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e clinical trial, a prospective evaluation of the effect of
interventions in humans under prespeci�ed conditions, is
a standard and integral part of modern medicine. Many
adaptive and sequential approaches have been proposed for
clinical trials, which allow for modi�cations to an ongoing
trial without undermining the validity and integrity of the
trial. e application of adaptive and sequential methods
in clinical trials has signi�cantly improved the �exibility,
efficiency, therapeutic effect, and validity of such trials.

is special issue describes state-of-the-art statistical
research in adaptive and sequential methods and the appli-
cation of such methods in clinical trials. It provides 1 review
article and 5 research articles contributed by some of the
leading experts in this �eld. e review article gives a
comprehensive overview of the outstanding methodology in
the current literature that is related to adaptive and sequential
clinical trials, while each of the 5 research articles addresses
speci�c critical issues in contemporary clinical trials, as
summarized below.

In the review paper “Methodology and Application of
Adaptive and Sequential Approaches in Contemporary Clinical
Trials,” by Z. Chen et al., the most distinguished and appli-
cable adaptive and sequential approaches, especially novel
designs, are reviewed, compared, and contrasted according
to the phase of clinical trial (phases I, II, and III) to which
they are applied. e future directions of the related areas of
research are also explored and discussed.

e research article entitled “Exact group sequential
methods for estimating a binomial proportion,” by Z. Chen

and �. Chen, �rst reviews existing sequential methods for
estimating a binomial proportion. A new family of group
sequential sampling schemes is then proposed for estimating
a binomial proportion with a prescribed margin of error,
which achieves unprecedented efficiency while guaranteeing
prespeci�ed con�dence levels.

e research article entitled “Two-stage adaptive optimal
design with �xed �rst-stage sample si�e,” by A. Lane and N.
Flournoy, proposes a two-stage adaptive optimal design with
a �xed �rst-stage sample size, as applied to a small pilot
study of �xed size that is to be followed by a much larger
experiment. e authors study the large sample behavior
of their design by assuming a nonlinear regression model
with normal errors and explicitly deriving the asymptotic
distribution of the maximum likelihood estimate.

In the research paper “Escalation with overdose control
using ordinal toxicity grades for cancer phase I clinical trials,”
byM. Tighiouart et al., the authors extend a Bayesian adaptive
phase I clinical trial by introducing an intermediate-grade
toxicity and show that the efficiency and safety of the trial are
maintained and fewer patients are overdosed.

e research paper “Incorporating a patient dichotomous
characteristic in cancer phase I clinical trials using escalation
with overdose control,” by M. Tighiouart et al., describes a
design for phase I clinical trials in cancer that takes into
account heterogeneity among patients, which is thought to be
related to treatment susceptibility, and reduces the number of
patients being overdosed.
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In the research paper “Number of patients per cohort and
sample size considerations using dose escalation with overdose
control,” M. Tighiouart and A. Rogatko compare the safety
and efficiency of trials designedwith three or only one patient
per cohort and present the number of patients needed to
design a trial to achieve a given accuracy of the estimate of
the maximum tolerated dose.

As the editors of this special issue, we hope that readers of
this special �ournal issue will �nd these articles representative
of the contributions of this important research �eld to
clinical trials, in terms of research methodology and its many
practical applications.We thank the authors and reviewers for
their signi�cant contributions to the articles in this special
issue. We also extend our thanks to the Hindis Publishing
Corporation for their professional and efficient service.

Yichuan Zhao
Zhengjia Chen
Xuelin Huang

Mourad Tighiouart
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�e �rst review existing sequential methods for estimating a binomial proportion. A�erward, we propose a new family of group
sequential sampling schemes for estimating a binomial proportion with prescribed margin of error and con�dence level. In
particular, we establish the uniform controllability of coverage probability and the asymptotic optimality for such a family of
sampling schemes. Our theoretical results establish the possibility that the parameters of this family of sampling schemes can be
determined so that the prescribed level of con�dence is guaranteed with little waste of samples. Analytic bounds for the cumulative
distribution functions and expectations of sample numbers are derived. Moreover, we discuss the inherent connection of various
sampling schemes. Numerical issues are addressed for improving the accuracy and efficiency of computation. Computational
experiments are conducted for comparing sampling schemes. Illustrative examples are given for applications in clinical trials.

1. Introduction

Estimating a binomial proportion is a problem of ubiquitous
signi�cance in many areas of engineering and sciences. �or
economical reasons and other concerns, it is important to use
as fewer as possible samples to guarantee the required relia-
bility of estimation. To achieve this goal, sequential sampling
schemes can be very useful. In a sequential sampling scheme,
the total number of observations is not �xed in advance.
e sampling process is continued stage by stage until a
prespeci�ed stopping rule is satis�ed. e stopping rule is
evaluated with accumulated observations. In many applica-
tions, for administrative feasibility, the sampling experiment
is performed in a group fashion. Similar to group sequential
tests [1, Section 8], [2], an estimation method based on
taking samples by groups and evaluating them sequentially
is referred to as a group sequential estimation method. It
should be noted that group sequential estimation methods
are general enough to include �xed-sample-size and fully
sequential procedures as special cases. Particularly, a �xed-
sample-size method can be viewed as a group sequential

procedure of only one stage. If the increment between the
sample sizes of consecutive stages is equal to 1, then the group
sequential method is actually a fully sequential method.

It is a common contention that statistical inference, as
a unique science to quantify the uncertainties of inferential
statements, should avoid errors in the quanti�cation of
uncertainties, while minimizing the sampling cost. at is,
a statistical inferential method is expected to be exact and
efficient. e conventional notion of exactness is that no
approximation is involved, except the round-off error due to
�nite word length of computers. Existing sequential methods
for estimating a binomial proportion are dominantly of
asymptotic nature (see, e.g., [3–7] and the references therein).
Undoubtedly, asymptotic techniques provide approximate
solutions and important insights for the relevant prob-
lems. However, any asymptotic method inevitably introduces
unknown error in the resultant approximate solution due
to the necessary use of a �nite number of samples. In
the direction of nonasymptotic sequential estimation, the
primary goal is to ensure that the true coverage probability
is above the prespeci�ed con�dence level for any value of
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the associated parameter, while the required sample size is
as low as possible. In this direction, Mendo and Hernando
[8] developed an inverse binomial sampling scheme for
estimating a binomial proportion with relative precision.
Tanaka [9] developed a rigorous method for constructing
�xed-width sequential con�dence intervals for a binomial
proportion. Although no approximation is involved, Tanaka’s
method is very conservative due to the bounding techniques
employed in the derivation of sequential con�dence intervals.
Franzén [10] studied the construction of �xed-width sequen-
tial con�dence intervals for a binomial proportion. However,
no e�ective method for de�ning stopping rules is proposed
in [10]. In his later paper [11], Franzén proposed to con-
struct �xed-width con�dence intervals based on sequential
probability ratio tests (SPRTs) invented by Wald [12]. His
method can generate �xed-sample-size con�dence intervals
based on SPRTs. Unfortunately, he made a fundamental
�aw by mistaking that if the width of the �xed-sample-
size con�dence interval decreases to be smaller than the
prespeci�ed length as the number of samples is increas-
ing, then the �xed-sample-size con�dence interval at the
termination of sampling process is the desired �xed-width
sequential con�dence interval guaranteeing the prescribed
con�dence level. More recently, Frey published a paper
[13] in e American Statistician (TAS) on the classical
problem of sequentially estimating a binomial proportion
with prescribed margin of error and con�dence level. Before
Frey submitted his original manuscript to TAS in July 2009, a
general framework of multistage parameter estimation had
been established by Chen [14–18], which provides exact
methods for estimating parameters of common distributions
with various error criterion.is framework is also proposed
in [19]. e approach of Frey [13] is similar to that of Chen
[14–18] for the speci�c problem of estimating a binomial
proportion with prescribed margin of error and con�dence
level.

In this paper, our primary interests are in the exact
sequential methods for the estimation of a binomial propor-
tion with prescribed margin of error and con�dence level.
We �rst introduce the exact approach established in [14–18].
In particular, we introduce the inclusion principle proposed
in [18] and its applications to the construction of concrete
stopping rules. We investigate the connection among various
stopping rules. Aerward, we propose a new family of
stopping rules which are extremely simple and accommodate
some existing stopping rules as special cases. We provide
rigorous �usti�cation for the feasibility and asymptotic opti-
mality of such stopping rules. We prove that the prescribed
con�dence level can be guaranteed uniformly for all values
of a binomial proportion by choosing appropriate parametric
values for the stopping rule. We show that as the margin of
error tends to be zero, the sample size tends to the attainable
minimum as if the binomial proportion were exactly known.
We derive analytic bounds for distributions and expectations
of sample numbers. In addition, we address some critical
computational issues and propose methods to improve the
accuracy and efficiency of numerical calculation.We conduct
extensive numerical experiment to study the performance
of various stopping rules. We determine parametric values

for the proposed stopping rules to achieve unprecedentedly
efficiency while guaranteeing prescribed con�dence levels.
We attempt to make our proposed method as user-friendly
as possible so that it can be immediately applicable even for
layer persons.

e remainder of the paper is organized as follows. In
Section 2, we introduce the exact approach proposed in
[14–18]. In Section 3, we discuss the general principle of
constructing stopping rules. In Section 4, we propose a new
family of sampling schemes and investigate their feasibility,
optimality, and analytic bounds of the distribution and
expectation of sample numbers. In Section 5, we compare
various computational methods. In particular, we illustrate
why the natural method of evaluating coverage probability
based on gridding parameter space is neither rigorous nor
efficient. In Section 6,we present numerical results for various
sampling schemes. In Section 7, we illustrate the applications
of our group sequential method in clinical trials. Section
8 is the conclusion. e proofs of theorems are given in
appendices.roughout this paper, we shall use the following
notations. e empty set is denoted by∅. e set of positive
integers is denoted by ℕ. e ceiling function is denoted by
⌈⋅⌉. e notation Pr{𝐸𝐸 𝐸 𝐸𝐸𝐸 denotes the probability of the
event 𝐸𝐸 associated with parameter 𝜃𝜃. e expectation of a
random variable is denoted by 𝔼𝔼𝔼𝔼𝔼. e standard normal
distribution is denoted by Φ(⋅). For 𝛼𝛼 𝛼 𝛼𝛼𝛼 𝛼𝛼, the notation
𝒵𝒵𝛼𝛼 denotes the critical value such that Φ(𝒵𝒵𝛼𝛼) = 1 − 𝛼𝛼.
For 𝑛𝑛 𝑛𝑛 , in the case that 𝑋𝑋1,… ,𝑋𝑋𝑛𝑛 are i.i.d. samples
of 𝑋𝑋, we denote the sample mean (∑𝑛𝑛

𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖)/𝑛𝑛 by 𝑋𝑋𝑛𝑛, which
is also called the relative frequency when 𝑋𝑋 is a Bernoulli
random variable.e other notations will bemade clear as we
proceed.

2. How Can It Be Exact?

In many areas of scienti�c investigation, the outcome of an
experiment is of dichotomy nature and can be modeled as
a Bernoulli random variable 𝑋𝑋, de�ned in probability space
(Ω,Pr,ℱ), such that

Pr{𝑋𝑋 𝑋𝑋 } = 1 − Pr{𝑋𝑋 𝑋𝑋 } = 𝑝𝑝 𝑝 (0,1 ) , (1)

where 𝑝𝑝 is referred to as a binomial proportion. In general,
there is no analytic method for evaluating the binomial
proportion 𝑝𝑝. A frequently used approach is to estimate
𝑝𝑝 based on i.i.d. samples 𝑋𝑋1,𝑋𝑋2,… of 𝑋𝑋. To reduce the
sampling cost, it is appropriate to estimate 𝑝𝑝 by a multistage
sampling procedure. More formally, let 𝜖𝜖 𝜖𝜖𝜖𝜖𝜖𝜖   and 1 − 𝛿𝛿,
with 𝛿𝛿 𝛿𝛿𝛿𝛿𝛿𝛿  , be the prespeci�ed margin of error and
con�dence level, respectively. e ob�ective is to construct a
sequential estimator 󵰁󵰁𝐩𝐩 for 𝑝𝑝 based on a multistage sampling
scheme such that

Pr󶁁󶁁󶁁󶁁󵰁󵰁𝐩𝐩 𝐩𝐩𝐩 󶙡󶙡 < 𝜖𝜖 𝜖𝜖𝜖 󶁑󶁑 ≥ 1 − 𝛿𝛿𝛿 (2)
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for any 𝑝𝑝 𝑝 𝑝𝑝𝑝 𝑝𝑝. roughout this paper, the probability
Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩 𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩 is referred to as the coverage
probability. Accordingly, the probability Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩 𝐩 𝐩𝐩 𝐩
𝑝𝑝𝑝 is referred to as the complementary coverage probability.
Clearly, a complete construction of a multistage estimation
scheme needs to determine the number of stages, the sample
sizes for all stages, the stopping rule, and the estimator for
𝑝𝑝. roughout this paper, we let 𝑠𝑠 denote the number of
stages and let 𝑛𝑛ℓ denote the number of samples at the ℓth
stages. at is, the sampling process consists of 𝑠𝑠 stages with
sample sizes 𝑛𝑛1 < 𝑛𝑛2 < ⋯ < 𝑛𝑛𝑠𝑠. For ℓ = 1, 2,… , 𝑠𝑠,
de�ne 𝐾𝐾ℓ = ∑𝑛𝑛ℓ

𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖 and󵰃󵰃𝐩𝐩ℓ = 𝐾𝐾ℓ/𝑛𝑛ℓ. e stopping rule is
to be de�ned in terms of󵰃󵰃𝐩𝐩ℓ, ℓ = 1,… , 𝑠𝑠. Of course, the
index of stage at the termination of the sampling process,
denoted by 𝐥𝐥, is a random number. Accordingly, the number
of samples at the termination of the experiment, denoted by
𝐧𝐧, is a random number which equals 𝑛𝑛𝐥𝐥. Since for each ℓ,󵰃󵰃𝐩𝐩ℓ
is a maximum-likelihood and minimum-variance unbiased
estimator of 𝑝𝑝, the sequential estimator for 𝑝𝑝 is taken
as

󵰁󵰁𝐩𝐩 𝐩 󵰂󵰂𝐩𝐩𝐥𝐥 =
∑𝑛𝑛𝐥𝐥
𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖

𝑛𝑛𝐥𝐥
=
∑𝐧𝐧
𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖

𝐧𝐧
. (3)

In the above discussion, we have outlined the general char-
acteristics of a multistage sampling scheme for estimating a
binomial proportion. It remains to determine the number
of stages, the sample sizes for all stages, and the stopping
rule so that the resultant estimator 󵰁󵰁𝐩𝐩 satis�es (2) for any
𝑝𝑝 𝑝 𝑝𝑝𝑝 𝑝𝑝.

Actually, the problem of sequential estimation of a
binomial proportion has been treated by Chen [14–18] in a
general framework of multistage parameter estimation. e
techniques of [14–18] are sufficient to offer exact solutions for
a wide range of sequential estimation problems, including the
estimation of a binomial proportion as a special case.e cen-
tral idea of the approach in [14–18] is the control of coverage
probability by a single parameter 𝜁𝜁, referred to as the coverage
tuning parameter, and the adaptive rigorous checking of cov-
erage guarantee by virtue of bounds of coverage probabilities.
It is recognized in [14–18] that, due to the discontinuity of the
coverage probability on parameter space, the conventional
method of evaluating the coverage probability for a �nite
number of parameter values is neither rigorous not com-
putationally efficient for checking the coverage probability
guarantee.

As mentioned in the introduction, Frey published an
article [13] in TAS on the sequential estimation of a binomial
proportion with prescribed margin of error and con�dence
level. For clarity of presentation, the comparison of the works
of Chen and Frey is given in Section 5.4. In the remainder of
this section, we shall only introduce the idea and techniques
of [14–18], which had been precedentially developed byChen
before Frey submitted his original manuscript to TAS in
July 2009. We will introduce the approach of [14–18] with
a focus on the special problem of estimating a binomial
proportion with prescribed margin of error and con�dence
level.

2.1. Four Components Suffice. e exact methods of [14–
18] for multistage parameter estimation have four main
components as follows.

(i) Stopping rules parameterized by the coverage tuning
parameter 𝜁𝜁 𝜁 𝜁 such that the associated coverage
probabilities can be made arbitrarily close to 1 by
choosing 𝜁𝜁 𝜁 𝜁 to be a sufficiently small number.

(ii) Recursively computable lower and upper bounds for
the complementary coverage probability for a given 𝜁𝜁
and an interval of parameter values.

(iii) Adapted branch and bound algorithm.

(iv) Bisection coverage tuning.

Without looking at the technical details, one can see
that these four components are sufficient for constructing
a sequential estimator so that the prescribed con�dence
level is guaranteed. e reason is as follows. As lower and
upper bounds for the complementary coverage probability
are available, the global optimization technique, branch and
bound (B&B) algorithm [20], can be used to compute exactly
the maximum of complementary coverage probability on
the whole parameter space. us, it is possible to check
rigorously whether the coverage probability associated with
a given 𝜁𝜁 is no less than the prespeci�ed con�dence level.
Since the coverage probability can be controlled by 𝜁𝜁, it is
possible to determine 𝜁𝜁 as large as possible to guarantee
the desired con�dence level by a bisection search. is
process is referred to as bisection coverage tuning in [14–
18]. Since a critical subroutine needed for bisection coverage
tuning is to check whether the coverage probability is no
less than the prespeci�ed con�dence level, it is not necessary
to compute exactly the maximum of the complementary
coverage probability. erefore, Chen revised the standard
B&B algorithm to reduce the computational complexity
and called the improved algorithm as the adapted B&B
Algorithm. e idea is to adaptively partition the parameter
space as many subintervals. If for all subintervals, the upper
bounds of the complementary coverage probability are no
greater than 𝛿𝛿, then declare that the coverage probability is
guaranteed. If there exists a subinterval for which the lower
bound of the complementary coverage probability is greater
than 𝛿𝛿, then declare that the coverage probability is not
guaranteed. Continue partitioning the parameter space if no
decision can be made. e four components are illustrated
in the sequel under the headings of stopping rules, interval
bounding, adapted branch andbound, and bisection coverage
tuning.

2.2. Stopping Rules. e �rst component for the exact
sequential estimation of a binomial proportion is the stop-
ping rule for constructing a sequential estimator such that the
coverage probability can be controlled by the coverage tuning
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parameter 𝜁𝜁. For convenience of describing some concrete
stopping rules, de�ne

ℳ(𝑧𝑧𝑧 𝑧𝑧) =

󶀂󶀂󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒
󶀚󶀚

𝑧𝑧 𝑧𝑧
𝜃𝜃
𝑧𝑧

+(1 − 𝑧𝑧) ln
1 − 𝜃𝜃
1 − 𝑧𝑧

for 𝑧𝑧 𝑧 (0, 1) ,
𝜃𝜃𝜃  (0, 1) ,

ln(1 − 𝜃𝜃) for 𝑧𝑧 𝑧𝑧 𝑧 𝑧𝑧 𝑧 (0, 1) ,
ln𝜃𝜃  for 𝑧𝑧 𝑧𝑧 𝑧 𝑧𝑧 𝑧 (0, 1) ,
−∞ for 𝑧𝑧 𝑧 [0, 1] ,

𝜃𝜃 𝜃 (0, 1) ,

𝑆𝑆󶀡󶀡𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘󶀱󶀱 =
󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

𝑙𝑙
󵠈󵠈
𝑖𝑖𝑖𝑖𝑖
󶀦󶀦
𝑛𝑛
𝑖𝑖
󶀶󶀶𝑝𝑝𝑖𝑖󶀡󶀡1 − 𝑝𝑝󶀱󶀱𝑛𝑛𝑛𝑛𝑛 for 𝑝𝑝𝑝  (0, 1) ,

0 for 𝑝𝑝𝑝  (0, 1) ,
(4)

where 𝑘𝑘 and 𝑙𝑙 are integers such that 0 ≤ 𝑘𝑘 𝑘 𝑘𝑘 𝑘 𝑘𝑘. Assume
that 0 < 𝜁𝜁𝜁𝜁 𝜁𝜁 . For the purpose of controlling the coverage
probability Pr{|󵰁󵰁𝐩𝐩 𝐩 p| < 𝜖𝜖 𝜖 𝜖𝜖𝜖 by the coverage tuning
parameter, Chen has proposed four stopping rules as follows.

Stopping Rule A. Continue sampling untilℳ((1/2) − |(1/2) −
󵰃󵰃𝐩𝐩ℓ|, (1/2)−|(1/2)−󵰃󵰃𝐩𝐩ℓ|+𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖  ℓ for some ℓ ∈ {1,… , 𝑠𝑠𝑠.

