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In the present context, the deep learning approach is highly applicable for identifying cyber-attacks on intrusion detection systems
(IDS) in cyber-physical security systems. As a key part of network security defense, cyber-attacks can change and penetrate the
security of the network system, then, the role of an IDS is to detect suspicious behaviors and act appropriately to protect the
network from the onset of attacks. Machine learning and deep learning techniques are important for current intrusion detection
systems. However, traditional intrusion detection systems are far from being able to quickly and accurately identify complex and
diverse network attacks and obtained low accuracy and detection rates, thus, these methods frequently fail to manage big amounts
of data in a vast network infrastructure and utilize a lot of features leads to poor performance. For addressing these issues and
improving the accuracy and scalability, in this paper, we have implemented the deep learning method based on a new approach
multilayer long short-termmemory (LSTM) model for detecting attacks on a network.Te novelty of the proposed scheme is that
the optimum multilayer architecture is built to achieve maximum accuracy in the network architecture in order to boost
performance using stacking multiple layers of LSTM cells in a more efective manner, and better stability to perform consistently
in both binary classifcation and multiclass classifcation on NSL-KDD datasets. Experimental tests with KDDTest + datasets show
that the proposed multilayer LSTM model provides outstanding results with 95% and 96% accuracy, respectively, in binary and
multiclass classifcation. In order to deal with actual datasets and obtain good performance in the network design, our optimum
multilayer architecture must be put into practice in order to execute real-time applications. Terefore, the results are better and
more robust than the existing state-of-the-art methods.

1. Introduction

With the rapid growth of technologies and information,
network security has become more signifcant over time as a
result of the attention that businesses, industries, and en-
terprises have placed on systems such as cyber-physical
security systems. In order to ofer safe networks, cyberse-
curity experts discover the signifcance of creating an ef-
fective network intrusion detection system (IDS) [1, 2].
Cyber-physical systems (CPSs) embed sensing, computing,
control, and networking into physical items and infra-
structure, linking them to the Internet and to one another [3].

An IDS, a foundational layer, must quickly identify, assess,
and react to harmful cyber trafc [4]. Network intrusion
detection is important for monitoring and identifying po-
tential threats [5]. Tere are often major imbalanced data in
public datasets for intrusion detection. Te management of
large amounts of data in complex network infrastructure is
another issue that these techniques typically fail to address
[6]. For this reason, traditional IDSs based on conventional
machine learning methods generally have some shortcom-
ings, such as poor generalization ability, and low real-time
performance. Over the last few decades, researchers have
suggested a variety of intrusion detection systems employing
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machine learning, deep learning, and other statistical tech-
niques [7]. In recent years, deep learning techniques have
quickly developed and are now extensively used across many
industries because of the constant expansion of massive data
and computational capacity [8]. Both deep and conventional
machine learning models were evaluated using well-known
classifcation metrics [9]. In several felds, including image
identifcation and natural language processing (NLP), deep
learning has produced outstanding results. Numerous re-
searchers have successfully used convolutional neural net-
works (CNN) to identify cyber-attacks in order to increase
the intelligence and accuracy of network intrusion detection,
but they have not yet made the anticipated breakthrough.Te
fact that network trafc is not in an image data format, is one
of the primary causes of the failure. Given that network trafc
data is often one-dimensional, one crucial approach pro-
cessed the data using a recurrent neural network (RNN).
Recently, an interesting attempt to use RNN-based models
such as BiDLSTM, HLSTM, OCNN-HMLSTM, and Chi-
square BidLSTM achieved low accuracy for feature selection
resulting in weak performance. However, these methods’
efectiveness signifcantly relies on simulated datasets. For
the majority of classifcation models, these datasets are
computationally costly since they frequently require nu-
merous features for training. As a result, feature selection
must be done prior to training in order to remove duplicate
and unnecessary features from the datasets. For the majority
of machine learning and deep learning models, feature se-
lection is crucial at the data preprocessing stage. In this work,
diferent processing steps were taken for numerical and
category variables. A one-hot encoding procedure is used to
translate the distinguishing characteristics into numerical
values. Because we have carefully designed the model uti-
lizing batch normalization and dropout layers in the right
ways, we were able to avoid model overftting. Te charac-
teristics with lower correlation have been eliminated. Since
categorical features are handled via one-hot encoding, we
have employed 87 features while taking into account the
relevant dummy variables. In this paper, a multilayer LSTM′
network has been introduced. Te multilayer LSTM ofers
not only the loop’s end state but also includes all previous
states as well. A dense representation for each time step was
created, and the single LSTM layer may be given a sequential
output. As a result, stacking numerous layers of LSTM cells
more efectively and stabling them to work consistently is a
considerable measure.

