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Te concept of storage optimization has evolved as one of the hottest research projects in big data which brings out better solutions
such as data compression which almost converges towards the deduplication technique. Deduplication is a technique that fnds
and eliminates duplicate content by storing only the unique copies of data whose efciency is being qualifed based on the amount
of duplicate content that they hideout from the data source.Te deduplication technique is a well-established storage optimization
technique, so in the due course of time, various tweaks have been provided for its betterment, but it quite has some limitations that
it cannot determine the tiny changes that occur among similar contents, and the chunks which are generated by segmenting and
hashing the data are more sensitive to changes which produce a new chunk for every small change which ruins the concept of
storage optimization, so to tackle this, content deduplication with granularity tweak (CDGT) in the Hadoop architecture has been
proposed for large text datasets. Te CDGT aims to improve the efciency of deduplication by utilizing the Reed Solomon
technique. Tis pumps out more duplicate content by verifying both intracontent and intercontent as consequence performance
enhancements are met, and this system incorporates cluster-based indexing to reduce the time involved in data
management activities.

1. Introduction

Te cloud is a wonderful option to store data from pervasive
entities, which attracts the digital world toward itself, and as
a result it becomes the universe for data and services. Te
fexibility provided by the cloud, like the accessibility of
services and data by user from anywhere which attracted
huge number of user towards cloud as a result of it. Large
amount of digital content of zettabytes in size is being
dumped into the cloud environment and to realize the
scenario the amount of data stored in the cloud has neared
one hundred zettabytes at the end of 2020 [1]. On another
side, the internet-enabled physical devices are called as
cyber-physical systems (CPS) which include simple em-
bedded to complex healthcare devices, and they are growing
in large number [2] by producing large amount of data. Te

pervasive nature of CPS facilities is the utilization of the
existing cloud infrastructure for data storage and processing,
with billions of devices working around the clock all over the
world producing a rain of data with similar contents, and as
a result the scarcity of storage space increases [3]. As almost
60% to 70% of data stored in the cloud [4] are accountable as
duplicates, this invites the necessity of deduplication
techniques.

Data deduplication is a technique that eliminates re-
dundant or duplicated and stores only the unique copy of
data, which considerably reduces the storage space [5]. It is
performed in two ways such as fle-level deduplication and
subfle-level deduplication. Te fle-level deduplication is
performed on the fle, which eliminates redundancy by
comparation of fles and saves only one instance of the fle if
they are identical [6]. Te hash value which is computed for
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each fle is used for comparison, which is sensitive to change,
so two fles with little change will produce diferent hash
values, so these two fles are considered diferent, so both of
them get stored as a result and storage optimization is not
achievable. Tis paved the way for a new concept called
subfle-level or block-level deduplication.

In subfle-level deduplication, the fles are divided into
small chunks of fxed or variable in size. In the fxed-size
chunking algorithm, the fles are divided into fxed-size
chunks based on the predefned ofset value, and in a var-
iable-chunking algorithm, an ofset value is calculated by
using various techniques based on the context of the fle [7].
Tus, the deduplication technique mainly operates on fles
with similar contents among themselves or in other cor-
related fles. When the similarity concentration increases,
the deduplication efciency drops; that is, it fails to fgure out
the small changes which occur at the chunk level. Tis
enlightens the concept of content deduplication with
granularity tweak based on base and deviation which is the
main core of this paper, and the main contributions of this
paper are as follows:

(i) A deduplication technique is proposed that works in
conjunction with generalized and classical
deduplication

(ii) Te utilization of versioning concept, a feature
implemented by utilizing a machine learning
technique which improvises the deduplication
efciency

(iii) Te base deviation which is produced by the gen-
eralized deduplication technique acts as the tweak

(iv) Te grouping of index-centric data in a cluster will
decrease the processing time

Tis paper is organized frst with a detailed literature
review, followed by the proposed system, and fnally, a
comparative analysis to justify the fndings is presented.

2. Background

Te modern digital ecosystem is shifted to a distributed
environment where the demand for greater computational
and storage requirements is satisfed. Tis shift also brings
changes in the organization of data; that is, they are allowed
to be stored in a distributed fashion. In such an environ-
ment, diferent text-based data-producing nodes produce
data of diferent types with less and more similar identical
data, so it is a point where classical deduplication fnds its
phaseout because it is designed based on the context, and the
change in the context will degrade their performance.

Te deduplication technique is mostly preferred among
other compression techniques since the former will not
require decompression for reconstructing the data, so it
dominates the deduplication ecosystem [8]. Classical
deduplication works by comparing the hash of the chunks
which are obtained by segmenting the fle and followed by
hash computation [9]. Te chunks are the heart of dedu-
plication, and their quantities play a crucial part in the
performance in terms of space and operational complexity.

In [10], a rule of thumb states that for 1 TB of data, there
must be 5GB of RAM for processing in the Zettabyte fle
system (ZFS), so generalized data deduplication (GDD)
which is recently handled in [11] is capable of converging a
large similar chunk to a common base, which brings down
the memory consumption and improves the performance.

Generalized deduplication (GD) [12] fts under the
lossless compression approach, which dynamically elimi-
nates both similar and identical data. It works by splitting the
data unit into base (B) and deviation (D) with the help of the
transformation function. For example, consider a chunk Ci
of a fle X which is transformed to Bi, Di and in which only
one copy of B is stored in similar chunks with all its changes
as deviation {D1, D2, . . ., Di}.

To be practical, considering a house located in the
countryside, a time-lapse photograph of the house will have
the house as static, with only the environmental conduction
andmovement of the object changing.When such a scenario
comes to cloud, the GD transformation will separate each
detail of the photo to the base and deviation, in which the
house becomes the base since it is the static object and the
other things become deviation (morning, evening, snow,
with a parked car, without a parked car, etc.). GD will
generate the base deviation pair, and it will store only the
deviation for the similar base. Te reconstruction of the
image will be simple; that is, GD will determine the correct
base (house) and then apply the exact deviation (environ-
mental changes). Te efciency of matching depends on the
transformation function, and the heart of deduplication lies
in the indexing mechanism which will speed up search
operation [13, 14] and improve if the entities in the index are
organized based on the similarity with the help of fuzzy
classifers [15].

3. System Model

3.1. Overview of the System Model. Te system is built in a
modular fashion which includes summary generation,
chunk generation, and content deduplication with granu-
larity tweak (CDGT). Te fles from diferent time domains
that come with similar text content have to be compared
with duplicate content in a short duration, so the proposed
system employs a summary generator for every new fle that
enters the system. Te summary of a fle can act as the
metadata, which enhances the process of fnding out similar
contents to eliminate interfle duplication. Content dedu-
plication with granularity tweak (CDGT) is designed to
perform deduplication at the chunk level with the support of
the base and deviation which is produced by Reed Solomon
[16].

