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Traditional manual inspection of small objects such as ferrite shield surface defects through naked eyes is labour-intensive and
inefcient, especially existed false and missed inspection. To improve the defect detection rate and efciency, a novel inspection
method based on an improved Faster R-CNN is proposed aiming at weak feature information, small object, and diverse shapes of
the defective target. Tis paper takes cracks, pits, impurities, and dirty defects existing on the surface of the ferrite shield as
examples to verify this method. Firstly, the bidirectional feature fusion network with ResNet-50 is added to the original Faster
R-CNN to obtain feature maps, which contain strong semantic information and rich location information of the defects. Ten, k-
means clustering with genetic algorithm is adopted for generating adaptive anchor boxes to match defects of various shapes in the
region proposal network (RPN) stage. Ten, the region of interest (ROI) Align instead of the ROI Pooling is introduced to
eliminate the candidate frame position bias and improve the defect localization accuracy. Finally, Soft nonmaximum suppression
(NMS) is used to reduce the probability of defective targets. Te mean average precision (mAP) of the applied method for
detecting surface defects of ferrite shields is 81.0% which is higher than the commonly used detectors such as SSD, YOLO, Retina-
Net, and Cascade RCNN. Te study can provide a new detection mean to obtain the detection capability and accuracy of ferrite
shields and lay a solid foundation for automated detection of small objects.

1. Introduction

Ferrite shield, also known as magnetic ceramics, is
commonly used in the feld of radar, communication, and
electronic computers due to its good magnetic perme-
ability. It can shield the external electromagnetic waves
from the internal circuits. Its shielding performance is
greatly afected by the surface quality, so it is necessary to
accurately and efciently detect defects on the surface of
the ferrite shield. Since the current manual detection with
the aid of optical equipment is inefcient and unreliable,
it was gradually replaced by the machine vision solution,
which is faster, more efcient, more practical, and less
costly.

Ferrite shield surface defects mainly contain crazing, pit,
impurity, and dirt, which are characterized by weak feature
information, small object, and diverse shapes. Te current

methods for detecting defects on the surface of industrial
products can mainly be divided into traditional image
processing methods and deep learning methods.

Traditional methods generally separate the defects from
the background by threshold segmentation frst, and the type
of defects is determined by the pattern recognition algo-
rithm. Fan et al. proposed a visual detection method for
defective fasteners based on the region features [1]. Te
region of interest extraction and template matching algo-
rithm is used to detect defects of railroad fasteners in
complex backgrounds. Wang and Zhang proposed a defect
detection algorithm for X-ray images of automotive wheel
castings [2]. Te subtle defects in wheel castings are iden-
tifed by using the pattern recognition technology. Yuan
et al. proposed a rail defect segmentation algorithm based on
the OTSU method [3], using the interclass variance
threshold segmentation method with target variance
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weighting to complete the segmentation detection of small
and medium defect targets in the large background region of
rails. Yang and Dai proposed a local image alignment
method for food packaging printing defect detection [4],
combining wavelet transform and edge detection algorithm
to detect microdefects, such as knife fuse and braces.
However, these methods cannot efectively distinguish the
target defect from the background due to the complex ir-
regular texture of ferrite shielding surface and the low
contrast between the small target defect and the background.
Moreover, the performance of traditional methods is easily
afected by the ambient lighting condition and time-con-
suming, which cannot provide stable and fast detection
performance.

Te detection methods based on deep learning can
simplify the image processing process by automatically
extracting image features. Due to its powerful adaptability
and efciency of visual detection, they have become the main
methods for defect detection in the industry.

Mei et al. proposed a multiscale convolutional denoising
autoencoder network model [5], which uses encoding and
decoding to reconstruct defects, enabling the identifcation
of fabric surface defects with a small number of defect-free
samples. Tao et al. designed a cascaded autoencoder
structure that introduced a semantic segmentation-based
prediction mask and predicted the classifcation of seg-
mentation results by convolution [6]. Yang et al. proposed a
multiscale SSD network image detection algorithm to im-
prove the detection ability of tiny target defects with low-
resolution images [7]. Fadli and Herlistiono used a CNN
model with the Xception architecture to accomplish high
frame rate defect detection for high-resolution steel images
[8]. Wang et al. built a deep CNN network model and
obtained a high detection accuracy [9]. He et al. added a
multilevel feature fusion network (MFN) on the basis of the
CNN model [10] and combined with the region proposals
network to achieve 82.3mAP on the NEU-DET dataset.

