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Powered by the development of the �fth-generationmobile communication technology (5G), the Internet of things (IoT) has been
widely applied in people’s life. Due to the limitation of storage and computing power, the data transmission of IoT devices faces
challenges in terms of security and privacy. �erefore, many researchers provide the conjunction of blockchain and mobile edge
computing (MEC) to make up for the lack of computing and security. MEC can meet the storage and computing requirements for
IoT devices. Blockchain can provide a decentralized, antitamper solution that can help devices overcome security de�ciencies,
whereas the speed of blockchain communication is not fast enough because of the consensus mechanism. In this article, we focus
on the permissioned blockchain and propose an optimized bandwidth allocation algorithm to promote the performance of
consensus communication. �e algorithm contains an In-Network control ideology and supports deployment on MEC servers.
Deep reinforcement learning (DRL) is employed to perform the computation of available bandwidth in our scheme. We im-
plement a prototype system in the testbed and perform a simulation, and the results show the advantages compared with the
current widely used algorithm. By applying our method, the Internet of things devices can transmit data safely and e�ciently.

1. Introduction

With the increasing popularity of the 5G, the IoT has been
widely applied in people’s life. 5G network provides infra-
structure for the application of IoT, such as smart city [1],
Internet to Vehicle (IoV) [2], and health monitoring [3].
However, the data generated by the Internet of things de-
vices has security and privacy challenges. �e devices only
have limited storage and computing capability, which makes
it di�cult to ensure the safety of the data transmission.

To meet these challenges, a fusion paradigm of block-
chain and MEC is proposed to strengthen the transmission
of IoT [4, 5]. Blockchain can improve the security for IoT
devices, and MEC o�ers the computing and storage re-
sources for blockchain network. MEC is a distributed system
deployed at the edge of network to process the o¡oading
tasks from the mobile devices. Applying MEC can bring

many bene�ts, including decreased transmission delay [6],
provided more computing power [7], improved user ex-
perience [8], and reduced the energy cost [9]. Because of
sinking the computing and storage resources close to the end
devices, it is possible to improve the security of IoT data
transmission by using blockchain.

Blockchain as a distributed network with decentralized
ledger is widely used in many scenarios such as �nance,
e-business, and IoT. Every node on the blockchain reaches a
consensus for every transaction, and each block is dependent
on the previous one in a cryptographic hash way. All blocks
are linked by hash timestamp like a chain. Attributed to
these structures and organizations, blockchain could prevent
data from being tampered with [10] and provide transac-
tions with a traceable path [11].

Although blockchain brings many bene�ts to applica-
tions, it consumes huge resources to ensure data consistency.

Hindawi
Scientific Programming
Volume 2022, Article ID 6129150, 14 pages
https://doi.org/10.1155/2022/6129150

mailto:mashengcheng@163.com
https://orcid.org/0000-0003-1060-1208
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6129150


All peers need to synchronize the information when a new
block is generated. (is will lead to communications be-
tween all nodes on the blockchain. In particular the classic
Byzantine Fault Tolerance (BFT) consensus algorithm used
by the permissioned blockchain causes too many commu-
nications among the peers [12]. When the number of peers
on the blockchain is N, the communication boundary of this
algorithm will be O(N2) [13]. (erefore, the performance of
consensus in the blockchain is an urgent problem to solve.

To improve the performance of blockchain, many
platforms attempt to optimize the process of the transaction.
Some platforms add a database layer above the blockchain to
speed up the operation of transactions [14]. And some re-
searchers try to simplify the consensus mechanism to reduce
the calculated workload [15]. However, these methods
sacrifice parts of consistency to improve performance.

In this paper, we focus on the permissioned blockchain
which employs BFT based consensus mechanism and
propose an optimized bandwidth allocation strategy to
improve the performance. (e permissioned blockchain
usually does not use Proof of Work (PoW) [16] or Proof of
Stake (PoS) [17] as the consensus protocol. (erefore, the
transaction process in this kind of blockchain depends more
on the network.(e performance of the network can directly
affect the performance of the blockchain. (en it affects the
data transmission of IoT network. In addition, the per-
missioned blockchain can be customized, so the deployment
of the permissioned blockchain is easier than public
blockchain on MEC servers. Hence, we consider the per-
missioned blockchain as the target scenarios and optimize
the network to improve the performance of BFT consensus
communication.

Our main contributions of this paper can be summarized
as follows:

(i) First, we design blockchain platform in the MEC
servers which can strengthen the IoT communica-
tion. And we analyze some current bandwidth
congestion control algorithms and provide an
available bandwidth notification (ABN) algorithm.
(e ABN algorithm combines the advantages of
Bottleneck Bandwidth and Round-trip propagation
time (BBR) and explicit congestion notification
(ECN).

(ii) Second, according to the different deployment
methods, we consider the application scenarios of
private network and public network, respectively,
and use the deep reinforcement learning method to
solve the bandwidth allocation method in the public
network with the competition.

(iii) (ird, our prototype has run in the testbed and the
results show the improvement compared with
current widely used techniques.

(e rest of this paper is organized as follows: Section 2
summarizes related work of blockchain optimizations. Next,
we present a blockchain-enabled IoT network model to
optimize the performance of consensus communication in
Section 3. In particular, we illustrate the architecture and

implementation of our new method in this section.(en, we
provide the solution of bandwidth allocation for different
scenarios in Section 4. In Section 5, we introduce the ex-
perimental environment and analyze the result to prove the
improvement of performance. Finally, we conclude this
paper in Section 6.