3.2. Summary Generator Based on NLP. Te document in
every storage environment has to be organized to facilitate
faster retrieval based on their content of interest and has
paved the way to incorporate natural language processing
(NLP). Te large content of the document is squashed to
miniature which includes mostly the important signature of
the document, such miniature content is called a summary
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[17], and it comes under the extractive summarization
technique [18].

Te summary extraction is performed in a sequence of
steps as shown in Figure 1; when a document arrives, it will
be put into the document pool, from where it is fetched for
processing.

Te process begins with the data in the fles being divided
into sentences/words called tokens, and then the cleaning
process takes care of eliminating the most commonly oc-
curring words and special characters, called stop-words,
because they do not provide useful information for the NPL
to learn [9, 19]. Ten, the term frequency (TF) is calculated,
which is stated as the total number of times a word(t) ap-
pears in the sentence to that of the total number of words in
the sentence of the fle [20] as shown in equation.

TFF ID �
Number of occurrences of a word(t) in a sentence

Total Number of wor ds in a sentence
.

(1)

Once the TF is calculated to bring out the common
words in the fle, then the IDF is calculated to bring out more
unique words in the documents using equation.

IDEF ID � Log
Total Number of sentences in a File

Total Number of sentences with theword(t)
􏼠 􏼡.

(2)

Te calculated values from equations (1) and (2) are used
to assign weights to the words as shown in equation (3),
where t is the word in the sentence.

Wor d−W(t) � TFF ID ∗ IDEF ID . (3)

Teword weight calculated in equation (3) for each word
in the fle is used to calculate the score values for each
sentence in the fle. Equation (4) describes the score cal-
culation, where N is the number of words in a sentence.

SEN−SK �
􏽐

N
i�1 Wor d−W(ti)

N
. (4)

Te average score value calculated for a fle using
equation (4) is used to set the threshold for extracting unique
sentences from the fle. Te value calculated in equation (5)
is normalized by multiplying with some constant value to
extract the most unique sentences from the fle, and it is set
to 1.3 in this proposed system.

THF ID �
􏽐

N
K�1SEN−SK

N
. (5)

Te sentence with a score value higher than that of the
threshold value is considered the more unique sentence in
that fle. In this manner, all unique sentences are extracted to
form a summary for a fle which forms the metadata. Tis
metadata can act as the backbone for the processes of
versioning.

3.3. Chunking Mechanism. Almost all deduplication tech-
niques centre on chunking; it is the process that breaks the

fle into a small number of pieces called chunks, which may
be fxed or variable in size. Tese chunks are subjected to
hashing whose output is called a fngerprint which acts as a
unique identifer for the chunk. When a new chunk arrives,
it is compared with the stored identifer in the index table,
and if both chunks are diferent, the new chunk will get
stored, or else it is a duplicate entity, so only a new reference
pointer is created for that chunk [21]. Figure 2 shows the
working model of deduplication.

In traditional compression techniques, the duplicates are
eliminated over a small group of fles or among contents in
the same fles, but in the deduplication technique, the re-
dundancy in both interfles and intrafles over the largest
data repository and even possible over multiple distributed
storage servers are eliminated [22].

Te variable size chunking method eliminates more
redundant data such as the content defned chunking (CDC)
method, which is more scalable and faster in processing. Te
CDC works by fguring out a set of locations to break the
input data stream, and such breakpoints are called cut-
points, and based on these points, the contents of the fle are
chunked. Many algorithms based on CDC will lead to poor
performance when it produces chunks of smaller size, that is,
below 8KB [23]. In fxed-size chunking, all chunks will be of
equal size, so the processing rate will be higher [24], but this
method sufers from boundary shifting problems.

Te boundary shifting problem will occur in a particular
scenario when an already stored fle arrives with some
modifcation for backup, then while performing fxed-size
chunking on the recently received fle, the additional content
which is being deleted/added/appended will relocate the
information from one chunk to another chunk back and
forth based on the nature of the modifcation.Tat is, the fle
with the inserted content will push the content from one
chunk to another, and if the content is deleted from a fle, the

Document Pool

Cleaning & Tokenization

TF-IDF

Weighting Words/Sentences

Summary

Figure 1: NPL processing.
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chunks with the deleted part will bring up all information to
fll up the desired chunk size from the chunks below. Tus,
the chunks of the new fle will pass the deduplication
process, and this is not fair since the chunks with similar
content with small deviated content will overload the storage
space. In this paper, to tackle the problem, a hybrid method
is utilized which is both dynamic and fxed in nature since
the variable and fxed-size chunking provides the same result
[25].

3.3.1. Cosine Similarity and Dynamic Content Adjustment
Policy. Te cosine similarity is used to measure the simi-
larity between two documents of any size [26]. It measures
the cosine of the angle between two given vectors in a
multidimensional space; that is, the cosine of 00 is 1, and if
the angle is between (0, π), the value will be less than one. In
another way, if the two terms are the same, then the cosine
similarity is one; this value will reach 0 when the similarity
between the texts reduces. Te formula to calculate the
cosine similarity is shown in equation.

Cosine(x, y) �
x.y

‖x‖‖y‖
, (6)

where x and y are the two-term frequency vectors using
which the angle between the vectors is calculated. When the
system is unable to fnd a more similar fle for a newly
arrived fle from the storage system by using a cosine
similarity matching process, then in such a situation, the
system uses perfect square divisor (PSD) to defne the size of
a chunk. For example, we consider a fle size of 729MB, and

the perfect square of 729 is 27MB, so the fle is divided into
chunks of the size of 27MB each. However, in the case of
prime numbers, there is no chance of getting perfect squares,
and such a situation seeks the nearby square of a given
number by using equation.

Near−Square(Prime) � f loor(sqrt(Prime)) + 1. (7)

Te DCAP is activated whenever a fle arrives in the
storage system, and if it is a new fle, then there will not be
any copy of it which can be fgured out by computing the
cosine similarity among the available summaries. If the
cosine similarity value between the newly arrived and al-
ready stored fle is less than 1, then the stored fle chunks will
be fetched for deduplication. If the cosine similarity is 1,
both fles are the same and only pointers are adjusted.