In this paper, we have developed a new approach called
the optimummultilayer architecture of the LSTMmodel for
intrusion detection systems in cyber-physical security sys-
tems in order to obtain greater accuracy, identify unknown
intrusion attacks accurately, handle data processing, and
classify imbalanced attack datasets, our new approach must
be embedded for performing real-time applications. Te key
contributions of this research can be summarized as follows:

(i) Tis paper proposes the multilayer LSTM model
that performs binary classifcation and multi-
classifcation to evaluate the better detection per-
formance metrics, enhances feature selection’s

efciency, takes out lower correlation, efectively
handles categorical features by one-hot encoding,
and reduces error using the backpropagation
algorithm.

(ii) Te novelty of the proposed scheme, in which the
optimum multilayer architecture is built to achieve
maximum accuracy in the network architecture by
stacking multiple layers of LSTM cells in a more
efective manner, better stabling them to perform
consistently, and leading to reduce model over-
ftting, and lead to enhance the overall performance
using dropout layers and batch normalization
properly.

(iii) Our optimum multilayer architecture has to be
incorporated to run real-time applications with
lower complexity because we have achieved decent
performance on actual datasets in the network ar-
chitecture, so real-world implementation of our
model would give a better real performance and our
approach outperforms existing state-of-the-art
methods in the literature.

Te remaining paper is organized as follows. Related
works and methodology are described, respectively, in
Section 2 and Section 3. Te experimental results and dis-
cussion are presented in Section 4 and followed by a con-
clusion in Section 5.

2. Related Works

Tis section discusses the state-of-the-art in the use of deep
learning for intrusion detection in the domain of cyber
security. In recent years, deep learning-based intrusion
detection in cyber-physical security systems has gradually
become a popular research topic. Hou et al. [8], on the basis
of HLSTM, an intrusion detection approach was developed
that can learn across time levels on complicated network
trafc sequences. On KDDTest+, multiclassifcation accu-
racy is 83.85%. However, they did not improve the ability to
detect intrusion. In [10], the experiment showed that the
accuracy of the RNN model is 81.29% for the test set
KDDTest+ in the fve-category classifcation. Ait Tchakoucht
and Ezziyyani evaluated MLESM performance on multilabel
classifcation, based on the hyperparameters as in binary and
multiclass classifcation on NSL-KDD and KDD’99. But they
obtained low accuracy for intrusion detection [11]. Shone
et al. [12], proposed a novel classifcation model constructed
from stacked NDAEs and the RF classifcation algorithm.
Tey achieved an accuracy of 85.42% in multiclass classi-
fcation. In [13], authors proposed SFSDT, which is a feature
selection model for improving various RNN models in the
IDS feld. Imrana et al. [14], authors proposed chi-square
BidLSTM, a novel IDS technique that combines a chi-square
statistical model with a bidirectional long short-term
memory (BidLSTM) model. According to the model’s
complexity and runtime evaluations, the suggested chi-
square BidLSTM model is more complicated and requires
more training time than the regular LSTM model. Kunang
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et al. [15] suggested the IDSmodel enhances the outcomes of
attack categorization in intrusion detection by employing
DL and a DAE for the pretraining process and fne-tuning
using DNN via the HPO process. In [16], an efcient in-
trusion detection model had been developed by using the
unifed DL approach of OCNN-HMLSTM. Te proposed
OCNN extracts the spatial features while the HMLSTM
extracts the temporal features and classifes the network
data. Imrana et al. [17] proposed Chi-square bidirectional
LSTM to identify network intrusions. Te accuracy in
multiclass is 95.62%. Te created approach has a larger
complexity and needs more training time than the typical
LSTM model. Tese are the key limitations of BiDLSTM-
based intrusion detection. However, all these works show
that using a simple RNN layer as binary and multiclass
classifcation does not yield signifcant performance metrics-
accuracy, recall, F1-score, precision, and ROC-AUC score.
In this work, we have used the multilayer LSTMmodel set to
evaluate the performance in detecting network intrusions in
both binary and multiclass classifcation on the NSL-KDD
datasets and we have also compared it with BiDLSTM,
HLSTM, OCNN-HMLSTM, Chi-square BidLSTM, and
other deep learning methods proposed by previous re-
searchers. Terefore, the proposed optimum multilayer
architecture is well designed using batch normalization,
dropout layers, and stacking multilayers of LSTM cells in a
more appropriate approach in order to improve its stability
and overall performance having the best results in com-
parison to the state-of-the-art methods in the literature.