As a solution, the Faster R-CNN achieves object de-
tection performance with high accuracy through a two-stage
network with the RPN, which has displayed competitive
performance in defect detection. At present, the Faster
R-CNN has been extensively used in industry detection
felds. Ren et al. proposed a lightweight network based on
Faster R-CNN using separable convolution and adding
central loss to the original loss function to achieve 98.32
mAP on strip surface defect detection [11]. Zhao et al.
proposed a reconstructing Faster R-CNN network with
multiscale fusion for the problem of defect detection in steel
production and the mAP is 0.752 [12]. Hu and Zeng pro-
posed a Faster R-CNN algorithm with the feature pyramid
network (FPN) combined with region proposal by guided
anchoring (GARPN) and the atrous spatial pyramid pool-
ing-balanced-feature pyramid network (ABFPN), respec-
tively, to detect surface tiny defects of the printed circuit
board (PCB) [13, 14]. A symmetric structured feature ex-
traction network was proposed by Xing and Jia, which
achieved 0.784 mAP on a detection dataset of surface defects
on hearth of raw aluminum casting [15]. Gao et al. proposed
a small sample gear face defect detection method based on a

deep convolutional generative adversarial network
(DCGAN) and a lightweight convolutional neural network
(CNN), which is helpful for few-shot object detection [16].
For the one-stage network, SO-YOLO used feature fusion to
improve the performance of small target detection, and
YOLO-C add several attention mechanism modules to
enhance the detection accuracy [17, 18].

Tese deep learning methods can provide a reference for
ferrite shield surface defect detection. However, the main
research objects of the abovementioned methods are regular
textured cloth and smooth steel surfaces, which are char-
acterized by larger size and higher contrast to the target
defects. Moreover, the efect of these methods for the de-
tection of defects in this paper is open to question.

Given the above, an improved Faster R-CNN network is
proposed for the detection of surface quality defects of ferrite
shields. Firstly, ResNet-50 [19], characterized by a deep
network structure, is adopted as the backbone of the object
detector to extract features. Te location information and
semantic information are enhanced by a bidirectional fea-
ture fusion module [20], which can obtain a more reliable
feature representation of the defective target. Secondly, in
the RPN stage, the anchor boxes calculated by k-means
clustering [21] with genetic algorithm [22] are used to obtain
adaptive proposals, which is vital to achieve the prediction of
morphologically diverse defect targets. Tirdly, ROI Align
[23] is used instead of the original ROI Pooling to eliminate
the bias caused by pooling rounding, and it also improves
the accuracy of the system defect detection. Finally, Soft
nonmaximum suppression [24] is adopted to reduce the
confdence level of proposals larger than the threshold value,
thus reducing the missing detection rate.

Te remainder of this article is organized as follows: the
construction and data distribution of the FSSD dataset are
elaborated in Section 2.Te structure of the improved Faster
R-CNN is performed in Section 3 with an in-depth analysis
of adopted strategies. In Section 4, the proposed network is
applied to the ferrite shield surface defect detection task.
Finally, conclusions and an outlook of future works are
presented in Section 5.

2. Experimental Data

2.1. Data Collection. To verify the efectiveness of the pro-
posed algorithm, we constructed a self-built FSSD dataset. A
CCD camera of Hikvision MV-CA050-10GM with MVL-
MY-05-110-MP telocentric lens is used to capture images of
all shield workpiece in the laboratory. A low-angle blue light
source is placed 30mm away from the shield workpiece
vertically with maximum brightness. Te camera is placed
about 110mm away from the object, and the camera ex-
posure time is set to 20ms. Te experimented equipment is
shown in Figure 1.