Te Dynamic Content Adjustment Policy (DCAP) can
be explained by considering two sets of scenarios. Te frst
scenario details the management of the boundary shifting
problem for a fle that has been modifed by the insertion of
new content, and the second scenario portrays the boundary
shifting problem for a fle with deleted contents.
(1) Dynamic Content Adjustment Policy (DCAP) Working
Model. When a fle named as File Version (FV2) has to be
stored, it will trigger the cosine similarity function and fetch
the File Version (FV1) without altering the chunk structure.
Te system will perform DCAP with the help of FV1 and
FV2, which is explained with an example. Figure 3(a) shows
a fle FV1 with 30 characters and converted to hexadecimal
values, then divided into equal-sized chunks.Te chunks are
named FV1C1 to FV1C5.

AF

AF

Input File

Chunking

Finger Print Computation

Finger Print Indexing and
Store Unique Chunks

Chunk 1 Chunk 2 Chunk N

AF

9C

9C

9C

B6

B6

B6

B6

B6 33

33

Figure 2: Deduplication.
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Figure 3(b) shows the new version of a fle that is being
generated by a typical user. Te newly inserted characters
and their hexadecimal values are marked in red colour. Te
objective of DCAP is to divide the content of FV2 into an
equal number of chunks by identifying the newly modifed
contents. Te content of FV2 is compared with the contents
of FV1 by using a sliding window-like mechanism in which
the content of FV2 is logically divided based on the window
(W) size which is equal to the size of the chunk of FV1, and
inside the W, two small seek windows (SW) are available;
this SW is capable of moving across the windows. Te SW
located at the starting of the W is called the beginning seek
window (BSW), and the one at the end is called the end seek
window (ESW). Te SW plays an important role in the
DCAP, their size is fxed dynamically based on the W size or
the number of characters in the chunks, and mostly, it is set
to 64 bytes for larger fles; in this example, the number of
characters inside the W is 6, so the BSW and ESW are set to
2. Figure 4 shows the two fles with the window and its
corresponding seek window.

Te fle FV1 is taken as chunks, and the fle FV2 is kept as
a full fle in which a window of size 6 will roll over the
contents of fle FV2. Te DCAP algorithm starts by ex-
amining the fle from the start. Te characters inside the
BSW and ESW in both fles are compared, and if they are the
same, then the characters in the current window over FV2
are grouped to form a chunk. In this example, as shown in
Figure 4, due to the insertion of contents in FV2, the BSW
and ESW have diferent characters when compared with
FV1, which indicates that the fle is modifed.

Once the modifcation is fgured out, the DCAP starts to
compare the characters from the end of the fle as shown in
Figure 5. Here, the last chunk of the fle FV1 is C5, so the
operation starts from here, the character inside the BSW and

ESW of FV2 is compared with that of FV1. In this case, the
character is shown as follows:

(i) FV1: BSW {6e, 69}, ESW {69, 61}

(ii) FV2: BSW {6e, 69}, ESW {69, 61}

Both the SW of FV1 and FV2 have the same characters,
and the characters under the current window over FV2
produce the same checksum as that of C5, so it will be
considered a chunk that is similar to C5 of FV1. If the
checksum is not the same, the window is considered a new
chunk.Ten, the windowmoves backward over the FV1 and
FV2 to generate chunks.

Finally, the window reaches the point where the mod-
ifcation has happened, which is shown in Figure 6. Te SW
has a set of characters that indicate the occurrence of
modifcation as shown in the following points:

(i) FV1: BSW {73, 61}, ESW {62, 69}

(ii) FV2: BSW {69, 64}, ESW {62, 69}

Te characters under BSW of FV1 and FV2 have a
diferent value, which indicates that the modifcation has
happened in the previous chunk, which may push the
characters towards the lower chunks, or the modifcation has
happened at the same location.

In Figure 6, the characters under ESW of FV1 have {62,
69} which have the matching value at the same location in
ESW of FV2, and the chunks C3, C4, and C5 of FV1 are
similar to that of chunks in FV2 indicating that the mod-
ifcation has happened towards the beginning of the fle.

Te modifcation at the beginning of the fle has pushed
the characters forward, so the character {61, 69} of ESW of
FV1 is missing in ESW of FV2 since it has moved in the
forward direction. Tis states that the characters up to {61,

File 1 (FV1): nokia is a mobile phone made in india

6e 6f 6b 69 61 69 73 61 6d 6f 62 69 6e 65 70 68 6f 6e 65 6d 61 64 65 69 6e 69 6e 64 69 61

FV1C1
6e 6f 6b 69 61 69

FV1C2
73 61 6d 6f 62 69

FV1C3
6e 65 70 68 6f 6e

FV1C4
65 6d 61 64 65 69

FV1C5
6e 69 6e 64 69 61

(a)

File 2 (FV2): new model nokia is an android mobile phone made in India

6e 65 77 6d 6f 64 65 6c 6e 6f 6b 69 61 69 73 61 6e 61 6e 64 72 6f 69 64 6d 6f 62 69 6c 65 70 68 6f 6e 65
6d 61 64 65 69 6e 69 6e 64 69 61

(b)

Figure 3: (a) Stored version and (b) modifed version.
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69} are being added and it has to be brought back to the
same chunk so that it will eliminate the boundary shifting
issues.

Te BSW of FV2 has a set of values {6e, 65}, and {69, 64}
has mismatched values at the same location in FV1 due to
the movement of characters created by the insertion of
characters.Te BSW of FV1 has the following values: {6e, 6f}
and {73, 61}; both do not have amatch with FV2, and the frst
set {6e, 6f} is at the beginning, so there is no need to consider
it. Te second set of values {73, 61} is missing in BSW of FV2
at the same location, which states that the values up to {73,
61} have been displaced, so the goal is to search all values up
to {73, 61} and put it back in the same chunk whose ESW
value is {62, 69}.

In Figure 7 shows search operation, the ESW searches for
the set of characters {61, 69}, and the BSW searches for {73,
61} in which the ESWmoves in a forward direction and BSW
in a backward direction. On the successful search, all bits up
to {61, 69} are grouped as C1, and all bits up to {73, 61} are
taken as C2 of FV2 and are shown in Figure 8 provided that

the newly formed chunks C1, C2 of FV2 should be less than
or equal to 10KB in size. C1 and C2 are the modifed chunks
that will have the newly inserted contents. Te system will
only consider the C1 and C2 of the fle FV2 for performing
GD and storing.

(2) Implementation of DCAP for Deleted File Version. When
a node wants to upload a fle to the storage system, we will
frst look for a similar version of the fle in the storage
system. If the system fnds a fle with similar content to the
fle that the user wants to upload, it will be sent to the user in

65 6c 6e 6f 6b 69 61...................................................................6e 69 6e 64 69 61

6e 69 6e 64 69 6165 6d 61 64 65 696c 65 70 68 6f 6e73 61 6d 6f 62 696e 6f 6b 69 61 69 

6e 65 77 6d 6f 64

W=6 Characters

FV1

FV2

BSW=2 ESW=2

Figure 4: FV1 and FV2 with diferent contents.

