It follows that the impact was consistent
across all sets and that the number of cases with a statistically
signifcant performance diference and the test cases in
which they occurred remained largely unchanged across the
three settings. Accordingly, the remainder of the analysis is
presented for the 50 d setting.

Overall, the analysis shows that except for specifc
cases (Gaussian BF/low modality functions/low dimen-
sions), the HP had a signifcant impact on the overall
SAEA performance.

4.2. Dynamically Optimized HP. Te preceding analysis ex-
amined cases where the HP value was unchanged.Tis raises the
following question: would the overall SAEA performance vary if
the HP is dynamically calibrated during the search?. For a rig-
orous evaluation an additional set of experiments was performed
with a modifed algorithm in which the HP was dynamically

calibrated based on a cross-validation procedure with an 80-20
training-testing split ratio.TeHP optimization was achieved by
a golden search algorithm in the interval [10− 4, 1]. Tests were
conducted as in the preceding section and results are presented
in Table 9 and compared to those from the best-performing
variant (mean-wise) from the preceding section. It follows that
optimizing the HP consistently improved performance as evi-
dent both from the mean and p-values where the variant with
the optimized HP had a statistically signifcant performance
advantage at 0.05 level (p-value< 0.05) in 8 out of 10 cases (all
except the Ackley-5D and Rosenbrock-5D functions).

Furthermore, the prediction accuracies of the optimized
and fxed HP variants were compared and the results are
presented in Figure 4. It follows that the optimized HP
variant had signifcantly smaller prediction errors and
consequently achieved better fnal results. Tis trend was
observed across diferent test cases, as shown. Overall, the
analysis shows that dynamically optimizing the HP con-
sistently improved the SAEA performance.

5. Conclusion

Surrogate-assisted evolutionary algorithms (SAEA) are often
used to solve simulation-driven optimization problems and a
common surrogate is the radial basis functions (RBF) model.
Te latter relies on a hyperparameter (HP) which afects both
the individual basis functions and the overall surrogate pre-
diction. Te HP needs to be set by some numerical procedure
and this raises the question how signifcant is its impact on the
overall SAEA performance and not only on the stand-alone
surrogate, namely, is the computational efort spent on the HP
calibration justifed in terms of the overall SAEA performance.
Tis is an important consideration both for end-users and
algorithm researches.
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Figure 4: Prediction error variation for a fxed vs. optimized HP.
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To address this issue, this paper has presented an extensive
set of experiments involving a representative RBF-based
SAEA. Analysis of the large volume of results shows that a
fxed HP typically had a signifcant impact on performance
except for specifc cases (Gaussian basis function/low di-
mension/high modality). Analysis also shows that dynami-
cally optimizing the HP during the search signifcantly
improved performance. Tese results indicate that a careful
a-priori selection of the HP can signifcantly improve the
SAEA efectiveness while additional gains could be achieved
with dynamic HP calibration.

Data Availability

Log fles of the numerical experiments are available from the
corresponding author upon request.
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