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By o�oading computation tasks, multi-access edge computing (MEC) supports diverse services and reduces delay and energy
consumption of mobile devices (MDs). However, limited resources of edge servers may be the bottleneck for task computing in
high-density scenarios. To address this challenge, by leveraging the underutilized resources of parked vehicles to execute tasks, we
propose a parked vehicle-assisted multi-access edge computing (PV-assisted MEC) architecture, which enables MEC servers to
expand their capability �exibly. To achieve e�cient o�oading, we propose a PV-assisted MEC o�oading scheme in a multi-MD
environment. We design a game-based distributed algorithm to minimize the overhead of MDs and further reduce the burden on
the MEC server. Simulation results show that compared with the commonMEC system, our scheme can reduce the burden on the
MEC server by 5% and the o�oading overhead by 17%.

1. Introduction

With the improvement of mobile devices’ capabilities and the
ever-increasing interest in mobile applications, delay-sensitive
and computation-intensive mobile applications have been
emerging and drawing signi�cant attentions, spanning tech-
nologies such as augmented reality, speech-to-text conversion,
image processing, and interactive online games.However, due to
the scarcity of resources, mobile devices are usually unable to
meet the massive computing demands. �e solution to this
problem lies in improving the communication infrastructure by
computation o�oading [1–3]. Multi-access edge computing
(MEC) is regarded as a key technology and architectural concept
for the improvement of the computation o�oading e�ciency.
MEC aims at extending cloud computing capabilities to the
edge. Mobile devices (MDs) can o�oad tasks to nearby network
edge servers [4]. For example, video streams and images col-
lected through sensors or camerasmounted on the vehiclesmust
be processed in real time to detect surrounding objects, rec-
ognize tra�c lights, etc., to ensure the safety of autonomous

driving. However, vehicles do not have the capacity to process
large amounts of images and videos instantly, so tasks are
o�oaded to edge server for processing, reducing the incidence of
tra�c accidents. Computation o�oading technology in MEC
not only overcomes the shortage of computing capabilities on
mobile terminals but also avoids huge latency caused by
transferring tasks to the cloud [5, 6]. However, existing MEC
servers tend to have lightweight computing resources due to cost
constraints, which means they are still not well equipped to
handle the ever-growing task demands.

Scholars have studied the problem that it is di�cult for a
single VEC server to meet the strict latency requirements of
MDs. �e authors in [5] proposed a tiered o�oading
framework for edge computing, which utilizes nearby
backup computing servers to make up for the insu�cient
MEC server resources. Guo and Liu [2] proposed a cloud-
MEC collaborative computation o�oading scheme with
centralized cloud and multi-access edge computing over Fi-
Wi network architecture. In addition, idle resources in
unmanned aerial vehicles (UAVs) were used as a

Hindawi
Scientific Programming
Volume 2022, Article ID 7394689, 14 pages
https://doi.org/10.1155/2022/7394689

mailto:fyfhappy@bistu.edu.cn
https://orcid.org/0000-0001-5475-5650
https://orcid.org/0000-0002-9076-085X
https://orcid.org/0000-0001-5052-6463
https://orcid.org/0000-0002-5638-8521
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7394689


supplement to the edge computing server to provide ef-
fective resource utilization and reliable service [7].

With the rapid development of the automotive industry,
vehicles are equipped with an ever-increasing amount of
communication and computing resources. Several works
have focused on vehicle-assisted edge network to improve
network service quality by leveraging idle resources in ve-
hicles. In this network, idle resources are used to compute
tasks to assist the edge network as vehicles with idle re-
sources approaching vehicles carrying computation tasks. In
daily life, 70% of personal vehicles are parked for an average
of more than 20 hours per day [8]. 'ese parked vehicles
have a lot of idle computing, storage, and communication
resources, as well as plenty of energy. 'erefore, utilizing
these idle resources is a promising way to improve network
efficiency.

'e use of parked vehicles to support network services
has two advantages that cannot be ignored. On the one hand,
parked vehicles are relatively stable in terms of communi-
cation. A moving vehicle may change its position frequently,
which may cause the connection between the vehicle and the
server to become unstable and affect the efficiency of task
execution. In contrast, parked vehicles may remain sta-
tionary for long periods of time. On the other hand, parked
vehicles involved in task offloading indirectly extend the
service area of VEC. Outside the coverage of roadside units
(RSUs), parked vehicles can serve as static nodes and service
infrastructure, alleviating the shortage of edge server re-
sources and supporting interconnection between vehicles
and servers [9].

In this work, unlike existing computation offloading
studies, we focus on reducing MDs’ delay and energy
consumption to improve quality of service (QoS). In ad-
dition, parked vehicles that can be used as service nodes in
this work include not only those parked centrally in parking
lots but also those parked scattered on the roadside, where
legally permitted. We focus on the design of parked vehicle-
assisted MEC architecture and the corresponding efficient
computation offloading scheme. 'e main contributions of
this study are as follows:

(i) A parked vehicle-assisted multi-access edge com-
puting (PV-assistedMEC) architecture is presented,
in which nearby parked vehicles can help extend the
service capabilities of the MEC system.

(ii) 'e offloading decision problem is formulated as a
noncooperation game. A game-based PV-assisted
task offloading algorithm (GPTOA) is proposed,
which decides whether eachMD should offload and,
if so, to which channel of MEC server or which PV.

(iii) Simulation results show that the GPTOA not only
effectively reduces the burden on the MEC server
but also achieves significant performance im-
provements in terms of offloading overhead.

'e rest of this study is organized as follows. First, re-
lated works are discussed in Section 2. Second, the PV-
assisted MEC architecture is described in Section 3. Next,
Section 4 presents the system model. After that, Section 5

formulates the task offloading problem and proposes a
game-based PV-assisted task offloading algorithm. Extensive
simulation results are provided in Section 6, followed by
conclusions in Section 7.