W=6 Characters (C5)

FV1

FV2

BSW=2 ESW=2

6e 6f 6b 69 61 69 73 61 6d 6f 62 69 6c 65 70 68 6f 6e 65 6d 61 64 65 69

6e 69 6e 64 69 61

6e 69 6e 64 69 61

65 6c 6e 6f 6b 69 61........................................................6e 65 77 6d 6f 64

Figure 5: Te comparison starts from the end of the fle.

W=6 Characters (C2)

FV1

FV2

BSW=2 ESW=2

6e 6f 6b 69 61 69 73 61 6d 6f 62 69 6c 65 70 68 6f 6e

6c 65 70 68 6f 6e

65 6d 61 64 65 69

65 6d 61 64 65 69

6e 69 6e 64 69 61

6e 69 6e 64 69 61...69 64 6d 6f 62 696e 65 77 6d 6f 64

Figure 6: Te window reaches the point of modifcation.

6e 65 77 6d 6f 64 65...... ......6f 69 64 6d 6f 62 69

ESW=2

FV2

Search 61 69 for C1 Search 73 61 for C2

BSW=2

Figure 7: Search operation.
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chunks for verifcation. Figure 9(a) shows a fle version that
is already available in the storage system as chunks.Te fle is
named FV1, and the chunks are named FV1C1 to FV1C5.

Te DCAP is associated with window (W) which will roll
over the fles, and the beginning seek window (BSW) and the
end seek window (ESW) are smaller windows that will
perform the matching function by seeking. Te chunk of
FV1 has 7 characters, so the window size is set to 7, and the
SW windows are set to 2 as shown in Figure 10. Te DCAP
tries to fnd the deleted portion in FV2 to form a chunk by
retaining the remaining portion as the same as that of FV1;
the working mechanism is shown as follows:

(i) Te DCAP starts from the beginning of the fle as
shown in Figure 10. In this, the rolling window
covers 7 characters of FV2, which is compared with
the frst chunk FV1C1 of FV1.

(ii) Inside the window, the BSW and ESW of FV2 and
FV1 have the same set of characters as shown in the
following points:

(a) FV1: BSW {6e, 65}, ESW {64, 65}
(b) FV2: BSW {6e, 65}, ESW {64, 65}

Since both fles have similar content inside SW, and
their checksum values are compared, and if it is found to
be the same, the content under the window over FV2 is
converted to a chunk with 7 characters which is similar to

FV1C1. If they do not produce the same checksum, then
the content under the window over the FV2 is taken as a
new chunk.

Ten, the window rolls over to the next set of 7 char-
acters until the dissimilarity is found. Te window is a set of
7 characters in FV2 which come under FV1C3 as shown in
Figure 11, in which the content under SW is not similar as
shown in the following points:

(i) FV1: BSW {73, 61}, ESW {64, 72}

(ii) FV2: BSW {73, 6d}, ESW {6c, 65}

Te diferent content inside the BSW and ESW of both
fles FV1 and FV2 indicates the modifcation, so the DCAP
will stop here and start the operation from the end of the fle
as shown in Figure 12. Te end of the fle is also modifed
since they have diferent values inside the SWs as shown in
the following points:

(i) FV1: BSW {6c, 65}, ESW {6e, 65}
(ii) FV2: BSW {70, 68}, ESW {6e, 65}

Te fle FV2 is modifed by deleting some content, and it
happens in the middle, so to fll the deleted space, all content
moves backward, and this states that the content under BSW
{6c, 65} has moved backward in FV2. To determine {6c, 65},
the BSW of FV2 performs a search operation by moving
backward as shown in Figure 13.

6e 6f 6b 69 61 69 73 61 6d 6f 62 69 6c 65 70 68 6f 6e 65 6d 61 65 69 6e 69 6e 64 69 61

C1 C2 C3 C4 C5

6e 65 77 6d 6f 64 65
6c 6e 6f 6b 69 61 69

73 61 6e 61 6e 64 72 6f
69 64 6d 6f 62 69 6c 65 70 68 6f 6e 65 6d 61 64 65 69 6e 69 6e 64 69 61

FV1

FV2

Figure 8: Te fnal chunk of the fle FV2.

File 1 (FV1): new model nokia is an android
mobile phone

6e 65 77 6d 6f 64 65 6c 6e 6f 6b 69 61 69 73 61 6e 61 6e 64 72 6f 69 64 6d 6f 62 69 6c 65 70 68 6f 6e 65

FV1C1
6e 65 77 6d 6f 64 65

FV1C2
6c 6e 6f 6b 69 61 69

FV1C3
73 61 6e 61 6e 64 72

FV1C4
6f 69 64 6d 6f 62 69

FV1C5
6c 65 70 68 6f 6e 65

(a)

6e 65 77 6d 6f 64 65 6c 6e 6f 6b 69 61 69 73 6d 6f 62 69 6c 65 70 68 6f 6e 65

File 2 (FV2): new model nokia is mobile phone

(b)

Figure 9: Diferent fle versions (a) old version fle FV1 and (b) new version fle FV2.
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In Figure 14(a), the BSW of FV2 fnds out {6c, 65}, and
this is combined with the current window to form a chunk.
Te remaining characters of a new chunk are as shown in
Figure 14, and the newly formed chunks should be less than
or equal to 10KB in size.

Te search for the missing content in FV2 by BSW will
move backward until it fnds a matching value corre-
sponding to the value of BSW of FV1. We need to stop once
it fnds a correct value. In some cases, if the character under
consideration is deleted, the search operation fails. In such a

situation, the DCAP will try to fnd a possible way to form a
chunk similar to that of its older version as detailed next; for
example, we consider two versions of fles, the old version
fle (OVF) and the new version fle (NVF). Te OVF has 6
chunks. Te frst 2 chunks are matched with those of NVF,
the 3rd chunk contains the modifcation, and then DCAP
will start to perform its operation from the end of the fle.
Te last window is unable to produce a chunk due to dif-
ferent values under BSW or ESW of NVF and OVF. In this
situation, the BSW of NVF will try to fnd the value under

6e 65 77 6d 6f 64 65 6c 6e 6f 6b 69 61 69 73 61 6e 61 6e 64 72 6f 69 64 6d 6f 62 69 6c 65 70 68 6f 6e 65

73 6d 6f 62 69 6c 656c 6e 6f 6b 69 61 696e 65 77 6d 6f 64 65

W=7 Characters (C5)

BSW=2 ESW=2

FV1

FV2 70 68 6f 6e 65

Figure 12: DCAP operation at the end of the fle.