2. Related Work

2.1.CostofBlockchain. (ediscussion concerning the cost of
blockchain has always been a hot topic. Catalini and Gans
consider the verification cost and network cost by block-
chain technology from an economics perspective [18].
Sukhwani et al. use Stochastic Reward Nets (SRN) to sim-
ulate the PBFT consensus process [19] and investigate why
the process could be a performance bottleneck in the net-
work with a large number of peers. In their SRN model,
conclusion is that the transmission delays can impact the
average time to consensus. Marko from IBM discusses PoW
and BFT blockchains focusing on overcoming and scalability
[20]. In his conclusion, the performance of PoW-based
blockchain depends on the computational power and scale
of nodes.

In addition, scalability is a weakness in this kind of
blockchain. A review on the cost of IoTapplication based on
blockchain is presented in [4], which concludes that the
reduction in overhead is carried out by removing the PoW
consensus mechanism and choosing the right cryptographic
scheme.

Sekaran et al. research the integration of blockchain and
IoT technologies [21]. By addressing the shortcomings and
limitations of IoT, they summarized the state of the art of
high-level solutions. Li et al. propose a blockchain-based
data security scheme for IoTnetworks in 6G [22]. (e fusion
technology of AI and blockchain is developed to evaluate
and optimize the quality of service in IoT networks.

2.2. Attempts to Promote the Performance of Blockchain.
Many researchers and companies have made efforts to
improve performance and reduce costs in the blockchain.
Some researchers analyze the relationship between perfor-
mance and storage structure, and they change the size of
block or database to optimize the blockchain performance
[23, 24]. Sharding is an interesting technology that can
promote the parallel processing capability of the blockchain.
Choosing an optimal shard size or employing a suitable
sharding protocol can maximize performance and improve
scalability [25, 26].

2.3. Optimization from the Perspective of Network. With
respect to performance optimization for blockchain, the
consensus algorithm evolves many branches. As an infra-
structure, the increased network throughput will benefit all
types of blockchain. Many researchers applied Artificial
Intelligence (AI) to optimize the performance for IoT net-
work. Huang et al. [27] studied the federated learning with
the Matrix Factorization method and optimized the rec-
ommendation system for IoT network. Chen et al. [5] dealt
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with task offload problem and used DRL method in MEC to
improve the performance of IoT. (e authors of [28] im-
proved the performance of blockchain by enabling dis-
tributed NFV-MANO framework. Huang et al. proposed the
joint admission control and computation resource allocation
in the MEC server [29]. (eir method reached the balance
tradeoff between the utility and the queue length in small cell
network. Huang’s team proposed a BoR (Blockchain over
RDMA) framework that can reduce the consuming time
when a new node joins the blockchain network [30].
However, these methods need to add some hardware to
ensure network achievement. (is will lead to a sharp rise in
network deployment costs. Jointly considering the cost and
compatibility, we plan to optimize the congestion control of
TCP in network to enhance the performance.

3. System Model

To illustrate our system, we first describe the network ap-
plication scenarios. We classify the network flows according
to the requirements in the scenarios. (en we build a model
to represent the system operation mechanism and provide
an optimal goal for blockchain consensus communication.
Finally, we use the deep reinforcement learning method to
optimize the bandwidth for blockchain business and in-
troduce how feedback mechanism can avoid congestion.

3.1. Network Application Scenarios. We consider a block-
chain-enabled IoTnetwork, which consists of three layers, the
IoT layer, the blockchain and MEC layer, and the cloud/data
center layer. As shown in Figure 1, permissioned blockchain
platform is deployed on the MEC servers, because MEC
servers provide sufficient storage and computing capacities. A
typical communication in this scenario is that the IoTdevices
transmit data to cloud server or data center via MEC servers.
MEC servers deal with a large amount of offloading task from
IoT devices. To enhance the security of data from IoT,
blockchain collects the data as transactions from MEC
servers. All blockchain nodes communicate with each other
and participate in consensus. After the consensus is achieved,
the transaction will be uploaded to blockchain as a new block.
(en, the IoT data is protected against tampering.

To simplify the problem, we define three types of net-
work elements according to network behavior in our system.
Sender. (e network node that sends data is defined as the
sender. It is similar to a mobile phone in an IoT network.
Receiver. (e network node receiving data becomes the
receiver, such as data center or cloud service.Middlebox. (e
network node that forwards data and has a buffer capacity is
called middleboxes. It resembles the MEC servers in this
scenario. (is scenario can be shown as Figure 2.

(e sender and the receiver can be converted to each
other according to the data transmission direction. In
Figure 2, senders sends data to receiver through middlebox
and maybe many other middleboxes. (is scenario can
represent all network transmission forms.

In this scenario, the efficiency of data transmission is
subject to these three types of nodes.(e sender’s congestion
control strategy affects the sending speed. (e middlebox’s
forwarding speed and buffer length determine whether it will
become a bottleneck in the path. (e receiver’s feedback
information ACK controls the sender’s available windows,
and it also decides whether retransmission is needed.
Moreover, different types of data flows will also influence the
utilization of transmission.

3.2. Network Flow Categories. According to the character-
istics of connection, we classify network flows into three
categories. (e first type is fat flow; it usually is used for a
large amount of data transmission with high bandwidth, for
example, video streaming, large file download, and so on.
(e second type is slim flow; it is used for applications that
send fewer data and close quickly. (e most typical instance
is web browsing and blockchain consensus communication.
(e third type is control flow; it is the ACK from receiver to
sender. (ese three types of flows share the bandwidth of the
network.

Each direction in middlebox has a specific bandwidth.
(emiddlebox locates in a critical position whenmany flows
go through it. It can be a bottleneck if the data inflow is
greater than its processing capacity. Normally, the forward
performance of the middlebox limits the receiving ability. If
a great number of flows coming from senders fill the buffer
of the middlebox, the effective bandwidth of the middlebox
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Figure 1: Blockchain-enabled IoT networks.
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will be exhausted. �en, congestion will form and delay will
increase.