3. Methodology

Tis section introduces the basic LSTMmodel, the proposed
model architecture, and the proposed model methodologies
based on the multilayer LSTM model in detail.

3.1. LSTM Model. Long short-term memory networks also
known as “LSTM” are a variant of RNN which can learn
long-term dependencies and are proposed by Hochreiter
and Schmidhuber (1997). LSTMs were created to address the
vanishing gradient issue for detecting anomalies in network
trafc or IDSs and unsegmented data (intrusion detection
systems) that might arise when regular RNNs are being
trained [6]. Te structure diagram of a single LSTM cell and
the fowchart of the working procedure of the LSTM cell is
depicted in Figures 1 and 2, respectively. Te forget gate
layer examines the input data and the data received from the
previously hidden layer, then uses a sigmoid function to
determine which information the LSTM will erase from the
cell state. Cell state and forget gate can be calculated by the
following equations:

C � ft.ct−1 + it.
􏽥Ct, (1)

ft � Wf. ht−1, xt􏼂 􏼃 + bf􏼐 􏼑. (2)

Te input gate layer determines which data the LSTM
will save in the cell state. A Tanh layer suggests a new vector
to add to the cell state after choosing the input gate layer.

Tis information will be updated by using a sigmoid
function.Ten the LSTM updates the cell state by erasing the
information. Te input modulation gate (equation (3)) and
input gate (equation (4)) can be calculated as follows:

􏽥Ct � tan h Wc. ht−1, xt􏼂 􏼃 + bC( 􏼁, (3)

it � σ Wi. ht−1, xt􏼂 􏼃 + bi( 􏼁. (4)

In order to use this LSTM unit, we need to produce the
output. Using the new memory, the prior output, and the
current input, this step’s output gate is managed. Te result
is sent via a Tanh layer to output just the information which
we want to convey to the next neuron. Te hidden state
(equation (5)) and output gate (equation (6)) can be cal-
culated as follows:

ht � ∗ tan h Ct( 􏼁, (5)

Ot � Wo. ht−1, xt􏼂 􏼃 + bo( 􏼁, (6)

Ct-1

ht-1

ht

ht

Ct

Ct

xt

ft it ot

σ
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Figure 1: Structure diagram of a single LSTM cell.

Forget gate (controls the old memory)

Memory from previous block Element wise
multiplication

Element wise summation

Cell state

Memory from
current block

Tanh Layer

Element wise multiplication

Output of current block

Input gate (controls
fow of new input)

Output gate
(controls output of

the LSTM unit)

Figure 2: Flowchart of the LSTM cell.
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where xt is the current input, ht and ht−1 are the hidden state
of the t-th time and the (t− 1)-th time, Wi, Wf, Wc, Wo, and
B are the weight parameters in the self-recurrent, σ and tanh
are sigmoid and hyperbolic tangent activation functions,
respectively.

3.2. Proposed Model Architecture. LSTM is designed to
tackle long-term dependency problems which is why it has a
wide range of use cases. In addition, a single-layer LSTM is
commonly utilized to transform sequences into dense,
nonsequential features.Tese are the states at the conclusion
of the RNN loop, and this phase is responsible for converting
sequence data into tabular data.

3.2.1. Multilayer LSTM. Single-layer LSTM may not always
be able to compress sequential data efectively enough. From
our literature survey, we can see that sequential models are
widely used to develop intrusion detection systems. Hence
we have developed our model considering the LSTM cell as
the basic building block. In the Keras framework deep
learning toolkit, we have introduced a “multilayer LSTM”
network, and we have initialized “n” LSTM cells. Te
multilayer LSTM, an evolution of this concept, features
several hidden LSTM layers with diferent numbers of
memory cells. As a result, each LSTM layer’s hidden and cell
states need to be initialized.Te input vectors have been sent
to the LSTM layer. Te hidden state of the LSTM cell will be
fed to the next layer. Tere are 4 levels of the LSTM layer
each consisting of 100 cells. Diferent cells in the same layer
are interconnected, and even diferent cells, as well as dif-
ferent layers, are also interconnected. Hence, they are
sharing information between layers. Tis is making a
powerful feature structure and allows us to explore the latent
relationship. An input is necessary for each LSTM memory
cell. Each memory cell in an LSTM will produce a single
output for the whole input sequence of time steps while
processing a single input sequence of time steps. It is seen in
the model below, which features a single hidden LSTM layer
that serves as both the input and output layers. If the
preceding LSTM layer generates an output that serves as the
input for the following layer, we can keep adding hidden
LSTM layers.