FV2 6e 65 77 6d 6f 64 65 6c 6e 6f 6b 69 61 69 73 6d 6f 62 69 6c 65

Search 6c 65 for C5

BSW=2

70 68 6f 6e 65

Figure 13: Search operation.

FV1

FV2

W=7 Characters (C1)

6e 65 77 6d 6f 64 65

6e 65 77 6d 6f 64 65

6c 6e 6f 6b 69 61 69 73 61 6e 61 6e 64 72 6f 69 64 6d 6f 62 69 6c 65 70 68 6f 6e 65

6c 6e 6f 6b 69 61 69 73 6d 6f 62 69 6c 65 70 68 6f 6e 65

BSW=2 ESW=2

Figure 10: DCAP operation.

W=7 Characters (C3)

6f 69 64 6d 6f 62 69

70 68 6f 6e 65 

6c 6e 6f 6b 69 61 69

6c 6e 6f 6b 69 61 69

6e 65 77 6d 6f 64 65

6e 65 77 6d 6f 64 65

73 61 6e 61 6e 64 72 6c 65 70 68 6f 6e 65FV1

FV2

BSW=2 ESW=2

73 6d 6f 62 69 6c 65

Figure 11: Modifcation point.
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BSW of OVF by moving backward, and if the search fails,
then BSWwill try to fnd the value under BSW of OVF at C5;
if the search is successful, then the content between the
search matching position and the starting of C6 will be
considered a separate chunk. If the entire search operation
fails, the remaining characters are taken as separate chunks.

3.4.FuzzyC-MeansClusterAssist Indexing. Teperformance
of information retrieval is a more important feature that
directly afects the deduplication throughput, so it has to be
addressed with extra care. Te deduplication process is
designed to handle the text data, which is called documents
or fles which can be grouped based on the similarity that
exists among them. Te grouping of documents is termed
clustering, and it is performed based on the relationship that
preserves among the documents. Te relationship can be
drawn based on the terms and strong semantic connection
among the terms using LSI [27], and fuzzy C-means clus-
tering can be applied to group similar documents.

Te mechanism behind document clustering is based on
the term frequency extracted from all available documents
and groups the documents which have more similar terms
into one cluster. Te texts in the document are converted
into vector space, which grows along with the number of
documents. Te large size vector will become more complex
while performing clustering, and the larger search space
leads to inaccurate matching at the term level. Inaccurate
matching will lead to the clustering of irrelevant documents.
Te application of latent semantic indexing (LSI) to the
document vector will reduce the space, and more seman-
tically related documents are grouped [28]. Terefore,
clustering is performed after preprocessing the documents
based on LSI.

3.4.1. Latent Semantic Indexing. Te documents are asso-
ciated with the summary which is being extracted based on
the unique sentences available in it, and this summary is
utilized for further processing. Te frst step is the tokeni-
zation process in which the fles are divided into sentences
called tokens by removing the stopping words to extract
more unique words, and the collection of tokens is called a
bag of words. Ten, the term frequency (TF) is calculated
based on equation (1), which brings out only the most
common words from a particular summary.Te second step
is to create an IDF that contains only the more unique terms
among all available summaries of “n” documents, which is
computed based on equation (2). Ten, the values of TF and
IDF are used to generate the vector space based on equation
(3), and this vector space is called a document vector.

Te document vector space is very large, and it keeps on
increasing each time when a new document is added to the
system. Singular value decomposition (SVD) is used to
reduce the document vector space and increase document
retrieval accuracy. SVD is used as a tool for LSI. Te normal
document vector mostly fnds it difcult to bring out the
hidden concepts while applying some algorithms to retrieve
documents. Let us consider that there are three terms {t1, t2,
and t3} and {D1, D2, and D4} documents in which the term

t2 appears in D1 and D4, so these two documents are
logically related but not semantically connected. In this case,
if a retrieval query Q arrives with a term t2 in it, then the
matching document D1, D4 is given as matching, but D1 is
the only document that semantically matches with the query
Q. Tus, the LSI will map all terms and documents to a
semantically connected vector space. Te arrival of a new
document induces the changes that have to be made to the
existing vector space without recalculating SVD using a
concept called folding-in; for more details refer to [29]. LSI is
beyond the scope of this paper, so the reader may refer [44]
for more information.

(1) Singular Value Decomposition for Latent Semantic
Indexing. SVD is a factorization technique performed on
matrix values to group documents into a defned number of
topics. SVD is provided with the document matrix A of size
m× n and along with the number of topics C. Te dimen-
sionsm and n correspond to terms and document collection
based on the number of summary provided at the initial
stage. SVD produces three sets of matrices as shown in the
following equation:

A � UΣVT
, (8)

where U is the eigenvector matrix of ATA, V is the eigen-
vector matrix of AAT, and Σ is the diagonal matrix of
singular values obtained by the square root of the eigen-
values of ATA. Now, Σ constitutes too small singular values
that are negligible since all values along the diagonal of Σ are
listed in ascending order and it keeps only the top r values,
which reduces the matrix of U, Σ, and VT with Ur, Σr, and
Vr

T. Tat is, it keeps the frst r rows ofU and r column of VT.
Tis process is named truncated SVD. Te approximated
matrix Ar is shown in the equation as follows:

Ar � UrΣrV
T
r . (9)

Te following example is used to demonstrate SVD as
shown in the following table. Table 1 contains nine docu-
ments and their set of bags of words which are tokenized
words.Tis bag of words is used to calculate TF-IDF, and the
resultant matrix is called a document vector.

Table 2 shows the ranking of documents; that is, {D1,
D2, and D7} are having maximum scores in topic 1, and
{D3, D4, D8, and D9} and {D5, D6} are in topics 2 and 3,
respectively, based on the value they produce. Table 3
shows the new document D10 named pseudo document
(PD), and its terms {John, gold, Juliet} are matched with
the {T9, T10, T11} terms already available in the term
vector space. Ten, vector space for PD is calculated by
taking the average of weighted terms in {T9, T10, and T11}
as shown in Table 3, and from the result {0.05, 0.22, and
0.16}, it is clear that this document PD has a maximum
score for Topic 2.

3.4.2. Fuzzy C-Means Cluster. To group similar fles in a
metadata table, FCM clustering is used. Te resultant matrix
V of LSI is a representative of document collection, which is
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given as input (X, {x1, x2, . . .., xn}) for FCM.Temainmotive
of the FCM algorithm is to minimize the objective function
[30], and it is shown in equation as follows:

Obj−Fun(µ,C) � 􏽘
n

i�1
􏽘

c

j�1
µm

ij􏼐 􏼑 xi − cj

�����

�����
2
, (10)

where ‖xi − cj‖ is the Euclidean distance between the ith data
point and the jth cluster, m is the fuzzifer whose value is set
to 2, n is the number of data points in X, K is the number of
clusters, and μij is the membership degree of the ith data
point in the jth cluster.