Stopping Rule B. Continue sampling until (|󵰃󵰃𝐩𝐩ℓ − (1/2)| −
(2/3)𝜖𝜖𝜖2 ≥ (1/4) + (𝜖𝜖2𝑛𝑛ℓ/2 ln(𝜁𝜁𝜁𝜁𝜁𝜁 for some ℓ ∈ {1,… , 𝑠𝑠𝑠.

Stopping Rule C. Continue sampling until 𝑆𝑆𝑆𝑆𝑆ℓ,𝑛𝑛 ℓ,𝑛𝑛 ℓ,󵰃󵰃𝐩𝐩ℓ −
𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖   and 𝑆𝑆𝑆𝑆𝑆 𝑆𝑆ℓ,𝑛𝑛 ℓ,󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖   for some ℓ ∈ {1,… , 𝑠𝑠𝑠.

Stopping Rule D. Continue sampling until 𝑛𝑛ℓ ≥ 󵰃󵰃𝐩𝐩ℓ(1 −
󵰃󵰃𝐩𝐩ℓ)(2/𝜖𝜖

2) ln(1/𝜁𝜁𝜁𝜁𝜁 for some ℓ ∈ {1,… , 𝑠𝑠𝑠.

Stopping Rule A was �rst proposed in [14, eorem 7]
and restated in [15, eorem 16]. Stopping Rule B was
�rst proposed in [16, eorem 1] and represented as the
third stopping rule in [21, Section 4.1.1]. Stopping Rule C
originated from [17, eorem 1] and was restated as the
�rst stopping rule in [21, Section 4.1.1]. Stopping Rule D
was described in the remarks following eorem 7 of [22].
All these stopping rules can be derived from the general
principles proposed in [18, Section 3] and [19, Section 2.4].

Given that a stopping rule can be expressed in terms of
󵰃󵰃𝐩𝐩ℓ and 𝑛𝑛ℓ for ℓ = 1,… , 𝑠𝑠, it is possible to �nd a bivariate
function𝒟𝒟𝒟𝒟𝒟 𝒟𝒟 on {(𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧 𝑧𝑧 𝑧 𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧 𝑧 𝑧𝑧, taking values
from {0, 1}, such that the stopping rule can be stated as the
following: continue sampling until𝒟𝒟𝒟󵰃󵰃𝐩𝐩ℓ,𝑛𝑛 ℓ) = 1 for some ℓ ∈
{1,… , 𝑠𝑠𝑠. It can be checked that such representation applies
to Stopping Rules A, B, C, and D. For example, Stopping Rule
B can be expressed in this way by virtue of function 𝒟𝒟𝒟𝒟𝒟 𝒟𝒟
such that

𝒟𝒟(𝑧𝑧𝑧 𝑧𝑧) =
󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

1 if 󶀤󶀤󶙤󶙤𝑧𝑧 𝑧 1
2
󶙤󶙤 −

2
3
𝜖𝜖󶀴󶀴

2
≥
1
4
+

𝜖𝜖2𝑛𝑛
2 ln(𝜁𝜁𝜁𝜁)

,

0 otherwise.
(5)

e motivation of introducing function 𝒟𝒟𝒟𝒟𝒟 𝒟𝒟 is to param-
eterize the stopping rule in terms of design parameters.
Function𝒟𝒟𝒟𝒟𝒟 𝒟𝒟 determines the formof the stopping rule and,
consequently, the sample sizes for all stages can be chosen as
functions of design parameters. Speci�cally, let

𝑁𝑁min = min󶁅󶁅𝑛𝑛𝑛𝑛𝑛𝑛𝑛    󶀥󶀥
𝑘𝑘
𝑛𝑛
,𝑛𝑛 󶀵󶀵 = 1

for some nonnegative

integer 𝑘𝑘 not exceeding 𝑛𝑛󶁕󶁕 ,

(6)

𝑁𝑁max = min󶁅󶁅𝑛𝑛𝑛𝑛𝑛𝑛𝑛    󶀥󶀥
𝑘𝑘
𝑛𝑛
,𝑛𝑛 󶀵󶀵 = 1

for all nonnegative

integer 𝑘𝑘 not exceeding 𝑛𝑛󶁕󶁕 .

(7)

To avoid unnecessary checking of the stopping criterion and
thus reduce administrative cost, there should be a possibility
that the sampling process is terminated at the �rst stage.
Hence, the minimum sample size 𝑛𝑛1 should be chosen to
ensure that {𝐧𝐧 𝐧𝐧𝐧 1} ≠∅. is implies that the sample size
𝑛𝑛1 for the �rst stage can be taken as 𝑁𝑁min. On the other
hand, since the sampling process must be terminated at or
before the 𝑠𝑠th stage, the maximum sample size 𝑛𝑛𝑠𝑠 should be
chosen to guarantee that {𝐧𝐧 𝐧 𝐧𝐧𝑠𝑠} = ∅. is implies that the
sample size 𝑛𝑛𝑠𝑠 for the last stage can be taken as 𝑁𝑁max. If the
number of stages 𝑠𝑠 is given, then the sample sizes for stages in
between 1 and 𝑠𝑠 can be chosen as 𝑠𝑠𝑠𝑠 integers between𝑁𝑁min
and 𝑁𝑁max. Particularly, if the group sizes are expected to be
approximately equal, then the sample sizes can be taken as

𝑛𝑛ℓ = 󶃤󶃤𝑁𝑁min +
ℓ − 1
𝑠𝑠 𝑠𝑠

󶀡󶀡𝑁𝑁max − 𝑁𝑁min󶀱󶀱󶃴󶃴 , ℓ = 1,… , 𝑠𝑠𝑠 (8)

Since the stopping rule is associated with the coverage tuning
parameter 𝜁𝜁, it follows that the number of stages 𝑠𝑠 and the
sample sizes 𝑛𝑛1,𝑛𝑛 2,… ,𝑛𝑛 𝑠𝑠 can be expressed as functions of
𝜁𝜁. In this sense, it can be said that the stopping rule is
parameterized by the coverage tuning parameter 𝜁𝜁.e above
method of parameterizing stopping rules has been used in
[14–17] and proposed in [21, Section 2.1, page 9].

2.3. Interval Bounding. e second component for the exact
sequential estimation of a binomial proportion is the method
of bounding the complementary coverage probability Pr{|󵰁󵰁𝐩𝐩𝐩
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝     for 𝑝𝑝 in an interval [𝑎𝑎𝑎 𝑎𝑎𝑎 contained by interval
(0, 1). Applying eorem 8 of [15] to the special case of a
Bernoulli distribution immediately yields

Pr{󵰁󵰁𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩     } + Pr{󵰁󵰁𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩     }

≤ Pr󶁁󶁁󶁁󶁁󵰁󵰁𝐩𝐩 𝐩𝐩𝐩 󶙡󶙡 ≥ 𝜖𝜖 𝜖 𝜖𝜖󶁑󶁑

≤ Pr{󵰁󵰁𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩     } + Pr{󵰁󵰁𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩     } ,

(9)
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∇ Let 𝑘𝑘 𝑘 𝑘, 𝑙𝑙0 ← Ψlb(ℐinit) and 𝑢𝑢0 ← Ψub(ℐinit).
∇ Let 𝒮𝒮0 ← {ℐinit} if 𝑢𝑢0 > 𝛿𝛿. Otherwise, let 𝒮𝒮0 be empty.
∇While 𝒮𝒮𝑘𝑘 is nonempty, 𝑙𝑙𝑘𝑘 < 𝛿𝛿 and 𝑢𝑢𝑘𝑘 is greater than max{𝑙𝑙𝑘𝑘 + 𝜂𝜂𝜂 𝜂𝜂𝜂, do the following:

⋄ Split each interval in 𝒮𝒮𝑘𝑘 as two new intervals of equal length.
Let 𝑆𝑆𝑘𝑘 denote the set of all new intervals obtained from this splitting procedure.

⋄ Eliminate any intervalℐ from 𝑆𝑆𝑘𝑘 such that Ψub(ℐ) ≤ 𝛿𝛿.
⋄ Let 𝒮𝒮𝑘𝑘𝑘𝑘 be the set 𝑆𝑆𝑘𝑘 processed by the above elimination procedure.
⋄ Let 𝑙𝑙𝑘𝑘𝑘𝑘 ← maxℐ∈𝒮𝒮𝑘𝑘𝑘𝑘Ψlb(ℐ) and 𝑢𝑢𝑘𝑘𝑘𝑘 ← maxℐ∈𝒮𝒮𝑘𝑘𝑘𝑘Ψub(ℐ). Let 𝑘𝑘 𝑘 𝑘𝑘 𝑘 𝑘.

∇ If 𝒮𝒮𝑘𝑘 is empty and 𝑙𝑙𝑘𝑘 < 𝛿𝛿, then declare max Ψ(ℐinit) ≤ 𝛿𝛿.
Otherwise, declare max Ψ(ℐinit) > 𝛿𝛿.

A 1

for all 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝 . e bounds of (9) can be shown
as follows. Note that Pr{󵰁󵰁𝐩𝐩 𝐩𝐩𝐩  𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩𝐩  Pr{󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩  𝐩𝐩 𝐩
𝑝𝑝𝑝𝑝  Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩 𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩 𝐩 Pr{󵰁󵰁𝐩𝐩 𝐩𝐩𝐩  𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩𝐩  Pr{󵰁󵰁𝐩𝐩 𝐩
𝑝𝑝 𝑝𝑝𝑝𝑝   𝑝𝑝𝑝𝑝  Pr{󵰁󵰁𝐩𝐩 𝐩𝐩𝐩  𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩𝐩  Pr{󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩  𝐩𝐩 𝐩 𝐩𝐩𝐩 for
𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝 . As a consequence of the monotonicity of
Pr{󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩 and Pr{󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩 with respect to 𝑝𝑝, where 𝜗𝜗 is
a real number independent of 𝑝𝑝, the lower and upper bounds
of Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩 𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩 for 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝  can be given as
Pr{󵰁󵰁𝐩𝐩 𝐩𝐩𝐩  𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩𝐩  Pr{󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩  𝐩𝐩 𝐩 𝐩𝐩𝐩 and Pr{󵰁󵰁𝐩𝐩 𝐩𝐩𝐩  𝐩 𝐩𝐩 𝐩
𝑎𝑎𝑎𝑎  Pr{󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩  𝐩𝐩 𝐩 𝐩𝐩𝐩, respectively.

In page 15, equation (1) of [15], Chen proposed to apply
the recursive method of Schultz et al. [23, Section 2] to
compute the lower and upper bounds of Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩 𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩
given by (9). It should be pointed out that such lower and
upper bounds of Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩 𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩 can also be computed
by the recursive path-counting method of Franzén [10, page
49].

2.4. Adapted Branch and Bound. e third component for
the exact sequential estimation of a binomial proportion is
the adapted B&B algorithm, which was proposed in [15,
Section 2.8], for quick determination ofwhether the coverage
probability is no less than 1−  𝛿𝛿 for any value of the
associated parameter. Such a task of checking the coverage
probability is also referred to as checking the coverage
probability guarantee. Given that lower and upper bounds
of the complementary coverage probability on an interval of
parameter values can be obtained by the interval bounding
techniques, this task can be accomplished by applying the
B&B algorithm [20] to compute exactly the maximum of the
complementary coverage probability on the parameter space.
However, in our applications, it suffices to determine whether
the maximum of the complementary coverage probability
Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩 𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩 with respect to 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝   is greater
than the con�dence parameter 𝛿𝛿. For fast checking whether
the maximal complementary coverage probability exceeds 𝛿𝛿,
Chen proposed to reduce the computational complexity by
revising the standard B&B algorithm as the Adapted B&B
Algorithm in [15, Section 2.8]. To describe this algorithm,
let ℐinit denote the parameter space (0,1 ). For an interval
ℐ ⊆ ℐinit, let maxΨ(ℐ) denote the maximum of the
complementary coverage probability Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩 𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩 with
respect to 𝑝𝑝 𝑝𝑝 . LetΨlb(ℐ) andΨub(ℐ) be, respectively, the
lower and upper bounds of Ψ(ℐ), which can be obtained by

the interval bounding techniques introduced in Section 2.3.
Let 𝜂𝜂 𝜂𝜂  be a prespeci�ed tolerance, which is much smaller
than 𝛿𝛿. e adapted B&B algorithm of [15] is represented
with a slight modi�cation as in Algorithm 1.

It should be noted that for a sampling scheme of sym-
metrical stopping boundary, the initial interval ℐinit may
be taken as (0,1 /2) for the sake of efficiency. In Section
5.1, we will illustrate why the adapted B&B algorithm
is superior than the direct evaluation based on gridding
parameter space. As will be seen in Section 5.2, the objec-
tive of the adapted B&B algorithm can also be accom-
plished by the Adaptive Maximum Checking Algorithm due
to Chen [21, Section 3.3] and rediscovered by Frey [13,
Appendix]. An explanation is given in Section 5.3 for the
advantage of working with the complementary coverage
probability.

2.5. Bisection Coverage Tuning. e fourth component for
the exact sequential estimation of a binomial proportion is
Bisection Coverage Tuning. Based on the adaptive rigorous
checking of coverage probability, Chen proposed in [14,
Section 2.7] and [15, Section 2.6] to apply a bisection search
method to determine maximal 𝜁𝜁 such that the coverage
probability is no less than 1−𝛿𝛿 for any value of the associated
parameter. Moreover, Chen has developed asymptotic results
in [15, page 21, eorem 18] for determining the initial
interval of 𝜁𝜁 needed for the bisection search. Speci�cally, if
the complementary coverage probability Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩 𝐩 𝐩𝐩 𝐩 𝐩𝐩𝐩
associated with 𝜁𝜁 𝜁 𝜁𝜁0 tends to 𝛿𝛿 as 𝜖𝜖 𝜖 𝜖, then the
initial interval of 𝜁𝜁 can be taken as [𝜁𝜁02

𝑖𝑖, 𝜁𝜁02
𝑖𝑖𝑖𝑖], where 𝑖𝑖

is the largest integer such that the complementary coverage
probability associated with 𝜁𝜁 𝜁 𝜁𝜁02

𝑖𝑖 is no greater than 𝛿𝛿 for
all 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝  . By virtue of a bisection search, it is possible
to obtain 𝜁𝜁∗ ∈ [𝜁𝜁02

𝑖𝑖, 𝜁𝜁02
𝑖𝑖𝑖𝑖] such that the complementary

coverage probability associated with 𝜁𝜁 𝜁 𝜁𝜁∗ is guaranteed to
be no greater than 𝛿𝛿 for all 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝  .

3. Principle of Constructing Stopping Rules

In this section, we shall illustrate the inherent connection
between various stopping rules. It will be demonstrated that a
lot of stopping rules can be derived by virtue of the inclusion
principle proposed by Chen [18, Section 3].
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3.1. Inclusion Principle. e problem of estimating a bino-
mial proportion can be considered as a special case of
parameter estimation for a random variable𝑋𝑋 parameterized
by 𝜃𝜃 𝜃 𝜃, where the objective is to construct a sequential
estimator 󵰁󵰁𝜃𝜃 for 𝜃𝜃 such that Pr{|󵰁󵰁𝜃𝜃 𝜃 𝜃𝜃𝜃 𝜃 𝜃𝜃 𝜃 𝜃𝜃𝜃 𝜃 𝜃 𝜃 𝜃𝜃 for any
𝜃𝜃 𝜃 𝜃. Assume that the sampling process consists of 𝑠𝑠 stages
with sample sizes 𝑛𝑛1 < 𝑛𝑛2 < ⋯ < 𝑛𝑛𝑠𝑠. For ℓ = 1,… , 𝑠𝑠, de�ne
an estimator 󵰁󵰁𝜃𝜃ℓ for 𝜃𝜃 in terms of samples𝑋𝑋1,… ,𝑋𝑋𝑛𝑛ℓ of𝑋𝑋. Let
[𝐿𝐿ℓ, 𝑈𝑈ℓ], ℓ = 1, 2,… , 𝑠𝑠 be a sequence of con�dence intervals
such that for any ℓ, [𝐿𝐿ℓ, 𝑈𝑈ℓ] is de�ned in terms of𝑋𝑋1,… ,𝑋𝑋𝑛𝑛ℓ
and that the coverage probability Pr{𝐿𝐿ℓ ≤ 𝜃𝜃 𝜃𝜃𝜃 ℓ ∣ 𝜃𝜃𝜃
can be made arbitrarily close to 1 by choosing 𝜁𝜁 𝜁 𝜁 to
be a sufficiently small number. In eorem 2 of [18], Chen
proposed the following general stopping rule:

Continue sampling until 𝑈𝑈ℓ −𝜖𝜖𝜖   󵰁󵰁𝜃𝜃ℓ ≤ 𝐿𝐿ℓ + 𝜖𝜖

for some ℓ ∈ {1,… , 𝑠𝑠} .
(10)

At the termination of the sampling process, a sequential
estimator for 𝜃𝜃 is taken as 󵰁󵰁𝜃𝜃 𝜃 󵰁󵰁𝜃𝜃𝐥𝐥, where 𝐥𝐥 is the index of stage
at the termination of sampling process.

Clearly, the general stopping rule (10) can be restated as
follows.

Continue sampling until the con�dence interval [𝐿𝐿ℓ, 𝑈𝑈ℓ]
is included by interval [󵰁󵰁𝜃𝜃ℓ −𝜖𝜖𝜖  󵰁󵰁𝜃𝜃ℓ + 𝜖𝜖𝜖 for some ℓ ∈ {1,… , 𝑠𝑠𝑠.

e sequence of con�dence intervals are parameterized
by 𝜁𝜁 for purpose of controlling the coverage probability
Pr{|󵰁󵰁𝜃𝜃 𝜃 𝜃𝜃𝜃 𝜃 𝜃𝜃 𝜃 𝜃𝜃𝜃. Due to the inclusion relationship
[𝐿𝐿ℓ, 𝑈𝑈ℓ] ⊆ [󵰁󵰁𝜃𝜃ℓ−𝜖𝜖𝜖 󵰁󵰁𝜃𝜃ℓ+𝜖𝜖𝜖, such a general methodology of using
a sequence of con�dence intervals to construct a stopping
rule for controlling the coverage probability is referred to as
the inclusion principle. It is asserted byeorem 2 of [18] that

Pr󶁂󶁂󶁂󶁂󵰁󵰁𝜃𝜃 𝜃 𝜃𝜃󶙢󶙢 <𝜖𝜖𝜖𝜖𝜖   󶁒󶁒 ≥1−   𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠   (11)

provided that Pr{𝐿𝐿ℓ < 𝜃𝜃 𝜃 𝜃𝜃ℓ ∣ 𝜃𝜃𝜃 𝜃 𝜃 𝜃 𝜃𝜃𝜃𝜃 for ℓ = 1,… , 𝑠𝑠
and 𝜃𝜃 𝜃 𝜃. is demonstrates that if the number of stages 𝑠𝑠 is
bounded respective to 𝜁𝜁, then the coverage probability Pr{|󵰁󵰁𝜃𝜃𝜃
𝜃𝜃𝜃 𝜃 𝜃𝜃 𝜃 𝜃𝜃𝜃 associated with the stopping rule derived from the
inclusion principle can be controlled by 𝜁𝜁. Actually, before
explicitly proposing the inclusion principle in [18], Chen
had extensively applied the inclusion principle in [14–17] to
construct stopping rules for estimating parameters of various
distributions such as binomial, Poisson, geometric, hyperge-
ometric, and normal distributions. A more general version
of the inclusion principle is proposed in [19, Section 2.4].
For simplicity of the stopping rule, Chen had made effort to
eliminate the computation of con�dence limits.

In the context of estimating a binomial proportion 𝑝𝑝, the
inclusion principle immediately leads to the following general
stopping rule:

Continue sampling until󵰃󵰃𝐩𝐩ℓ −𝜖𝜖𝜖𝜖𝜖   ℓ ≤ 𝑈𝑈ℓ ≤󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖

for some ℓ ∈ {1,… , 𝑠𝑠} .
(12)

Consequently, the sequential estimator for 𝑝𝑝 is taken as 󵰁󵰁𝐩𝐩
according to (3). It should be pointed out that the stopping

rule (12) had been rediscovered by Frey in Section 2, the 1st
paragraph of [13]. e four stopping rules considered in his
paper follow immediately from applying various con�dence
intervals to the general stopping rule (12).

In the sequel, we will illustrate how to apply (12) to the
derivation of Stopping Rules A, B, C, and D introduced in
Section 2.2 and other speci�c stopping rules.