In order to avoid congestion, we propose a new method
called available bandwidth noti�cation.

3.3. Available Bandwidth Noti�cation. Our available band-
width noti�cation is di�erent from the existing methods.
�e traditional network is the end-to-end model. �e
senders do not understand the situation in the network.
BBR’s estimates of the �xed bandwidth and min RTT to
operate congestion are like a guess [31]. Even the ECN
method only tells the sender that congestion happens [32].
�e sender does not know what speed is suitable, so it
decreases the congestion window to the lowest value. �e
Software De�ned Network (SDN) can organize the network
topology and learn about the status of the network, but it
needs a controller device and the standards of various
manufacturers have not yet been uni�ed. �e SDN has not
been widely used in many realistic production environ-
ments. Our method is designed to deploy in the traditional
network for wider applicability; furthermore, it breaks
through the end-to-end mode.

In our ABN method, we let middleboxes participate in
congestion control. Middlebox can sense the real condition

of the network in the self-system. All types of §ows go
through the middlebox, and the bandwidth utilization and
queueing status can be read by the system of the middlebox.
�en, the middlebox can calculate the most appropriate
bandwidth value according to this information. With the
help of the control §ow returned from the receiver, the
bandwidth value is put into control §ow by the middlebox
and delivered to the sender. When the sender receives the
control §ow, it will adjust the send window and sequence
number by ACK information. Besides, it will set its pacing
rate according to the value noti�ed by the middlebox. In this
way, the sender can adjust the sending speed in time con-
forming with the frequency of ACK return. �e whole
process of our available bandwidth noti�cation method is
shown in Figure 3. �e details of operation steps are as
follows.

(i) Step 1. �e sender enables the pacing rate system
setting.�at means the sender will transmit data at a
smooth setting speed without burst.

(ii) Step 2. �e sender reads the pacing rate and
transmits data. �e pacing rate will be set to the
initial value.

(iii) Step 3. �e middlebox senses the data §ow from the
sender and forwards the data §ow to the receiver. At
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Figure 2: �ree types of network elements.
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the same time, the middlebox registers the flow
information for available bandwidth calculation.

(iv) Step 4. (e receiver accepts the data flow and
returns the ACK information by the control flow.

(v) Step 5. (e middlebox searches the registration
information according to the five-tuple of the
control flow and finds out which one is the cor-
responding sender. It injects the available band-
width value into control flow after calculation, and it
forwards the flow to the sender.

(vi) Step 6. (e sender receives the control flow and
parses the available bandwidth value from it and
then repeats the operation in Step 2. (e sender sets
the pacing rate according to the bandwidth value
and continues to send until the transmission task is
accomplished.

After such a series of operations, the sender can rea-
sonably arrange the sending speed according to the actual
situation in the network. Because the situation of the net-
work is as feedback from the devices inside the network, the
devices inside the network participate in congestion control,
which breaks the end-to-end mode. Next, we will analyze
how the devices in the network, the middlebox, calculate the
available bandwidth.

3.4. Bandwidth Allocation Model. (e total bandwidth of a
middlebox is a fixed value. (is is determined by the service
of ISP (Internet Service Provider) and the performance of
equipment itself. In this fixed bandwidth, there is a part of
the traffic that belongs to non-TCP protocol. It is not affected
by the congestion avoidance algorithm, so our method ig-
nores the bandwidth of this part of the data flow.

According to our previous classification of flow, control
flow, fat flow, and slim flow all belong to TCP protocol.
Although the control flow belongs to TCP protocol, the
timely transmission of control flow is very important to
restore the sender’s windowwhich improves the efficiency of
the whole network. (erefore, this kind of flow should be
given high priority to obtain the required bandwidth.

After removing the bandwidth occupied by non-TCP
traffic and control flow, the remaining bandwidth of the
middlebox is shared by fat flows and slim flows competi-
tively. Our method should reasonably allocate the remaining
bandwidth, calculate a suitable bandwidth for senders, and
ensure that slim traffic representing blockchain communi-
cation gets better service.

In our bandwidth allocation model, the whole band-
width of the middlebox is defined as Ball. (e non-TCP
traffic obtains the bandwidth presented as G, and the control
flow’s bandwidth is presented as C. Excluding these two
parts of bandwidth, the actual bandwidth that can be al-
located is B. And B can be derived as (1).

B � Ball − G − C. (1)

In the middlebox, the number of flows changes with
time. Combined with the strategy of middlebox adjustment,

we define a timer ti to represent the period of bandwidth
adjustment, and i ∈ 1, . . . , N{ }. In order to obtain a steady-
state of the system operation, we define the observation time
as T, and it contains N timers which can be expressed as

T � 􏽘
N

i�1
ti. (2)

When a new flow comes in, the middlebox will register
the information of this flow on the flow table. After the timer
ti expires, the middlebox checks the flow table. If there is no
data belonging to a flow, it is considered that this flow al-
ready has been processed. Consequently, the total number of
flows stored in the flow table will be reduced by the number
of processed flows. (e detail of the flow table is shown in
Table 1.

Based on the previous classification, the B bandwidth is
allocated for fat flow and slim flow. We denote fat flow as a
set Fj � mj, dj, rj􏽮 􏽯, j ∈ 1, . . . , NF(t)􏼈 􏼉, and NF(t) is the
total number of fat flows through the middlebox in time
phase t. It represents a single large amount of data trans-
mission in the middlebox. In this set, mj denotes the whole
data size needed to transmit in flow Fj, dj denotes the
maximum tolerable time to complete the transmission, and
rj denotes the reward for completing transmission of this
flow, which means the system should finish the work of the j

th flow within dj time.
Similar to the fat flow, the slim flow is defined as

Sk � mk, dk, rk􏼈 􏼉, k ∈ 1, . . . , NS(t)􏼈 􏼉, where mk is the data
size of the flow Sk, dk is the time requirement of this flow,
and rk is the reward of finishing this flow. (ese variables
represent the samemeaning as fat flow.(e NS(t) is the total
number of slim flows through the middlebox in time slot t.
According to the actual situation, the value of data size mk in
the slim flow may be substantially smaller than in the fat
flow.