2.2. Data Preprocessing. As shown in Figure 2, the ferrite
shield occupies about 70% of the overall image due to the
presence of the background. Directly feeding the whole
image into the network for training will increase the
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computational cost, and it may decrease the accuracy of the
network. Terefore, it is necessary to preprocess the image
before feeding them into the network. Te overall contour
image of the shield workpiece surface is extracted based on
OTSU [25] and the mapping transformation algorithm [26].
Ten, the image is cropped to 1200×1200 pixels, as shown in
Figure 2.

One thousand high-quality images were selected from
the cropped image dataset manually. As shown in Figure 3,
there are four types of defects namely crazing, pit, impurity,
and dirt, which are characterized by the following issues:

(1) Te texture of the ferrite surface is complex, the
contrast between the defects and the background is
low, and the feature information of defective targets
is weak

(2) For pit and impurity defects, they are both relatively
small in the image

(3) Defects show diverse shapes, with some being nar-
row and some being large, such as crazing and dirt

Te image annotation tool called LabelImg is used to
label the defective image according to the PascalVOC2007
dataset format. Te number of the four types of defects are
928, 512, 385, and 57, respectively. Te imbalance of data
between categories will cause the model to be overftted in
the training process, which will directly lead to the pre-
diction results being more inclined to crack defects.
Terefore, the dataset is fltered again to exclude images

containing only single crack defects, and the images con-
taining dirty defects are expanded by applying gamma
transform. As shown in Table 1, a total of 1000 image da-
tabases containing various types of defects were acquired.

Te dataset is randomly shufed and divided according
to the ratio of 7 :1 : 2, and 700 training set images, 100
validation set images, and 200 test set images are obtained. In
order to improve the generalization ability of the model, the
image rotation and inversion operations are applied to in-
crease the number of training images. Specifcally, rotating
the original image by 90°, 180°, and 270° and fipping in the
horizontal and vertical directions led to the expansion of the
number of training sets to 4200. Te fnal number and
distribution of the obtained datasets are shown in Table 2.

3. Methodology

Object detection is a technique to identify and localize object
of interest in images, and deep learning-based object de-
tection techniques are applied in various felds [27]. At
present, the object detection methods based on deep
learning are mainly divided into one-stage and two-stage
methods [28]. One-stage detection algorithm can directly
generate the category probability and position coordinate
value of objects, and the representative one-stage target
detection algorithms include SSD [29] and YOLO [30]. Te
two-stage methods divide the detection problem into two
stages. In the frst stage, candidate regions containing

Telecentric lens Ring light

Shields to be
tested

Shields being
tested

Image acquisition
equipmentCCD

Figure 1: Image acquisition process.

Binarized ImagesOrigin Images Processed Images

Figure 2: Image processing. Te binarized image is obtained by using OTSU on the original image. Te yellow dashed box is the outline of
the workpiece and the red dashed box is the cropped useful image.
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approximate target location information are generated, and
in the second stage, candidate regions are classifed and
refned. Te representative two stage object detection al-
gorithms include R-CNN [31], Fast R-CNN [32], and Faster
R-CNN [33].

Faster R-CNN is adopted as the basic network in our
study for its advantages over one-stage methods in accuracy.
We optimize some modules on the Faster R-CNN to solve
the problems of detecting defects with weak feature infor-
mation, small object, and diverse shapes.

3.1. Base Network. Te Faster R-CNN model is a classical
two-stage target detection network, which is now widely
used in the industry. Te model consists of the backbone
network, region proposals network, ROI Pooling network,
and fully connected network. Te backbone network is used
to extract the image feature maps and input the features into
the next stage. Te RPN generates and regresses the de-
tection proposals based on the image size, which flter the
useful proposals with the extracted feature maps. Te ROI
Pool network is applied to ensure the same feature size. Te
fully connected network classifes and performs bounding
box regression on the features extracted from the ROIs
pooling layer network. Te predicted and true values are
acquired to calculate the network loss for reverse gradient
propagation. Finally, the Faster R-CNN model obtains the

classifcation and bounding box results of the predicted
target by calculating the network layers of each part on the
input image.