Te steps of the FCM algorithm are as follows:

(1) Initialize the parameters such as number of clusters
(k), initial membership matrix (μ(0)), cluster centre
C� {c1, c2, . . ., ck}, termination criteria (β), and
maximum iteration (Max_Iter).

(2) Calculate the cluster centre by using the equation as
follows:

cj �
􏽐

n
i� µm

ij􏼐 􏼑xi

􏽐
n
i� µm

ij􏼐 􏼑
. (11)

(3) Calculate the Euclidean distance between the data
point (X) and the cluster centre (C) using the equation

d(X,C) �

��������������������������������

x1 − c1( 􏼁
2

+ x2 − c2( 􏼁
2

+ . . . + xn − ci( 􏼁
2

􏽱

.

(12)

(4) Ten, update the membership matrix (μij) using the
equation

µij �
1

􏽐
c
k�1 dij/dik

2/m−1 . (13)

(5) If ||μ(k+1) − μ(k)||< β, then STOP; otherwise go to Step
2.

Here, k is the iteration step, and β is set to 0.01.
Similarly, when there are no changes in the cluster center

[31], the algorithm can be stopped. Te specifed number of
clusters will contain their corresponding documents. Te
cluster formed and the associated documents are shownas
follows:

(i) Cluster_0� {D5, D6}
(ii) Cluster_1� {D3, D4, D8, D9}
(iii) Cluster_2� {D1, D2, D7}

3.4.3. Fingerprint Indexing. Te DCAP algorithm produces
chunks, and these chunks have to be stored in the data node.
Te deduplication techniques work by fnding similar
chunks by comparing them, and to speed up the operation, a
fngerprint is computed for all chunks that are stored in the
data node. Te fngerprint is an important entity in this
system generated by using the SHA-3 (256 Bit) algorithm,
and for this computation, the Keccak approach is considered
which is based on the construction of a sponge. Te SHA-3
uses a sponge to absorb the data and squeeze out the output.
Te message is subjected to various transformations in
which the frst phase messages are divided into blocks, and
they are XOR’ed to get a subset of states [7]. Ten, the entire
states are transformed using the permutation function. In
the squeeze phase, the output is fetched from the same states
which are obtained from the transformation operation.
Once the fngerprint is calculated, they have to be properly
indexed for faster processing, so fuzzy C-means cluster assist
indexing (FCMI) is used.

FCMI is performed in two phases; in the frst phase, the
LSI-ranked document is clustered, and in the second phase,
the fngerprint values associated with the chunks of fles
inside a similar cluster are indexed based on B-tree.

3.5. Granularity Tweak Based on Base and Deviation. Te
chunks which are produced by the DCAP algorithm are
subject to hashing which acts as the frst stage index which
will become clear in the later stage. Te raw chunks will be
subjected to base and deviation separation. Te base and
deviation are the entities that can be reversed to produce the
original chunk, and this can be utilized for storage space
optimization beyond deduplication. In normal hash-based
deduplication, the more identical chunks are eliminated, but
the less similar chunks fnd their way to the storage system,
which leads to poor storage optimization. Te storage op-
timization is still fnely tuned with the help of base and
deviation concepts, in which the less similar chunks are

Table 1: Documents and bag of words.

D. no Documents
D1 John has some cats
D2 Cats eat a fsh
D3 Shipment of gold damaged in a fre
D4 Shipment of gold arrived in a truck
D5 Romeo Juliet
D6 Romeo died by dagger
D7 I eat a fsh
D8 All that glitters is not gold
D9 Money makes many
Bag of words {“arrived: T1,” “cats: T2,” “dagger: T3,” “damaged: T4,” “died: T5,”
“eat: T6,” “fshT7,” “glitters: T8,” “gold: T9,” “John: T10,” “Juliet: T11,” “makes:
T12,” “money: T13,” “Romeo: T14,” and “shipment: T15,” “truck: T16”}.

Table 2: Document vector space (V).

Document vector
space (V) Topic_1 Topic_2 Topic_3

D1 0.40 0.00 0.00
D2 0.97 0.00 0.00
D3 0.00 0.81 0.00
D4 0.00 0.78 0.00
D5 0.00 0.00 0.82
D6 0.00 0.00 0.82
D7 0.89 0.00 0.00
D8 0.00 0.63 0.00
D9 −4.46139E−17 7.64073E−16 4.36267E−16
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separated, which considerably reduces the storage
requirement.

Te idea is that each chunk is divided into a pair of
deviation and base, in which the base contains the majority
of information and the deviation comparatively contains
small information. In case two, if chunks are similar, then it
is enough to store a single base and their two diferent
deviations; in this way, we can perform deduplication on the
sorted base, which will considerably reduce the storage cost.
Te transformation of a chunk to the base is many-to-one
mapping, the algorithm takes a chunk as input to produce
the base and the deviation which shows the diference be-
tween chunks, and such kinds of transformations are per-
formed by error-correcting algorithms.

3.5.1. Generalized Deduplication Algorithm. In this session,
a generalized deduplication mechanism is presented, and its
objective is to reduce the size of chunks. Let there be n
chunks in the system set_C� {C1, C2, . . ., Cn} and let each
chunk be of k bit length, so the chunks need the storage size
as given in equation

S−Cost(C)≜nk bits. (14)

To picturize the case, we consider a typical system that
produces 100 chunks at time t of size 64 bytes each, and then
the storage space requirement will be 100 ∗ 64� 6400 bytes;
this can be further reduced with the help of GD. Te GD
system will divide the chunk into two parts: base (B) and
deviation (D). Ten, for some K numbers of B with qk bits,
the cost for storing B with its identifer is shown in equation

S2−B � qk + ⌈log K⌉. (15)

Ten, if there are N chunks that are associated with the
⌈log N⌉ bit for the identifer and also include the devia-
tion, the storage required for each chunk is given in the
equation

S3−CBL � ⌈log N⌉ + ⌈log K⌉ + l bits. (16)

Ten, the total cost required to store N chunks becomes

S−T1 � N S3−CBL + K S2−B bits. (17)

Ten, to make a comparison, the cost of storing N
chunks without GD is shown in the equation

S−T2 � N(qn + ⌈ log N⌉). (18)

Te compression factor is expressed in equation (19)
which includes both the chunks and B, D, where CF> 1
states that the compression has occurred.