For our method in the middlebox, the most critical work
is to allocate bandwidth to each flow. (e bandwidth allo-
cated to the flow will change with the timer, so we consider
the bandwidth of the flow as a function. We denote BF

j (t) as
the bandwidth which allocated for fat flow Fj during phase t.
(e same to the slim flow, we use BS

k(t) to represent the
bandwidth of slim flow Sk in time slot t.

(e job of our approach is to find the available band-
width for all flows through the middlebox. (e available
bandwidth for each flow should meet the processing time
requirement and be limited by the whole actual bandwidth

Table 1: Flow information table.

Item Description
src_ip Source IP address
dst_ip Destination IP address
src_port Source port
dst_port Destination port
Timer Number of occupied timer cycles
data_inflow (e variable shows data inflow
Rate (e real transmit rate of flow
Count (e number of flows
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of the middlebox B. At time slot ti, we assume that the
middlebox has NF(ti) fat flows and NS(ti) slim flows. (e
total fat flow’s bandwidth can be denoted as 􏽐

NF(ti)
j�1 BF

j (ti),
and all the slim flow’s bandwidth can be denoted as
􏽐

NF(ti)

k�1 BS
k(ti). (e holistic bandwidth of the flows can not be

beyond the B of the middlebox, which can be represented by

􏽘

NF ti( )

j�1
B

F
j ti( 􏼁 + 􏽘

NS ti( )

k�1
B

S
k ti( 􏼁⩽B. (3)

(e timer of bandwidth regulation is a fixed value, so
every time period is the same in our system. We assume that
a slim flow Sk has completed transmission in XS

k time pe-
riods, and the bandwidth allocated for Sk in each time slot ti

is denoted as BS
k(t1), BS

k(t2), . . . BS
k(tXS

k
).

We make an instance to explain our model for band-
width allocation. As shown in Figure 4, there are two fat
flows (F1, F2) and three slim flows (S1, S2, S3) in slot time t1.
We can derive that NF(t1) � 2 and NS(t1) � 3 in phase t1.
(e height of each block represents their bandwidth at time
t1, so the height of S1 equals BS

1(t1) in time t1. For example,
in Figure 4, the slim flow S1 takes two time phases to finish
the data transmission; hence XS

1 � 2 in this flow.
For a data flow, the time to complete all the data

transmission must be less than the required time. Bandwidth
multiplied by time represents the amount of data that can be
transmitted during this period of time. (en in the whole
process, the total processing capacity of allocated bandwidth
for slim slow Sk can be expressed as

PSk
� 􏽘

XS
k

i�1
B

S
k ti( 􏼁 · ti, (4)

where PSk
is the total data size that the allocated resource can

handle. PSk
should be larger than the required data size of

slim flow, which can be represented as

PSk
⩾mk. (5)

(e total processing time should be less than the re-
quired time of slim flow, which can be represented as

􏽘

XS
k

i�1
ti⩽dk. (6)

In order to optimize blockchain communication, we use
slim flow to represent the network traffic in blockchain

applications. Under these constraints, the object of our
bandwidth allocation strategy is to serve as many slim flows
as possible. In our model, we assume that the system will get
a certain reward when a flow task completes. In the T period
of observation, the situation of completed flow can be
denoted as a Boolean array I � 1, 1, 1, 0, . . . , 0{ }, and the
rewards of all fat flows RF can be represented as

R
F

� 􏽘
M

j�1
rj · I

F
j , (7)

where M is the total number of fat flows that go through the
middlebox during T time, IF

j is the status of fat flow Fj, the
situation IF

j � 1 means the flow has been transmitted, and
the situation IF

j � 0 means the flow has not been served or
has not finished. (e rewards of all slim flows RS can be
represented as

R
S

� 􏽘
L

k�1
rk · I

S
k, (8)

where L is the total number of fat flows, and the service
status of slim flows can be represented by IS.

(e object of our model is to maximize rewards by al-
locating bandwidth to serve more data flows. By integrating
all the limited conditions, our bandwidth allocation model
can be defined as follows:

P1: maxR
F

+ R
S
,

s.t. C1: PFj
⩾mj,

C2: PSk
⩾mk,

C3: 􏽘

XF
j

i�1
ti⩽dj,

C4: 􏽘

XS
k

i�1
ti⩽dk,

C5: 􏽘

NF ti( )

j�1
B

F
j ti( 􏼁 + 􏽘

NS ti( )

k�1
B

S
k ti( 􏼁⩽B,

(9)

where P1 represents the goal of our model which means the
rewards from fat flows and slim flows. Constraints C1 and
C2 represent that the amount of transmission capability
provided by allocated bandwidth should be greater than the
amount of data required by the flow itself. C1 is for fat flows,
and C2 is for slim flows. Constraints C3 and C4, respectively,
represent the cost time of flow transmission within the
required time. (e constraint C5 shows the bandwidth di-
vision. In every certain time slot, the sum of the bandwidth
of fat flows and slim flows should be less than the actual
available bandwidth of the middlebox.