3.2. Stopping Rule from Wald Intervals. By virtue of Wald’s
method of interval estimation for a binomial proportion 𝑝𝑝, a
sequence of con�dence intervals [𝐿𝐿ℓ, 𝑈𝑈ℓ], ℓ = 1,… , 𝑠𝑠 for 𝑝𝑝
can be constructed such that

𝐿𝐿ℓ =󵰃󵰃𝐩𝐩ℓ − 𝒵𝒵𝜁𝜁𝜁𝜁󵀌󵀌
󵰃󵰃𝐩𝐩ℓ󶀡󶀡1− 󵰃󵰃𝐩𝐩ℓ󶀱󶀱

𝑛𝑛ℓ
, 𝑈𝑈ℓ =󵰃󵰃𝐩𝐩ℓ + 𝒵𝒵𝜁𝜁𝜁𝜁󵀌󵀌

󵰃󵰃𝐩𝐩ℓ󶀡󶀡1− 󵰃󵰃𝐩𝐩ℓ󶀱󶀱
𝑛𝑛ℓ

,

ℓ = 1,… , 𝑠𝑠𝑠
(13)

and that Pr{𝐿𝐿ℓ ≤ 𝑝𝑝 𝑝𝑝𝑝 ℓ ∣ 𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝   for ℓ =
1,… , 𝑠𝑠 and 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 𝑝. Note that, for ℓ = 1,… , 𝑠𝑠, the event
{󵰃󵰃𝐩𝐩ℓ −𝜖𝜖𝜖𝜖𝜖   ℓ ≤ 𝑈𝑈ℓ ≤ 󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖𝜖 is the same as the event
{(󵰃󵰃𝐩𝐩ℓ −1 /2)

2 ≥(1 /4)−𝑛𝑛ℓ(𝜖𝜖𝜖𝜖𝜖𝜁𝜁𝜁𝜁)
2}. So, applying this sequence

of con�dence intervals to (12) results in the stopping rule
“continue sampling until (󵰃󵰃𝐩𝐩ℓ −1 /2)

2 ≥(1 /4)−  𝑛𝑛ℓ(𝜖𝜖𝜖𝜖𝜖𝜁𝜁𝜁𝜁)
2

for some ℓ ∈ {1,… , 𝑠𝑠𝑠”. Since for any 𝜁𝜁 𝜁𝜁 𝜁𝜁𝜁𝜁𝜁𝜁𝜁 , there exists

a unique number 𝜁𝜁
′

∈(0 , 1/𝛿𝛿𝛿 such that𝒵𝒵𝜁𝜁𝜁𝜁 = 󵀆󵀆2 ln(1/𝜁𝜁
′
𝛿𝛿𝛿,

this stopping rule is equivalent to “Continue sampling until
(󵰃󵰃𝐩𝐩ℓ −1 /2)

2 ≥(1 /4) + (𝜖𝜖2𝑛𝑛ℓ/2 ln(𝜁𝜁𝜁𝜁𝜁𝜁 for some ℓ ∈ {1,… , 𝑠𝑠𝑠.”
is stopping rule is actually the same as Stopping Rule D,
since {(󵰃󵰃𝐩𝐩ℓ −1 /2)

2 ≥(1 /4) + (𝜖𝜖2𝑛𝑛ℓ/2 ln(𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁  ℓ ≥ 󵰃󵰃𝐩𝐩ℓ(1−
󵰃󵰃𝐩𝐩ℓ)(2/𝜖𝜖

2) ln(1/𝜁𝜁𝜁𝜁𝜁𝜁 for ℓ ∈ {1,… , 𝑠𝑠𝑠.

3.3. Stopping Rule from Revised Wald Intervals. De�ne󵰓󵰓𝐩𝐩ℓ =
(𝑛𝑛ℓ 󵰃󵰃𝐩𝐩ℓ + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℓ + 2𝑎𝑎𝑎 for ℓ = 1,… , 𝑠𝑠, where 𝑎𝑎 is a positive
number. Inspired byWald’s method of interval estimation for
𝑝𝑝, a sequence of con�dence intervals [𝐿𝐿ℓ, 𝑈𝑈ℓ], ℓ = 1,… , 𝑠𝑠
can be constructed such that

𝐿𝐿ℓ =󵰃󵰃𝐩𝐩ℓ − 𝒵𝒵𝜁𝜁𝜁𝜁󵀌󵀌
󵰓󵰓𝐩𝐩ℓ󶀡󶀡1− 󵰓󵰓𝐩𝐩ℓ󶀱󶀱

𝑛𝑛ℓ
,

𝑈𝑈ℓ =󵰃󵰃𝐩𝐩ℓ + 𝒵𝒵𝜁𝜁𝜁𝜁󵀌󵀌
󵰓󵰓𝐩𝐩ℓ󶀡󶀡1− 󵰓󵰓𝐩𝐩ℓ󶀱󶀱

𝑛𝑛ℓ

(14)

and that Pr{𝐿𝐿ℓ ≤ 𝑝𝑝 𝑝𝑝𝑝 ℓ ∣ 𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝   for ℓ =
1,… , 𝑠𝑠 and 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 𝑝. is sequence of con�dence intervals
was applied by Frey [13] to the general stopping rule (12).
As a matter of fact, such idea of revising Wald interval
[ 𝑋𝑋𝑛𝑛−𝒵𝒵𝜁𝜁𝜁𝜁󵀆󵀆(𝑋𝑋𝑛𝑛(1−  𝑋𝑋𝑛𝑛))/𝑛𝑛𝑛 𝑋𝑋𝑛𝑛+𝒵𝒵𝜁𝜁𝜁𝜁󵀆󵀆(𝑋𝑋𝑛𝑛(1−  𝑋𝑋𝑛𝑛))/𝑛𝑛 𝑛 by
replacing the relative frequency𝑋𝑋𝑛𝑛 = (∑

𝑛𝑛
𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖)/𝑛𝑛 involved in

the con�dence limits with󵰓󵰓𝑝𝑝𝑎𝑎 = (𝑛𝑛𝑋𝑋𝑛𝑛 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎𝑎 had been
proposed by Chen [24, Section 4].

As can be seen from Section 2, page 243, of Frey
[13], applying (12) with the sequence of revised Wald
intervals yields the stopping rule “Continue sampling until
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(󵰓󵰓𝐩𝐩ℓ − 1/2)
2 ≥ (1/4) + (𝜖𝜖2𝑛𝑛ℓ/2 ln(𝜁𝜁𝜁𝜁𝜁𝜁 for some ℓ ∈ {1,… , 𝑠𝑠𝑠.”

Clearly, replacing󵰃󵰃𝐩𝐩ℓ in Stopping Rule D with󵰓󵰓𝐩𝐩ℓ = (𝑎𝑎 𝑎
𝑛𝑛ℓ󵰃󵰃𝐩𝐩ℓ)/(𝑛𝑛ℓ + 2𝑎𝑎𝑎 also leads to this stopping rule.

�.�. �to���n� �u�e from ���son�s �on�den�e �nter�a�s. Mak-
ing use of the interval estimation method ofWilson [25], one
can obtain a sequence of con�dence intervals [𝐿𝐿ℓ, 𝑈𝑈ℓ], ℓ =
1,… , 𝑠𝑠 for 𝑝𝑝 such that

𝐿𝐿ℓ = max
󶀂󶀂󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒
󶀚󶀚

0,
󵰃󵰃𝐩𝐩ℓ + 󶀢󶀢𝒵𝒵

2
𝜁𝜁𝜁𝜁/2𝑛𝑛ℓ󶀲󶀲

1 + 󶀢󶀢𝒵𝒵2
𝜁𝜁𝜁𝜁/𝑛𝑛ℓ󶀲󶀲

−
𝒵𝒵𝜁𝜁𝜁𝜁󵀊󵀊󶀡󶀡󵰃󵰃𝐩𝐩ℓ󶀡󶀡1 −󵰃󵰃𝐩𝐩ℓ󶀱󶀱 /𝑛𝑛ℓ󶀱󶀱 + 󶀢󶀢𝒵𝒵𝜁𝜁𝜁𝜁/2𝑛𝑛ℓ󶀲󶀲

2

1 + 󶀢󶀢𝒵𝒵2
𝜁𝜁𝜁𝜁/𝑛𝑛ℓ󶀲󶀲

󶀃󶀃󶀓󶀓󶀓󶀓
󶀋󶀋󶀓󶀓󶀓󶀓
󶀛󶀛

,

𝑈𝑈ℓ = min
󶀂󶀂󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒
󶀚󶀚

1,
󵰃󵰃𝐩𝐩ℓ + 󶀢󶀢𝒵𝒵

2
𝜁𝜁𝜁𝜁/2𝑛𝑛ℓ󶀲󶀲

1 + 󶀢󶀢𝒵𝒵2
𝜁𝜁𝜁𝜁/𝑛𝑛ℓ󶀲󶀲

+
𝒵𝒵𝜁𝜁𝜁𝜁󵀊󵀊󶀡󶀡󵰃󵰃𝐩𝐩ℓ󶀡󶀡1 −󵰃󵰃𝐩𝐩ℓ󶀱󶀱 /𝑛𝑛ℓ󶀱󶀱 + 󶀢󶀢𝒵𝒵𝜁𝜁𝜁𝜁/2𝑛𝑛ℓ󶀲󶀲

2

1 + 󶀢󶀢𝒵𝒵2
𝜁𝜁𝜁𝜁/𝑛𝑛ℓ󶀲󶀲

󶀃󶀃󶀓󶀓󶀓󶀓
󶀋󶀋󶀓󶀓󶀓󶀓
󶀛󶀛
(15)

and that Pr{𝐿𝐿ℓ ≤ 𝑝𝑝 𝑝𝑝𝑝 ℓ ∣ 𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 for ℓ = 1,… , 𝑠𝑠 and𝑝𝑝 𝑝
(0, 1). It should be pointed out that the sequence of Wilson’s
con�dence intervals has been applied by Frey [13, Section 2,
page 243] to the general stopping rule (12) for estimating a
binomial proportion.

Since a stopping rule directly involves the sequence of
Wilson’s con�dence intervals is cumbersome, it is desirable
to eliminate the computation ofWilson’s con�dence intervals
in the stopping rule. For this purpose, we need to use the
following result.

eorem 1. Assume that 0 < 𝜁𝜁𝜁𝜁 𝜁𝜁  and 0 < 𝜖𝜖 𝜖𝜖𝜖𝜖 . en,
���son�s �on�den�e �nter�a�s sat�sf� {󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 𝜖𝜖𝜖 ℓ ≤ 𝑈𝑈ℓ ≤󵰃󵰃𝐩𝐩ℓ +
𝜖𝜖𝜖𝜖𝜖𝜖  𝜖󵰃󵰃𝐩𝐩ℓ − 1/2| − 𝜖𝜖𝜖

2 ≥ (1/4) − 𝑛𝑛ℓ(𝜖𝜖𝜖𝜖𝜖𝜁𝜁𝜁𝜁)
2} for ℓ = 1,… , 𝑠𝑠.

SeeAppendixA for a proof. As a consequence ofeorem
1 and the fact that for any 𝜁𝜁 𝜁𝜁𝜁𝜁𝜁𝜁  𝜁𝜁𝜁, there exists a unique

number 𝜁𝜁
′

∈ (0, 1/𝛿𝛿𝛿 such that𝒵𝒵𝜁𝜁𝜁𝜁 = 󵀆󵀆2 ln(1/𝜁𝜁
′
𝛿𝛿𝛿, applying

the sequence of Wilson’s con�dence intervals to (12) leads to
the following stopping rule.

Continue sampling until

󶀤󶀤󶙤󶙤󵰃󵰃𝐩𝐩ℓ −
1
2
󶙤󶙤 − 𝜖𝜖󶀴󶀴

2
≥
1
4
+

𝜖𝜖2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

, (16)

for some ℓ ∈ {1,… , 𝑠𝑠𝑠.

�.�. �to���n� �u�e from ��o��er��earson �on�den�e �nter�a�s.
Applying the interval estimationmethod of Clopper-Pearson

[26], a sequence of con�dence intervals [𝐿𝐿ℓ, 𝑈𝑈ℓ], ℓ = 1,… , 𝑠𝑠
for 𝑝𝑝 can be obtained such that Pr{𝐿𝐿ℓ ≤ 𝑝𝑝 𝑝𝑝𝑝 ℓ ∣ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
for ℓ = 1,… , 𝑠𝑠 and 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝  , where the upper con�dence
limit 𝑈𝑈ℓ satis�es the equation 𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℓ, 𝑛𝑛ℓ, 𝑈𝑈ℓ) = 𝜁𝜁𝜁𝜁 if 𝐾𝐾ℓ <
𝑛𝑛ℓ� and the lower con�dence limit 𝐿𝐿ℓ satis�es the equation
𝑆𝑆𝑆𝑆𝑆ℓ, 𝑛𝑛ℓ, 𝑛𝑛ℓ, 𝐿𝐿ℓ) = 𝜁𝜁𝜁𝜁 if 𝐾𝐾ℓ > 0. e well-known equation
(10.8) in [27, page 173] implies that 𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  , with 0 ≤ 𝑘𝑘𝑘
𝑛𝑛, is decreasing with respect to𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝   and that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   ,
with 0 < 𝑘𝑘𝑘𝑘𝑘  , is increasing with respect to 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝  . It
follows that

󶁁󶁁󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 𝜖𝜖𝜖 ℓ󶁑󶁑 = 󶁁󶁁0 <󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 𝜖𝜖𝜖 ℓ󶁑󶁑 ∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≤ 𝜖𝜖󶁑󶁑

= 󶁁󶁁󵰃󵰃𝐩𝐩ℓ > 𝜖𝜖𝜖𝜖𝜖 󶀡󶀡𝐾𝐾ℓ, 𝑛𝑛ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≤ 𝜖𝜖󶁑󶁑

= 󶁁󶁁󵰃󵰃𝐩𝐩ℓ > 𝜖𝜖𝜖𝜖𝜖 󶀡󶀡𝐾𝐾ℓ, 𝑛𝑛ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≤ 𝜖𝜖𝜖𝜖𝜖 󶀡󶀡𝐾𝐾ℓ, 𝑛𝑛ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑

= 󶁁󶁁𝑆𝑆󶀡󶀡𝐾𝐾ℓ, 𝑛𝑛ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑 ,

󶁁󶁁󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖 𝜖𝜖𝜖 ℓ󶁑󶁑 = 󶁁󶁁1 >󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖 𝜖𝜖𝜖 ℓ󶁑󶁑 ∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≥ 1 − 𝜖𝜖󶁑󶁑

= 󶁁󶁁󵰃󵰃𝐩𝐩ℓ < 1 − 𝜖𝜖𝜖𝜖𝜖 󶀡󶀡0,𝐾𝐾ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≥ 1 − 𝜖𝜖󶁑󶁑

= 󶁁󶁁󵰃󵰃𝐩𝐩ℓ < 1 − 𝜖𝜖𝜖𝜖𝜖 󶀡󶀡0,𝐾𝐾ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≥ 1 − 𝜖𝜖𝜖𝜖𝜖 󶀡󶀡0,𝐾𝐾ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑

= 󶁁󶁁𝑆𝑆󶀡󶀡0,𝐾𝐾ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑 ,
(17)

for ℓ = 1,… , 𝑠𝑠. Consequently,

󶁁󶁁󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 𝜖𝜖𝜖 ℓ ≤ 𝑈𝑈ℓ ≤󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶁑󶁑

= 󶁁󶁁𝑆𝑆󶀡󶀡𝐾𝐾ℓ, 𝑛𝑛ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁𝜁𝜁𝜁 󶀡󶀡0,𝐾𝐾ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑 ,
(18)

for ℓ = 1,… , 𝑠𝑠. is demonstrates that applying the sequence
of Clopper-Pearson con�dence intervals to the general stop-
ping rule (12) gives Stopping Rule C.

It should be pointed out that Stopping Rule C was
rediscovered by Frey as the third stopping rule in Section 2,
page 243 of his paper [13].

�.�. �to���n� �u�e from ��shman�s �on�den�e �nter�a�s. By
the interval estimation method of Fishman [28], a sequence
of con�dence intervals [𝐿𝐿ℓ, 𝑈𝑈ℓ], ℓ = 1,… , 𝑠𝑠 for 𝑝𝑝 can be
obtained such that

𝐿𝐿ℓ =
󶀂󶀂
󶀊󶀊
󶀚󶀚

0 if 󵰃󵰃𝐩𝐩ℓ = 0,

󶁅󶁅𝜃𝜃ℓ ∈ 󶀡󶀡0,󵰃󵰃𝐩𝐩ℓ󶀱󶀱 ∶ ℳ󶀡󶀡󵰃󵰃𝐩𝐩ℓ, 𝜃𝜃ℓ󶀱󶀱 =
ln(𝜁𝜁𝜁𝜁)
𝑛𝑛ℓ

󶁕󶁕 if 󵰃󵰃𝐩𝐩ℓ > 0,

𝑈𝑈ℓ =
󶀂󶀂
󶀊󶀊
󶀚󶀚

1 if 󵰃󵰃𝐩𝐩ℓ = 1,

󶁅󶁅𝜃𝜃ℓ ∈ 󶀡󶀡󵰃󵰃𝐩𝐩ℓ, 1󶀱󶀱 ∶ ℳ󶀡󶀡󵰃󵰃𝐩𝐩ℓ, 𝜃𝜃ℓ󶀱󶀱 =
ln(𝜁𝜁𝜁𝜁)
𝑛𝑛ℓ

󶁕󶁕 if 󵰃󵰃𝐩𝐩ℓ < 1.

(19)
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Under the assumption that 0 < 𝜁𝜁𝜁𝜁 𝜁 𝜁 and 0 < 𝜖𝜖 𝜖𝜖 𝜖𝜖, by
similar techniques as the proof ofeorem 7 of [22], it can be
shown that {󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 𝜖 𝜖𝜖ℓ ≤ 𝑈𝑈ℓ ≤󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖𝜖 𝜖
󵰃󵰃𝐩𝐩ℓ|, (1/2) − |(1/2) −󵰃󵰃𝐩𝐩ℓ| + 𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖ℓ} for ℓ =1 ,… , 𝑠𝑠.
erefore, applying the sequence of con�dence intervals of
Fishman to the general stopping rule (12) gives Stopping Rule
A.

It should be noted that Fishman’s con�dence intervals are
actually derived from the Chernoff bounds of the tailed prob-
abilities of the sample mean of Bernoulli random variable.
Hence, Stopping Rule A is also referred to as the stopping rule
from Chernoff bounds in this paper.

�.�. Stopping �ule from �on�dence �ntervals of �hen et al.
Using the interval estimation method of Chen et al. [29], a
sequence of con�dence intervals [𝐿𝐿ℓ, 𝑈𝑈ℓ], ℓ =1 ,… , 𝑠𝑠 for 𝑝𝑝
can be obtained such that

𝐿𝐿ℓ = max
󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

0,󵰃󵰃𝐩𝐩ℓ +
3
4

×
1 − 2󵰃󵰃𝐩𝐩ℓ − 󵀆󵀆1 + 󶀡󶀡9𝑛𝑛ℓ/2ln (1/𝜁𝜁𝜁𝜁)󶀱󶀱󵰃󵰃𝐩𝐩ℓ󶀡󶀡1−󵰃󵰃𝐩𝐩ℓ󶀱󶀱

1 + 󶀡󶀡9𝑛𝑛ℓ/8 ln(1/𝜁𝜁𝜁𝜁)󶀱󶀱

󶀃󶀃󶀓󶀓
󶀋󶀋󶀓󶀓
󶀛󶀛

,

𝑈𝑈ℓ = min
󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

1,󵰃󵰃𝐩𝐩ℓ +
3
4

×
1 − 2󵰃󵰃𝐩𝐩ℓ + 󵀆󵀆1 + 󶀡󶀡9𝑛𝑛ℓ/2ln (1/𝜁𝜁𝜁𝜁)󶀱󶀱󵰃󵰃𝐩𝐩ℓ󶀡󶀡1 −󵰃󵰃𝐩𝐩ℓ󶀱󶀱

1 + 󶀡󶀡9𝑛𝑛ℓ/8 ln(1/𝜁𝜁𝜁𝜁)󶀱󶀱

󶀃󶀃󶀓󶀓
󶀋󶀋󶀓󶀓
󶀛󶀛

(20)

and that Pr{𝐿𝐿ℓ ≤ 𝑝𝑝 𝑝𝑝𝑝 ℓ ∣ 𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝   for ℓ =1 ,… , 𝑠𝑠 and
𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝 . Under the assumption that 0 < 𝜁𝜁𝜁𝜁 𝜁 𝜁 and 0 < 𝜖𝜖 𝜖
1/2, by similar techniques as the proof of eorem 1 of [30],
it can be shown that {󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 𝜖 𝜖𝜖ℓ ≤ 𝑈𝑈ℓ ≤ 󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖󵰃󵰃𝐩𝐩ℓ −
1/2| − (2/3)𝜖𝜖𝜖2 ≥(1/ 4) + (𝜖𝜖2𝑛𝑛ℓ/2ln( 𝜁𝜁𝜁𝜁𝜁𝜁𝜁 for ℓ =1 ,… , 𝑠𝑠. is
implies that applying the sequence of con�dence intervals of
Chen et al. to the general stopping rule (12) leads to Stopping
Rule B.