3.2. Improved Faster R-CNN. In this paper, an improved
method based on the Faster R-CNN is proposed for
detecting surface defects of ferrite shields, which consist of
bidirectional feature fusion network, adaptive anchor boxes,
ROI Align, and Soft nonmaximum suppression. Te im-
proved network model is shown in Figure 4. Firstly, the
ResNet-50 network is used to extract features from the
image, and the bidirectional fusion feature module is in-
troduced to enhance the feature extraction capability. Ten,
the adaptive anchor boxes are adopted in the region pro-
posals network to get the appropriate prediction frame. After
that, ROI Align is used to extract the information in the
feature map of the prediction frame which is captured in the
previous step. Finally, the labels and positions of the target
are predicted and regressed by a fully connected network
incorporated with Soft nonmaximum suppression.

3.2.1. Feature Extraction. Te VGG-16 is adopted as the
backbone to extract image features, and the upsampling is
used to enhance the representation ability and the receptive
feld [34] of the feature map. A larger receptive feld means
that larger targets can be detected, but the detection ability
for smaller targets is therefore reduced. Tus, the traditional
Faster R-CNN model is unable to detect the small defects
efectively, since it loses a large amount of image feature
information by upsampling to enlarge the receptive feld of
the predicted feature layer.

Terefore, we adopt ResNet-50 as the backbone network
to extract image feature maps, which is able to obtain richer
information from complex backgrounds and accelerate
model training while maintaining detection speed. Besides,
in order to improve the detection accuracy of the small
target, we introduce a bidirectional feature fusion network
into the Faster R-CNN. Te specifc structure of the bidi-
rectional feature fusion network is as follows: the top-down

Table 1: Te number of defects of the FSSD dataset.

Defects Crazing Pit Impurity Dirt
Original 928 512 385 85
Processed 561 552 438 378

Table 2: Te amount and distribution of the FSSD dataset.

Datasets Training
sets

Validation
sets

Test
sets Total number

Original 700 100 200 1000
Processed 4200 100 200 4500

(a) (b) (c) (d)

Figure 3: Examples of diferent defect types in the FFSD dataset: (a) crazing; (b) pit; (c) impurity; (d) dirt.
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feature pyramid is used to down-sample the higher level
feature layer and fuse it with the lower level feature layer.
Ten, the top-down feature pyramid is used to up-sample
the new lower level feature layer and fuse it with the new
higher level feature mapping.

Te high-level feature layer has larger receptive feld and
stronger semantic information, so the top-down feature
pyramid is added to get the feature map with stronger se-
mantic information, so as to improve the detection ability of
the model for large targets. However, much low-level de-
tailed information is lost after multiple upsampling and
convolution operations. It contains a large number of feature
information of small target defects, as well as positioning
information that can improve the positioning accuracy. As
shown in Figure 5, the low-level detailed features and po-
sitioning information is passed to high-feature layers by
adding a bottom-up feature pyramid, which can retain se-
mantic information at the same time. For ferrite shield
surface defects, the adopted bidirectional feature fusion
network is able to retain the localization information of
defective faws without losing their semantic information.
Te network is also improved to detect large crazing defect
targets with high semantic information and small impurity
defect targets with high localization information.

3.2.2. Region Proposal Network. Te RPN stage is conducted
by three steps. Firstly, a sliding window convolution op-
eration is processed on the feature map extracted by the
bidirectional feature fusion network, resulting in a feature
map of 256 channels. Secondly, the predicted anchor boxes
of diferent size and aspect ratio are generated within each
anchor point. Te anchor point refers to the rectangular
center point of the original image, corresponding to each
pixel in the feature map. Finally, the category of the pre-
dicted anchor box is calculated by predicting the obtained
feature map. Te bounding box of the defective target is
obtained by boundary regression.