2. Related Work

'ere are a number of studies focusing on mobile appli-
cations in MEC. Most of these focused on processing data
and improving service qualities [10–15]. Zhang et al. [16]
considered load balancing of computation resources on the
edge servers and the highly dynamical nature of the ve-
hicular networks, which led them to introduce fiber-wireless
(Fi-Wi) technology to enhance vehicle edge computing
network (VECN). 'en, they used a game theory-based
nearest task offloading algorithm and an approximate load
balancing task offloading algorithm to solve the delay
minimization problem. Cheng et al. [17] proposed a method
to predict Wi-Fi offload potential and access costs by jointly
considering user satisfaction, offload performance, and
mobile network operators’ revenues.'e results showed that
this scheme can improve the average utility of users and
reduce service latency. Chen et al. [18] showed that it is NP-
hard to find centralized optimum for task offloading in MEC
with the goal of minimizing the overall computation
overhead. Hence, they adopt a game-theoretic approach for
achieving efficient offloading in a distributed manner.

'e recent advent of vehicle-to-everything (V2X)
communication technology makes vehicles an important
network resource for improving network performance. Ding
et al. [19] used CR (cognitive radio) router-enabled vehicles
to transmit data to the desired location. Feng [20] proposed
the hybrid vehicle edge cloud (HVC) framework, which
made it possible to share available resources with neigh-
boring vehicles through vehicle-to-vehicle (V2V) commu-
nication. Zhang et al. [21] investigated the effectiveness of
computational transport strategies for vehicle-to-infra-
structure (V2I) and V2V communication modes. 'ey
proposed an efficient predictive combination-mode rele-
gation scheme that adaptively offloaded tasks to the MEC
servers via direct uploading or predictive relay transmis-
sions. Huang et al. [22] introduced the concept of vehicle
neighbor group (VNG), which made it convenient to share
similar services through V2V communication. Considering
the similarity of tasks and computational capability of ve-
hicles, Qiao et al. [23] divided vehicles into task computing
sub-cloudlet and task offloading sub-cloudlet. Based on the
two sub-cloudlets, they proposed a collaborative task off-
loading scheme that can effectively reduce the number of
similar tasks transferred to MEC servers.

Furthermore, certain existing works focused on ex-
ploring ways to leverage the communication, storage, and
computation capacity of parked vehicles, in which vehicles
became service nodes for computation offloading. Liu et al.
[24] proposed a vehicle edge computing network architec-
ture in which vehicles act as edge servers to compute tasks. A
problem with the objective of maximizing the long-term
utility of the VEC network was presented in the study,
modeled as a Markov decision process, and solved using two
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reinforcement learning methods. Huang et al. [25] modeled
the relationship between users, MEC server, and parking lot
as a Stackelberg game. 'ey presented a sub-gradient-based
iterative algorithm to determine the workload distribution
among parked vehicles and minimize the overall cost to the
users. Li et al. [26] proposed a three-stage contract-Stack-
elberg offloading incentive mechanism to maximize the
utility of vehicles, operators, and parking lot agents. Han
et al. [27] proposed a dynamic pricing strategy that mini-
mizes the average cost of the MEC system under the con-
straints on service quality by continuously adjusting the
price according to the current system state.

By introducing parking lots as agents, many existing
studies focused on utilizing the communication and com-
putation capabilities of parked vehicles. 'e benefits and
costs of parking vehicles and the costs to service users were
taken into account. However, in addition to the vehicles
parked centrally in parking lots, computing and commu-
nication channel resources of vehicles scattered on the
roadside are not negligible. Moreover, in most cases, the
quality of user experience should be prioritized. 'erefore,
in this study, based on the research work proposed in [18],
we propose an PV-assisted MEC architecture to enhance the
MEC network, in which parked vehicles can serve MDs
directly. In addition, we propose a game-based task off-
loading algorithm to minimize the delay and energy con-
sumption for service users.

3. Parked Vehicle-Assisted Multi-Access Edge
Computing Architecture

With the advent of smart cars, more and more cars can be
awakened to perform tasks even when parked. For example,
when a parked Tesla car is in sentry mode or dogmode, some
of its safety-related features are still working. With the in-
creasing development of artificial intelligence, we believe
that cars will become increasingly more intelligent. In the
future, parked cars may support some modes that could
provide services to other vehicles. 'e research presented in
this study is conducted on this premise.

Although aspects such as incentives, communication
costs, security, and scheduling should be considered if
onboard computers in parked vehicles are to be used for
edge computing, the focus of this study was on computation
offloading strategy. 'erefore, these aspects are not con-
sidered in this study, but should be taken into consideration
in future studies to pursue a more complete solution.

A representative PV-assisted MEC service scenario is
illustrated in Figure 1. 'ere are a large number of MDs and
parked vehicles running computationally intensive and
delay-sensitive mobile applications. However, lightweight
MEC servers and limited bandwidth resources are insuffi-
cient for these applications. Idle resources in parked vehicles
can be used to relieve the pressure on the MEC. However,
due to “selfishness,” not all parked vehicles are willing to
provide resources. We assume that some parked vehicles can
be recruited through certain incentives, such as extended
parking opportunities or reduced parking fees. In addition,
we assume that the MEC system can certify recruited parked

vehicles to ensure the security of the service and can update
and monitor available resources of these parked vehicles in
real time to improve resource utilization. We refer to these
recruited certified parked vehicles as PVs. In summary, both
MEC servers and PVs can provide services to MDs.

Figure 2 illustrates a representative PV-assisted MEC
network architecture. Based on the original vehicular edge
computing architecture, we move the vehicles capable of
providing services from the device layer to the MEC layer to
enable utilization of parked vehicles’ resources and allow
them to provide services directly to MDs.