Actually, the con�dence intervals of Chen et al. [29] are
derived from Massart’s inequality [31] on the tailed proba-
bilities of the sample mean of Bernoulli random variable. For
this reason, Stopping Rule B is also referred to as the stopping
rule fromMassart’s inequality in [21, Section 4.1.1].

4. Double-Parabolic Sequential Estimation

From Sections 2.2, 3.2, and 3.7, it can be seen that, by
introducing a new parameter 𝜌𝜌 𝜌𝜌𝜌𝜌𝜌𝜌   and letting 𝜌𝜌 take
values 2/3 and 0, respectively, Stopping Rules B and D can
be accommodated as special cases of the following general
stopping rule.
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F 1: Double-parabolic sampling.

Continue the sampling process until

󶀤󶀤󶙤󶙤󵰃󵰃𝐩𝐩ℓ −
1
2
󶙤󶙤 − 𝜌𝜌𝜌𝜌󶀴󶀴

2
≥
1
4
+

𝜖𝜖2𝑛𝑛ℓ
2ln (𝜁𝜁𝜁𝜁)

(21)

for some ℓ ∈ {1, 2,… , 𝑠𝑠𝑠, where 𝜁𝜁 𝜁𝜁𝜁𝜁  𝜁𝜁𝜁𝜁𝜁.
Moreover, as can be seen from (16), the stopping rule

derived from applying �ilson’s con�dence intervals to (12)
can also be viewed as a special case of such general stopping
rule with 𝜌𝜌 𝜌𝜌 .

From the stopping condition (21), it can be seen that the
stopping boundary is associated with the double-parabolic
function 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  2)ln( 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁    𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁  2] such
that 𝑥𝑥 and 𝑓𝑓𝑓𝑓𝑓𝑓 correspond to the sample mean and sample
size, respectively. For 𝜖𝜖 𝜖 𝜖𝜖𝜖, 𝛿𝛿𝛿𝛿𝛿𝛿  𝛿, and 𝜁𝜁 𝜁 𝜁, stopping
boundaries with various 𝜌𝜌 are shown by Figure 1.

For �xed 𝜖𝜖 and 𝛿𝛿, the parameters 𝜌𝜌 and 𝜁𝜁 affect the
shape of the stoping boundary in a way as follows. As 𝜌𝜌
increases, the span of stopping boundary is increasing in the
axis of sample mean. By decreasing 𝜁𝜁, the stopping boundary
can be dragged toward the direction of increasing sample
size. Hence, the parameter 𝜌𝜌 is referred to as the dilation
coefficient. e parameter 𝜁𝜁 is referred to as the coverage
tuning parameter. Since the stopping boundary consists
of two parabolas, this approach of estimating a binomial
proportion is referred to as the double-parabolic sequential
estimationmethod.

4.1. Parametrization of the Sampling Scheme. In this sec-
tion, we shall parameterize the double-parabolic sequential
sampling scheme by the method described in Section 2.2.
From the stopping condition (21), the stopping rule can be
restated as follows. Continue sampling until 𝒟𝒟𝒟󵰃󵰃𝐩𝐩ℓ, 𝑛𝑛ℓ)=1 
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for some ℓ ∈ {1,… , 𝑠𝑠𝑠, where the function 𝒟𝒟𝒟𝒟𝒟 𝒟𝒟 is de�ned
by

𝒟𝒟(𝑧𝑧𝑧 𝑧𝑧) =
󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

1 if 󶀤󶀤󶙤󶙤𝑧𝑧 𝑧 1
2
󶙤󶙤 − 𝜌𝜌𝜌𝜌󶀴󶀴

2
≥
1
4
+

𝜖𝜖2𝑛𝑛
2 ln(𝜁𝜁𝜁𝜁)

,

0 otherwise.
(22)

Clearly, the function 𝒟𝒟𝒟𝒟𝒟 𝒟𝒟 associated with the double-
parabolic sequential sampling scheme depends on the design
parameters 𝜌𝜌𝜌𝜌𝜌𝜌  𝜌𝜌 and 𝛿𝛿. Applying the function 𝒟𝒟𝒟𝒟𝒟 𝒟𝒟
de�ned by (22) to (6) yields

𝑁𝑁min = min󶁆󶁆𝑛𝑛𝑛  𝑛 𝑛 󶀥󶀥󶙥󶙥
𝑘𝑘
𝑛𝑛
−
1
2
󶙥󶙥 − 𝜌𝜌𝜌𝜌󶀵󶀵

2
≥
1
4
+

𝜖𝜖2𝑛𝑛
2 ln(𝜁𝜁𝜁𝜁)

for some nonnegative

integer 𝑘𝑘 not exceeding 𝑛𝑛󶁗󶁗 .

(23)

Since 𝜖𝜖 is usually small in practical applications, we restrict
𝜖𝜖 to satisfy 0 < 𝜌𝜌𝜌𝜌 𝜌 𝜌𝜌𝜌. As a consequence of 0 ≤ 𝜌𝜌𝜌𝜌 𝜌
1/4 and the fact that |𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧   for any 𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧 𝑧, it
must be true that (|𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧𝑧2 ≤(( 1/2)−  𝜌𝜌𝜌𝜌𝜌2 for any
𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧 𝑧. It follows from (23) that ((1/2)−  𝜌𝜌𝜌𝜌𝜌2 ≥ (1/4) +
(𝜖𝜖2𝑁𝑁min/2 ln(𝜁𝜁𝜁𝜁𝜁𝜁, which implies that the minimum sample
size can be taken as

𝑁𝑁min = 󶃥󶃥2𝜌𝜌󶀤󶀤
1
𝜖𝜖
− 𝜌𝜌󶀴󶀴 ln

1
𝜁𝜁𝜁𝜁
󶃵󶃵 . (24)

On the other hand, applying the function 𝒟𝒟𝒟𝒟𝒟 𝒟𝒟 de�ned by
(22) to (7) gives

𝑁𝑁max = min󶁆󶁆𝑛𝑛𝑛  𝑛 𝑛 󶀥󶀥󶀥󶀥
𝑘𝑘
𝑛𝑛
−
1
2
󶙥󶙥 − 𝜌𝜌𝜌𝜌󶀵󶀵

2
≥
1
4
+

𝜖𝜖2𝑛𝑛
2 ln(𝜁𝜁𝜁𝜁)

for all nonnegative

integer 𝑘𝑘 not exceeding 𝑛𝑛󶁗󶁗 .

(25)

Since (|𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧𝑧2 ≥ 0 for any 𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑧, it follows from
(25) that (1/4) + (𝜖𝜖2𝑁𝑁max/2 ln(𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁  , which implies that
maximum sample size can be taken as

𝑁𝑁max = 󶃥󶃥
1
2𝜖𝜖2

ln
1
𝜁𝜁𝜁𝜁
󶃵󶃵 . (26)

erefore, the sample sizes 𝑛𝑛1,… , 𝑛𝑛𝑠𝑠 can be chosen as func-
tions of 𝜌𝜌𝜌𝜌𝜌𝜌  𝜌𝜌, and 𝛿𝛿 which satisfy the following constraint:

𝑁𝑁min ≤𝑛𝑛 1 < ⋯ < 𝑛𝑛𝑠𝑠𝑠𝑠 < 𝑁𝑁max ≤𝑛𝑛 𝑠𝑠. (27)

In particular, if the number of stages 𝑠𝑠 is given and the group
sizes are expected to be approximately equal, then the sample
sizes, 𝑛𝑛1,… , 𝑛𝑛𝑠𝑠, for all stages can be obtained by substituting

𝑁𝑁min de�ned by (24) and𝑁𝑁max de�ned by (26) into (8). For
example, if the values of design parameters are 𝜖𝜖𝜖𝜖𝜖𝜖  𝜖𝜖𝜖𝜖𝜖 
0.05, 𝜌𝜌 𝜌 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   𝜌𝜌𝜌𝜌 and 𝑠𝑠 𝑠𝑠 , then the sample sizes of
this sampling scheme are calculated as

𝑛𝑛1 = 59, 𝑛𝑛2 = 116, 𝑛𝑛3 = 173, 𝑛𝑛4 = 231,

𝑛𝑛5 = 288, 𝑛𝑛6 = 345, 𝑛𝑛7 = 403.
(28)

e stopping rule is completely determined by substituting
the values of design parameters into (21).

4.2. Uniform Controllability of Coverage Probability. Clearly,
for prespeci�ed 𝜖𝜖𝜖𝜖𝜖 , and 𝜌𝜌, the coverage probability Pr{|󵰁󵰁𝐩𝐩 𝐩
𝑝𝑝𝑝𝑝𝑝𝑝   𝑝 𝑝𝑝𝑝 depends on the parameter 𝜁𝜁, the number of stages
𝑠𝑠, and the sample sizes 𝑛𝑛1,… , 𝑛𝑛𝑠𝑠. As illustrated in Section
4.1, the number of stages 𝑠𝑠 and the sample sizes 𝑛𝑛1,… , 𝑛𝑛𝑠𝑠
can be de�ned as functions of 𝜁𝜁 𝜁𝜁𝜁𝜁𝜁𝜁  𝜁𝜁𝜁. at is, the
stopping rule can be parameterized by 𝜁𝜁. Accordingly, for any
𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝  , the coverage probability Pr{|󵰁󵰁𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩    
becomes a function of 𝜁𝜁. e following theorem shows that
it suffices to choose 𝜁𝜁 𝜁𝜁𝜁𝜁𝜁𝜁  𝜁𝜁𝜁 small enough to guarantee
the prespeci�ed con�dence level.

eorem 2. Let 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖     and 𝜌𝜌 𝜌𝜌𝜌𝜌𝜌𝜌   be ��ed. Assume
that the number of stages 𝑠𝑠 and the sample sizes 𝑛𝑛1,… , 𝑛𝑛𝑠𝑠
are functions of 𝜁𝜁 𝜁𝜁𝜁𝜁𝜁𝜁  𝜁𝜁𝜁 such that the constraint (27) is
satis�ed. �en� Pr{|󵰁󵰁𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩      is no less than 1 −𝛿𝛿  for any
𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝   provided that

0 < 𝜁𝜁 𝜁
1
𝛿𝛿
exp󶀧󶀧

ln(𝛿𝛿𝛿𝛿) + ln󶁢󶁢1 − exp󶀢󶀢−2𝜖𝜖2󶀲󶀲󶀲󶀲
4𝜖𝜖𝜖𝜖󶀡󶀡1 − 𝜌𝜌𝜌𝜌󶀱󶀱

󶀷󶀷 . (29)

See Appendix B for a proof. Foreorem 2 to be valid, the
choice of sample sizes is very �exible. Particularly, the sample
sizes can be arithmetic or geometric progressions or any
others, as long as the constraint (27) is satis�ed. It can be seen
that for the coverage probability to be uniformly controllable,
the dilation coefficient 𝜌𝜌 must be greater than 0. eorem
2 asserts that there exists 𝜁𝜁 𝜁 𝜁 such that the coverage
probability is no less than 1 −𝛿𝛿 , regardless of the associated
binomial proportion𝑝𝑝. For the purpose of reducing sampling
cost, we want to have a value of 𝜁𝜁 as large as possible such that
the prespeci�ed con�dence level is guaranteed for any 𝑝𝑝 𝑝
(0, 1).is can be accomplished by the technical components
introduced in Sections 2.1, 2.3, 2.4, and 2.5. Clearly, for every
value of 𝜌𝜌, we can obtain a corresponding value of 𝜁𝜁 (as large
as possible) to ensure the desired con�dence level. �owever,
the performance of resultant stopping rules are different.
erefore, we can try a number of values of 𝜌𝜌 and pick the
best resultant stopping rule for practical use.

4.3. Asymptotic Optimality of Sampling Schemes. Now we
shall provide an important reason why we propose the
sampling scheme of that structure by showing its asymptotic
optimality. Since the performance of a group sampling
scheme will be close to its fully sequential counterpart, we
investigate the optimality of the fully sequential sampling
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scheme. In this scenario, the sample sizes 𝑛𝑛1, 𝑛𝑛2,… , 𝑛𝑛𝑠𝑠 are
consecutive integers such that

󶃥󶃥2𝜌𝜌󶀤󶀤
1
𝜖𝜖
− 𝜌𝜌󶀴󶀴 ln

1
𝜁𝜁𝜁𝜁
󶃵󶃵 = 𝑛𝑛1 < 𝑛𝑛2 < ⋯ < 𝑛𝑛𝑠𝑠𝑠𝑠 < 𝑛𝑛𝑠𝑠

= 󶃥󶃥
1
2𝜖𝜖2

ln
1
𝜁𝜁𝜁𝜁
󶃵󶃵 .

(30)

e fully sequential sampling scheme can be viewed as a
special case of a group sampling schemeof 𝑠𝑠 𝑠𝑠𝑠 𝑠𝑠−𝑛𝑛1+1 stages
and group size 1. Clearly, if 𝛿𝛿𝛿𝛿𝛿  and 𝜌𝜌 are �xed, the sampling
scheme is dependent only on 𝜖𝜖. Hence, for any 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 𝑝,
if we allow 𝜖𝜖 to vary in (0, 1), then the coverage probability
Pr{|󵰁󵰁𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩    𝐩 𝐩𝐩𝐩 and the average sample number 𝔼𝔼𝔼𝔼𝔼𝔼 are
functions of 𝜖𝜖. We are interested in knowing the asymptotic
behavior of these functions as 𝜖𝜖 𝜖 𝜖, since 𝜖𝜖 is usually small
in practical situations.e following theorem provides us the
desired insights.

eorem 3. Assume that 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿       𝛿𝛿𝛿𝛿 and 𝜌𝜌 𝜌
(0, 1] are �xed. De�ne𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁        2
for 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 𝑝 and 𝜖𝜖 𝜖𝜖𝜖𝜖𝜖𝜖  . en,

Pr󶁆󶁆lim
𝜖𝜖𝜖𝜖

𝐧𝐧
𝑁𝑁󶀡󶀡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   󶀱󶀱

= 1 ∣ 𝑝𝑝󶁖󶁖 = 1, (31)

lim
𝜖𝜖𝜖𝜖

Pr󶁁󶁁󶁁󶁁󵰁󵰁𝐩𝐩 𝐩𝐩𝐩 󶙡󶙡 < 𝜖𝜖 𝜖𝜖𝜖 󶁑󶁑 = 2Φ󶀧󶀧󵀌󵀌2 ln 1
𝜁𝜁𝜁𝜁
󶀷󶀷 − 1, (32)

lim
𝜖𝜖𝜖𝜖

𝔼𝔼[𝐧𝐧]
𝑁𝑁󶀡󶀡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   󶀱󶀱

= 1, (33)

for any 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 𝑝.

See Appendix C for a proof. From (32), it can be seen that
lim𝜖𝜖𝜖𝜖Pr{|󵰁󵰁𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩    𝐩 𝐩𝐩𝐩 𝐩𝐩𝐩𝐩𝐩    for any 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 𝑝 if
𝜁𝜁 𝜁𝜁𝜁𝜁 𝜁𝜁𝜁 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁2

𝛿𝛿𝛿𝛿). Such value can be taken as an
initial value for the coverage tuning parameter 𝜁𝜁. In addition
to providing guidance on the coverage tuning techniques,
eorem 3 also establishes the optimality of the sampling
scheme. To see this, let 𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩   denote the minimum
sample size 𝑛𝑛 required for a �xed-sample-size procedure to
guarantee that Pr{|𝑋𝑋𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝    𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝   for any
𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 𝑝, where 𝑋𝑋𝑛𝑛 = (∑𝑛𝑛

𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖)/𝑛𝑛. It is well known that
from the central limit theorem,

lim
𝜖𝜖𝜖𝜖

𝒩𝒩󶀡󶀡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  󶀱󶀱

𝑝𝑝󶀡󶀡1 − 𝑝𝑝󶀱󶀱 󶀱󶀱𝒵𝒵𝛿𝛿𝛿𝛿/𝜖𝜖󶀲󶀲
2 = 1. (34)

Applying (33), (34), and letting 𝜁𝜁 𝜁𝜁𝜁𝜁 𝜁𝜁𝜁 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁2
𝛿𝛿𝛿𝛿),

we have lim𝜖𝜖𝜖𝜖(𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩        for 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 𝑝
and 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿   , which implies the asymptotic optimality of
the double-parabolic sampling scheme. By virtue of (33),
an approximate formula for computing the average sample
number is given as follows:

𝔼𝔼[𝐧𝐧] ≈ 𝑁𝑁󶀡󶀡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   󶀱󶀱 =
2𝑝𝑝󶀡󶀡1 − 𝑝𝑝󶀱󶀱 ln(1/𝜁𝜁𝜁𝜁)

𝜖𝜖2
, (35)

for 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 𝑝 and 𝜖𝜖 𝜖𝜖𝜖𝜖𝜖𝜖  . From (34), one obtains
𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩      𝛿𝛿𝛿𝛿/𝜖𝜖𝜖

2, which is a well-known result
in statistics. In situations that no information of𝑝𝑝 is available,
one usually uses

𝑁𝑁normal
def= 󶃧󶃧

1
4
󶀥󶀥
𝒵𝒵𝛿𝛿𝛿𝛿

𝜖𝜖
󶀵󶀵
2

󶃷󶃷 (36)

as the sample size for estimating the binomial proportion
𝑝𝑝 with prescribed margin of error 𝜖𝜖 and con�dence level
1 − 𝛿𝛿. Since the sample size formula (36) can lead to under-
coverage, researchers in many areas are willing to use a more
conservative but rigorous sample size formula

𝑁𝑁ch
def= 󶃥󶃥

ln(2/𝛿𝛿)
2𝜖𝜖2

󶃵󶃵 , (37)

which is derived from the Chernoff-Hoeffding bound [32,
33]. Comparing (35) and (37), one can see that under
the premise of guaranteeing the prescribed con�dence level
1 − 𝛿𝛿, the double-parabolic sampling scheme can lead to a
substantial reduction of sample number when the unknown
binomial proportion 𝑝𝑝 is close to 0 or 1.

4.4. Bounds on Distribution and Expectation of Sample
Number. We shall derive analytic bounds for the cumulative
distribution function and expectation of the sample number
𝐧𝐧 associated with the double-parabolic sampling scheme. In
this direction, we have obtained the following results.

eorem 4. Let 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . De�ne 𝑎𝑎ℓ = (1/2) − 𝜌𝜌𝜌𝜌𝜌
󵀆󵀆(1/4) + (𝜖𝜖2𝑛𝑛ℓ/2 ln(𝜁𝜁𝜁𝜁𝜁𝜁 for ℓ = 1,… , 𝑠𝑠. Let 𝜏𝜏 denote the
index of stage such that 𝑎𝑎𝜏𝜏𝜏𝜏 ≤ 𝑝𝑝 𝑝𝑝𝑝 𝜏𝜏. en, Pr{𝐧𝐧 𝐧 𝐧𝐧ℓ ∣
𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑝𝑝𝑝ℓℳ(𝑎𝑎ℓ, 𝑝𝑝𝑝𝑝 for 𝜏𝜏 𝜏𝜏𝜏𝜏𝜏   . Moreover, 𝔼𝔼𝔼𝔼𝔼𝔼 𝔼
𝑛𝑛𝜏𝜏 + ∑

𝑠𝑠𝑠𝑠
ℓ=𝜏𝜏(𝑛𝑛ℓ+1 − 𝑛𝑛ℓ)exp( 𝑛𝑛ℓℳ(𝑎𝑎ℓ, 𝑝𝑝𝑝𝑝.

See Appendix D for a proof. By the symmetry of the
double-parabolic sampling scheme, similar analytic bounds
for the distribution and expectation of the sample number
can be derived for the case that 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝 𝑝.

5. Comparison of Computational Methods

In this section, we shall compare various computational
methods. First, we will illustrate why a frequently used
method of evaluating the coverage probability based on grid-
ding the parameter space is not rigorous and is less efficient
as compared to the adapted B&B algorithm. Second, we will
introduce the Adaptive Maximum Checking Algorithm of
[21] which has better computational efficiency as compared
to the adapted B&B algorithm.ird, we will explain that it is
more advantageous in terms of numerical accuracy to work
with the complementary coverage probability as compared
to direct evaluation of the coverage probability. Finally, we
will compare the computational methods of Chen [14–18]
and Frey [13] for the design of sequential procedures for
estimating a binomial proportion.
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∇ Choose initial step size 𝑑𝑑 𝑑 𝑑𝑑.
∇ Let 𝐹𝐹 𝐹 𝐹, 𝑇𝑇 𝑇𝑇  and 𝑏𝑏 𝑏 𝜃𝜃.
∇While 𝐹𝐹 𝐹 𝐹𝐹 𝐹 𝐹, do the following:

⋄ Let st ←0  and ℓ ← 2;
⋄While st = 0, do the following:

⋆ Let ℓ ← ℓ − 1 and 𝑑𝑑 𝑑 𝑑𝑑𝑑ℓ.
⋆ If 𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏   , then let 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎    and 𝑇𝑇 𝑇𝑇 .