CF≜
S−T2
S−T1

. (19)

3.5.2. Deduplication System. Data deduplication is a tech-
nique that eliminates redundant or duplicated data and
stores a unique copy of data. Tis technique considerably
reduces storage [32]. Data deduplication is a need to be
performed before inserting data into a data store. In this
system, deduplication is performed based on the base and
deviation of the chunks; before performing deduplication,

Table 3: Pseudo document.

Pseudo document
(PD) T9 T10 T11 PD-vector space

John buys gold for
Juliet

{0.00, 0.65,
0.00}

{0.16, 0.00,
0.00}

{0.00, 0.00,
0.47}

{(0.00 + 0.16 + 0.00)/3, (0.65 + 0.00 + 0.00)/3, (0.00 + 0.00 + 0.47)/
3}� {0.05, 0.22, 0.16}

Search 6c 65 for C5-Goal Reached

6e 65 77 6d 6f 64 65 6c 6e 6f 6b 69 61 69 73 6d 6f 62 69 6c 65 70 68 6f 6e 65

BSW=2

FV2

(a)

C1

FV1

FV2

C2 C3 C4

6e 65 77 6d 6f 64 65 6c 6e 6f 6b 69 61 69 6c 65 70 68 6f 6e 6573 6d 6f 62 69

6e 65 77 6d 6f 64 65 6c 6e 6f 6b 69 61 69 6c 65 70 68 6f 6e 65
73 61 6e
61 6e 64
72

6f 69 64
6d 6f 62
69

(b)

Figure 14: DCAP operation: (a) goal state and (b) chunking of FV2.
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the system is preprocessed to enable smooth processing. Te
sequence starts with the chunking of fles based on DCAP or
user-defned chunking, which is followed by fngerprint
calculation. Ten, the base deviation of the chunk is cal-
culated, and, on another side, the documents are clustered,
and the fngerprints are indexed using the B-tree as shown in
Figure 15. Te fles seeking storage space are collected from
the fle pool, and then these newly arrived fles are subjected
to summary extraction, which will help disclose their as-
sociated similarity with other fles which are already fnding
their way in, and if this search is positive, then DCAP is
performed which produces some sets of chunks, and on
negative, the chunks are produced based on the user-defned
chunking algorithm. (See Figure 16).

Te base and deviation are derived from the chunk of the
fle which acts as the main base for the deduplication system.
Te two identical chunks produce the same base and de-
viation, but two less similar chunks produce the same base
with diferent deviations, and the chunk can be recon-
structed using the base and deviation. Te deduplication
system works in the following manner:

(1) Te chunks of a particular fle are subjected to fn-
gerprint calculation.

(2) Te base and deviation are computed.
(3) Te fle under consideration is searched for a suitable

domain among the available clusters. On fnding a
suitable cluster, the fngerprint is searched for a
match based on which the following activities are
performed:

(a) If a fngerprint is matched, it indicates that there
is a matching chunk, so it is not necessary to
store the base and deviation of the currently
working chunk and so only the reference pointer
is adjusted; that is the currently working chunk is
deduplicated

(b) If fngerprint matching failed, it indicates that
the chunk is new, so a new index is created, and
then the base pool is queried for matching

(i) If a base pool search is successful, it indicates
that there is a chunk with similar data, so the
current base is taken as a reference with a new
deviation

(ii) If the base pool search is failed, then a new
base and deviation are generated and they get
stored in the system

3.5.3. Data Placement Policy. TeCDGTis designed to work
for text-based fles, and it is well integrated with the existing
Hadoop architecture. Te base and deviation are the entities
that are allowed to be stored and retrieved from the HDFS
(Hadoop distributed fle system), and the experimental setup
consists of the name node (NN) and a set of data nodes
(DN). Te NN acts as the master, and DN are slaves used to
store the data; in our case base and deviations, the fnger-
print index is maintained in the MongoDB for faster pro-
cessing. Tis system utilizes the in-line deduplication

mechanism where the deduplication is performed before the
data are written to the disk. Te data fow is explained in .

(i) Te base and deviation which are produced and
fnalized are the entity that has to be stored in DN

(ii) When any client uploads the fle, the agent module
in this proposed deduplication ecosystem will
trigger the deduplication process as shown in
Figure 17

(iii) Te fles which reach the agent module in the name
node will get deduplicated

(iv) Te fnal base and deviation that pop out of the
deduplication system are stored in DN

(v) In case of the same base, the reference is adjusted
and the corresponding deviations alone get stored in
DN

(vi) Te name node manages the storage of data, and the
indexes are maintained in the MongoDB

4. Results and Discussion

4.1. Performance of Summary Generation. Te proposed
system involves a large amount of fles to facilitate the
processing of versioning, and this system uses summary
extraction based on NLP, which is considered more ad-
vantageous than other non-NLP methods. Te perfor-
mance of the proposed summary extraction method is
evaluated based on the parameters [33], such as precision
(P), recall (R), and F-measure, which are mostly used in
the feld of information retrieval. Let the summary
extracted by NLP be given by SNLP and the non-NLP is
given by SnNLP, which are shown in the equations
(20)–(22).

P �
SnNLP ∩ SNLP

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

SNLP
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (20)

R �
SnNLP ∩ SNLP

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

SnNLP
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (21)

File Pool File Similarity Search

Chunking

Fingerprint

B-Tree

FCM – Clustering

Base and Deviation

Storage

Figure 15: General system structure.
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F �
2PR
P + R

. (22)

Te ROUGE method is also utilized to evaluate the
performance, and this method measures the quality of the
summary by counting the overlapping units such as N-gram,
work pair, and sequences between the proposed and ref-
erence summary based on the DUC 2004 dataset [34]. Te
ROUGE-N is used to compare the N-grams between two
summaries [35]. Table 4 shows the performance improve-
ment by the NLP method.

4.2. Performance Evaluation of DCAP. To evaluate, the ex-
periment is carried out using Pentium E5700 and Intel i5 9th
generation processors since the system is built around a
commodity system. Te data nodes are virtually created in
Hadoop and are allocated to disk space based on the data set
which is being used to evaluate the parameters. Te

developed system is designed to work in an interactive
environment, so the realistic data sets such as the backup of
user text-based fles from 30 users ofWindows and Linux are
collected at various time intervals such as 37GB, 75GB, and
98GB. Te proposed system uses the Dynamic Content
Adjustment Policy (DCAP) whose performance can be
compared based on the following parameters:

(i) Chunk overhead
(ii) Hash judgment time

Te chunk acts as a processing unit in any typical
deduplication system, so the number of chunks has a direct
impact on the performance. Te proposed DCAP algorithm
produces a smaller number of chunks when compared with
other methods. Te DCAP uses the versioning concept
which is the main responsibility for producing a lower
number of chunks when the fle size is 15MB, and the DCAP
produces 64%, 75% fewer chunks than that of fxed size

Chunk {1 to n} Fingerprint {1 to n}

Fingerprint
Search

Cluster

Successful Match

Unsuccessful
Match

Existing Base

Base Search

Existing Deviation

New Deviation

New Deviation

Existing Base

New Base

Fingerprint
Update

Successful Match

Unsuccessful
Match

Figure 16: Deduplication system.