Te conventional Faster R-CNN generates nine pre-
diction anchor boxes of diferent sizes with aspect ratios of 2 :
1, 1 :1, and 1 : 2 at the anchor points in the RPN stage, and
then performs class determination and boundary regression

on the prediction anchor boxes. However, for ferrite shield
surface defects of various shapes, the conventional aspect
ratio prediction anchor boxes do not ft well for narrow
crazing and small pit and impurity targets. Tus, we propose
an adaptive method for generating anchor boxes which are
shown in Figure 6.

As shown in Figure 6, the proposed adaptive method for
generating anchor boxes consists of three steps. Firstly, the
aspect data of targets in the dataset are extracted. Secondly,
twelve true target boxes are randomly selected as cluster
centers, and the intersection over union (IOU) between target
boxes is considered when clustering twelve anchor boxes of
diferent sizes. Finally, the obtained anchor frames are op-
timized with genetic algorithms. Terefore, in the RPN stage
of the network in this paper, adaptive anchor boxes are
generated to improve the ability of detecting narrow and fne
defect targets on the surface of the ferrite shield.

3.2.3. ROI Align. ROI Pool is the basic segment to extract
the features of candidate frames from the feature map.
Firstly, the candidate frame boundaries are quantifed into
integer coordinates. Ten, the quantifed bounding frames
are divided equally into an integer number of cells. After
that, the boundaries of each cell are quantifed, and fnally
the features in each cell are integrated and predicted. Tese
two quantization processes in the ROI Pool would cause
some displacement bias in the initially obtained candidate
frames, thus afecting the detection results of the candidate
frame. In order to eliminate the infuence caused by this
quantization step and improve the detection accuracy of
shield surface defects, the ROI Pool in the Faster RCNN
model is replaced with ROI Align.

ROI Align is a region feature aggregation method pro-
posed by Kaiming He in Mask RCNN, as shown in Figure 7.
Te pixel value of the foating-point coordinate is obtained
frst by the bilinear interpolationmethod, followed by themax
pooling or average pooling operation.Tis method eliminates
the quantization operation, which causes numerical bias and
converts the entire feature aggregation process into a con-
tinuous operation, thus reducing the displacement bias in the
extraction of candidate frame features.

Input Images Feature Map

Adaptive Anchors Proposals

Feature Extraction

Region Proposals Network

ROI Align

ClassificationSoft NMS

Bounding Box
Regression

Figure 4: Overall network structure diagram.
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In this paper, the candidate frames and features obtained
in the RPN are input into the ROI Align layer to obtain a
7× 7 feature layer, and the features are input into the
subsequent classifcation and regression network.

3.2.4. Soft NMS. After generating the fnal prediction feature
layer obtained by the ROI Align layer, the classifcation
results with boundary parameters are generated by the
following fully connected network.

For object detection method, the nonmaximum sup-
pression operation is usually used as the postprocessing

method to eliminate overlapping detection frames and
reduce the false detection rate. Te common approach is to
sort the detected boxes by score, keep the boxes with the
highest score, and then remove the other boxes with an
overlap greater than the given threshold. However, this
method may delete the overlapping target boxes by mis-
take, which actually exists. Terefore, the Soft non-
maximum suppression is applied to flter target frames,
which can reduce the score of the overlapped detection
frames. It also can improve the prediction accuracy of
overlapping targets. Te IOU of the detection frame A and
B is defned as follows:

Crazing:

Pit:

Impurity:

Dirt:

…

…

…

…

(b)(a)

K-means and Genetic Algorithm

Figure 6: Te fowchart of adaptive anchor boxes. (a) Te anchor boxes adopted in the traditional Faster R-CNN. (b) Te anchor boxes
generated by k-means and genetic algorithm.

Input Image

Layer1

N4

N3

N2

N1

Layer2

Layer3

Layer4
Feat. 4

Feat. 3

Feat. 2

Feat. 1

Feature Map

Figure 5:Te structure of the bidirectional feature fusion network.Te blue blocks (layers 1, 2, 3, and 4) are the feature layers extracted from
ResNet-50. Te yellow blocks (N1, 2, 3, and 4) are the new feature layers obtained from the top-down feature pyramid. Te green blocks
(feat.1, 2, 3, and 4) are the feature layers obtained from the bidirectional feature fusion network.
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IOU �
A∩B

A∪B
�

SU

SA + SB − SU
, (1)

where SA and SB are the areas of the detection frame A and B,
respectively, and SU is the overlapping area of the detection
frames A and B.