Otherwise, let 𝑎𝑎 𝑎𝑎𝑎  and 𝑇𝑇 𝑇𝑇 .
⋆ If 𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶 𝐶 𝐶𝐶, then let st← 1 and 𝑏𝑏 𝑏𝑏𝑏 .
⋆ If 𝑑𝑑 𝑑 𝑑𝑑, then let st← 1 and F← 1.

∇ Return 𝐹𝐹.

A 2

5.1. Verifying Coverage Guarantee without Gridding Param-
eter Space. For purpose of constructing a sampling scheme
so that the prescribed con�dence level 1 − 𝛿𝛿 is guaranteed,
an essential task is to determine whether the coverage
probability Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩𝐩  𝐩𝐩 𝐩 𝐩𝐩𝐩 associated with a given
stopping rule is no less than 1 − 𝛿𝛿. In other words, it is
necessary to compare the in�mum of coverage probability
with 1 − 𝛿𝛿. To accomplish such a task of checking coverage
guarantee, a natural method is to evaluate the in�mum of
coverage probability as follows:

(i) choose 𝑚𝑚 grid points 𝑝𝑝1,… ,𝑝𝑝 𝑚𝑚 from parameter
space (0, 1);

(ii) compute 𝑐𝑐𝑗𝑗 = Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩𝐩  𝐩𝐩 𝐩 𝐩𝐩𝑗𝑗} for 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗  ;

(iii) Takemin{𝑐𝑐1,… , 𝑐𝑐𝑚𝑚} as inf𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩𝐩  𝐩𝐩 𝐩 𝐩𝐩𝐩.

is method can be easily mistaken as an exact approach
and has been frequently used for evaluating coverage proba-
bilities in many problem areas.

It is not hard to show that if the sample size 𝐧𝐧 of a
sequential procedure has a support 𝒮𝒮, then the coverage
probability Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩𝐩  𝐩𝐩 𝐩 𝐩𝐩𝐩 is discontinuous at 𝑝𝑝 𝑝
𝒫𝒫𝒫 𝒫𝒫𝒫𝒫𝒫 , where𝒫𝒫 𝒫𝒫𝒫 𝒫𝒫𝒫𝒫𝒫𝒫 𝒫 𝒫𝒫 𝒫 𝒫𝒫 is a nonnegative integer
no greater than 𝑛𝑛𝑛𝑛𝑛𝑛  .e set𝒫𝒫 typically has a large number
of parameter values. Due to the discontinuity of the coverage
probability as a function of 𝑝𝑝, the coverage probabilities
can di�er signi�cantly for two parameter values which are
extremely close. is implies that an intolerable error can be
introduced by taking the minimum of coverage probabilities
of a �nite number of parameter values as the in�mum of
coverage probability on the whole parameter space. So, if one
simply uses the minimum of the coverage probabilities of a
�nite number of parameter values as the in�mumof coverage
probability to check the coverage guarantee, the sequential
estimator 󵰁󵰁𝐩𝐩 of the resultant stopping rule will fail to guarantee
the prescribed con�dence level.

In addition to the lack of rigorousness, another drawback
of checking coverage guarantee based on the method of
gridding parameter space is its low efficiency. A critical issue
is on the choice of the number, 𝑚𝑚, of grid points. If the
number 𝑚𝑚 is too small, the induced error can be substantial.
On the other hand, choosing a large number for 𝑚𝑚 results in
high computational complexity.

In contrast to the method based on gridding parameter
space, the adapted B&B algorithm is a rigorous approach
for checking coverage guarantee as a consequence of the
mechanism for comparing the bounds of coverage prob-
ability with the prescribed con�dence level. e algo-
rithm is also efficient due to the mechanism of pruning
branches.

5.2. Adaptive Maximum Checking Algorithm. As illustrated
in Section 2, the techniques developed in [14–18] are suffi-
cient to provide exact solutions for a wide range of sequential
estimation problems. However, one of the four components,
the adapted B&B algorithm, requires computing both the
lower and upper bounds of the complementary coverage
probability. To further reduce the computational complexity,
it is desirable to have a checking algorithm which needs only
one of the lower and upper bounds. For this purpose, Chen
had developed the Adaptive Maximum Checking Algorithm
(AMCA) in [21, Section 3.3] and [19, Section 2.7]. In the
following introduction of the AMCA, we shall follow the
description of [21]. e AMCA can be applied to a wide
class of computational problems dependent on the following
critical subroutine.

Determine whether a function 𝐶𝐶𝐶𝐶𝐶𝐶 is smaller than a
prescribed number 𝛿𝛿 for every value of 𝜃𝜃 contained in interval
[𝜃𝜃, 𝜃𝜃𝜃.

Particularly, for checking the coverage guarantee in the
context of estimating a binomial proportion, the parameter
𝜃𝜃 is the binomial proportion 𝑝𝑝 and the function 𝐶𝐶𝐶𝐶𝐶𝐶 is
actually the complementary coverage probability. In many
situations, it is impossible or very difficult to evaluate 𝐶𝐶𝐶𝐶𝐶𝐶
for every value of 𝜃𝜃 in interval [𝜃𝜃, 𝜃𝜃𝜃, since the interval may
contain in�nitely many or an extremely large number of
values. Similar to the adapted B&B algorithm, the purpose of
AMCA is to reduce the computational complexity associated
with the problem of determining whether the maximum of
𝐶𝐶𝐶𝐶𝐶𝐶 over [𝜃𝜃, 𝜃𝜃𝜃 is less than 𝛿𝛿. e only assumption required
for AMCA is that, for any interval [𝑎𝑎𝑎𝑎𝑎𝑎  𝑎 𝑎𝑎𝑎, 𝜃𝜃𝜃, it is possible
to compute an upper bound 𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶 such that 𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶
for any 𝜃𝜃 𝜃𝜃𝜃𝜃𝜃𝜃𝜃  𝜃 and that the upper bound converges to𝐶𝐶𝐶𝐶𝐶𝐶
as the interval width 𝑏𝑏 𝑏𝑏𝑏  tends to 0. e backward AMCA
proceeds as in Algorithm 2.
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e output of the backward AMCA is a binary variable
𝐹𝐹 such that “𝐹𝐹 𝐹 𝐹” means “𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶” and “𝐹𝐹 𝐹 𝐹” means
“𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶.” An intermediate variable 𝑇𝑇 is introduced in the
description of AMCA such that “𝑇𝑇 𝑇𝑇 ” means that the le
endpoint of the interval is reached. e backward AMCA
starts from the right endpoint of the interval (i.e., 𝑏𝑏 𝑏 𝜃𝜃) and
attempts to �nd an interval [𝑎𝑎𝑎 𝑎𝑎𝑎 such that𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶 𝐶𝐶. If such
an interval is available, then, attempt to go backward to �nd
the next consecutive interval with twice width. If doubling
the interval width fails to guarantee 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶 𝐶𝐶, then try
to repeatedly cut the interval width in half to ensure that
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶 𝐶𝐶. If the interval width becomes smaller than a
prescribed tolerance 𝜂𝜂, then AMCA declares that “𝐹𝐹 𝐹 𝐹.”
For our relevant statistical problems, if 𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶 for some
𝜃𝜃 𝜃 𝜃𝜃𝜃, 𝜃𝜃𝜃, it is sure that “𝐹𝐹 𝐹 𝐹” will be declared. On the
other hand, it is possible that “𝐹𝐹 𝐹 𝐹” is declared even though
𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶 for any 𝜃𝜃 𝜃 𝜃𝜃𝜃, 𝜃𝜃𝜃. However, such situation can
be made extremely rare and immaterial if we choose 𝜂𝜂 to
be a very small number. Moreover, this will only introduce
negligible conservativeness in the evaluation of 𝐶𝐶𝐶𝐶𝐶𝐶 if 𝜂𝜂 is
chosen to be sufficiently small (e.g., 𝜂𝜂 𝜂𝜂𝜂 −15). Clearly,
the backward AMCA can be easily modi�ed as forward
AMCA. Moreover, the AMCA can also be easily modi�ed
as Adaptive Minimum Checking Algorithm (forward and
backward). For checking the maximum of complementary
coverage probability Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩𝐩  𝐩𝐩 𝐩 𝐩𝐩𝐩, one can use the
AMCA with 𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩𝐩  𝐩𝐩 𝐩 𝐩𝐩𝐩 over interval
[0,1 /2]. We would like to point out that, in contrast to the
adapted B&B algorithm, it seems difficult to generalize the
AMCA to problems involving multidimensional parameter
spaces.

5.3. Working with Complementary Coverage Probability. We
would like to point out that, instead of evaluating the coverage
probability as in [13], it is better to evaluate the complemen-
tary coverage probability for purpose of reducing numerical
error. e advantage of working on the complementary
coverage probability can be explained as follows. Note that,
in many cases, the coverage probability is very close to 1 and
the complementary coverage probability is very close to 0.
Since the absolute precision for computing a number close
to 1 is much lower than the absolute precision for computing
a number close to 0, the method of directly evaluating the
coverage probability will lead to intolerable numerical error
for problems involving small 𝛿𝛿. As an example, consider
a situation that the complementary coverage probability is
in the order of 10−5. Direct computation of the coverage
probability can easily lead to an absolute error of the order
of 10−5. However, the absolute error of computing the com-
plementary coverage probability can be readily controlled at
the order of 10−9.

5.4. Comparison of Approaches of Chen and Frey. As men-
tioned in the introduction, Frey published a paper [13] in
eAmerican Statistician (TAS) on the sequential estimation
of a binomial proportion with prescribed margin of error
and con�dence level. e approaches of Chen and Frey are

based on the same strategy as follows. First, construct a
family of stopping rules parameterized by 𝛾𝛾 (and possibly
other design parameters) so that the associated coverage
probability Pr{|󵰁󵰁𝐩𝐩𝐩𝐩𝐩𝐩𝐩  𝐩𝐩 𝐩 𝐩𝐩𝐩 can be controlled by parameter
𝛾𝛾 in the sense that the coverage probability can be made
arbitrarily close to 1 by increasing 𝛾𝛾. Second, apply a bisection
search method to determine the parameter 𝛾𝛾 so that the
coverage probability is no less than the prescribed con�dence
level 1 − 𝛿𝛿 for any 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   .

For the purpose of controlling the coverage probability,
Frey [13] applied the inclusion principle previously proposed
in [18, Section 3] and used in [14–17]. As illustrated in
Section 3, the central idea of inclusion principle is to use
a sequence of con�dence intervals to construct stopping
rules so that the sampling process is continued until a
con�dence interval is included by an interval de�ned in
terms of the estimator and margin of error. Due to the
inclusion relationship, the associated coverage probability
can be controlled by the con�dence coefficients of the
sequence of con�dence intervals. e critical value 𝛾𝛾 used by
Frey plays the same role for controlling coverage probabilities
as that of the coverage tuning parameter 𝜁𝜁 used by Chen.
Frey [13] stated stopping rules in terms of con�dence limits.
is way of expressing stopping rules is straightforward and
insightful, since one can readily see the principle behind
the construction. For convenience of practical use, Chen
proposed to eliminate the necessity of computing con�dence
limits.

Similar to the AMCA proposed in [21, Section 3.3],
the algorithm of Frey [13, Appendix] for checking coverage
guarantee adaptively scans the parameter space based on
interval bounding. e adaptive method used by Frey for
updating step size is essentially the same as that of the
AMCA. Ignoring the number 0.01 in Frey’s expression “𝜀𝜀𝑖𝑖 =
min{0.01, 2(𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑖𝑖)},” which has very little impact on the
computational efficiency, Frey’s step size 𝜀𝜀𝑖𝑖 can be identi�ed
as the adaptive step size 𝑑𝑑 in the AMCA. e operation
associated with “𝜀𝜀𝑖𝑖 = min{0.01, 2(𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑝𝑝i−2)}” has a similar
function as that of the command “Let st ← 0 and ℓ ← 2” in
the outer loop of the AMCA. e operation associated with
Frey’s expression “𝑝𝑝𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖/2

𝑗𝑗, 𝑗𝑗 𝑗𝑗 ” is equivalent to that of
the command “Let ℓ ← ℓ − 1 and 𝑑𝑑 𝑑 𝑑𝑑𝑑ℓ” in the inner loop
of the AMCA. Frey proposed to declare a failure of coverage
guarantee if “the distance from 𝑝𝑝𝑖𝑖𝑖𝑖 to the candidate value
for 𝑝𝑝𝑖𝑖 falls below 10−14.” e number “10−14” actually plays
the same role as “𝜂𝜂” in the AMCA, where “𝜂𝜂 𝜂𝜂𝜂 −15” is
recommended by [21].

6. Numerical Results

In this section, we shall illustrate the proposed double-
parabolic sampling scheme through examples. As demon-
strated in Sections 2.2 and 4, the double-parabolic sampling
scheme can be parameterized by the dilation coefficient 𝜌𝜌
and the coverage tuning parameter 𝜁𝜁. Hence, the performance
of the resultant stopping rule can be optimized with respect
to 𝜌𝜌 𝜌𝜌𝜌𝜌𝜌𝜌   and 𝜁𝜁 by choosing various values of 𝜌𝜌 from
interval (0,1]  and determining the corresponding values of
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F 2: Double-parabolic sampling with 𝜖𝜖 𝜖 𝜖𝜖𝜖, 𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿, 𝜌𝜌 𝜌𝜌 𝜌𝜌𝜌, and 𝜁𝜁 𝜁 𝜁𝜁𝜁𝜁.

T 1: Coverage tuning parameter.

𝜖𝜖 𝛿𝛿 𝜁𝜁 𝜖𝜖 𝛿𝛿 𝜁𝜁 𝜖𝜖 𝛿𝛿 𝜁𝜁
0.1 0.1 2.0427 0.1 0.05 2.4174 0.1 0.01 3.0608
0.05 0.1 2.0503 0.05 0.05 2.5862 0.05 0.01 3.3125
0.02 0.1 2.1725 0.02 0.05 2.5592 0.02 0.01 3.4461
0.01 0.1 2.1725 0.01 0.05 2.5592 0.01 0.01 3.4461

𝜁𝜁 by the computational techniques introduced in Section 2 to
guarantee the desired con�dence interval.

6.1. Asymptotic Analysis May Be Inadequate. For fully
sequential cases, we have evaluated the double-parabolic
sampling scheme with 𝜖𝜖 𝜖 𝜖𝜖𝜖, 𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿, 𝜌𝜌 𝜌𝜌𝜌𝜌 , and
𝜁𝜁 𝜁 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁2

𝛿𝛿𝛿𝛿) ≈ 2.93. e stopping boundary
is displayed in the le side of Figure 2. e function of
coverage probability with respect to the binomial proportion
is shown in the right side of Figure 2, which indicates that the
coverage probabilities are generally substantially lower than
the prescribed con�dence level 1−  𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿. By considering
𝜖𝜖 𝜖 𝜖𝜖𝜖 as a small number and applying the asymptotic
theory, the coverage probability associated with the sampling
scheme is expected to be close to 0.95. is numerical
example demonstrates that although the asymptotic method
is insightful and involves virtually no computation, it may not
be adequate.

In general, the main drawback of an asymptotic method
is that there is no guarantee of coverage probability. Although
an asymptotical method asserts that if the margin of error
𝜖𝜖 tends to 0, the coverage probability will tend to the
prespeci�ed con�dence level 1−  𝛿𝛿, it is difficult to determine
how small themargin of error 𝜖𝜖 is sufficient for the asymptotic
method to be applicable. Note that 𝜖𝜖 𝜖 𝜖 implies the average
sample size tends to ∞. However, in reality, the sample
sizes must be �nite. Consequently, an asymptotic method

inevitably introduces unknown statistical error. Since an
asymptotic method does not necessarily guarantee the pre-
scribed con�dence level, it is not fair to compare its associated
sample size with that of an exact method, which guarantees
the prespeci�ed con�dence level.

is example also indicates that, due to the discrete nature
of the problem, the coverage probability is a discontinuous
and erratic function of 𝑝𝑝, which implies that Monte Carlo
simulation is not suitable for evaluating the coverage perfor-
mance.

6.2. Parametric Values of Fully Sequential Schemes. For fully
sequential cases, to allow direct application of our double-
parabolic sequential method, we have obtained values of
coverage tuning parameter 𝜁𝜁, which guarantee the prescribed
con�dence levels, for double-parabolic sampling schemes
with 𝜌𝜌 𝜌𝜌 𝜌𝜌 and various combinations of (𝜖𝜖𝜖 𝜖𝜖𝜖 as shown in
Table 1.We used the computational techniques introduced in
Section 2 to obtain this table.

To illustrate the use of Table 1, suppose that one wants a
fully sequential sampling procedure to ensure that Pr{|󵰁󵰁𝐩𝐩𝐩𝐩𝐩𝐩 𝐩
0.1 ∣ 𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 for any 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝 . is means that one
can choose 𝜖𝜖 𝜖 𝜖𝜖𝜖, 𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿 and the range of sample
size is given by (30). From Table 1, it can be seen that the
value of 𝜁𝜁 corresponding to 𝜖𝜖 𝜖 𝜖𝜖𝜖 and 𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿 is 2.4174.
Consequently, the stopping rule is completely determined
by substituting the values of design parameters 𝜖𝜖 𝜖 𝜖𝜖𝜖,
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F 3: Double-parabolic sampling with 𝜖𝜖 𝜖 𝜖𝜖𝜖, 𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿, 𝜌𝜌 𝜌 𝜌𝜌𝜌, and 𝜁𝜁 𝜁 𝜁𝜁𝜁𝜁𝜁𝜁.

T 2: Coverage tuning parameter.

𝑠𝑠 𝑠𝑠  𝑠𝑠 𝑠𝑠  𝑠𝑠 𝑠𝑠  𝑠𝑠 𝑠 𝑠 𝑠𝑠 𝑠𝑠  𝑠𝑠 𝑠 𝑠 𝑠𝑠 𝑠 𝑠 𝑠𝑠 𝑠𝑠𝑠
𝜖𝜖 𝜖 𝜖𝜖𝜖 2.6583 2.6583 2.5096 2.5946 2.4459 2.6512 2.5096 2.4459
𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖 2.6759 2.6759 2.6759 2.6759 2.6759 2.6759 2.6759 2.6759
𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖 2.6725 2.6725 2.6725 2.6725 2.6725 2.6725 2.6725 2.6725
𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖 2.6796 2.6796 2.6796 2.6796 2.6796 2.5875 2.6796 2.6796

𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿, 𝜌𝜌 𝜌 𝜌𝜌𝜌, and 𝜁𝜁 𝜁 𝜁𝜁𝜁𝜁𝜁𝜁 into its de�nition. e
stopping boundary of this sampling scheme is displayed in
the le side of Figure 3. e function of coverage probability
with respect to the binomial proportion is shown in the right
side of Figure 3.

6.3. Parametric Values of Group Sequential Schemes. In many
situations, especially in clinical trials, it is desirable to use
group sequential sampling schemes. In Tables 2 and 3,
assuming that sample sizes satisfy (8) for the purpose of
having approximately equal group sizes, we have obtained
parameters for concrete schemes by the computational tech-
niques introduced in Section 2.

For dilation coefficient 𝜌𝜌 𝜌 𝜌𝜌𝜌 and con�dence parameter
𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿, we have obtained values of coverage tuning
parameter 𝜁𝜁, which guarantee the prescribed con�dence
level 0.95, for double-parabolic sampling schemes, with the
number of stages 𝑠𝑠 ranging from 3 to 10, as shown in Table 2.

For dilation coefficient 𝜌𝜌 𝜌 𝜌𝜌𝜌 and con�dence parameter
𝛿𝛿 𝛿𝛿𝛿𝛿𝛿 , we have obtained values of coverage tuning
parameter 𝜁𝜁, which guarantee the prescribed con�dence
level 0.99, for double-parabolic sampling schemes, with the
number of stages 𝑠𝑠 ranging from 3 to 10, as shown in Table 3.