(1) Cloud Layer. 'e first layer provides centralized
cloud computing services and management func-
tions such as critical or complex event handling, key
data backup, and information authentication. 'e
PV-assisted MEC architecture employs a software-
defined network (SDN) controller to program,
manipulate, and configure network in a logically
centralized way.

(2) Edge Cloud Layer (MEC Layer). 'e second layer
consists of edge network access devices (e.g., RSU
and base station (BS)) and data service devices (e.g.,
MEC servers and PVs). Edge network access devices
are used for communication among edge facilities or
between layers. MEC servers with lightweight storage
and computing capabilities are deployed on edge
network access devices. MEC servers are responsible
for collecting service status information from
themselves and from PV service nodes parked in the
coverage area of RSU. Based on this information,
MEC servers can process or assign tasks to MDs. By
moving PVs from mobile device layer to MEC layer,
the service capacity can be improved and bandwidth
consumption can be reduced.

(3) Mobile Device Layer. 'e third layer consists of
mobile devices requesting services, such as vehicles,
smartphones, tablets, and laptops. MDs request
services by connecting to BSs via cellular network.
MEC server and parked vehicles can provide services
to terminal devices via cellular network or V2X.
Here, V2Xmay be a link via cellular network or a link
via dedicated short-range communications (DSRCs).
Note that as a special kind of mobile device, vehicles
are divided into two categories in this study: PVs and
others. 'e former are located at the MEC layer as
service providers, while the latter are located at the
mobile device layer as service requesters.

Figure 3 illustrates the communication procedure be-
tween MD, MEC server, and PVs. First, when an MD
generates a task, it sends the task request to the MEC server.
Second, through iterative negotiation between the MEC
server and the MDs, the task allocation result is calculated
based on the status of the MDs and the MEC server. 'en,
the MEC server returns the task allocation result to the MD.
When the task allocation result indicates that the task should
be offloaded to a PV, the MEC also needs to notify the
relevant PV (dotted arrow). 'ird, the MD sends task input
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data to the MEC server (solid line) or PV (dotted line)
according to the task allocation information. Fourth, the
MEC server (solid line) or PV (dotted line) processes the task
and then returns the task result to the MD. Finally, the MD
obtains the result and sends service satisfaction information
back to the MEC server to reward the specific PV.

4. System Model

4.1. Network Model. We assign a unique identifier to each
task and record the characteristics of tasks, such as traffic size
and computation workload, in a globally shared feature
table: T � T1, . . . , TM􏼈 􏼉. Without loss of generality, we
assume that each MD generates only one task Ti ≜ di, ci􏼈 􏼉,

i ∈M � 1, 2, . . . , M{ }, in a time period and tasks cannot be
further divided. Here, di denotes the size of the task gen-
erated by MD i and ci denotes the computation resources
required by this task. We assume the existence of a wireless
BS through which any MD can offload its computation task
to a nearby MEC server (MS). Each wireless BS has C or-
thogonal frequency channels, denoted as C � 1, 2, . . . , C{ }.
Besides, in the coverage area of a BS, there is a set of PVs,
denoted by P � C + 1, . . . , C + P{ }. We consider a quasi-
static scenario where the status of MDs, PVs, channels, and
the MEC server remains unchanged for a given time period,
whereas in different time periods, the status may change. For
simplicity, we ignore the cost of establishing secure con-
nections during transmissions. We denote si ∈ 0{ }∪C∪P,
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Figure 2: PV-assisted MEC network architecture.

Provide
service

Provide
service

Request
service

Provide
service

Request
service

BS with MEC server
BS coverage Region

V2X
Mobile Vehicle
Parked Vehicle

Request
service

Provide
service

Figure 1: PV-assisted MEC service scenario.

4 Scientific Programming



i ∈M, as the selection decision variable. As shown in (1), let
si � 0 denote that MD i executes its task locally, and si > 0
denotes that MD i chooses to offload this task. When si � j,
j ∈ C indicates that MD i will offload task Ti to MEC server
via channel j, while j ∈ P indicates that the task will be
executed by PV j. Let s � s1, s2, . . . , sM􏼈 􏼉 denote the set of
selection decisions for all MDs. For ease of reference, we list
key notations used in this study in Table 1.

si �

0, if M D i computestaskTi locally,

j, j ∈ C, if M D i off loadstaskTi toMEC server via channel j,

k, k ∈ P, if M D i off loadstaskTi toPV k.

⎧⎪⎪⎨

⎪⎪⎩

(1)

4.2. Communication Model. In this section, we try to define
the transmission rate of offloading. It is assumed that mobile
device is equipped with a single antenna that can transmit
data for one task at a time. When many MDs offload their
tasks to the same MEC server, severe wireless channel in-
terference may occur.'erefore, wireless channel conditions
should be considered during transmission. If MD i chooses
to offload its task to the MS via wireless channel, the data
transmission rate for Ti can be expressed as follows:

r
MS
i � WMlog2 1 +

qih
MS
i

ϖ0 + 􏽐k∈M/ i{ }: si�sk∈Cqkh
MS
k

⎛⎝ ⎞⎠. (2)

Here, WM is the bandwidth, qi and hMS
i are the trans-

mission power and channel gain of MD i to the MS via
nearby BS, respectively, and ϖ0 is the background noise;
􏽐k∈M/ i{ }: si�sk∈CqkhMS

k is the wireless channel interference
generated by other MDs using the same channel.

MD i and PV j can communicate with each other only if
the distance between them is less than a certain distance
dV2V
max . We assume that any PV can only serve one MD during

the computation offloading period. 'erefore, there are no
channel conflicts between MDs when tasks are offloaded to
PVs. When MD i offloads its task Ti to PV j that is not

occupied by other MDs, the data transmission rate can be
expressed as follows:

r
PV
i � WPlog2 1 +

qih
PV
i

ϖ0
􏼠 􏼡. (3)

Here, WP is the bandwidth between MD and PV.