Client_1 Agent 

NN

NN

DN

DN

DN

DN

DN

DN-Cluster

DN-Cluster

DN

Agent 

Client_2

Client_3

Figure 17: Hadoop architecture.
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chunking (FSC) and content defned chunking (CDC), re-
spectively. When FSC is compared with CDC, the FSC
performs better by producing 39% lesser chunks than that
CDC for a 23MB fle, but when compared with DCAP, the
FSC outputs 74% more chunks for 23MB of the fle. Te
higher number of chunks produced by the CDC than that of
FSC is because the CDC examines the content for break-
points and based on it the fles are chunked.

Te FSC produces chunks of fxed size that are set to fne-
tune the deduplication elimination ratio (DER), and if the
chunk size is set to smaller KBs, then the chunk overhead
increases, and the same phenomena are seen in CDC. Ten,
for 36MB fles, FSC produces 61% more chunks than that
DCAP, and the same is seen for CDC with 75% higher value.
Te DCAP produces an average of 66%, 75% less overhead
than that of FSC and CDC, respectively, as shown in Fig-
ure 18. Te lesser chunk overhead of DCAP is due to the
versioning of fles, which helps to improve the processing
efciency of CDGT.

4.2.1. Hash Judgment Time. Te hash judgment time is
defned as the time needed to fnd the duplicate entity for the
newly calculated chunks in the already stored base by
looking up in the index table which is built based on the hash
values of the chunks and the base. Te efciency of hash
judgment time depends on the nature of the index. Te
following are the evaluation parameters taken into con-
sideration, and Table 5 shows the operating modes.

(i) Hash judgment time normal mode
(ii) Hash judgment time GD mode
(iii) Hash judgment time normal mode-FCMI
(iv) Hash judgment time GD mode-FCMI

Te hash judgment time is measured for both methods
that are normal deduplication without GD and dedupli-
cation based on GD. Te hash judgment time in the
normal mode (H-NoFCM-NM) consumes more time than
that of the hash judgment time with FCM in the normal
mode (H-FCM-NM) which is an average of 47.48ms and
is reduced by employing FCM in NM. Te FCM indexes
the entries, so the search time reduces considerably, which
is seen in the lower hash judgment time in H-FCM-NM.
Te same kind of result is seen with deduplication based
on GD; that is, hash judgment in the GD mode without
FCM (H-NoFCM-GD) takes about an average of 20.66ms
more time than hash judgment in the GD mode with FCM
(H-FCM-GD). Te GD-based method takes compara-
tively lesser time than normal deduplication to determine
the duplicate contents; that is, there is an average of
26.82ms diference which is seen between them as shown

in Figure 19. Te average reduction in the hash judgment
time in GD is due to GD which reduces the number of
chunks with more fne granules such as the base and
deviation.

4.3. Performance Evaluation of GD. Te deduplication
elimination ratio (DER) is defned as the ratio between the
fle size before deduplication (FSBD) to that of fle size after
deduplication (FSAD) as shown in equation (23). Te fol-
lowing points are the evaluation parameters taken into
consideration:

(i) DER normal mode
(ii) DER GD mode
(iii) Saving percentage (SP)

DER �
File size BeforeDeduplication
File size After Deduplication

, (23)

SP � 1 −
Compressed data length

Uncompressed data length
􏼠 􏼡∗ 100. (24)

Table 6 shows the DER comparison between dedupli-
cation with and without GD for some sets of fles with
varying fle sizes. Te system based on GD shows an im-
provement in DER of about 10.98%, which will help to
reduce the storage space considerably.

Te saving percentage (the amount of storage space
occupied) has increased by an average value of 6.72%
percentage when GD is employed in the system. Te pro-
posed system improvises storage utilization as shown in
Figure 20.

Table 4: NLP vs. non-NLP.

Methods ROUGE-1 ROUGE-2 F-measure
Ranking [36] 0.38613 0.06918 0.42246
COSUM [37] 0.34124 0.09678 0.44365
NLP 0.43219 0.10642 0.46596
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Figure 18: Chunk overhead.

Table 5: Mode of operation.

Mode of
operation Meaning

NM Normal deduplication method

GD Deduplication based on generalized
deduplication
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5. Conclusion and Future Enhancement

Te content deduplication with granularity tweak based on
base and deviation is a deduplication system that is designed
to improve the deduplication efciency in terms of dedu-
plication elimination ratio (DER) and to optimize the
storage utilization. Te implemented system employs the
Dynamic Content Adjustment Policy as a chunking method
that performs chunking, and this method is assisted by

summary extraction based on NLP. Te utilization of the
cosine similar mechanism improves the matching accuracy
while performing versioning, which has put the proposed
system in a promising position to achieve higher DER. Te
novel chunking mechanism DCAP is sharper in producing
minimal chunks, which considerably brings down the
overhead in view of computation complexity. Te fnger-
print of chunks and base deviation are organized as a cluster
using FCM, and their entire ties are ordered, which brings
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Figure 19: Hash judgment time.

Table 6: Deduplication elimination ratio.

Size (MB) NM-DER GD-DER
50 1.851851852 2.057613169
42 1.789518534 1.88781014
36 1.333333333 1.388888889
23 1.769230769 1.965811966
15 1.666666667 1.984126984
9 1.282051282 1.780626781
5 7.042253521 7.30994152
1 2.040816327 2.267573696

Saving Percentage (SP)
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Figure 20: Saving percentage.
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down the searching time and smoothly increases the ac-
curacy rate irrespective of the size of the cluster and index
and that there is an average of 68.5% efciency which is
recorded. Te important performance parameter of any
deduplication system is deduplication elimination ratio
(DER), so this paper focuses on the improvement of DER.
GD provided such a facility that fne-tunes the DER, and this
can be seen in the result session; the GD-DER shows an
improvement of about 10.98% over the deduplication system
without GD. GD improves the storage utilization by 6.72%
when compared with that of the system without GD.

Data Availability

Te data used to support the fndings of this study have not
beenmade available because they containmore personal fles
(Te Digital Universe of Opportunities. Rich data and the
increasing value of the Internet of things and EMC Digital
Universe with Research and Analysis by IDC, [Online].
Available: https://www.emc.com/leadership/digital-
universe/2014iview/executive-summary.htm).
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