In the network architecture, when we were adding more
layers and cells caused overftting and removing any of the
layers which declined the performance. A dropout layer is
imposed in each fully connected layer to reduce the over-
ftting in the system.Tus, we have properly designed it, and
as result, stacking multiple layers of LSTM cells in a more
efective manner and stabling them to perform consistently
is a great deal. Te proposed optimum multilayer archi-
tecture of the LSTM model for IDS is shown in Figure 3.

3.2.2. Dropout Layers. Between the last hidden layer and the
output layer, as well as between the frst two hidden layers, it is
applied. Input and recurrent connections to LSTM units are
probabilistically eliminated from activation and weight updates
during network training using dropout. Dropout layers are

introduced in between each layer. It operates by randomly
setting the outgoing edges of hidden units (neurons that make
up hidden layers) to 0 during each update of the training phase.
We have used a dropout layer to reduce overftting leading to
enhancing the performance of the model. Moreover, we have
employed a dropout value of 0.2 which indicates that the units in
that layer have a 20% chance of remaining active and an 80%
chance of being dropped.
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Figure 3: Proposed optimum multilayer architecture of the LSTM
model.
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3.2.3. Batch Normalization. In order to speed up the
training of multilayer LSTM model networks, batch nor-
malization attempts to minimize internal covariate shifts.
Tis is done by fxing the means and variances of the input
layers during a normalization stage. At each hidden layer,
batch normalization is the hidden weapon that addresses the
unstable gradient issue for many of the deep learning ar-
chitectures [18]. Tis eliminates the possibility of divergence
and enables the use of considerably greater learning rates.
Tis model is regularized using batch normalization, which
lessens the requirement for dropout. We have also used
batch normalization layers to speed up the training and
handle internal covariate shifts thus leading to reduce
overftting. Te batch normalization layer frst determines
the mean (μ) and the variance (σ2) of the activation values
across the batch, using the following equations:

μβ �
1
m

􏽘

m

i�1
xi, (7)

σ2β �
1
m

􏽘

m

i�1
xi − μβ􏼐 􏼑

2
. (8)

Te batch normalization approach helps to speed up
network convergence while maintaining the neural net-
work’s capacity for representation, whereas B � x1...m􏼈 􏼉

represents the activation value inside a batch, α, β represents
the parameters and 􏽢xi represents the value after normali-
zation and yi indicates the value after the batch normali-
zation transformation. 􏽢xi, and yi can be estimated by using
the following equations:

􏽢xi �
xi − μβ

�����
σ2β − ϵ

􏽱 , (9)

yi � α∗ 􏽢xi + β. (10)

3.2.4. Dense Layer. A dense layer is a neural network where
all of the previous layer’s neurons are connected to the inner
neurons. Te neurons in each layer of the neural network
calculate the weighted average of the input, and the weighted
average is then passed through a nonlinear function known
as the “activation function.” Finally, we have implemented
the last LSTM layer which has 50 cells followed by a dropout
layer with dropout chances of 0.2 and a batch normalization
layer. Tere is another dropout layer with a dropout
probability of 0.5. Te fnal output of the layer then feeds
into a dense layer of 64 neurons having ReLU as an acti-
vation function.

3.2.5. Rectifed Linear Unit (ReLU). Te most popular ac-
tivation function of the deep learning model is the rectifed
linear unit. In essence, the function returns 0 if it receives a
negative input, and if it receives a positive value, the function
will return back the same positive value. We have trained the
function that has addressed the drawbacks of several pre-
vious activation functions.