4.3. Computation Model of Mobile Devices. We use fLoc
i to

denote the computational power of MD i. 'us, the delay of
the locally executed task Ti can be expressed as follows:

t
Loc
i �

ci

f
Loc
i

. (4)

Similar to [28], we assume that the power consumption
of a certain MD is proportional to the cube of its compu-
tational power. 'e energy consumption coefficient μ is
related to the chip’s hardware architecture. 'e device’s
energy consumption for local execution can be expressed as
follows:

e
Loc
i � μt

Loc
i f

Loc
i􏼐 􏼑

3
. (5)

Considering that MDs are usually energy and delay
sensitive, we define parameters αi and βi (αi, βi ∈ [0, 1],
αi + βi � 1) as the weights for delay and energy in the
computing of overhead for MD i, respectively. MDs tend to
save time (larger αi) when tasks are delay sensitive, and they
tend to save energy (larger βi) when batteries are low.

'us, the overhead of local execution can be expressed as
follows:

K
Loc
i � αit

Loc
i + βie

Loc
i . (6)

4.4. Computation Model of MEC Server. For most mobile
applications, such as fingerprint, face, or iris recognition,
and sensor data processing, the size of the computation
result is much smaller than the size of the input data. We
ignore the transmission time of computation results.

MEC serverMD PVs

Request a computation task.1

Notify task assignment result.2

Submit the computation task.3

Return computation result.4

Notify the relevant PV.2

Feedback completion
information.

5

Figure 3: Sequence diagram for communication procedure.
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'erefore, the delay for offloading task Ti to MEC server MS
can be divided into two parts: data uploading time and task
execution time, expressed as follows:

t
MS
i � t

MS
i,up + t

MS
i,exe �

di

r
MS
i

+
ci

f
MS
i

, (7)

where fMS
i is MS′ computing capability.

Usually, the MEC server has sufficient power supply, so
the energy consumption on the MEC server can be ignored.
From MD’s perspective, the energy consumption of off-
loading task to MS comes from transmitting data over
wireless network and can be expressed as follows:

e
MS
i �

qidi

r
MS
i

. (8)

'us, the overhead for offloading task Ti to MEC server
can be expressed as follows:

K
MS
i � αit

MS
i + βie

MS
i . (9)

4.5. Computation Model of Parked Vehicles. Let fPV
j denote

the computing resource allocated to task Ti from PV j. 'e
delay for offloading task Ti to PV j(j ∈ P) can be expressed
as follows:

t
PV
i �

di

r
PV
i

+
ci

f
PV
j

. (10)

Similarly, energy consumption on PV j is ignored
(which will be considered in future works), and energy
consumption on MD for offloading task Ti to PV j can be
expressed as follows:

e
PV
i �

qidi

r
PV
i

. (11)

'us, the overhead of MD i for offloading task Ti to PV j

can be expressed as follows:

K
PV
i � αit

PV
i + βie

PV
i . (12)

5. Problem Formulation and Algorithm Design

5.1. Problem Formulation. According to Section 4, the
overhead of task Ti can be expressed as follows:

Ki si( 􏼁 �

K
Loc
i , if si � 0,

K
MS
i , if si � j, j ∈ C,

K
PV
i , if si � k, k ∈ P.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

'ere are 1 + C + P choices available for each task. Delay
and energy consumption may vary depending on offloading
strategies. 'erefore, the overall goal is to minimize the total
overhead of all MDs. 'us, the problem of optimizing the
total overhead for all MDs can be expressed as follows:

min
s

􏽘

M

i�1
Ki si( 􏼁,

s.t. 􏽘
i∈M

I si�0{ } + 􏽘
i∈M

I si∈C{ } + 􏽘
i∈M

I si∈P{ } � M,

􏽘

M

i�1
I si�j{ }⩽ 1, ∀j ∈ P,

d
V2V
i,PVj
≤ d

V2V
max , ∀si � j, j ∈ P,

d
V2I
i,MS ≤ d

V2I
max, ∀si � j, j ∈ C.

(14)

Table 1: Notations.

Symbol Description
M � 1, 2, . . . , M{ } Set of mobile devices
C � 1, 2, . . . , C{ } Set of channels on the MEC server
P � C + 1, . . . , C + P{ } Set of parked vehicles
T � T1, . . . , TM􏼈 􏼉 Set of tasks generated by MD
s � s1, . . . , sM􏼈 􏼉 Selection decisions set of tasks
αi, βi Delay and energy weights, αi, βi ∈ [0, 1], αi + βi � 1
di Computation data size of task Ti (bit)
ci Computing resources required by task Ti (cycles)
fLoc

i , fMS
i , fPV

i Computing ability of MD, MS, or PV i (Hz)
μ Energy consumption coefficient
dV2V

i,PVj
, dV2I

i,MS 'e distance between MD i and PV j /MS (m)
dmaxV2V, dmaxV2I 'e maximum communication distance of V2V/V2I (m)
ci Received interferences of MD i

ϖ0 Background noise (dBm)
WM, WP Uplink channel bandwidth between MD and MS/PV (Hz)
qi Transmission power of MD i (W)
hMS

i , hPV
i Channel gain from MD i to the MS/PV

rMS
i , rPV

i Transmission rate of MD i to MS/PV (bps)
tLoc
i , tMS

i , tPV
i Delay for local execution, offloading to MS/PV (seconds)

eLoc
i , eMS

i , ePV
i Energy consumption for local execution, offloading to MS/PV (joules)

KLoc
i , KMS

i , KPV
i Total overhead for local execution, offloading to MS/PV
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Here, I E{ } is the indicator function with I E{ } � 1 if the
event E is true and I E{ } � 0 otherwise. 'ere are four con-
straints for problem (P). Constraint (C1) is that every task
should be executed. Constraint (C2) is that each PV serves at
most one MD. Constraint (C3) is that MD i and PV j can
communicate only when they are close enough to each other.
Similarly, constraint (C4) is that MD i and the MEC server
can communicate only when they are close enough to each
other.