(e design of this model considers blockchain com-
munication in a general network environment. In the shared
network environment, blockchain data flows compete with
other network flows for bandwidth. We use slim flow to
represent blockchain communication in our model, because

Non-TCP bandwidth
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Figure 4: Bandwidth allocation for each flows.
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slim flow conforms to the properties of consensus com-
munication in blockchain applications. It is a type of fre-
quent data communication with small bandwidth. (e
communication of blockchain needs to obtain enough
bandwidth resources to ensure the timeliness of consensus.
Consequently, we define a fat flow to simulate the compe-
tition between other network flows and blockchain data
flows in our model.

4. Solution and Optimization for
Blockchain Communication

In order to optimize the performance of blockchain com-
munication, we propose a model of available bandwidth
allocation. By solving this model, we can accelerate the speed
of blockchain network traffic. For our bandwidth allocation
model, we have two types of network environments to
consider. (e first case is the private network, where the
consensus nodes of blockchain are connected by private
networks. (e second case is the public network, where the
data of the blockchain is transmitted in a competitive en-
vironment. We will analyze these two cases respectively.

4.1. Private Network. For the private network, all the net-
work resources are used for blockchain services. It usually is
deployed by consortium blockchain or private blockchain.

In this type of network, all the data flows are blockchain
communications. It means that these flows do not need to
share bandwidth with other services. In our model, if there
are only slim flows, this situation can be represented. All the
slim flows should guarantee quality of service. (e rewards
of these flows are the same, and the bandwidth is exclusively
used by slim flows without the competition of fat flow.

(e solution of resource allocation in a private network
can be simplified as average allocation. (e average allo-
cation method is to equally allocate the current network
bandwidth to the flows through the middlebox.

Although it is an average allocation, there are still three
factors that can change the allocated bandwidth. (e first
factor is the incoming of the new flows in themiddlebox.(e
second factor is that the leaving flows after the transmission
are finished.(e third factor is the urgency of flow that needs
to complete the service in time.

For the first factor, the flow information table updates
when a new flow comes into the middlebox. (e current
total number of flows will increase. (is will result in less
bandwidth allocated to each flow. For the second factor,
once a flow is finished, there is no more data belonging to
this flow coming into the middlebox. (en the flow infor-
mation table will delete the information of this flow, and at
the same time, it will reclaim the bandwidth occupied by this
flow. (e reclaimed bandwidth is allocated to other data
flows; this will increase the bandwidth to each flow.(e third
factor is a special case, which occurs only when the flow is
about to time out. (e system will allocate enough band-
width to this flow so that it can accomplish the data
transmission in the required time.

Combined with these three factors, we propose a
bandwidth allocation algorithm based on the private net-
work. Our priority of consideration is the third factor. To
find out the flows that are about to time out, we look up the
flow information table. (e value of the timer in table XS

k is
the number of time slots that has been spent by this flow.(e
variable dk is the required time slots of the flow k. If dk − XS

k

equal to 1, that means this flow has only one time slot to
finish the transmission. (is is the condition to determine
whether a flow is about to time out. Next, we need to cal-
culate the residual amount of data to be transmitted. We
assume variable rk is the nontransmitted data, where
rk � mk − 􏽐

Xk

i Bk(ti) · ti. (en rk/ti+1 is enough bandwidth
that can satisfy the time requirement.

For the first factor and the second factor, we can combine
them to deal with. By calculating the difference between the
new and reduced flows, the total number of the current flows
through the middlebox is updated. (e system sets the total
number as the count value of the flow information table.

When calculating the bandwidth for each flow, we first
give the bandwidth to the flow that is about to time out.
(en, the total number of flows is subtracted from the
number of flows about to timeout, and the difference is
obtained for the average allocation of bandwidth. (e
bandwidth allocation algorithm for the private network is
shown in Algorithm 1.

4.2. PublicNetwork. In the more widely used public network
environment, it is not only blockchain communication, but
also any other type of transmission. Network resources are
no longer exclusive to blockchain services but compete with
various data flows. In order to reflect the real environment of
blockchain communication, we use the fat flow and slim
flow competitionmodel and define the state space and action
space.

We choose the Deep Q Network (DQN) as DRL method
to optimize the bandwidth allocation. DQN has some ad-
vantages: first, it only needs an incentive mechanism to
evaluate the behavior so that it does not need data sets for
training. Better results can be obtained by training according
to the environment observation and action of the agent.
Second, when the number of flows increases, the DQN can
well deal with the large-dimensional state action space.
(ird, DQN has an experience replay mechanism, which
reuses the samples to improve the learning efficiency. In this
case, we use DQN algorithm to solve the problem.

4.2.1. State Space. For the public network, the model con-
tains slim flows representing blockchain communications
and fat flows representing other application flows.We define
the network resource and flow status as the environment in
reinforcement learning and the state of the environment is
changing along with time. (e flow information table
contains all the flows state and updates in each time slot.
Except for srcip, dstip, sport, and dport variables, other
variables change with time. And the total number of data
flows in the table also changes along with time.
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According to the bandwidth allocation model and flow
information table, the environment has three parts, the fat
flow state, the slim flow state, and the whole number of flows.
(e fat flow state can be represented as Fj(t) �

[dj(t), mj(t)]. And dj(t) is a function that changes with
time t; it represents the remaining available time slots of the
flow j. Function mj(t) denotes the remaining data to be
transmitted. For fat flows j, j ∈ 1, 2, 3, . . . NF(t)􏼈 􏼉 and the
number of fat flows is NF(t). Same to the fat flow, Sk(t) �

[dk(t), mk(t)] denotes the state of slim flow k. (e number
of slim flows is denotes as NS(t), and k ∈ 1, 2, 3, . . . NF(t)􏼈 􏼉.
(e total number of flows through the middlebox is the sum
of fat and slim flows. It can be denoted as NF(t) + NS(t), so
the state space can be represented as

State(t) � Fj(t), Sk(t), N
F
(t) + N

S
(t)􏽨 􏽩. (10)

4.2.2. Action Space. In the public network, the decision
made by the middlebox in each time slot is the calculation of
the bandwidth value for each data flow. According to our
bandwidth allocation model, the actions in each time slots
can be denoted as

Action(t) � B
F
j (t), B

S
k(t)􏽨 􏽩, (11)

where BF
j (t), j ∈ 1, 2, 3, . . . NF(t)􏼈 􏼉 refers to the bandwidth

of fat flow j, and BS
k(t), k ∈ 1, 2, 3, . . . NS(t)􏼈 􏼉 refers to the

bandwidth of slim flow k. (e total bandwidth allocated in
each action should meet the constraint C5 in equation (9).