3.2.6. Cross Entropy Function. We have trained a classif-
cation model to categorize data by estimating the likelihood
that the data belongs to one class or another, the cross
entropy loss function is employed as an optimization
function. For the binary classifcation task, the last layer
consists of 1 neuron with a sigmoid function. For multiclass
classifcation tasks, the last layer consists of 5 neurons with
categorical cross entropy function. Te formula for binary
cross entropy (equation (11)) and multiclass or categorical
cross entropy (equation (12)) can be presented as follows:

BCE � −
1
n

􏽘

n

i�1
yi. log 􏽢yi( 􏼁 + 1 − yi( 􏼁. log 1 − 􏽢yi( 􏼁( 􏼁, (11)

CCE � −
1
N

􏽘

N

i�0
􏽘

J

j�0
yj. log 􏽢yj􏼐 􏼑 + 1 − yj􏼐 􏼑. log 1 − 􏽢yj􏼐 􏼑􏼐 􏼑. (12)

3.2.7. Adam Optimizer. Te “exponentially weighted aver-
age” of the gradients is taken into account by this approach
in order to speed up the gradient descent procedure. Our
model is trained with Adam Optimizer with a learning rate
of 0.0001 for 500 epochs. Te Adam optimizer abides by the
following equations:

􏽢mt �
mt

1 − βt
1

, (13)

􏽢vt �
vt

1 − βt
2

. (14)

3.2.8. Backpropagation Algorithm. Tis algorithm checks
errors by going backward from output nodes to input
nodes. It helps to evaluate the efect of a certain input
variable on a network output. For the whole network, we
have trained with a backpropagation algorithm. For
backpropagation, we have created a list of mistakes and
used visualization to see how the change in training
afects the error. Te mistake will be subtracted from the
training data to gather and display accuracy. We have
increased the overall performance metrics of the pro-
posed model by reducing errors. Our training method-
ology is operating quite successfully.

In order to create our model, we used a Jupyter
notebook and leveraged machine and deep learning li-
braries. We have thoroughly examined NSL-KDD
datasets. When we have experienced this dataset and
taken fewer layers in the network model, the result be-
comes low, and if we take more, the performance would
be overftting. Tus, the network architecture used batch
normalization, dropout layers, and stacking many layers
of LSTM cells in a more useful way. In order to improve
their stability, maximum accuracy is obtained and op-
timum multilayer architecture is also explored, so real-
world implementation of our optimum architecture
would show a better real performance. Terefore, we can
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conclude that the proposed optimum multilayer archi-
tecture shown in Figure 3 would be workable in real
applications.

3.3. Proposed Methodology. For the purpose of detecting
network intrusion, the paper employed a multilayer LSTM
model in which training is done using the NSL-
KDDTest + datasets. As depicted in Figure 4, this process
involves multiple steps.

3.3.1. Dataset. In this work, the NSL-KDDTest+ datasets
are used for the detection of intrusion in a network
(which is a newer version of the KDD99 CUP dataset). It
is publicly available for use in the UNB data repository. It
contains normal records as well as records of attacks such
as denial of service (DoS) attacks that disrupt service
availability, probe attacks that extract detailed infor-
mation from servers, user-to-root (U2R) attacks that
attempt to exploit system vulnerabilities in order to gain
super user privileges, and remote to local (R2L) attacks
that send packets to a machine over a network that has no
account in order to lead to vulnerability issues and gain
access to secure information [19]. Te number of total
samples of normal types and attack types was 22544 on
NSL-KDDTest+.

3.3.2. Remove Null Values and Duplicate Rows. In the data
set, there are lots of null values and it does not have a column
name.Terefore, we have to provide a name and remove the
attribute “difculty_level,” set descriptive statistics of the
dataset as well as fnd a number of attack labels. Datasets are
being changed attack labels to their respective attack class
and calling the change_label() function and distribution of
attack classes.

3.3.3. Standard Scaler or Normalization of Numerical
Variables. In this step, the required libraries are imported
and selected numeric attribute columns from the data. Ten
a standard scaler is applied to normalize and call the nor-
malization() function.

3.3.4. One-Hot Encoding of Categorical Variables. A re-
quired library has been imported to plot and explores the
distribution of normal and abnormal labels by using one-hot
encoding. For multiclass classifcation, a data frame with
multiclass labels such as Dos, Probe, R2L, U2R, and normal
has been created where the label encoding 0, 1, 2, 3, and 4 are
used for Dos, normal, probe, R2L, and U2R, respectively.