'e task set T can be divided into three mutually ex-
clusive subsets by the selection decisions:
T � TLoc ∪TMS ∪TPV. TLoc means that tasks are pro-
cessed locally,TMS means that tasks are offloaded to theMS,
and TPV means that tasks are offloaded to some PV.

By incorporating PVs as extra service providers for
computation offloading, the problem proposed in this study
is essentially a generalization of that proposed in [18].
However, it has been shown in [18] that the centralized
optimization problem for minimizing the system-wide
computation overhead is NP-hard. 'erefore, with PVs as
additional computation offloading providers, the problem
proposed in this study is also NP-hard and difficult to solve.
Similar to [18], the centralized cost minimizing problem for
PV-assisted MEC computation offloading can be trans-
formed into a distributed computation offloading decision
problem among mobile device users. In the computation
offloading process, each MD wants to reduce its overhead as
much as possible. 'erefore, they need to be aware of the
choices made by other MDs. Let s−i � (s1, . . . , si−1,

si+1, . . . , sM) be the selection decisions by all other MDs
except MD i. Based on s−i, MD i can make a proper decision
si to reduce its overhead. 'e distributed computation
offloading problem ((P′) can be defined as follows:

min
si∈s

Ki si, s−i( 􏼁, ∀i ∈M, (15)

in which the overhead function of mobile device i can be
defined as follows:

Ki si, s−i( 􏼁 �

K
Loc
i , if si � 0,

K
MS
i , if si � j, 0< j⩽C,

K
PV
i , if si � j, C< j⩽C + P, ∀k ∈M/ i{ }, si ≠ sk.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

Problem p′ can be formulated as a noncooperative game:
G � (M, Si􏼈 􏼉i∈M, Ki􏼈 􏼉i∈M) with finite players, where M is
the set of players, Si is the set of selection decisions for
player/MD i, and the overhead function Ki(si, s−i) is the cost
function to be minimized by each MD i.

In the next subsection, we will analyze the existence of
Nash equilibrium in the PV-assisted MEC computation
offloading game.

5.2. Nash Equilibrium Analysis. Here is the definition of the
important concept of Nash equilibrium [29].

Definition 1. A selection decision set s∗ � (s∗1 , . . . , s∗M) is a
Nash equilibrium of the PV-assisted MEC computation
offloading game, if at the equilibrium s∗, no MD can further
reduce its overhead by unilaterally changing its selection
decision, i.e.,

Ki s
∗
i , s
∗
−i( 􏼁⩽Ki si, s

∗
−i( 􏼁, ∀si ∈ Si, i ∈M. (17)

To study the existence of Nash equilibrium, we will first
introduce the concept of potential game [30].

Definition 2. A game is said to be an ordinal potential game
if the incentive of all players to change their strategy can be
expressed using a single global function called the potential
function: Φ(s), such that ∀i ∈M, s−i ∈ 􏽑

k≠ i

Sk, and
si
′, si ∈ Si, if

Ki si
′, s−i( 􏼁<Ki si, s−i( 􏼁. (18)

'en,

Φ si
′, s−i( 􏼁<Φ si, s−i( 􏼁. (19)

An important feature of the finite ordinal potential game
is that it always has a Nash equilibrium and it has the finite
improvement property. In other words, if finite players start
with an arbitrary strategy profile and iteratively deviate to
their unique best replies in each period, the process terminates
in an NE after finite steps. Next, before giving detailed proof
that the PV-assisted MEC computation offloading game is an
ordinal potential game, we have the following lemma.

Lemma 1. Given a strategy profile s, MD i can reduce its
computation overhead by offloading its task to theMEC server
if condition (Cm) holds and offloading its task to PV if
condition (C p) holds.

(Cm) : the received interference ci(s) � 􏽐k∈M/ i{ }:

si � sk∈CqkhMS
k satisfies ci(s)<TML

i and ci(s)<TMP
i , with

the following thresholds:

T
ML
i �

qih
MS
i

2 αidi+βiqidi/WM KLoc
i

−αit
MS
i,exe( )( ) − 1

− ϖ0, (20)

T
MP
i �

qih
MS
i

2 αidi+βiqidi/WM KPV
i

−αit
MS
i,exe( )( ) − 1

− ϖ0. (21)

(C p): PV j is not occupied by any other MD; i.e.,
j ∈ P, 􏽐k∈M/ i{ }I sk�j{ } � 0, and the computation overhead
KPV

i , KLoc
i satisfies KPV

i <KLoc
i , and

ci(s)>T
MP
i . (22)

Proof. For condition C m: according to equation (14), we
know that when the overhead satisfies
KMS

i <min KLoc
i , KPV

i􏼈 􏼉, i.e., KMS
i <KLoc

i and KMS
i <KPV

i , the
best strategy for MD i is to offload its task to the MEC server.

Scientific Programming 7



According to equations (7) to (9), the condition
KMS

i <KLoc
i is equivalent to the following:

αi

di

r
MS
i

+ αit
MS
i,exe + βi

qidi

r
MS
i

<K
Loc
i . (23)

'at is,

r
MS
i >

αidi + βiqidi

K
Loc
i − αit

MS
i,exe

. (24)

According to (2), we then have the following:

􏽘
k∈M/ i{ }: si�sk∈C

qkh
MS
k <

qih
MS
i

2αidi+βiqidi/WM KLoc
i

−αit
MS
i,exe( ) − 1

− ϖ0,

(25)

which is ci(s)<TML
i in condition (C m).