(e action includes all flows’ bandwidth value in time
slot t. (e value computed by the middlebox is the available

bandwidth for the sender. It will ensure that congestion is
avoided and bandwidth utilization is improved. (e action
will affect the transition of state and the accumulation of
reward.

4.3. Reward Function. (e goal of our model is to maximize
the total reward through bandwidth allocation in a certain
period of time. (e object is to maximize the rewards, which
also means that our allocation strategy serves more data
flows in the observation time.

We choose the RL method to optimize the bandwidth
allocation, because it only needs an incentive mechanism to
evaluate the behavior. We build such a mechanism to train
the strategy of bandwidth allocation. If a flow is not com-
pleted within the required time due to improper bandwidth
allocation, the reward is negative. If the bandwidth alloca-
tion is appropriate and the flow is completed within the
specified time, a positive reward is obtained. We add a
punish rule in the reward function, so it is a little different
from the model definition in equations (7) and (8).

(e details of the reward rules can be described as
follows:

(i) In a time slot t, suppose the state space has a flow
state Fj(t) � [dj(t) � 0, mj(t)> 0], where dj(t) � 0
indicates that it has timed out and mj(t)> 0 indi-
cates that there is still data that has not been served.
Such a state is a bad situation and should be
punished. We use θj(t) � −1 to represent this state,
and the reward of this flow Fj(t) should be
rj · θj(t).

Input: srcip, dstip, sport, dport
Output: bandwidth
Caculate an available bandwidth for the flow identified by srcip, dstip, sport, and dport
load data from flow information table into flowList
create a timeoutList
for each Sk in flowList do

XS
k←Sk.timer

if dk − XS
k � 1 then

timeoutList.add (Sk)

end if
end for
use rk to store the residual data for flow k

use B timeout to accumulate the bandwidth of the timeoutList
B timeout←0
for each Sk in timeoutList do
calculate the residual data for each flow
rk←mk − 􏽐

Xk

i Bk(ti) · ti

BS
k←rk/ti+1

B timeout←B timeout + BS
k

end for
BS

k←B − B timeout/flowList.count − timeoutList.count
update BS

k for each flow to flowList
bandwidth ←flowList.lookup(srcip, dstip,sport, dport)
return bandwidth

ALGORITHM 1: Bandwidth allocation algorithm for private network.
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(ii) In a certain time slot t, suppose the state space has a
§ow state Sk(t) � [dk(t)> � 0, mk(t) � 0], where
mk(t) � 0 indicates that the data has been served,
and dk(t)> 0 indicates that the data has been
completed before the timeout. Else dk(t) � 0 in-
dicates that the §ow �nished in time. �is state is a
good situation and it should be rewarded with the
value of rk · θk(t) and θk(t) � 1.

(iii) In other states, there is no change in the number of
data §ows, so no reward can be obtained in this
situation. �e corresponding parameter θ(t) equals
zero in this state.

(iv) To optimize blockchain communication, the abso-
lute value of the reward of slim §ow should be
greater than that of fat §ow. It can be shown as
|rk|>|rj|,∀k∈ 1,2,3,...NS(t){ },j∈ 1,2,3,...{ NF(t)}.

�e reward function R(t) is the sum of rewards of all the
§ows at time slot t.

R(t) � RF(t) + RS(t) �∑ rj · θj(t) +∑ rk · θk(t),

θj,k(t) �
−1 , dj,k(t) � 0, mj,k(t)> 0,
1 , dj,k(t)≥ 0, mj,k(t) � 0,

0 , others.




(12)

After each action of bandwidth allocation, the system
calculates the state of each §ow. When the system has
�nished updating the state and the total number of data
§ows, it will enter the next state. According to the state of
served data and the residue time requirement, the system
decides whether to get a reward.

4.4. DQN. Our system needs to compute proper bandwidth
for data §ows in each time slot. �e principle of proper
bandwidth calculation is to maximize the rewards in the
whole observation time period. When the number of §ows
increases or the network bandwidth to be allocated is large,
the space of states and actions becomes di�cult to calculate.
Due to the large scale of state-changing of data §ows in the
middlebox, we employ the DQN method to deal with the
high-dimensional state spaces and action spaces.

DQN is a reinforcement learning algorithm with the
advantages of neural networks [33]. �e agent of DQN can
replace the role of the middlebox system and complete the
bandwidth allocation according to learning from the envi-
ronment. For our model, the long-term value function
represents the accumulated reward from the data §ow
service. It can be denoted as

Q(State(t),Action(t))←(1 − α)Q(State(t),Action(t))+,
α[R(t) + cmaxQ(State(t + 1),Action(t + 1))].

(13)

In this function, α is the learning rate that is used to
balance the current and future reward value, and c is the
discount rate. �e DQN method for bandwidth allocation is
shown as Figure 5.