3.3.5. Feature Selection Based on Correlation. Tis work
proposes a new feature selection algorithm to address the
problem of data feature redundancy. Firstly, the algorithm
calculates the importance of sample features by the random
forest algorithm and ranks them in order of importance;
then analyzes the correlation between features by Pearson’s
index, and fnally combines the two results to select the

features. Te pseudo-code of the feature selection algorithm
is proposed as shown in the following algorithm:

3.3.6. Model Evaluation. To provide a comprehensive anal-
ysis of the proposed model, fve evaluation metrics are used,
including accuracy, precision, recall, F1-measure, and ROC-
score. Tese metrics are calculated by following equations:

Accuracy �
True Positive + TrueNegative

Total
, (15)

Precision �
True Positive

True Positive + False Positive
, (16)

Recall �
True Positive

True Positive + FalseNegative
, (17)

F1 − Measure � 2
PrecisionxRecall
Precision + Recall

, (18)

A receiver operating characteristic (ROC) curve provides
an overview of the trade-of between the true positive rate
and false positive rate for a predictive model using diferent
probability thresholds for performance metrics.

Datasets

Remove null values

Remove duplicate rows

Divide columns
according to data type

Result analysis

Merge processed features into single

Feature selection based on correlation

Split dataset into train and test set

Train proposed model with the train data

Evaluate proposed model with the test data

Numeric data
standardization using

standard scaler

Categorical data one
hot encoding

Figure 4: Methodology of the proposed model.
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4. Result and Discussion

Tis section is decorated with the results from diferent
experiments and we have also provided a comparative
analysis with some existing approaches.

4.1. Model Training and Validation. We have properly ex-
amined NSL-KDD datasets that are publicly available for use
in the UNB data repository. All the experiments in this paper
are performed using the Keras framework with the backend
TensorFlow. Tese tests were carried out on a computer
running Python 3.7 and Windows 10 with an Intel Corei7
CPU operating at 2.4GHz, 8GB of RAM, and 1 TB of
secondary storage. In order to create our models, we used
Jupyter notebook and leveraged machine and deep learning
libraries. For binary classifcation or multiclass classifcation
training, evaluation time depends on system parameters and
specifcations because deep learning requires good confg-
uration for the fast execution of tasks. We have divided our
data into a training set and a validation set in order to
determine whether our model is an optimal ft. Te vali-
dation set is primarily used to assess the model’s perfor-
mance; the training set is utilized to train the model. In our
dataset, 80% of the data are used for model training, while
the remaining 20% are taken to create the validation set of
data. Training loss is an error in the training set of data. We
encounter various errors after providing the trained network
for the validation set of data. Tis error is known as a
validation loss. Te link between training loss and validation
loss, as well as between training accuracy and validation
accuracy, is explored below.

4.2. Results of Binary and Multiclass Classifcation. On the
NSL-KDD dataset, we have applied both binary classifcation
and multiclass classifcation experiments to assess the per-
formance of the proposedmodel.Tis dataset is a completely
balanced dataset, meaning for each target class there is an
equal number of labels. We have eliminated duplicate fea-
tures from the original dataset. After careful consideration,
the accuracy rate can be a quite reliable performance metric
for evaluating learning models. In the experiments, we have
analyzed using evaluation metrics including precision, re-
call, F1-score, and accuracy for test sets. According to Ta-
ble 1, it can be observed that the proposed optimum

multilayer architecture exhibits the best performance
compared to some cited approaches.

4.2.1. Binary Classifcation. In binary classifcation, we have
carried out comprehensive experiments to evaluate the
performance of the LSTM model on the NSL-
KDDTest + dataset. Tere are two classes in the binary
classifcation task, normal and attack/intrusion. Our pro-
posed model achieves a high accuracy of 95%. Te prime
reason is that we have utilized network trafc data to learn
across stacking multiple layers of LSTM cells in a more
efective manner. By carefully reviewing the connection data
of the targeted item, it is simple to identify such an attack
and can be recognized quickly. As a result, we have obtained
a decent classifcation outcome as shown in Figure 5. In the
case of precision, a good number of positive class predictions
have been obtained. Hence, the proposed approach performs
more accurately (95%). For the F1-score, we are able to
identify real threats correctly which is why false alarms do
not disturb us, thus, we can achieve the highest values of 95%
compared to other models by reducing error with the help of
the backpropagation algorithm. For recall, more positive
samples have been detected, therefore, our model obtained
the best results and peaked at 95%. Furthermore, we
achieved 98% of the ROC-AUC score which shows useful
performance metrics that lead to a raised performance by
employing dropout layers and batch normalizing. We have
processed numerical and categorical features diferently.
Tis feature selection has been done prior to training in