According to equations (7) to (12), the condition
KMS

i <KPV
i is equivalent to the following:

αi

di

r
MS
i

+ αit
MS
i,exe + βi

qidi

r
MS
i

<K
PV
i . (26)

'en, we have the following:

r
MS
i >

αidi + βiqidi

K
PV
i − αit

MS
i,exe

. (27)

Furthermore, according to (2), we can get ci(s)<TMP
i in

condition (C m).
For condition C p: the proof is straightforward and is

omitted here.
Based on Lemma 1, we will show that the PV-assisted

MEC computation offloading game is a potential game with
the potential function as follows:

Φ(s) �
1
2

􏽘

M

i�1
􏽘
k≠i

qih
MS
i qkh

MS
k I si�sk{ }I si∈[1,C]{ }

+ 􏽘
M

i�1
qih

MS
i T

MP
i I si∈(C,C+P]{ } + 􏽘

M

i�1
qih

MS
i T

ML
i I si�0{ }.

(28)

□

Theorem 1. ;e PV-assisted MEC computation offloading
game is a potential game with Φ(s) (equation 21) as the
potential function and hence always has a Nash equilibrium
and the finite improvement property.

Proof. Suppose thatMD i ∈M updates its decision selection
from si to si

′, and this leads to a decrease in the overhead
function, i.e., Ki(si, s−i)>Ki(si

′, s−i). According to Definition
2, we must show that this also leads to a decrease in the
potential function, i.e., Φ(si, s−i)>Φ(si

′, s−i). 'ere are eight
possible cases.

(1) si ∈ [1, C] and si
′ ∈ [1, C]

(2) si ∈ (C, C + P] and si
′ ∈ (C, C + P]

(3) si ∈ [1, C] and si
′ ∈ (C, C + P]

(4) si ∈ (C, C + P] and si
′ ∈ [1, C]

(5) si ∈ [1, C] and si
′ � 0

(6) si � 0 and si
′ ∈ [1, C]

(7) si ∈ (C, C + P] and si
′ � 0

(8) si � 0 and si
′ ∈ (C, C + P]

For case (1), according to equations (7) to (9), the
premise Ki(si, s−i)>Ki(si

′, s−i) implies that r′MS
i > rMS

i . 'en,
since the function Wmlog2(x) increases monotonically with
the variable x, according to equation (2), r′MS

i > rMS
i implies

that

􏽘
k∈M/ i{ }: si�sk∈C

qkh
MS
k > 􏽘

k∈M/ i{ }: si
′�sk∈C

qkh
MS
k .

(29)

Since si
′ ∈ [1, C] and si

′ ∈ [1, C], according to (28) and
(29), we have the following:

Φ si, s−i( 􏼁 −Φ si
′, s−i( 􏼁 �

1
2

􏽘

M

i�1
􏽘
k≠i

qih
MS
i qkh

MS
k I si�sk{ } −

1
2

􏽘

M

i�1
􏽘
k≠i

qih
MS
i qkh

MS
k I si
′�sk{ }

�
1
2
qih

MS
i 􏽘

k≠i
qkh

MS
k I si
′�sk{ } +

1
2

􏽘
k≠i

qkh
MS
k I si�sk{ }qih

MS
i

−
1
2
qih

MS
i 􏽘

k≠i
qkh

MS
k I si
′�sk{ } −

1
2

􏽘
k≠i

qkh
MS
k I sk�si

′{ }qih
MS
i

� qih
MS
i 􏽘

k≠i
qkh

MS
k I si�sk{ } − qih

MS
i 􏽘

k≠i
qkh

MS
k I si
′�sk{ }> 0.

(30)

8 Scientific Programming



For case (2), the premise Ki(si, s−i)>Ki(si
′, s−i) is

equivalent to KPV
i >KPV

i′ . According to the definition of TMP
i

(equation 19), if KPV
i >KPV

i′ , then TMP
i >TMP

i′ . 'en, we have
the following:

Φ si, s−i( 􏼁 −Φ si
′, s−i( 􏼁 � 􏽘

M

i�1
qih

MS
i T

MP
i I si∈(C,C+P]{ } − 􏽘

M

i�1
qih

MS
i T

MP
i I si

′∈(C,C+P]{ }

� qih
MS
i T

MP
i − qih

MS
i T

MP
i′ > 0.

(31)

For case (3), since si ∈ [1, C] and si
′ ∈ (C, C + P], from

Lemma 1(condition C p), we have ci(s)>TMP
i′ . 'is implies

that

Φ si, s−i( 􏼁 −Φ si
′, s−i( 􏼁 �

1
2

􏽘

M

i�1
􏽘
k≠i

qih
MS
i qkh

MS
k I si�sk{ }I si∈[1,C]{ } − qih

MS
i T

MP
i′

�
1
2
qih

MS
i 􏽘

k≠i
qkh

MS
k I si�sk{ } +

1
2

􏽘
k≠i

qkh
MS
k I sk�si{ }qih

MS
i − qih

MS
i T

MP
i′

� qih
MS
i 􏽘

k≠i
qkh

MS
k I si�sk{ } − qih

MS
i T

MP
i′ > 0.

(32)

Case (4) is the opposite of case (3), and its proof is
omitted here.

For case (5), since si ∈ [1, C] and si
′ � 0, it can be deduced

from Ki(si, s−i)>Ki(si
′, s−i) that KMS

i >KLoc
i . According to

Lemma 1 (condition C m), we have ci(s)>TML
i . 'en,

Φ si, s−i( 􏼁 −Φ si
′, s−i( 􏼁 �

1
2

􏽘

M

i�1
􏽘
k≠i

qih
MS
i qkh

MS
k I si�sk{ }I si∈[1,C]{ } − qih

MS
i T

ML
i

�
1
2
qih

MS
i 􏽘

k≠i
qkh

MS
k I si�sk{ } +

1
2

􏽘
k≠i

qkh
MS
k I sk�si{ }qih

MS
i − qih

MS
i T

ML
i

� qih
MS
i 􏽘

k≠i
qkh

MS
k I si�sk{ } − qih

MS
i T

ML
i > 0.

(33)

Case (6) is the opposite of case (5), and thus, its proof is
omitted here.