In the DQN method, two neural networks are used to
train the agent to do bandwidth allocation. One neural
network is called eval_net that trains the parameter of agent
to estimate Q value. �e other neural network is called the
target_net. It is used to save the target Q value. �e eval_net
and the target_net are with the same structure but di�erent
parameters. When training the agent to allocate bandwidth,
the experience replay is well utilized to learn from the past
operations. By random sampling of the experiences, the
neural network will update more e�ciently. �e eval_net
represents the Q-estimation which contains the new pa-
rameter. �e target_net predicts Q-reality, but its parameter
is not new. After some steps, the target_net will be updated
according to the parameters of the eval_net. �is mecha-
nism, which is called �xed Q-targets, can overcome the data
correlation and ensure the convergence of parameters. �e
algorithm of DQN for bandwidth allocation is present in
Algorithm 2.

5. Experimental Environment and Results

In this section, we �rst introduce our experimental envi-
ronment. �en we discuss performance evaluation.

5.1. Experimental Environment. In our test environment, we
use VMware ESXi virtual machine system to build a local
network.�is network has 4 middleboxes and 4 endpoints to
act as senders and receivers. �ese middleboxes can play the
role of consensus nodes in blockchain communication. Each
node is a virtual machine with 2 gigabit netcards and 4GB
memory. �e operating system is Ubuntu 18.04 LTS with
4.15 version Linux kernel.

For throughput test, we use the network testing tool
IPerf3. To simulate a complex network environment, TC
(Tra�c Control) tool is employed. Netem (Network emu-
lation) is a kernel module controlled by TC. We use Netem
to set packet loss and delay in the middlebox. In order to
make a bottleneck in the network path, HTB (Hierarchy
Token Bucket) is utilized to do shaping and policing for
network tra�c. It is also a type of queue managed by TC and
can set a rated speed for a network interface.

In order to make the system support our available
bandwidth noti�cation method, we create a new kernel

eval_net

Reward

Environment

Action

Update

Q-Estimation
R(t)=RF(t)+RS(t)
=Σrj(t) - θj(t)
+Σrk(t) - θk(t)

flow : F1(t)=[d1(t),m1(t)]
flow : S1(t)=[d1(t),m1(t)]
flow : S2(t)=[d2(t),m2(t)]
flow : F2(t)=[d2(t),m2(t)]
flow : S3(t)=[d3(t),m3(t)]...

B1 ,B2 
...

B1 ,B2 ,B3 
...

...
...

...
...

Q-Reality

target_net

Agent

F F

S S S

Figure 5: DQN method for bandwidth allocation.
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module called “tcp_abn” following the example of “tcp_bbr”
that is developed by Google. Some kernel �les of the TCP
stack have been modi�ed, while the compatibility has been
kept. As our method needed, the modi�ed �les contain two
types. One type is deployed on the middlebox. �is type of
�le contains sch_htb.c. In sch_htb.c, the calculation of
available bandwidth is added, and the bandwidth value is
injected into the corresponding ACK packet. �e other type
is deployed on the sender. �is type of �le contains tcp.h,
tcp_input.c, tcp_ipv4.c, tcp_output.c, and tcp_abn.c. �e
tcp_abn.c �le is the major part of the “tcp_abn” module.
Other �les make the system suitable for the “tcp_abn”
module and support applying the bandwidth values from the
ACK packet.

5.2. Results. For the private network, we only initiate
blockchain communication in our local network. In the
middlebox, we set the upper limit of network bandwidth to
2Gbit/s by HTB policing function. We use the sysctl
command to change the kernel �le “/proc/sys/net/ipv4/
tcp_wmem” as “4096 16384 100000000” in each sender. �is
operation can make the system provide better performance
which avoids limiting network speed due to insu�cient send
windows.

In this network con�guration, we compare our ABN
method with two recently popular algorithms, Cubic and
BBR. Cubic is the default TCP congestion control algorithm
in Linux system, and BBR is a Google provided algorithm
that is also supported in Linux kernel.

In order to get a more signi�cant e�ect, we set the delay
changing in a certain range. It is hard for the RTT probing

mechanism to measure an accurate value in variable delay.
We use Netem tool to add latency in the network, and the
delay range is 50ms, 100ms, and 200ms, respectively. We
use IPerf3 to transmit data in TCP protocol where the
packets go through the middlebox. �e middlebox will be
deployed on Cubic, BBR, and our ABN. We use tcpdump to
catch all the tra�cs generated by IPerf3 during 60 seconds
and save then into a pcap �le. �en, we convert these pcap
�les to csv format �les and draw Figures 6–8.
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Figure 6: �roughput with 50ms delay.

(1) Initialize memory M for experience replay
(2) Initialize eval_net and Qestimation function with weight parameter ω
(3) Initialize target_net and Qreality function with weight parameter ω− � ω
(4) for each episode do
(5) Initialize State(t)
(6) for each time slot t do
(7) Generate a random number λ using ϵ − greedy policy for balancing exploration and exploitation
(8) if λ< ϵ then
(9) Randomly choose a series of bandwidth BF1 , B

F
2 , . . . , B

S
1, B

S
2, . . .{ } as the Action(t) for current §ows.

(10) else
(11) Action(t) � avgmaxQ(State(t),Action(t);ω)
(12) end if
(13) Execute Action(t)
(14) Obtain R(t) and State(t + 1)
(15) Save State(t),Action(t), R(t), State(t + 1){ } into memory D
(16) Randomly select batch of experience data Statei,Actioni, Ri, Statei+1{ } from D
(17) if Statei+1 is the terminal state then
(18) set yi � Ri.
(19) else
(20) set yi � Ri + cmaxaQreality(Statei+1, a)
(21) end if
(22) Perform gradiant descent on (yi − Qestimation(Statei,Actioni;ω))

2 with ω
(23) Update Qreality parameter with Qestimation
(24) end for
(25) end for

ALGORITHM 2: DQN algorithm for bandwidth allocation in public network.
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�e throughput with 50ms range delay is shown in
Figure 6. We can �nd that our ABN method has a relatively
stable speed close to the ceiling bandwidth. BBR has 6 spikes
and Cubic has 4; in addition, the average height of spikes of
BBR is higher than Cubic. It means the throughput of BBR is
better than Cubic. �e throughput results during 60 s with
50ms range of delay are Cubic : 235Mbit/s, BBR :1370Mbit/
s, and ABN :1990Mbit/s. At the position of 40 s in Figure 6,
the throughput is higher than the limit capacity. �at is
because BBR will probe the available bandwidth and
sometimes overestimate it. �en it will occupy the network
bu�er of the middlebox.