Input: data frame
Output: selected feature
Procedure:

(1) Creating a data frame with only numeric attributes of binary class and multiclass
(2) Encoded label attribute
(3) Finding the attributes which have more than 0.5 correlation with the encoded attack label attribute
(4) Selecting attributes found by using the Pearson correlation coefcient
(5) Joining the selected attribute with the one-hot encoded categorical data frame
(6) Joining one-hot encoded, and original attack label attribute
(7) Obtain the selected feature

ALGORITHM 1: Feature selection algorithm (RFP).
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Figure 5: Performance of the proposed model for binary
classifcation.
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order to remove duplicate and unnecessary features from the
datasets. We have discarded the features that have less
correlation.

For binary classifcation, training accuracy and valida-
tion accuracy, and training loss and validation loss of the
proposed model are illustrated in Figures 6(a) and 6(b),
respectively. By evaluating the model’s error on the training
set, it measures the model’s error. After every batch, we
calculated the training loss. Tis is usually visualized by
plotting a curve of the training loss. After each epoch, the
validation loss is calculated.Tis helps us determine whether
the model still needs to be adjusted. Both the training loss
and the validation loss start to decline and then stabilize at a
certain point. Tis denotes a model that is properly ftted,
meaning it does not overft or underft. With increasing
epochs, train error and validation error decrease. Train
accuracy and validation accuracy rise quickly as train loss
and validation loss decrease. It indicated that the proposed
model is capable to avoid model overftting for enhancing
the overall model performance using stacking multiple
layers of LSTM cells in a more efective strategy.

4.2.2. Multiclass Classifcation. We have also carried out a
multiclass classifcation experiment on the same NSL-
KDDTest + dataset to assess the efectiveness of the proposed
multilayer LSTM model. Tere are 5 diferent classes for
multiclass classifcation tasks including normal, DoS attack,
R2L attack, Probe attack, and U2R attack. Due to one-hot
encoding to handle categorical features, there are 87 features
we have used considering corresponding dummy variables.
Te characteristic features are converted into numerical
values using a one-hot encoding process. Te results of the
suggested multilayer LSTM model on the NSL-
KDDTest + datasets are obtained with greater accuracy of
96% by applying efective feature selection. In this experi-
ment, we have concentrated on a particular ReLU activation
variant because, in earlier studies, this activation function in
hidden layers produces the best performance. Figure 7
demonstrates outstanding performance for the multiclass
dataset. Te precision of 83% demonstrates the proposed
model predicts positive. For the F1 score, we have accurately
recognized serious dangers and are unperturbed by false
alarms. Our model reaches the highest results with 93% for
the F1-measure compared to some other cited works. Our
model also shows the best outcomes (100%) for recall which
is the percentage of a certain class correctly classifed as
positive to the total number of positive samples. Further-
more, we have got 98% of the ROC-AUC score, demon-
strating a relevant performance metric.

For multiclass classifcation, Figures 8(a) and 8(b) show
training accuracy and validation accuracy, and training loss
and validation loss of the suggested approach, respectively.
At a certain point, the validation loss and training loss both
start to decline and then stabilize. Tis suggests the model is
well-ftted, meaning it is neither overftting nor underftting.
Tese fgures show that train error and validation error
decrease as the number of epochs rises. Additionally, when
train loss and validation loss fall, train accuracy and

validation accuracy swiftly increase. It demonstrated that the
proposed model obtained the optimal ft, which improved
the model’s overall performance.

4.3. Discussion. Comparing multiple algorithms in such a
way is for reference purposes only. It is challenging for a
model to function successfully in every setting since in-
trusion detection systems difer in their classifcation results.

4.3.1. For Binary Classifcation. Our proposed model shows
the best performance compared to all models cited in Table 1
with an overall accuracy of 95% and an F-1 score of 95% in
binary classifcation on the NSL-KDDTest + dataset and a
ROC-AUC score of 98%. Yin et al. [10], who used an RNN-
IDS, achieved only 83.28% accuracy for the
KDDTest + dataset. Ait Tchakoucht and Ezziyyani [11] de-
veloped recurrent neural networks (RNN) with the multi-
layered echo-state machine (ML-ESM) to model intrusion
detection with a low accuracy of 83%. Imrana et al. [14] used
a BiDLSTM method with a recall rate and accuracy of
90.79% and 94.26%, respectively. Rajesh Kanna and Santhi
[16], the authors used OCNN-HMLSTMmethods, achieving
precision rate and accuracy of 86.71% and 90.67%, re-
spectively. For the F1-score value, which is the weighted
average of precision and recall, our model shows 95.00%
accuracy in binary classifcation having the best outcome
compared to the existing approaches.