Te form of the traditional NMS and Soft NMS algo-
rithms are as follows:

Si �
Si, IOU M, bi( 􏼁<Nt,

0, IOU M, bi( 􏼁≥Nt,
􏼨 (2)

Si �
Si, IOU M, bi( 􏼁<Nt,

Sie
− IOU M,bi( )

2/σ
, IOU M, bi( 􏼁≥Nt,

⎧⎨

⎩ (3)

where formula (2) is the traditional NMS, formula (3) is Soft
NMS. Si is the score of the detection box i, M is the
maximum score frame, bi is the detection boxes other than
themaximum score box, and Nt is the threshold set.Te Soft
nonmaximum suppression attenuates the score of detection
frames whose IOU is greater than the given threshold, in-
stead of setting the score to 0. Tis method can reduce false
and missed detections of overlapping targets.

4. Experimental and Result Analysis

4.1. Training Platform and Parameter Settings. Te methods
in this article are implemented in the Pytorch framework in
Windows 10. Te computer is equipped with Intel(R)
Core(TM) i9-10920X CPU and NVIDIA Ge-Force RTX
2080Ti GPU.

Te self-built ferrite shield surface defects (FSSD) dataset is
construed for training the proposed model. Te random gra-
dient descent (SGD) training model is selected. Te initial
learning rate is set to 0.01, the momentum is set to 0.9, and the
weight is attenuated to 0.0005.Tewarm-up strategy is adopted
to change the learning rate with the training process, that is,

from the initial value of 0.000058 to 0.01.We decay the learning
rate with a cosine annealing as a way to increase the speed of
model convergence, as shown in Figure 8. All layers are ran-
domly initialized with Kaiming normal distribution. Due to the
limitation of the GPU memory, the batch-size of the model
training in this paper is set to 8 and the epoch of the training is
set to 50. Te models for each epoch are saved and the model
with the best accuracy is selected as our fnal model.

Te expressions of a cosine annealing method are as
follows:

ηt � ηmin +
1
2

ηmax − ηmin( 􏼁 1 + cos
Tcur

Tmax
π􏼠 􏼡􏼠 􏼡, (4)

where ηt is the learning rate of the t epoch, ηmin is the
minimum learning rate, ηmax is the maximum learning rate,
Tcur is the current epoch, and Tmax is the total epoch.

4.2. Evaluation Metrics. In this paper, the mean average
precision (mAP), which is the average accuracy of the model
to detect each type of defects, is used as an evaluationmetrics
for the overall quality of the model training. A higher mAP
represents a better overall ability of the model to detect
defects. It is calculated as follows:

P �
TP

TP + FP
,

R �
TP

TP + FN
,

AP � 􏽚
1

0
P dR,

mAP �
1

nj 􏽐
nj

j�1 APj

,

(5)

where TP denotes the true positives, FP the false posi-
tives, FN the false negatives, P the accuracy rate, and R the

Feature Map

Feature Afer 
ROI Align

Max or Average Pooling

Bilinear Interpolation

Region of Interest

Figure 7: Te fowchart of adaptive anchor. Te values of the black points in the orange ROI are obtained by bilinear interpolation
represented by the red arrows, and the purple feature map is obtained using the max or average pooling represented by the purple dashed
line.
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recall rate. After calculating the precision and recall for a
class in the whole self-built dataset, we consider the
average precision (AP) as the area under the pre-
cision × recall curve.