�e throughput with 100ms and 200ms range of delay is
shown in Figures 7 and 8. With the delay increasing, we can
see that the number of spikes of BBR and Cubic gets smaller.
�e throughput of our ABN decreases minorly and still stays
at a stable speed. �at is attributed to the bandwidth no-
ti�cation from the middlebox. �e speed of ABN accords
with the feedback of the network environment, not probing
or guessing. BBR will drop the speed when it perceives the
delay increasing in probeRTT phase. Cubic sends packets
continually, so the spike of Cubic usually lasts longer than
BBR. When delay increases and leads to packet drop oc-
currence, Cubic sharply reduces the transmission speed. If
the packet loss state continues, Cubic will always maintain
the low speed state. �e throughput of Cubic with 100ms
range of delay is 205Mbit/s. BBR is 1120Mbit/s, and ABN is
1990Mbit/s. With 200ms range of latency, the throughput
of Cubic drops to 93.2Mbit/s. BBR’s throughput shrinks to
465Mbit/s. �e average speed of ABN during 60 seconds is
1970Mbit/s. �e performance analyses demonstrate that the
ABN method can stand delay in§uence and improve the
network bandwidth utilization.

For the public network, we use a DQN model to do the
performance simulation. �ere are two neural networks in
DQN, eval_net and target_net, each network has two layers,

and each layer has 20 neurons. �e input of neural network
is set according to the amount of §ows and the size of
bandwidth allocation action space. Tensor§ow 1.12.0 with
python 3.7 is employed to do the training on Windows 10
system. In the simulation, 4 blockchain nodes with PBFT
consensus initiate slim §ows through a middlebox. In order
to highlight the support of the ABN method for blockchain
communications, we add two fat §ows with large bandwidth
as the background tra�c to compete with blockchain
communications, and the agent tends to allocate bandwidth
to blockchain §ow for more rewards. �e detail of simu-
lation parameters can be shown in Table 2.

�e loss of DQN model is as shown in Figure 9. We can
�nd that the loss is getting lower with the training steps
increasing. �e loss value tends to be stable which means the
model is available. In Figure 10, the reward variation with
di�erent learning rates is presented. �e learning rate a�ects
the rewards during the training.When the learning rate is 0.1
and 0.01, the reward curve oscillates violently and gets the
optimal value occasionally. When the learning rate is 0.001,
the reward curve is relatively convergent, but it does not
converge to the optimal value. In our simulation, the
learning rate of 0.0001 obtains better performance than
others. As shown in the �gure, the learning speed is ac-
ceptable, and the reward curve stably converges to the
optimal value. �e rule of reward function is to accumulate
the reward of each served §ow.

�e comparison of reward between ABN, BBR, and
Cubic is presented in Figure 11. In this training, we send one
slim §ow and fat §ow at the beginning and add slim §ows
during 200 s. To simulate PBFT communications, we add
slim §ows as a multiple of 4 which is the number of con-
sensus nodes. In the case of background tra�c, ABN can
obtainmore rewards with the increase of §ows. Although the
reward of Cubic is the same as others at the beginning, it will
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Figure 7: �roughput with 100ms delay.
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be punished when congestion occurs with the increase of
§ows.�e result is the slow growth of reward for Cubic. BBR
sometimes can get a better reward, because it attempts to �ll
the pipe to probe bandwidth, and it possibly occupies the
bu�er. We can �nd that when the amount of §ow is 32, the

reward of BBR is a little higher than ABN. But this situation
cannot be persistent; it will drop the speed when BBR is in
the drain phase. As we can see, ABN can get a more stable
reward augmentation than BBR in a long-term running.

6. Conclusions

In this paper, we investigate a blockchain-enabled IoT
network deployed on MEC servers and analyze the char-
acteristics of the network §ow of blockchain in consensus
communication. After researching the relationship between
consensus communication and performance in the per-
missioned blockchain, we determine to optimize the per-
formance by focusing on network bandwidth utilization. We
proposed an optimal allocation algorithm called available
bandwidth noti�cation. �e ABN method can provide ef-
�cient bandwidth utilization and avoid congestion; it will
improve the speed of blockchain consensus, so as to ensure
IoT data is safe and fast. �e results derived from the
evaluation demonstrate the high performance of our
method. Compared with the current TCP network, our
method is more friendly to the communication of block-
chain. With the further development of the research, we
would consider the data privacy protection function of
blockchain-enabled IoT network.
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Figure 11: �e reward comparison of ABN with BBR and Cubic.

Table 2: �e parameter settings in the simulation.

Parameter Value Description
Bandwidth 10Mbit/s �e whole bandwidth in the network
Fat §ow 1000Mbits, 200 s, 80 A type of fat §ow as background tra�c
Slim §ows 1Mbits, 1 s, 10 Four slim §ows in a group to represent blockchain communications
T 200 s Total time of observation
Node 4 �e number of blockchain nodes that initiate PBFT consensus communications
c 0.9 �e discount factor
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Figure 9: �e learning loss of the DQN model for ABN.
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