For case (7), si ∈ (C, C + P] and si
′ � 0 imply that

KPV
i >KLoc

i . 'en, according to the definitions of TML
i (Eq.

18) and TMP
i (equation 19), we have TMP

i >TML
i . 'erefore,

Φ si, s−i( 􏼁 −Φ si
′, s−i( 􏼃 � 􏽘

M

i�1
qih

MS
i T

MP
i I si∈(C,C+P]{ } − 􏽘

M

i�1
qih

MS
i T

ML
i I si�0{ }

� qih
MS
i T

MP
i − qih

MS
i T

ML
i > 0.

(34)

Case (8) is the opposite of case (7), and thus, its proof is
omitted here.

Combining results from the above cases, we can con-
clude that the PV-assisted MEC computation offloading
game is a potential game. □
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5.3. Algorithm Design. Algorithm 1 illustrates the game-
based PV-assisted task offloading algorithm (GPTOA) for
problem (P′). Similar to [18], the algorithm will run iter-
atively on each MD. 'e main idea of GPTOA is that, based
on the current state, each MD makes the best decision by
calculating the overhead according to (16) (Line 3).
Meanwhile, constraints (C1)–(C4) will be checked in each
iteration. When constraints (C3) and (C4) cannot be sat-
isfied, we set the overhead to infinity. During each iteration t,
MD i updates its decision selection si

′(t) based on the best
response and sends it to the MEC server as an update re-
quest, if si

′(t)≠ si(t − 1). 'e MEC server randomly selects
one decision selection si

′(t) from all update requests and
sends si
′(t) back toMD i for updating its decision for the next

iteration (Lines 4–8). 'e iteration continues until the de-
cision selection remains unchanged. At the end, the MEC
server will broadcast end message to all MDs and each MD
will execute the computation task according to the last
decision selection. According to the finite improvement
property of potential game ('eorem 1), the algorithm will
converge to a Nash equilibrium within finite number of
iterations.

In GPTOA, MDs execute operations in parallel in
each time slot. 'e most time-consuming operation is the
computing of the best response update process in Line 3,
which mainly involves the sorting operation over the
overhead of available offloading strategies for all MDs.
Since the sorting operation typically has a time com-
plexity of O(n log n), and the maximum number of
available choices for all MDs is not greater than C + P + 1,
therefore, the computational complexity of each time slot
will not exceed O(x log x), in which x � C + P + 1. If the
algorithm takes y time slots to terminate, the total
computational complexity of Algorithm 1 is
O(y · x log x).

Let Gi � qih
MS
i , Gmax � maxi∈M Gi􏼈 􏼉, Gmin � mini∈M Gi􏼈 􏼉,

and Tmax � maxi∈M TML
i , TMP

i􏼈 􏼉. For the upper bound of y,
similar to [18], we have the following result.

Theorem 2. When Gi and Ti are nonnegative integers for
any i ∈M, the game-based PV-assisted task offloading al-
gorithm will terminate within at most (G2

max/2Gmin)M2 +

(GmaxTmax/Gmin)M time slots, i.e., y⩽ (G2
max/2Gmin)

M2 + (GmaxTmax/Gmin)M.

Proof. According to equation (21) and the definition of Gi,
Gmax, Gmin, and Tmax, we have the following:

0⩽Φ(s)⩽
1
2

􏽘

M

i�1
􏽘

M

i�1
G
2
max + 􏽘

M

i�1
GmaxTmax �

1
2
G
2
maxM

2
+ GmaxTmaxM.

(35)

According to 'eorem 1, during each time slot, MD
i ∈M updates its decision si to decision si

′ and this action
leads to a decrease in its overhead function, i.e.,
Ki(si, s−i)>Ki(si

′, s−i). 'e key idea of this proof is to show
that this also leads to a decrease in the potential function by
at least Gmin, i.e.,

Φ si, s−i( 􏼁⩾Φ si
′, s−i( 􏼁 + Gmin. (36)

Similar to the proof of'eorem 1, there are eight cases to
consider.

For case (1), si ∈ [1, C] and si
′ ∈ [1, C]; according to (23),

we have the following:

Φ si, s−i( 􏼁 −Φ si
′, s−i( 􏼁 � Gi 􏽘

k≠i
GkI si�sk{ } − 􏽘

k≠i
GkI si
′�sk{ }

⎛⎝ ⎞⎠> 0.

(37)

Since Gi are nonnegative integers, we have the following:

􏽘
k≠i

GkI si�sk{ }⩾􏽘
k≠i

GkI si
′�sk{ } + 1. (38)

'en, based on (37):

Φ si, s−i( 􏼁≥Φ si
′, s−i( 􏼁 + Gi ≥Φ si

′, s−i( 􏼁 + Gmin. (39)

For other cases, the proofs are similar and are omitted
here. □

(1) initialize: MDs’ strategy set s(0) � 0, 0, . . . , 0{ };
(2) repeat
(3) for each MD i ∈M and each iteration t, calculate the overhead according to (16);
(4) MD i makes the best response si

′(t) as the selected strategy;
(5) if si

′(t)≠ si(t − 1) then
(6) send update request si

′(t) to the MEC server;
(7) if received si

′(t) from MEC server then
(8) set decision selection si(t) � si

′(t);
(9) else
(10) keep the decision selection unchanged, i.e., si(t) � si(t − 1);
(11) end if
(12) else
(13) keep the decision selection unchanged, i.e., si(t) � si(t − 1);
(14) end if
(15) until received END message

ALGORITHM 1: Game-based PV-assisted task offloading algorithm (GPTOA).
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6. Simulation Results

6.1. Parameter Settings. 'e GPTOA was simulated and
evaluated using Python with packages such as NumPy,
random, and SciPy. We considered the scenario where the
wireless BS had a coverage area of 50∗ 50 m2. Each BS had
C � 10 channels with a channel bandwidth of WM � 20
MHz.'e transmission power was qi � 400 mWatts, and the
background noise was ϖ0 � −100 dBm. Based on the radio
interference model for urban cellular radio environment, we
set the channel gain to hMS

i � d−α
i,r , where di,r was the distance

between MD i and the wireless BS, and α � 4 was the path
loss factor [18]. 'e maximum communication distances of
V2X were dV2V

max � 15 m and dV2I
max � 200 m, respectively [31].