4.3. Analysis of Experimental Results. A visual assessment of
the predictions for images in the test set was performed for
the proposed method (Figure 9). In these fgures, most of the
four types of defects have been identifed and positioned
correctly due to the proposed tricks. Te proposed method
can not only detect large defects, but also can detect small
defects. For example, both the small crazing in image 2 and
the large crazing in image 4 are classifed accurately. Te
impurity defects with relative small size are detected cor-
rectly in image 1, 5, 6, and 11. On the other hand, the
proposed method can also handle the problem of various
shapes. Te crazing defects displayed in Figure 9 showing
diferent shapes, and most of them are identifed correctly.
Tese efective detection benefts from the proposed bidi-
rectional feature fusion and improved RPN, which can
provide rich image feature and adaptive anchor boxes for
small and varying shapes of defects. However, there was
some confusion between pit and impurity at the time of
classifcation, probably due to the proximity of their shapes
in the image.

Te performance achieved by the proposed model for
four types of defects is presented in Table 3, from which we
can see that the model has good detection performance for
various types of defects on the surface. Te mAP for the test
set is up to 81% which is basically equal to the performance
of the manual detection. Specifcally, the AP value of the pit
defect is the highest and reaches 0.926 among the four types
of defects, probably due to the greater contrast between the
defect and the background. Te AP of dirt is the lowest,
which is 0.674. We analysed that due to the small number of
real samples of dirt defects in the dataset, the gamma and
rotation transform do not greatly improve the ftness of the
model to this defect.

4.4. Ablation Experiments. We performed ablation experi-
ments to demonstrate the usefulness of each module in the
proposed model. Tis model was compared with diferent
improved models on the test set of the FSSD dataset to
validate its efectiveness. Te specifc six improved models
are as follows:

(1) Model 1 is the original Faster R-CNN model
(2) Model 2 uses ResNet-50 as the feature extraction

network of Faster R-CNN model

(3) Model 3 introduces a bidirectional feature fusion
network on model 2

(4) Model 4 adds adaptive anchor boxes in the RPN
stage on the basis of model 3

(5) Model 5 replaces ROI Pool with ROI Align on the
basis of model 4

(6) Model 6 adopts Soft nonmaximum suppression
instead of nonmaximum suppression on the basis of
model 5

Te test results of the six experimental models are shown
in Figure 10.Te experimental results show that model 1 can
only detect individual obvious defects, resulting in a large
number of missed detections. Model 2 also has missed
detections and does not identify crazing defects well. Model
3 can detect most of the defects, but there are false detections
and missing detections, and the defect location is inaccurate.
Model 4, 5, and 6 can almost detect all the defects and these
three models have better detection accuracy for small and
slender defects due to the adaptive anchor module. Model 5
has added ROI Align to obtain more accurate location in-
formation. Model 6 uses Soft NMS instead of NMS, so that
the target score of nonmaximum fraction defects is less
suppressed and the detection of overlapping defects is more
accurate.

Te specifc results of the experiments are shown in
Table 4. We can fnd that the mAP of model 1, which is the
original Faster R-CNN model, is 67.1%. After replacing the
original feature extraction network with ResNet-50, the
detection accuracy for both pit and impurity of model 2 are
improved signifcantly. Te mean average accuracy of model
3 is 9.5% higher than that of model 1, in which the accuracy
of detection for each type of defect has been improved.
Model 4 adds adaptive anchor boxes, which is more
adaptable to the shape of various categories of defects. Al-
though the accuracy of detection for crazing defects is re-
duced, the accuracy of detection for pit and impurity has
improved by about 1%. Model 5 uses ROI Align to replace
the ROI Pool in the original network, which ft the location
of defects more accurately and enhance the detection ac-
curacy for pit and dirt. While the accuracy for impurity is
lower than model 2 due to the lack of feature fusion, the

5 10 15 20 25 30 35 40 45 500

epoch

0.000

0.002

0.004

0.006

0.008

0.010

learning rate

Figure 8: Learning rate graph.

8 Scientifc Programming



proposed model 6 is better than other models in detecting
crazing, pit, and dirt. In addition, the average accuracy of all
the defects is improved and the mean average accuracy has
increased by 13.9% compared with the original Faster
R-CNN model.