To illustrate the use of these tables, suppose that one
wants a ten-stage sampling procedure of approximately equal
group sizes to ensure that Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩 𝐩 𝐩𝐩𝐩𝐩 𝐩 𝐩𝐩𝐩 𝐩 𝐩𝐩𝐩𝐩
for any 𝑝𝑝 𝑝 𝑝𝑝𝑝 𝑝𝑝. is means that one can choose 𝜖𝜖 𝜖
𝛿𝛿 𝛿𝛿𝛿𝛿𝛿 , 𝑠𝑠 𝑠𝑠𝑠  and sample sizes satisfying (8). To obtain

appropriate parameter values for the sampling procedure, one
can look at Table 3 to �nd the coverage tuning parameter
𝜁𝜁 corresponding to 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖 and 𝑠𝑠 𝑠𝑠𝑠 . From Table 3,
it can be seen that 𝜁𝜁 can be taken as 3.5753. Consequently,
the stopping rule is completely determined by substituting
the values of design parameters 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖, 𝛿𝛿 𝛿𝛿𝛿𝛿𝛿 , 𝜌𝜌 𝜌
3/4, 𝜁𝜁 𝜁𝜁𝜁𝜁 𝜁𝜁𝜁, and 𝑠𝑠 𝑠𝑠𝑠  into its de�nition and (8).
e stopping boundary of this sampling scheme and the
function of coverage probability with respect to the binomial
proportion are displayed, respectively, in the le and right
sides of Figure 4.

6.4. Comparison of Sampling Schemes. We have conducted
numerical experiments to investigate the impact of dilation
coefficient 𝜌𝜌 on the performance of our double-parabolic
sampling schemes. Our computational experiences indicate
that the dilation coefficient 𝜌𝜌 𝜌 𝜌𝜌𝜌 is frequently a good
choice in terms of average sample number and coverage
probability. For example, consider the case that the margin
of error is given as 𝜖𝜖 𝜖 𝜖𝜖𝜖 and the prescribed con�dence
level is 1−  𝛿𝛿 with 𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿. For the double-parabolic
sampling scheme with the dilation coefficient 𝜌𝜌 chosen as
2/3,3/4 , and 1, we have determined that, to ensure the
prescribed con�dence level 1−  𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿, it suffices to set the
coverage tuning parameter 𝜁𝜁 as 2.1,2.4  and 2.4, respectively.
e average sample numbers of these sampling schemes
and the coverage probabilities as functions of the binomial
proportion are shown, respectively, in the le and right sides
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T 3: Coverage tuning parameter.

𝑠𝑠 𝑠 𝑠 𝑠𝑠 𝑠 𝑠 𝑠𝑠 𝑠 𝑠 𝑠𝑠 𝑠 𝑠 𝑠𝑠 𝑠 𝑠 𝑠𝑠 𝑠 𝑠 𝑠𝑠 𝑠 𝑠 𝑠𝑠 𝑠 𝑠𝑠
𝜖𝜖 𝜖𝜖 𝜖𝜖 3.3322 3.3322 3.3322 3.3322 3.3322 3.2709 3.0782 3.3322
𝜖𝜖 𝜖𝜖 𝜖𝜖𝜖 3.5074 3.5074 3.5074 3.5074 3.5074 3.5074 3.5074 3.5074
𝜖𝜖 𝜖𝜖 𝜖𝜖𝜖 3.5430 3.5430 3.5430 3.5430 3.5430 3.5430 3.5430 3.5430
𝜖𝜖 𝜖𝜖 𝜖𝜖𝜖 3.5753 3.5753 3.5753 3.5753 3.5753 3.5753 3.5753 3.5753
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F 4: Double-parabolic sampling with 𝜖𝜖 𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖𝜖, 𝑠𝑠 𝑠 𝑠𝑠, 𝜌𝜌 𝜌𝜌 𝜌𝜌, and 𝜁𝜁 𝜁𝜁𝜁𝜁𝜁𝜁𝜁 .

of Figure 5. From Figure 5, it can be seen that a double-
parabolic sampling scheme with dilation coefficient 𝜌𝜌 𝜌𝜌 𝜌𝜌
has better performance in terms of average sample number
and coverage probability as compared to that of the double-
parabolic sampling scheme with smaller or larger values of
dilation coefficient.

We have investigated the impact of con�dence intervals
on the performance of fully sequential sampling schemes
constructed from the inclusion principle. We have observed
that the stopping rule derived from Clopper-Pearson inter-
vals generally outperforms the stopping rules derived from
other types of con�dence intervals. �owever, via appropri-
ate choice of the dilation coefficient, the double-parabolic
sampling scheme can perform uniformly better than the
stopping rule derived from Clopper-Pearson intervals. To
illustrate, consider the case that 𝜖𝜖 𝜖𝜖 𝜖𝜖 and 𝛿𝛿𝛿𝛿𝛿𝛿𝛿  .
For stopping rules derived from Clopper-Pearson intervals,
Fishman’s intervals, Wilson’s intervals, and revised Wald
intervals with 𝑎𝑎 𝑎𝑎 , we have determined that to guarantee
the prescribed con�dence level 1 − 𝛿𝛿𝛿𝛿𝛿𝛿𝛿  , it suffices
to set the coverage tuning parameter 𝜁𝜁 as 0.5, 1, 2.4, and
0.37, respectively. For the stopping rule derived from Wald
intervals, we have determined 𝜁𝜁 𝜁𝜁𝜁𝜁𝜁  to ensure the
con�dence level, under the condition that the minimum
sample size is taken as ⌈(1/𝜖𝜖𝜖 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖. Recall that for the
double-parabolic sampling scheme with 𝜌𝜌 𝜌𝜌 𝜌𝜌, we have
obtained 𝜁𝜁 𝜁𝜁𝜁𝜁  for purpose of guaranteeing the con�dence
level.e average sample numbers of these sampling schemes

are shown in Figure 6. From these plots, it can be seen that as
compared to the stopping rule derived fromClopper-Pearson
intervals, the stopping rule derived from the revised Wald
intervals performs better in the region of 𝑝𝑝 close to 0 or 1,
but performs worse in the region of 𝑝𝑝 in the middle of (0, 1).
e performance of stopping rules from Fishman’s intervals
(i.e., from Chernoff bound) andWald intervals are obviously
inferior as compared to that of the stopping rule derived
from Clopper-Pearson intervals. It can be observed that the
double-parabolic sampling scheme uniformly outperforms
the stopping rule derived from Clopper-Pearson intervals.

In some situa-
tions, we need to estimate a binomial proportion with a high
con�dence level. For e�ample, one might want to construct
a sampling scheme such that, for 𝜖𝜖 𝜖𝜖 𝜖𝜖𝜖 and 𝛿𝛿𝛿𝛿𝛿  −10,
the resultant sequential estimator 󵰁󵰁𝐩𝐩 satis�es Pr{|󵰁󵰁𝐩𝐩 𝐩𝐩𝐩𝐩  𝐩
𝜖𝜖 𝜖 𝜖𝜖𝜖 𝜖 𝜖𝜖  𝜖𝜖 for any 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝 . By working with
the complementary coverage probability, we determined that
it suffices to let the dilation coefficient 𝜌𝜌 𝜌𝜌 𝜌𝜌 and the
coverage tuning parameter 𝜁𝜁 𝜁𝜁𝜁𝜁𝜁 . e stopping boundary
and the function of coverage probability with respect to the
binomial proportion are displayed, respectively, in the le
and right sides of Figure 7. As addressed in Section 5.3, it
should be noted that it is impossible to obtain such a sampling
scheme without working with the complementary coverage
probability.
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F 5: Double-parabolic sampling with various dilation coefficients.
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F 6: Comparison of average sample numbers.

7. Illustrative Examples for Clinical Trials

In this section, we shall illustrate the applications of our
double-parabolic group sequential estimation method in
clinical trials.

An example of our double-parabolic sampling scheme
can be illustrated as follows. Assume that 𝜖𝜖 𝜖 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖 is given
and that the sampling procedure is expected to have 7 stages
with sample sizes satisfying (8). Choosing 𝜌𝜌 𝜌 𝜌𝜌𝜌, we have
determined that it suffices to take 𝜁𝜁 𝜁 𝜁𝜁𝜁𝜁𝜁𝜁 to guarantee
that the coverage probability is no less than 1 − 𝛿𝛿𝛿𝛿𝛿𝛿𝛿   for
all 𝑝𝑝 𝑝 𝑝𝑝𝑝 𝑝𝑝. Accordingly, the sample sizes of this sampling

scheme are calculated as 59, 116, 173,23 1,2 88,345 , and 403.
is sampling scheme, with a sample path, is shown in the
le side of Figure 8. In this case, the stopping rule can be
equivalently described by virtue of Figure 8 as the following:
continue sampling until (󵰃󵰃𝐩𝐩ℓ, 𝑛𝑛ℓ) hit a green line at some stage.
e coverage probability is shown in the right side of Figure
8.

To apply this estimation method in a clinical trial for
estimating the proportion 𝑝𝑝 of a binomial response with
margin of error 0.05 and con�dence level 95%, we can have
seven groups of patients with group sizes 59,5 7,5 7,5 8,5 7,5 7,
and 58. In the �rst stage, we conduct experiment with
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F 7: Double-parabolic sampling with 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖, 𝛿𝛿 𝛿 𝛿𝛿−10, 𝜌𝜌 𝜌 𝜌𝜌𝜌, and 𝜁𝜁 𝜁 𝜁𝜁𝜁𝜁.
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F 8: Double-parabolic sampling with 𝜖𝜖 𝜖 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖, 𝑠𝑠 𝑠𝑠 , 𝜌𝜌 𝜌 𝜌𝜌𝜌, and 𝜁𝜁 𝜁 𝜁𝜁𝜁𝜁𝜁𝜁.

the 59 patients of the �rst group. We observe the relative
frequency of response and record it as󵰃󵰃𝐩𝐩1. Suppose that there
are 12 patients having positive responses, then the relative
frequency at the �rst stage is󵰃󵰃𝐩𝐩1 =12/59=0.2034   . With
the values of (󵰃󵰃𝐩𝐩1, 𝑛𝑛1) = (0.2034, 59), we check if the stopping
rule is satis�ed. is is equivalent to see if the point (󵰃󵰃𝐩𝐩1, 𝑛𝑛1)
hits a green line at the �rst stage. For such value of (󵰃󵰃𝐩𝐩1, 𝑛𝑛1),
it can be seen that the stopping condition is not ful�lled.
So, we need to conduct the second stage of experiment
with the 57 patients of the second group. We observe the
response of these 57 patients. Suppose we observe that 5
patients among this group have positive responses. en,
we add 5 with 12, the number of positive responses before
the second stage, to obtain 17 positive responses among
𝑛𝑛2 =59  + 57=116   patients. So, at the second stage,
we get the relative frequency 󵰃󵰃𝐩𝐩2 =17/116=0.1466   .

Since the stopping rule is not satis�ed with the values of
(󵰃󵰃𝐩𝐩2, 𝑛𝑛2) = (0.1466, 116), we need to conduct the third
stage of experiment with the 57 patients of the third group.
Suppose we observe that 14 patients among this group have
positive responses. en, we add 14 with 17, the number of
positive responses before the third stage, to get 31 positive
responses among 𝑛𝑛3 =59  + 57 + 57=173   patients.
So, at the third stage, we get the relative frequency 󵰃󵰃𝐩𝐩3 =
31/173=0.1792  . Since the stopping rule is not satis�ed with
the values of (󵰃󵰃𝐩𝐩3, 𝑛𝑛3) = (0.1792, 173), we need to conduct
the fourth stage of experiment with the 58 patients of the
fourth group. Suppose we observe that 15 patients among this
group have positive responses. en, we add 15 with 31, the
number of positive responses before the fourth stage, to get
46 positive responses among 𝑛𝑛4 =59  + 57 + 57 + 58 =231
patients. So, at the fourth stage, we get the relative frequency
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F 9: Double-parabolic sampling with 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖, 𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿, 𝑠𝑠 𝑠 𝑠𝑠, 𝜌𝜌 𝜌 𝜌𝜌𝜌, and 𝜁𝜁 𝜁𝜁𝜁 𝜁𝜁𝜁𝜁.

󵰃󵰃𝐩𝐩4 =46/231=0.1   991. Since the stopping rule is not satis�ed
with the values of (󵰃󵰃𝐩𝐩4, 𝑛𝑛4) = (0.1991, 231), we need to conduct
the �h stage of experiment with the 57 patients of the �h
group. Suppose we observe that 6 patients among this group
have positive responses. en, we add 6 with 46, the number
of positive responses before the �h stage, to get 52 positive
responses among 𝑛𝑛5 =5 9 + 57 + 57 + 58 + 57=2  88
patients. So, at the �h stage, we get the relative frequency
󵰃󵰃𝐩𝐩5 =52/2 88 =0.1 806. It can be seen that the stopping
rule is satis�ed with the values of (󵰃󵰃𝐩𝐩5, 𝑛𝑛5) = (0.1806, 288).
erefore, we can terminate the sampling experiment and
take 󵰁󵰁𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩    as an estimate of the proportion of
the whole population having positive responses. With a 95%
con�dence level, one can believe that the difference between
the true value of 𝑝𝑝 and its estimate 󵰁󵰁𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩  is less than
0.05.

In this experiment, we only use 288 samples to obtain
the estimate for 𝑝𝑝. Except the round-off error, there is
no other source of error for reporting statistical accuracy,
since no asymptotic approximation is involved. As compared
to �xed-sample-size procedure, we achieved a substantial
save of samples. To see this, one can check that using the
rigorous formula (37) gives a sample size 738, which is overly
conservative. From the classical approximate formula (35),
the sample size is determined as 385, which has been known
to be insufficient to guarantee the prescribed con�dence
level 95%. e exact method of [34] shows that at least 391
samples are needed. As compared to the best-�xed-sample
size obtained by the method of [34], the reduction of sample
sizes resulted from our double-parabolic sampling scheme is
391 − 288 =103 . It can be seen that the �xed-sample-size
procedure wastes 103/288 =35.76 % samples as compared to
our group sequential method, which is also an exact method.
is percentage may not be serious if it were a save of a
number of simulation runs. However, as the number count
is for patients, the reduction of samples is important for

ethical and economical reasons. Using our group sequential
method, the worst-case sample size is equal to 403, which is
only 12more than the minimum sample size of �xed-sample
procedure. However, a lot of samples can be saved in the
average case.

As 𝜖𝜖 or 𝛿𝛿 become smaller, the reduction of samples is
more signi�cant. For example, let 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖 and 𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿, we
have a double-parabolic sample scheme with 10 stages. e
sampling scheme, with a sample path, is shown in the le side
of Figure 9.e coverage probability is shown in the right side
of Figure 9.

8. Conclusion

In this paper, we have reviewed recent development of group
sequential estimationmethods for a binomial proportion.We
have illustrated the inclusion principle and its applications to
various stopping rules. We have introduced computational
techniques in the literature, which suffice for determining
parameters of stopping rules to guarantee desired con�dence
levels. Moreover, we have proposed a new family of sam-
pling schemes with stopping boundary of double-parabolic
shape, which are parameterized by the coverage tuning
parameter and the dilation coefficient. ese parameters
can be determined by the exact computational techniques
to reduce the sampling cost, while ensuring prescribed
con�dence levels. e new family of sampling schemes are
extremely simple in structure and asymptotically optimal as
the margin of error tends to 0. We have established analytic
bounds for the distribution and expectation of the sample
number at the termination of the sampling process. We
have obtained parameter values via the exact computational
techniques for the proposed sampling schemes such that
the con�dence levels are guaranteed and that the sampling
schemes are generally more efficient as compared to existing
ones.
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Appendices

A. Proof of Theorem 1

Consider function 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔2/𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥  for 𝑥𝑥 𝑥 𝑥𝑥𝑥 𝑥𝑥
and 𝑧𝑧𝑧  𝑧𝑧𝑧𝑧 𝑧. It can be checked that 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  
𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧   𝑧 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  𝑧−2, which shows that for any
�xed 𝑧𝑧𝑧  𝑧𝑧𝑧𝑧 𝑧, −𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔 is a unimodal function of 𝑥𝑥 𝑥 𝑥𝑥𝑥 𝑥𝑥,
with a maximum attained at 𝑥𝑥𝑥𝑥𝑥  . By such a property of
𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔 and the de�nition of�ilson�s con�dence intervals, we
have

󶁁󶁁󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 𝜖 𝜖𝜖ℓ󶁑󶁑 = 󶁁󶁁0 <󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 𝜖 𝜖𝜖ℓ󶁑󶁑 ∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≤ 𝜖𝜖󶁑󶁑

= 󶁇󶁇0 <󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 𝜖 𝜖𝜖ℓ ≤󵰃󵰃𝐩𝐩ℓ, 𝑔𝑔󶀡󶀡𝐿𝐿ℓ,󵰃󵰃𝐩𝐩ℓ󶀱󶀱 =
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≤ 𝜖𝜖󶁑󶁑

= 󶁇󶁇󵰃󵰃𝐩𝐩ℓ > 𝜖𝜖𝜖
𝜖𝜖2

󶀡󶀡󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱 󶁡󶁡1−  󶀡󶀡󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱󶁱󶁱
≥
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≤ 𝜖𝜖󶁑󶁑 ,

󶁁󶁁󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖 𝜖 𝜖𝜖ℓ󶁑󶁑 = 󶁁󶁁1 >󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖 𝜖 𝜖𝜖ℓ󶁑󶁑 ∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖 𝜖𝜖 󶁑󶁑

= 󶁇󶁇1 >󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖 𝜖 𝜖𝜖ℓ ≥󵰃󵰃𝐩𝐩ℓ, 𝑔𝑔󶀡󶀡𝑈𝑈ℓ,󵰃󵰃𝐩𝐩ℓ󶀱󶀱 =
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

∪󶁁󶁁󵰃󵰃𝐩𝐩ℓ +𝜖𝜖 𝜖𝜖 󶁑󶁑 = 󶁇󶁇󵰃󵰃𝐩𝐩ℓ < 1−𝜖𝜖𝜖
𝜖𝜖2

󶀡󶀡󵰃󵰃𝐩𝐩ℓ +𝜖𝜖󶀱󶀱 󶀱󶀱1−󶀡󶀡󵰃󵰃𝐩𝐩ℓ +𝜖𝜖󶀱󶀱󶀱󶀱
≥
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≥ 1−  𝜖𝜖󶁑󶁑 ,
(A.1)

for ℓ =1, … , 𝑠𝑠, where we have used the fact that {󵰃󵰃𝐩𝐩ℓ > 𝜖𝜖𝜖 𝜖
{𝐿𝐿ℓ > 0}, {󵰃󵰃𝐩𝐩ℓ < 1−  𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖ℓ < 1} and 0≤𝐿𝐿  ℓ ≤󵰃󵰃𝐩𝐩ℓ ≤𝑈𝑈 ℓ ≤1 .
Recall that 0 < 𝜖𝜖 𝜖𝜖𝜖𝜖 . It follows that

󶁁󶁁󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 𝜖 𝜖𝜖ℓ ≤𝑈𝑈 ℓ ≤󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶁑󶁑

= 󶁇󶁇𝜖𝜖 𝜖󵰃󵰃𝐩𝐩ℓ < 1−  𝜖𝜖𝜖
𝜖𝜖2

󶀡󶀡󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱 󶁡󶁡1−  󶀡󶀡󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱󶁱󶁱
≥
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
,

𝜖𝜖2

󶀡󶀡󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱 󶁡󶁡1−  󶀡󶀡󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱󶁱󶁱
≥
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

∪ 󶁇󶁇󵰃󵰃𝐩𝐩ℓ ≤ 𝜖𝜖𝜖
𝜖𝜖2

󶀡󶀡󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱 󶀱󶀱1−  󶀡󶀡󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱󶀱󶀱
≥
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

∪ 󶁇󶁇󵰃󵰃𝐩𝐩ℓ ≥ 1−  𝜖𝜖𝜖
𝜖𝜖2

󶀡󶀡󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱 󶀱󶀱1−  󶀡󶀡󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱󶀱󶀱
≥
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

= 󶁇󶁇𝜖𝜖 𝜖󵰃󵰃𝐩𝐩ℓ < 1−  𝜖𝜖𝜖 󶀤󶀤󶀤󶀤󵰃󵰃𝐩𝐩ℓ −
1
2
󶙤󶙤 − 𝜖𝜖󶀴󶀴

2
≥
1
4
− 𝑛𝑛ℓ󶀦󶀦

𝜖𝜖
𝒵𝒵𝜁𝜁𝜁𝜁

󶀶󶀶
2

󶁗󶁗

∪ 󶁇󶁇󵰃󵰃𝐩𝐩ℓ ≤ 𝜖𝜖𝜖 󶀤󶀤󶙤󶙤󵰃󵰃𝐩𝐩ℓ −
1
2
󶙤󶙤 − 𝜖𝜖󶀴󶀴

2
≥
1
4
− 𝑛𝑛ℓ󶀦󶀦

𝜖𝜖
𝒵𝒵𝜁𝜁𝜁𝜁

󶀶󶀶
2

󶁗󶁗

∪ 󶁇󶁇󵰃󵰃𝐩𝐩ℓ ≥ 1−  𝜖𝜖𝜖 󶀤󶀤󶀤󶀤󵰃󵰃𝐩𝐩ℓ −
1
2
󶙤󶙤 − 𝜖𝜖󶀴󶀴

2
≥
1
4
− 𝑛𝑛ℓ󶀦󶀦

𝜖𝜖
𝒵𝒵𝜁𝜁𝜁𝜁

󶀶󶀶
2

󶁗󶁗

= 󶁇󶁇󶁇󶁇󶁇󶁇󵰃󵰃𝐩𝐩ℓ −
1
2
󶙤󶙤 − 𝜖𝜖󶀴󶀴

2
≥
1
4
− 𝑛𝑛ℓ󶀦󶀦

𝜖𝜖
𝒵𝒵𝜁𝜁𝜁𝜁

󶀶󶀶
2

󶁗󶁗 ,

(A.2)

for ℓ =1, … , 𝑠𝑠. is completes the proof of the theorem.