'e energy consumption coefficient was μ � 1.
For computational tasks, the data size of offloaded task

Ti was di � 1 MB. 'e total number of CPU cycles (ci)

required by task Ti was randomly distributed in the interval
of (1, 1000) megacycles. 'e weight parameters for all MDs
were αi � βi � 0.5. We assumed that the values of weight
parameters remained constant during a single offloading
process. Since most MEC servers are equipped with multiple
CPUs, and multiple CPUs can be allocated to one MD at a
time, for ease of computation, it was assumed that the
computation power allocated to an MD by the MEC server
was fMS

i � 10 GHz. 'e computation power of MDs was
randomly distributed between [0.5, 1] GHz. 'e computa-
tion power of PVs was randomly distributed between
[0.5, 1, 1.5, 2] GHz.'e communication bandwidth between
PV and MD was WP � 20 MHz.

6.2. Performance Analysis. To evaluate the scheme proposed
in this work, we compared three schemes: (1) local only
(scheme 1): all MDs decide to compute their own tasks
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Figure 4: All MDs’ average delay, energy consumption, and overhead with different numbers of MDs.
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locally. (2) MEC offloading (scheme 2): the tasks are either
computed locally or are offloaded to theMEC server [18]. (3)
PV-assisted MEC offloading (our scheme): the tasks are
computed locally, offloaded to the MEC or PVs. 'e work
presented in [18] was treated as a special case with number of
PVs set to 0 in this study. To eliminate the effect of ran-
domness on the algorithm results, we conducted 1000 tests
and performed statistical analysis of the results as follows.

First, we fixed the number of PVs (service vehicles) to 40
to observe the changes in the metrics (average delay, energy
consumption, and total overhead of tasks, as well as task
assignment results and load on the MEC server) as the
number of MDs (service requesters) increased.

In Figure 4, the average delay, energy consumption, and
total overhead of three schemes are compared. We can see
that all three metrics of scheme 1 are higher than the other

schemes due to the limited local computation power. When
the number of MDs is less than 10, the three metrics are the
same for schemes 2 and 3. 'is can be explained by the lack
of tasks offloaded to PVs. As the number of MDs increases,
the metrics of scheme 3 grow less rapidly than the other two
schemes.When the number ofMDs is 30, scheme 3 results in
a 26% reduction in delay and a 17% reduction in total
overhead (on average) compared with scheme 2.

Figure 5 shows the task assignment results of the pro-
posed scheme. When the number of MDs is less than 10, all
tasks will be offloaded to MS, because MS has a shorter task
execution time. However, as the number of MDs increases,
no more tasks can be offloaded to MS. 'is is due to the fact
that when multiple tasks are offloaded to MS, it leads to
strong channel interference and heavier computational load,
which in turn causes intolerable delays. 'is causes some
MDs to give up offloading their tasks to the MS. In addition,
due to limited resources and short communication distance,
only a small portion of the PVs can serve MDs. 'erefore, as
the number of MDs increases, eventually, the number of
tasks executed locally will exceed the number of tasks off-
loaded to PVs.

Figure 6 shows the total workload allocated to the MEC
server under the three schemes. In scheme 1, no compu-
tation tasks are offloaded, so the burden on the MEC server
is 0.'e workload allocated to theMEC server in scheme 3 is
lower than that in scheme 2, because PVs share some of the
computation tasks. When the number of MDs is 30, scheme
3 reduces the workload for MS by 5%.

'en, we fixed the number of MDs to 30 to observe the
change in the metrics as the number of PVs increases.

In Figure 7, the average delay, energy consumption, and
overhead of the three schemes are compared with different
numbers of PVs. Scheme 3 outperforms both schemes 1 and
2. 'is is because as the density of PVs increases, it leads to
higher utilization of idle computing resources of PVs.

Figure 8 shows the results of task allocation for the
proposed scheme. As the number of PVs increases, the
number of tasks offloaded to PVs also increases, while the
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Figure 7: Average delay, energy consumption, and overhead of MDs with different numbers of PVs.
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number of locally executed tasks continues to decrease.
From another perspective, as the density of PVs increases,
more MDs are likely to be connected to PVs, so that MDs
that have given up offloading toMS have more opportunities
to offload. In addition, the computational power of the MS is
much greater than that of PVs. Tasks are assigned to PVs
only when MS cannot serve more tasks. 'erefore, the
number of tasks executed by MS will not decrease as the
number of PVs increases.

7. Conclusion

In this study, we proposed a parked vehicle-assisted mobile
edge computing architecture that enhances the task pro-
cessing capability of MEC servers and improves the resource
utilization of parked vehicles. In this work, we first discussed
in detail the design principles behind the system model of
PV-assistedMEC architecture, which served as a premise for
the formulation of computation offloading scheme. Next, by
formulating the computation offloading problem as a
noncooperative game, we proposed a PV-assisted MEC
computation offloading scheme that effectively reduces the
burden on the MEC server. Simulation results confirmed the
feasibility and high efficiency of the proposed computation
offloading scheme. As mentioned in Section 3, incentives are
not considered in this study; thus in the future, we will
further investigate how to incorporate incentives into the
PV-assisted MEC task offloading scheme proposed in this
study. Deep reinforcement learning-based techniques have
obvious advantages when the problem size is large or when
there are multiple conflicting offloading goals [6, 32].
'erefore, another feasible research direction is to apply
deep reinforcement learning to further improve the task
offloading scheme proposed in this study.
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