4.3.2. For Multiclass Classifcation. Our proposed model
shows excellent results by ofering a recall of 100%, and an
accuracy of 96.00% in multiclass classifcation on the NSL-
KDDTest + datasets and a ROC-AUC score of 98%. Only
83.85% accuracy was obtained for the NSL-
KDDTest + dataset by Hou et al. [8] who applied anHLSTM-
IDS. In Yin et al. [10], the authors used an RNN-IDS and
claimed an accuracy of 81.29% for multiclass classifcation
on the NSL-KDD dataset. Tey did not mention the value of
recall and precision. Ait Tchakoucht and Ezziyyani [11]
claimed that their RNN-MLESM approach achieved an
accuracy of 81% when performing the 4-class classifcation
on the NSL-KDDTest + dataset. Shone et al. [12], the author
used an S-NDAE and achieved an accuracy of 85.42%. Also,
Le et al. [13] claimed their LSTM model achieved an ac-
curacy of 92.00%. Imrana et al. [14] used BiDLSTM
methods, achieving recall, F1-score, and accuracy, respec-
tively, of 91.36%, 91.67%, and 91.36%. Kunang et al. [15]
developed DAE+DNN with an accuracy of 83.83%. Imrana
et al. [17] developed Chi-square BidLSTM, achieving an
accuracy of 95.62%. Tis comparative discussion shows that
our proposed model showed superior results compared to all
methods cited in Table 2.

4.3.3. Limitation. Te outcome of the experiments shows
that the proposed method can be applied to successfully
identify intrusion in network systems. However, compared
to the existing approaches, the proposed method’s multi-
layer LSTM model is more sophisticated due to class
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Figure 8: (a) Training accuracy and validation accuracy and (b) training loss and validation loss of the proposed model for multiclass
classifcation.
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Figure 6: (a) Training accuracy and validation accuracy and (b) training loss and validation loss of the proposed model for binary
classifcation.
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Figure 7: Performance of the proposed model for multiclass classifcation.

Table 1: Comparison with the state of arts for binary classifcation.

Reference Method Accuracy (%) Precision (%) Recall (%) F1-score (%)
Yin et al. [10] RNN 83.28 — — —
Ait Tchakoucht and Ezziyyani [11] RNN-MLESM 83.00 — — —
Imrana et al. [14] BiDLSTM 94.26 99. 5 90.79 94.74
Rajesh Kanna and Santhi [16] OCNN-HMLSTM 90.67 86.71 95.19 91.46
Tis work Multilayer LSTM 95.  95.00 95.00 95.  
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imbalanced issues that require more training time. More-
over, we have obtained the lowest precision score of 83% in
multiclass classifcation on the NSL-KDDTest + datasets.
Tese facts are the key restrictions of this work.

5. Conclusion

In this paper, an optimum multilayer architecture is built in
order to attain maximum accuracy by employing stacking
multiple layers of LSTM cells in a more efective approach. It
possesses better stability and performs consistently. Te
other aspects of the proposed technique include the efective
enhancement of feature selection, the prevention of model
overftting by dropout layers and batch normalization, the
capability to eliminate lower correlation, the ability to
handle categorical features by one-hot encoding, and the
capacity to reduce error by using the backpropagation
technique. Te performance of the proposed model presents
an accuracy of 95% for binary classifcation and an accuracy
of 96% for multiclass classifcation on the NSL-
KDDTest + datasets.Te proposed technique is able to detect
the majority of the attacks with a 98% ROC-AUC score both
in binary and multiclass classifcation on the NSL-
KDDTest + datasets. Our optimum multilayer architecture
would be implemented on real-time applications due to
dealing with authentic datasets and achieving great per-
formance. For future works, we may prepare a customized
dataset and elaborate a hybrid model, addressing the class
imbalanced issues for intrusion detection for real-world
implementation and simulation. In conclusion, deep
learning analysis in the feld of cyber security is still complex,
however, the overall performance evaluation metrics of our
proposed model are robust and efective compared to other
relevant approaches.
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