As shown in Figure 10 and Table 4, it can be seen that the
original Faster R-CNN model is not efective for the de-
tection of shield defects. In this paper, after introducing
ResNet-50, bidirectional feature fusion, the model has en-
hanced the extraction ability of fne targets, such as pit and
impurity, on weak information features. Ten, the addition
of adaptive anchor boxes and ROI Align is helpful for the
ftting accuracy of defects with diverse shapes. Finally, Soft
NMS improves the ability of the model to defect overlapping
targets. Terefore, the model proposed in this paper has
excellent detection performance for ferrite shield surface
defects.

4.5. Algorithm Comparison. Te proposed model in this
paper is compared with other mainstream model to further
verify the advantages of our model for ferrite shield surface

defect detection. Table 5 shows the detection performance
and the mAP of diferent model for crazing, pit, impurity,
and dirt defects. Te results show that the proposed model
has a great improvement in the detection accuracy of
crazing, pit, and impurity compared with other mainstream
algorithms. Te overall mAP is 15.3%, 12.9%, 11.0%, 8.2%,
and 0.3% higher than that of SSD, YOLOv3, Retina-Net [35],
Cascade R-CNN [36], and YOLOv5, respectively. Since the
multistage detector reduces the efect of quality mismatch in
the augmented data, our model is about 4% less accurate
than Cascade R-CNN for the detection of dirt. For YOLOv5,
because of the mosaic image enhancement, its ability to
detect dirt defects with fewer samples is better than the
present model. Although the mAP of YOLOv5 is similar to
the proposed model, and the detection speed is faster than
the proposed model, we found that it has many missed
detections for large crazing and small target defects (pit and
impurity). Te reason is that the YOLOv5 model has fewer
parameters and a shorter network depth than the proposed
model, so it is slightly less powerful than our model in
detecting crazing with less feature information and small
targets of pit and impurity. Te recall of the proposed model

Table 3: Te experimental data of the algorithm on all defects.

Defects Crazing Pit Impurity Dirt
AP 0.853 0.926 0.790 0.674
mAP 0.810

Figure 9: Te detection results of the proposed model.
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Model 6

Model 1

Model 2

Model 3

Model 4

Model 5

Figure 10: Te detection results of diferent models.

Table 4: Te data results comparison of the six models.

Models Crazing Pit Impurity Dirt mAP mAP increasing
1 0.771 0.694 0.637 0.579 0.671 —
2 0.731 0.858 0. 54 0.489 0.734 0.063
3 0.845 0.896 0.770 0.551 0.766 0.095
4 0.820 0.900 0.780 0.592 0.773 0.102
5 0.791 0.924 0.809 0.643 0.792 0.121
6 0. 53 0.926 0.790 0.674 0. 10 0.139
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is much higher than YOLOv5, and it is a better choice for
industrial detection with our proposed more stable model.

5. Conclusions

An efective detection method for the surface defects of
ferrite shields is proposed, which is based on the improved
Faster RCNN. Firstly, ResNet-50 is adopted as the backbone
to extract rich surface image feature, followed by the bidi-
rectional feature fusion network layer to obtain the accurate
location information and rich semantic features at the same
time. Ten, the RPN improved by k-means clustering and
genetic algorithm is demonstrated to select anchor boxes for
defects with various sizes and shapes adaptively. Moreover,
ROI Align is applied to eliminate the candidate frame po-
sition bias and improve the defect localization accuracy. Soft
NMS is used to increase the ability of the model to detect
overlapping targets. Te experimental results show that the
average accuracy of the proposed method for crazing, pit,
impurity, and dirt is 85.3%, 92.6%, 79.0%, and 67.4%, re-
spectively. Importantly, the mean average precision is 81.0%
which is better than SSD, YOLO, Retina-Net, and Cascade
RCNN. In conclusion, an efective method to solve the
problem of small and various defects detection is presented,
which can provide an alternative for automatic ferrite shield
detection. But, there is still a certain gap in the detection
speed between the proposed method and the one-stage
model. Te mAP needs to be further increased to improve
the practicability of the algorithm. In the future, we aim to
accelerate the real-time performance of the model by model
pruning or knowledge distillation, and construed newmodel
to increase the mAP.
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