B. Proof of Theorem 2

By the assumption that 𝑛𝑛𝑠𝑠 ≥ (1/2𝜖𝜖
2) ln(1/𝜁𝜁𝜁𝜁𝜁, we have (1/4)+

(𝜖𝜖2𝑛𝑛𝑠𝑠/2 ln(𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁   and, consequently, Pr{(|󵰃󵰃𝐩𝐩𝑠𝑠 −1 /2| − 𝜌𝜌𝜌𝜌𝜌
2 ≥

(1/4)+(  𝜖𝜖2𝑛𝑛𝑠𝑠/2 ln(𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁  . It follows from the de�nition of
the sampling scheme that the sampling process must stop at
or before the 𝑠𝑠th stage. In other words, Pr{𝐥𝐥 𝐥𝐥𝐥𝐥𝐥𝐥   . is
allows one to write

Pr󶁁󶁁󶁁󶁁󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩󶙡󶙡 ≥ 𝜖𝜖 𝜖 𝜖𝜖󶁑󶁑 =
𝑠𝑠
󵠈󵠈
ℓ=1

Pr󶁁󶁁󶁁󶁁󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩󶙡󶙡 ≥ 𝜖𝜖𝜖𝜖𝜖𝜖𝜖    𝜖 𝜖𝜖󶁑󶁑

=
𝑠𝑠
󵠈󵠈
ℓ=1

Pr󶁁󶁁󶁁󶁁󵰃󵰃𝐩𝐩ℓ −𝑝𝑝 󶙡󶙡 ≥ 𝜖𝜖𝜖𝜖𝜖𝜖𝜖    𝜖 𝜖𝜖󶁑󶁑

≤
𝑠𝑠
󵠈󵠈
ℓ=1

Pr󶁁󶁁󶁁󶁁󵰃󵰃𝐩𝐩ℓ −𝑝𝑝 󶙡󶙡 ≥ 𝜖𝜖 𝜖 𝜖𝜖󶁑󶁑 ,

(B.1)

for 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   . By virtue of the well-known Chernoff-
Hoeffding bound [32, 33], we have

Pr󶁁󶁁󶁁󶁁󵰃󵰃𝐩𝐩ℓ −𝑝𝑝 󶙡󶙡 ≥ 𝜖𝜖 𝜖 𝜖𝜖󶁑󶁑 ≤ 2 exp󶀢󶀢−2𝑛𝑛ℓ𝜖𝜖
2󶀲󶀲 , (B.2)

for ℓ =1, … , 𝑠𝑠. Making use of (B.1), (B.2), and the fact that
𝑛𝑛1 ≥ 2𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  as can be seen from (30), we have

Pr󶁁󶁁󶁁󶁁󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩󶙡󶙡 ≥ 𝜖𝜖 𝜖 𝜖𝜖󶁑󶁑

≤ 2
𝑠𝑠
󵠈󵠈
ℓ=1

exp󶀢󶀢−2𝑛𝑛ℓ𝜖𝜖
2󶀲󶀲

≤ 2
∞
󵠈󵠈
𝑚𝑚𝑚𝑚𝑚1

exp󶀢󶀢−2𝑚𝑚𝑚𝑚2󶀲󶀲 =
2 exp󶀢󶀢−2𝑛𝑛1𝜖𝜖

2󶀲󶀲
1−  exp󶀡󶀡−2𝜖𝜖2󶀱󶀱

≤
2 exp󶀢󶀢−2𝜖𝜖2 × 2𝜌𝜌󶀡󶀡󶀡1/𝜖𝜖) − 𝜌𝜌󶀱󶀱 ln(1/𝜁𝜁𝜁𝜁)󶀲󶀲

1−  exp󶀡󶀡−2𝜖𝜖2󶀱󶀱

=
2 exp󶀡󶀡4𝜖𝜖𝜖𝜖󶀡󶀡1−  𝜌𝜌𝜌𝜌󶀱󶀱 ln(𝜁𝜁𝜁𝜁)󶀱󶀱

1−  exp󶀡󶀡−2𝜖𝜖2󶀱󶀱
,

(B.3)

for any 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   . erefore, to guarantee that Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩𝐩𝐩
𝜖𝜖 𝜖 𝜖𝜖𝜖 𝜖𝜖𝜖𝜖𝜖    for any 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   , it is sufficient to choose 𝜁𝜁
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such that 2 exp(4𝜖𝜖𝜖𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖2)]. is
inequality can be written as 4𝜖𝜖𝜖𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 𝜖
ln[1−  exp(−2𝜖𝜖2)] or, equivalently, 𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁   
ln[1−  exp(−2𝜖𝜖2)])/4𝜖𝜖𝜖𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖𝜖. e proof of the theorem is
thus completed.

C. Proof of Theorem 3

First, we need to show that Pr{lim𝜖𝜖𝜖𝜖(𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 𝐧𝐧𝐧 𝐧𝐧𝐧 𝐧𝐧𝐧𝐧 𝐧 𝐧 𝐧
𝑝𝑝𝑝 𝑝𝑝  for any 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝 . Clearly, the sample number
𝐧𝐧 is a random number dependent on 𝜖𝜖. Note that for any
𝜔𝜔 𝜔 𝜔, the sequences {𝑋𝑋𝐧𝐧𝐧𝐧𝐧𝐧(𝜔𝜔𝜔𝜔𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 and {𝑋𝑋𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧(𝜔𝜔𝜔𝜔𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖
are subsets of {𝑋𝑋𝑚𝑚(𝜔𝜔𝜔𝜔

∞
𝑚𝑚𝑚𝑚. By the strong lawof large numbers,

for almost every 𝜔𝜔 𝜔 𝜔, the sequence {𝑋𝑋𝑚𝑚(𝜔𝜔𝜔𝜔
∞
𝑚𝑚𝑚𝑚 converges

to 𝑝𝑝. Since every subsequence of a convergent sequence must
converge, it follows that the sequences {𝑋𝑋𝐧𝐧𝐧𝐧𝐧𝐧(𝜔𝜔𝜔𝜔𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 and
{𝑋𝑋𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧(𝜔𝜔𝜔𝜔𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 converge to 𝑝𝑝 as 𝜖𝜖 𝜖 𝜖 provided that
𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧   as 𝜖𝜖 𝜖 𝜖. Since it is certain that 𝐧𝐧 𝐧 𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌    as 𝜖𝜖 𝜖 𝜖, we have that {lim𝜖𝜖𝜖𝜖((𝐧𝐧 𝐧
1)/𝐧𝐧𝐧 𝐧 𝐧𝐧 is a sure event. It follows that 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵 𝜖𝜖𝜖𝜖𝑋𝑋𝐧𝐧𝐧𝐧 =
𝑝𝑝𝑝𝑝𝑝𝑝 𝜖𝜖𝜖𝜖𝑋𝑋𝐧𝐧 =𝑝𝑝𝑝𝑝𝑝𝑝  𝜖𝜖𝜖𝜖((𝐧𝐧 𝐧𝐧𝐧𝐧 𝐧𝐧𝐧 𝐧 𝐧𝐧 is an almost sure
event. By the de�nition of the sampling scheme, we have

𝐴𝐴 𝐴 󶁆󶁆󶁆󶁆󶁆󶁆𝑋𝑋𝐧𝐧𝐧𝐧 −
1
2
󶙤󶙤 −𝜌𝜌𝜌𝜌 󶀴󶀴

2
<
1
4
+
𝜖𝜖2(𝐧𝐧 𝐧𝐧 )
2 ln(𝜁𝜁𝜁𝜁)

,

󶀤󶀤󶀤󶀤𝑋𝑋𝐧𝐧 −
1
2
󶙤󶙤 −𝜌𝜌𝜌𝜌 󶀴󶀴

2
≥
1
4
+

𝜖𝜖2𝐧𝐧
2 ln(𝜁𝜁𝜁𝜁)

󶁖󶁖

(C.1)

as a sure event. Hence, 𝐴𝐴 𝐴 𝐴𝐴 is an almost sure event. �e�ne
𝐶𝐶 𝐶𝐶𝐶𝐶𝐶 𝜖𝜖𝜖𝜖(𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 𝐧𝐧𝐧 𝐧𝐧𝐧 𝐧𝐧𝐧𝐧 𝐧 𝐧𝐧. We need to show that𝐶𝐶 is
an almost sure event. For this purpose, we let 𝜔𝜔 𝜔𝜔𝜔𝜔𝜔𝜔    and
expect to show that 𝜔𝜔 𝜔𝜔𝜔 . As a consequence of 𝜔𝜔 𝜔𝜔𝜔𝜔𝜔𝜔   ,

𝐧𝐧(𝜔𝜔)
𝑁𝑁󶀡󶀡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   󶀱󶀱

<
𝐧𝐧(𝜔𝜔)

𝐧𝐧(𝜔𝜔) −1

×
󶁣󶁣󶁣1/4) − 󶀢󶀢󶙢󶙢𝑋𝑋𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧(𝜔𝜔) − (1/2)󶙢󶙢 −𝜌𝜌𝜌𝜌 󶀲󶀲

2
󶁳󶁳

𝑝𝑝󶀡󶀡1−𝑝𝑝  󶀱󶀱
,

lim
𝜖𝜖𝜖𝜖

𝑋𝑋𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧(𝜔𝜔) =𝑝𝑝𝑝𝑝𝑝𝑝 
𝜖𝜖𝜖𝜖

𝐧𝐧(𝜔𝜔) −1
𝐧𝐧(𝜔𝜔)

=1 .

(C.2)

By the continuity of the function |𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥    with respect
to 𝑥𝑥 and 𝜖𝜖, we have

lim sup
𝜖𝜖𝜖𝜖

𝐧𝐧(𝜔𝜔)
𝑁𝑁󶀡󶀡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   󶀱󶀱

≤l im
𝜖𝜖𝜖𝜖

𝐧𝐧(𝜔𝜔)
𝐧𝐧(𝜔𝜔) −1

×
󶁣󶁣󶁣1/4)−󶀢󶀢󶙢󶙢lim𝜖𝜖𝜖𝜖𝑋𝑋𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧(𝜔𝜔)−(1/2)󶙢󶙢−lim𝜖𝜖𝜖𝜖𝜌𝜌𝜌𝜌󶀲󶀲

2
󶁳󶁳

𝑝𝑝󶀡󶀡1−𝑝𝑝  󶀱󶀱

=1 .
(C.3)

On the other hand, as a consequence of 𝜔𝜔 𝜔𝜔𝜔𝜔𝜔𝜔   ,

𝐧𝐧(𝜔𝜔)
𝑁𝑁󶀡󶀡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   󶀱󶀱

≥
󶁣󶁣󶁣1/4) − 󶀢󶀢󶀢󶀢𝑋𝑋𝐧𝐧𝐧𝐧𝐧𝐧(𝜔𝜔) − (1/2)󶙢󶙢 −𝜌𝜌𝜌𝜌 󶀲󶀲

2
󶁳󶁳

𝑝𝑝󶀡󶀡1−𝑝𝑝  󶀱󶀱
,

lim
𝜖𝜖𝜖𝜖

𝑋𝑋𝐧𝐧𝐧𝐧𝐧𝐧(𝜔𝜔) =𝑝𝑝𝑝

(C.4)

Making use of the continuity of the function |𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  
with respect to 𝑥𝑥 and 𝜖𝜖, we have

lim inf
𝜖𝜖𝜖𝜖

𝐧𝐧(𝜔𝜔)
𝑁𝑁󶀡󶀡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   󶀱󶀱

≥
󶁣󶁣󶁣1/4) − 󶀢󶀢󶀢󶀢lim𝜖𝜖𝜖𝜖𝑋𝑋𝐧𝐧𝐧𝐧𝐧𝐧(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔  󶙢󶙢 −l im𝜖𝜖𝜖𝜖𝜌𝜌𝜌𝜌󶀲󶀲

2
󶁳󶁳

𝑝𝑝󶀡󶀡1−𝑝𝑝  󶀱󶀱

=1 .
(C.5)

Combining (C.3) and (C.5) yields lim𝜖𝜖𝜖𝜖(𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 𝐧𝐧𝐧
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿    and thus𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴.is implies that𝐶𝐶 is an almost
sure event and thus Pr{lim𝜖𝜖𝜖𝜖(𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 𝐧𝐧𝐧 𝐧𝐧𝐧 𝐧𝐧𝐧𝐧 𝐧 𝐧 𝐧 𝐧𝐧𝐧 𝐧 𝐧
for 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝 .

Next, we need to show that lim𝜖𝜖𝜖𝜖Pr{|󵰁󵰁𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩     
2Φ(󵀄󵀄2 ln(1/𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁   for any 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝 . For simplicity of
notations, let 𝜎𝜎 𝜎 󵀆󵀆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   and 𝑎𝑎 𝑎 󵀄󵀄2 ln(1/𝜁𝜁𝜁𝜁𝜁. Note that
Pr{|󵰁󵰁𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩      Pr{|𝑋𝑋𝐧𝐧−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝    𝑝 𝑝 Pr{√𝐧𝐧𝐧𝑋𝑋𝐧𝐧−𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜖𝜖√𝐧𝐧𝐧𝐧𝐧𝐧. Clearly, for any 𝜂𝜂 𝜂𝜂𝜂𝜂𝜂𝜂𝜂  ,

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 −𝑝𝑝 󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

󶁗󶁗

≤ Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 −𝑝𝑝 󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

,
𝜖𝜖√𝐧𝐧
𝜎𝜎

∈ 󶁡󶁡𝑎𝑎 𝑎𝑎𝑎𝑎  𝑎𝑎 𝑎𝑎𝑎 󶁱󶁱󶁱󶁱

+ Pr󶁅󶁅𝜖𝜖
√𝐧𝐧
𝜎𝜎

∉ 󶁡󶁡𝑎𝑎 𝑎𝑎𝑎𝑎  𝑎𝑎 𝑎𝑎𝑎 󶁱󶁱󶁱󶁱

≤ Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 −𝑝𝑝 󶙢󶙢

𝜎𝜎
< 𝑎𝑎 𝑎𝑎𝑎𝑎

𝜖𝜖√𝐧𝐧
𝜎𝜎

∈ 󶁡󶁡𝑎𝑎 𝑎𝑎𝑎𝑎  𝑎𝑎 𝑎𝑎𝑎 󶁱󶁱󶁱󶁱

+ Pr󶁅󶁅𝜖𝜖
√𝐧𝐧
𝜎𝜎

∉ 󶁡󶁡𝑎𝑎 𝑎𝑎𝑎𝑎  𝑎𝑎 𝑎𝑎𝑎 󶁱󶁱󶁱󶁱

≤ Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 −𝑝𝑝 󶙢󶙢

𝜎𝜎
< 𝑎𝑎 𝑎𝑎𝑎 󶁗󶁗

+ Pr󶁅󶁅𝜖𝜖
√𝐧𝐧
𝜎𝜎

∉ 󶁡󶁡𝑎𝑎 𝑎𝑎𝑎𝑎  𝑎𝑎 𝑎𝑎𝑎 󶁱󶁱󶁱󶁱 ,

(C.6)
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Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

󶁗󶁗

≥ Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

,
𝜖𝜖√𝐧𝐧
𝜎𝜎

∈ 󶁡󶁡𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎󶁱󶁱󶁱󶁱

≥ Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
< 𝑎𝑎 𝑎 𝑎𝑎𝑎

𝜖𝜖√𝐧𝐧
𝜎𝜎

∈ 󶁡󶁡𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎󶁱󶁱󶁱󶁱

≥ Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
< 𝑎𝑎 𝑎 𝑎𝑎󶁗󶁗

− Pr󶁅󶁅𝜖𝜖
√𝐧𝐧
𝜎𝜎

∉ 󶁡󶁡𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎󶁱󶁱󶁱󶁱 .

(C.7)

Recall that we have established that 𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧  𝐧𝐧𝐧 𝐧𝐧𝐧 𝐧 𝐧
almost surely as 𝜖𝜖 𝜖 𝜖. is implies that (𝜖𝜖√𝐧𝐧𝐧𝐧𝐧𝐧 𝐧 𝐧𝐧
and 𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧  𝐧𝐧𝐧 𝐧𝐧𝐧 𝐧 𝐧 in probability as 𝜖𝜖 tends to zero.
It follows from Anscombe’s random central limit theorem
[35] that as 𝜖𝜖 tends to zero, √𝐧𝐧𝐧𝑋𝑋𝐧𝐧 − 𝑝𝑝𝑝𝑝𝑝𝑝 converges in
distribution to a Gaussian random variable with zero mean
and unit variance. Hence, from (C.6),

lim sup
𝜖𝜖𝜖𝜖

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

󶁗󶁗

≤ lim
𝜖𝜖𝜖𝜖

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
< 𝑎𝑎 𝑎 𝑎𝑎󶁗󶁗

+ lim
𝜖𝜖𝜖𝜖

Pr󶁅󶁅𝜖𝜖
√𝐧𝐧
𝜎𝜎

∉ 󶁡󶁡𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎󶁱󶁱󶁱󶁱

= 2Φ󶀡󶀡𝑎𝑎 𝑎 𝑎𝑎󶀱󶀱 − 1

(C.8)

and from (C.7),

lim inf
𝜖𝜖𝜖𝜖

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

󶁗󶁗

≥ lim
𝜖𝜖𝜖𝜖

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
< 𝑎𝑎 𝑎 𝑎𝑎󶁗󶁗

− lim
𝜖𝜖𝜖𝜖

Pr󶁅󶁅𝜖𝜖
√𝐧𝐧
𝜎𝜎

∉ 󶁡󶁡𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎󶁱󶁱󶁱󶁱

= 2Φ󶀡󶀡𝑎𝑎 𝑎 𝑎𝑎󶀱󶀱 − 1.

(C.9)

Since this argument holds for arbitrarily small 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂   , it
must be true that

lim inf
𝜖𝜖𝜖𝜖

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

󶁗󶁗

= lim sup
𝜖𝜖𝜖𝜖

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

󶁗󶁗

= 2Φ(𝑎𝑎) − 1.

(C.10)

So, lim𝜖𝜖𝜖𝜖Pr{|󵰁󵰁𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩    𝐩 𝐩𝐩𝐩 𝐩𝐩𝐩𝐩 𝜖𝜖𝜖𝜖Pr{√𝐧𝐧𝐧𝑋𝑋𝐧𝐧 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜖𝜖√𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧  𝐧𝐧𝐧𝐧𝐧𝐧 𝐧𝐧𝐧 𝐧󵀄󵀄2 ln(1/𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁 for any 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝  .

Now, we focus our attention to show that
lim𝜖𝜖𝜖𝜖(𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼      for any 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝  . For
this purpose, it suffices to show that

1 − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂  
𝜖𝜖𝜖𝜖

𝔼𝔼[𝐧𝐧]
𝑁𝑁󶀡󶀡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   󶀱󶀱

≤ lim sup
𝜖𝜖𝜖𝜖

𝔼𝔼[𝐧𝐧]
𝑁𝑁󶀡󶀡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   󶀱󶀱

≤ 1+𝜂𝜂𝜂   𝜂𝜂𝜂𝜂  (0, 1) ,

(C.11)

for any 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂   . For simplicity of notations, we abbreviate
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁    as 𝑁𝑁 in the sequel. Since we have established
Pr{lim𝜖𝜖𝜖𝜖(𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧  𝐧𝐧𝐧 𝐧𝐧𝐧𝐧 𝐧 𝐧𝐧𝐧  𝐧, we can conclude that

lim
𝜖𝜖𝜖𝜖

Pr󶁁󶁁󶀡󶀡1 − 𝜂𝜂󶀱󶀱𝑁𝑁𝑁𝑁𝑁𝑁    󶀡󶀡1+𝜂𝜂  󶀱󶀱𝑁𝑁󶁑󶁑 = 1. (C.12)

Noting that

𝔼𝔼[𝐧𝐧] =
∞
󵠈󵠈
𝑚𝑚𝑚𝑚

𝑚𝑚Pr{𝐧𝐧 𝐧𝐧𝐧 }

≥ 󵠈󵠈
󶀡󶀡1−𝜂𝜂󶀱󶀱𝑁𝑁𝑁𝑁𝑁𝑁󶀡󶀡1+𝜂𝜂󶀱󶀱𝑁𝑁

𝑚𝑚Pr{𝐧𝐧 𝐧𝐧𝐧 }

≥ 󶀡󶀡1 − 𝜂𝜂󶀱󶀱𝑁𝑁𝑁𝑁
󶀡󶀡1−𝜂𝜂󶀱󶀱𝑁𝑁𝑁𝑁𝑁𝑁󶀡󶀡1+𝜂𝜂󶀱󶀱𝑁𝑁

Pr{𝐧𝐧 𝐧𝐧𝐧 } ,

(C.13)

we have

𝔼𝔼[𝐧𝐧] ≥ 󶀡󶀡1 − 𝜂𝜂󶀱󶀱𝑁𝑁Pr󶁁󶁁󶀡󶀡1 − 𝜂𝜂󶀱󶀱𝑁𝑁𝑁𝑁𝑁𝑁    󶀡󶀡1+𝜂𝜂  󶀱󶀱𝑁𝑁󶁑󶁑 . (C.14)

Combining (C.12) and (C.14) yields

lim inf
𝜖𝜖𝜖𝜖

𝔼𝔼[𝐧𝐧]
𝑁𝑁󶀡󶀡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   󶀱󶀱

≥ 󶀡󶀡1 − 𝜂𝜂󶀱󶀱 lim
𝜖𝜖𝜖𝜖

Pr󶁁󶁁󶁁󶁁1 − 𝜂𝜂󶀱󶀱𝑁𝑁𝑁𝑁𝑁𝑁    󶀡󶀡1+𝜂𝜂  󶀱󶀱𝑁𝑁󶁑󶁑

= 1 − 𝜂𝜂𝜂

(C.15)

On the other hand, using 𝔼𝔼𝔼𝔼𝔼𝔼 𝔼 𝔼∞
𝑚𝑚𝑚𝑚 Pr{𝐧𝐧 𝐧 𝐧𝐧𝐧, we can

write

𝔼𝔼[𝐧𝐧] = 󵠈󵠈
0≤𝑚𝑚𝑚󶀡󶀡1+𝜂𝜂󶀱󶀱𝑁𝑁

Pr{𝐧𝐧 𝐧 𝐧𝐧} + 󵠈󵠈
𝑚𝑚𝑚󶀡󶀡1+𝜂𝜂󶀱󶀱𝑁𝑁

Pr{𝐧𝐧 𝐧 𝐧𝐧}

≤ 󶃡󶃡󶃡󶃡1+𝜂𝜂  󶀱󶀱𝑁𝑁󶃱󶃱 + 󵠈󵠈
𝑚𝑚𝑚󶀡󶀡1+𝜂𝜂󶀱󶀱𝑁𝑁

Pr{𝐧𝐧 𝐧 𝐧𝐧} .
(C.16)

Since lim sup𝜖𝜖𝜖𝜖(⌈(1+𝜂𝜂𝜂𝜂𝜂  𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂       , for the
purpose of establishing lim sup𝜖𝜖𝜖𝜖(𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼     
𝜂𝜂, it remains to show that

lim sup
𝜖𝜖𝜖𝜖

∑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Pr{𝐧𝐧 𝐧 𝐧𝐧}
𝑁𝑁󶀡󶀡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   󶀱󶀱

= 0. (C.17)
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Consider functions 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓2 and
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔     for 𝑥𝑥 𝑥 𝑥𝑥𝑥 𝑥𝑥. Note that

󶙡󶙡𝑓𝑓(𝑥𝑥) − 𝑔𝑔(𝑥𝑥)󶙡󶙡 = 󶙢󶙢󶙢𝑥𝑥𝑥𝑥𝑥𝑥  )2 − 󶀡󶀡|𝑥𝑥𝑥𝑥𝑥𝑥  | −𝜌𝜌𝜌𝜌 󶀱󶀱2󶙢󶙢

=𝜌𝜌𝜌𝜌 󶙡󶙡󶙡2𝑥𝑥𝑥𝑥  | −𝜌𝜌𝜌𝜌 󶙡󶙡 ≤ 𝜌𝜌𝜌𝜌󶀡󶀡1 + 𝜌𝜌𝜌𝜌󶀱󶀱 ,
(C.18)

for all 𝑥𝑥 𝑥 𝑥𝑥𝑥 𝑥𝑥. For 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝  , there exists a positive number
𝛾𝛾 𝛾 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾   𝛾 such that |𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
for any 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥  𝑥 𝑥𝑥𝑥𝑥𝑥𝑥  , since 𝑔𝑔𝑔𝑔𝑔𝑔 is a continuous function
of 𝑥𝑥. From now on, let 𝜖𝜖 𝜖 𝜖 be sufficiently small such that
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌      . en,

𝑓𝑓(𝑥𝑥) ≤ 𝑔𝑔(𝑥𝑥) + 𝜌𝜌𝜌𝜌󶀡󶀡1 + 𝜌𝜌𝜌𝜌󶀱󶀱

< 𝑔𝑔󶀡󶀡𝑝𝑝󶀱󶀱 +
𝜂𝜂
2
𝑝𝑝󶀡󶀡1−  𝑝𝑝󶀱󶀱 + 𝜌𝜌𝜌𝜌󶀡󶀡1 + 𝜌𝜌𝜌𝜌󶀱󶀱

< 󶀡󶀡1 + 𝜂𝜂󶀱󶀱 𝑝𝑝󶀡󶀡1−  𝑝𝑝󶀱󶀱 ,

(C.19)

for all 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥  𝑥 𝑥𝑥𝑥𝑥𝑥𝑥  . is implies that

󶁂󶁂𝑋𝑋𝑚𝑚 ∈ 󶀡󶀡𝑝𝑝 𝑝𝑝𝑝𝑝  𝑝𝑝 𝑝𝑝𝑝 󶀱󶀱󶀱󶀱

⊆ 󶁅󶁅󶁅󶁅1 + 𝜂𝜂󶀱󶀱 𝑝𝑝󶀡󶀡1−  𝑝𝑝󶀱󶀱 ≥
1
4
− 󶀤󶀤󶙤󶙤𝑋𝑋𝑚𝑚 −

1
2
󶙤󶙤 −𝜌𝜌𝜌𝜌 󶀴󶀴

2
󶁕󶁕

(C.20)

for all𝑚𝑚 𝑚𝑚 . Taking complementary events on both sides of
(C.20) leads to

󶁅󶁅󶁅󶁅1 + 𝜂𝜂󶀱󶀱 𝑝𝑝󶀡󶀡1−  𝑝𝑝󶀱󶀱 <
1
4
− 󶀤󶀤󶙤󶙤𝑋𝑋𝑚𝑚 −

1
2
󶙤󶙤 −𝜌𝜌𝜌𝜌 󶀴󶀴

2
󶁕󶁕

⊆ 󶁂󶁂𝑋𝑋𝑚𝑚 ∉ 󶀡󶀡𝑝𝑝 𝑝𝑝𝑝𝑝  𝑝𝑝 𝑝𝑝𝑝 󶀱󶀱󶁒󶁒 ,
(C.21)

for all𝑚𝑚 𝑚𝑚 . Since (1+𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂  𝜂𝜂𝜂𝜂2/2 ln(1/𝜁𝜁𝜁𝜁𝜁𝜁𝜁
(𝑚𝑚𝑚𝑚2/2 ln(1/𝜁𝜁𝜁𝜁𝜁𝜁 for all𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚   , it follows that

󶁆󶁆
𝑚𝑚𝑚𝑚2

2 ln(1/𝜁𝜁𝜁𝜁)
<
1
4
− 󶀤󶀤󶀤󶀤𝑋𝑋𝑚𝑚 −

1
2
󶙤󶙤 −𝜌𝜌𝜌𝜌 󶀴󶀴

2
󶁖󶁖

⊆ 󶁂󶁂𝑋𝑋𝑚𝑚 ∉ 󶀡󶀡𝑝𝑝 𝑝𝑝𝑝𝑝  𝑝𝑝 𝑝𝑝𝑝 󶀱󶀱󶁒󶁒 ,

(C.22)

for all 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚   . erefore, we have shown that if 𝜖𝜖 is
sufficiently small, then there exists a number 𝛾𝛾 𝛾𝛾  such that

{𝐧𝐧 𝐧𝐧𝐧 } ⊆ 󶁆󶁆󶁆󶁆󶁆󶁆𝑋𝑋𝑚𝑚 −
1
2
󶙤󶙤 −𝜌𝜌𝜌𝜌 󶀴󶀴

2
<
1
4
+

𝑚𝑚𝑚𝑚2

2 ln(𝜁𝜁𝜁𝜁)
󶁖󶁖

⊆ 󶁂󶁂𝑋𝑋𝑚𝑚 ∉ 󶀡󶀡𝑝𝑝 𝑝𝑝𝑝𝑝  𝑝𝑝 𝑝𝑝𝑝 󶀱󶀱󶀱󶀱 ,

(C.23)

for all𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 . Using this inclusion relationship and the
Chernoff-Hoeffding bound [32, 33], we have

Pr{𝐧𝐧 𝐧𝐧𝐧 } ≤ Pr󶁂󶁂𝑋𝑋𝑚𝑚 ∉ 󶀡󶀡𝑝𝑝 𝑝𝑝𝑝𝑝  𝑝𝑝 𝑝𝑝𝑝 󶀱󶀱󶀱󶀱 ≤ 2 exp󶀢󶀢−2𝑚𝑚𝑚𝑚2󶀲󶀲 ,
(C.24)

for all𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚    provided that 𝜖𝜖 𝜖 𝜖 is sufficiently small.
Letting 𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  𝑘 and using (C.24), we have

󵠈󵠈
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

Pr{𝐧𝐧 𝐧𝐧𝐧 } = 󵠈󵠈
𝑚𝑚𝑚𝑚𝑚

Pr{𝐧𝐧 𝐧𝐧𝐧 }

≤ 󵠈󵠈
𝑚𝑚𝑚𝑚𝑚

2 exp󶀢󶀢−2𝑚𝑚𝑚𝑚2󶀲󶀲

=
2 exp󶀢󶀢−2𝑘𝑘𝑘𝑘2󶀲󶀲
1−  exp󶀡󶀡−2𝛾𝛾2󶀱󶀱

,

(C.25)

provided that 𝜖𝜖 is sufficiently small. Consequently,

lim sup
𝜖𝜖𝜖𝜖

∑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Pr{𝐧𝐧 𝐧𝐧𝐧 }
𝑁𝑁󶀡󶀡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   󶀱󶀱

≤ lim sup
𝜖𝜖𝜖𝜖

2
𝑁𝑁

exp󶀢󶀢−2𝑘𝑘𝑘𝑘2󶀲󶀲
1−  exp󶀡󶀡−2𝛾𝛾2󶀱󶀱

=0,

(C.26)

since 𝑘𝑘 𝑘 𝑘 and 𝑁𝑁𝑁𝑁   as 𝜖𝜖 𝜖 𝜖. So, we have
established (C.11). Since the argument holds for arbitrarily
small 𝜂𝜂𝜂𝜂  , it must be true that lim𝜖𝜖𝜖𝜖(𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼𝔼   
1 for any 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝  . is completes the proof of the theorem.

D. Proof of Theorem 4

Recall that 𝐥𝐥 denotes the index of stage at the termination of
the sampling process. Observing that

𝑛𝑛𝑠𝑠 − 𝑛𝑛1 Pr{𝐥𝐥 𝐥𝐥 } = 𝑛𝑛𝑠𝑠Pr{𝐥𝐥 𝐥𝐥𝐥 } − 𝑛𝑛1Pr{𝐥𝐥 𝐥𝐥 }

=
𝑠𝑠
󵠈󵠈
ℓ=2
󶀡󶀡𝑛𝑛ℓPr{𝐥𝐥 𝐥𝐥 } − 𝑛𝑛ℓ−1Pr{𝐥𝐥 𝐥𝐥 }󶀱󶀱

=
𝑠𝑠
󵠈󵠈
ℓ=2
𝑛𝑛ℓ (Pr{𝐥𝐥 𝐥𝐥 } − Pr{𝐥𝐥 𝐥𝐥 })

+
𝑠𝑠
󵠈󵠈
ℓ=2
󶀡󶀡𝑛𝑛ℓ − 𝑛𝑛ℓ−1󶀱󶀱Pr{𝐥𝐥 𝐥𝐥 }

=
𝑠𝑠
󵠈󵠈
ℓ=2
𝑛𝑛ℓPr{𝐥𝐥 𝐥𝐥 }

+
𝑠𝑠𝑠𝑠
󵠈󵠈
ℓ=1
󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱Pr{𝐥𝐥 𝐥𝐥 } ,

(D.1)
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we have 𝑛𝑛𝑠𝑠 − ∑
𝑠𝑠
ℓ=1 𝑛𝑛ℓPr{𝐥𝐥 𝐥𝐥 𝐥 𝐥𝐥 𝑠𝑠𝑠𝑠

ℓ=1 (𝑛𝑛ℓ+1 − 𝑛𝑛ℓ)Pr{𝐥𝐥 𝐥 𝐥𝐥.
Making use of this result and the fact 𝑛𝑛𝑠𝑠 = 𝑛𝑛1+∑

𝑠𝑠𝑠𝑠
ℓ=1(𝑛𝑛ℓ+1−𝑛𝑛ℓ),

we have

𝔼𝔼[𝐧𝐧] =
𝑠𝑠
󵠈󵠈
ℓ=1
𝑛𝑛ℓPr{𝐥𝐥 𝐥𝐥 } = 𝑛𝑛𝑠𝑠 − 󶀧󶀧𝑛𝑛𝑠𝑠 −

𝑠𝑠
󵠈󵠈
ℓ=1
𝑛𝑛ℓPr{𝐥𝐥 𝐥𝐥 }󶀷󶀷

= 𝑛𝑛1 +
𝑠𝑠𝑠𝑠
󵠈󵠈
ℓ=1

󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱 −
𝑠𝑠𝑠𝑠
󵠈󵠈
ℓ=1

󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱Pr{𝐥𝐥 𝐥 𝐥}

= 𝑛𝑛1 +
𝜏𝜏𝜏𝜏
󵠈󵠈
ℓ=1

󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱Pr{𝐥𝐥 𝐥 𝐥}

+
𝑠𝑠𝑠𝑠
󵠈󵠈
ℓ=𝜏𝜏

󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱Pr{𝐥𝐥 𝐥 𝐥} .

(D.2)

By the de�nition of the stopping rule, we have

{𝐥𝐥 𝐥 𝐥} ⊆ 󶁆󶁆󶁆󶁆󶁆󶁆󵰃󵰃𝐩𝐩ℓ −
1
2
󶙤󶙤 − 𝜌𝜌𝜌𝜌󶀴󶀴

2
<
1
4
+

𝜖𝜖2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

󶁖󶁖

=
󶀂󶀂
󶀊󶀊
󶀚󶀚
𝜌𝜌𝜌𝜌 𝜌 󵀌󵀌

1
4
+

𝜖𝜖2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

< 󶙤󶙤󵰃󵰃𝐩𝐩ℓ −
1
2
󶙤󶙤

< 𝜌𝜌𝜌𝜌 𝜌 󵀌󵀌
1
4
+

𝜖𝜖2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

󶀃󶀃
󶀋󶀋
󶀛󶀛

=
󶀂󶀂
󶀊󶀊
󶀚󶀚
𝜌𝜌𝜌𝜌 𝜌 󵀌󵀌

1
4
+

𝜖𝜖2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

<
1
2
−󵰃󵰃𝐩𝐩ℓ

< 𝜌𝜌𝜌𝜌 𝜌 󵀌󵀌
1
4
+

𝜖𝜖2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

, 󵰃󵰃𝐩𝐩ℓ ≤
1
2
󶀃󶀃
󶀋󶀋
󶀛󶀛

∪
󶀂󶀂
󶀊󶀊
󶀚󶀚
𝜌𝜌𝜌𝜌 𝜌 󵀌󵀌

1
4
+

𝜖𝜖2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

<󵰃󵰃𝐩𝐩ℓ −
1
2

< 𝜌𝜌𝜌𝜌 𝜌 󵀌󵀌
1
4
+

𝜖𝜖2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

, 󵰃󵰃𝐩𝐩ℓ >
1
2
󶀃󶀃
󶀋󶀋
󶀛󶀛

⊆ 󶁁󶁁𝑎𝑎ℓ <󵰃󵰃𝐩𝐩ℓ < 𝑏𝑏ℓ󶁑󶁑 ∪ 󶁁󶁁1 − 𝑏𝑏ℓ <󵰃󵰃𝐩𝐩ℓ < 1 − 𝑎𝑎ℓ󶁑󶁑 ,

(D.3)

for 1 ≤ ℓ < 𝑠𝑠, where 𝑏𝑏ℓ = (1/2)−𝜌𝜌𝜌𝜌𝜌󵀆󵀆(1/4) + (𝜖𝜖2𝑛𝑛ℓ/2 ln(𝜁𝜁𝜁𝜁𝜁𝜁
for ℓ = 1,… , 𝑠𝑠 𝑠𝑠 . By the assumption that 𝜖𝜖 and 𝜌𝜌 are
nonnegative, we have 1−𝑏𝑏ℓ−𝑎𝑎ℓ = 2𝜌𝜌𝜌𝜌 𝜌 𝜌 for ℓ = 1,… , 𝑠𝑠𝑠𝑠. It
follows from (D.3) that {𝐥𝐥 𝐥 𝐥𝐥 𝐥𝐥 󵰃󵰃𝐩𝐩ℓ > 𝑎𝑎ℓ} for ℓ = 1,… , 𝑠𝑠 𝑠𝑠 .
By the de�nition of 𝜏𝜏, we have 𝑝𝑝 𝑝𝑝𝑝 ℓ for 𝜏𝜏 𝜏𝜏𝜏𝜏𝜏   . Making
use of this fact, the inclusion relationship {𝐥𝐥 𝐥 𝐥𝐥 𝐥𝐥 󵰃󵰃𝐩𝐩ℓ >
𝑎𝑎ℓ}, ℓ = 1,… , 𝑠𝑠 𝑠𝑠 , and Chernoff-Hoeffding bound [32, 33],
we have

Pr󶁁󶁁𝐧𝐧 𝐧𝐧𝐧 ℓ ∣ 𝑝𝑝󶁑󶁑 = Pr󶁁󶁁𝐥𝐥 𝐥 𝐥𝐥𝐥𝐥  󶁑󶁑

≤ Pr󶁁󶁁󵰃󵰃𝐩𝐩ℓ > 𝑎𝑎ℓ ∣ 𝑝𝑝󶁑󶁑 ≤ exp󶀡󶀡𝑛𝑛ℓℳ󶀡󶀡𝑎𝑎ℓ, 𝑝𝑝󶀱󶀱󶀱󶀱
(D.4)

for 𝜏𝜏 𝜏𝜏𝜏𝜏𝜏   . It follows from (D.2) and (D.4) that

𝔼𝔼[𝐧𝐧] ≤ 𝑛𝑛1 +
𝜏𝜏𝜏𝜏
󵠈󵠈
ℓ=1

󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱 +
𝑠𝑠𝑠𝑠
󵠈󵠈
ℓ=𝜏𝜏

󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱Pr{𝐥𝐥 𝐥 𝐥}

= 𝑛𝑛𝜏𝜏 +
𝑠𝑠𝑠𝑠
󵠈󵠈
ℓ=𝜏𝜏
󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱Pr{𝐥𝐥 𝐥 𝐥}

≤ 𝑛𝑛𝜏𝜏 +
𝑠𝑠𝑠𝑠
󵠈󵠈
ℓ=𝜏𝜏
󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱 exp󶀡󶀡𝑛𝑛ℓℳ󶀡󶀡𝑎𝑎ℓ, 𝑝𝑝󶀱󶀱󶀱󶀱 .

(D.5)

is completes the proof of the theorem.
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The clinical trial, a prospective study to evaluate the effect of interventions in humans under
prespecified conditions, is a standard and integral part of modern medicine. Many adaptive
and sequential approaches have been proposed for use in clinical trials to allow adaptations or
modifications to aspects of a trial after its initiation without undermining the validity and integrity
of the trial. The application of adaptive and sequential methods in clinical trials has significantly
improved the flexibility, efficiency, therapeutic effect, and validity of trials. To further advance
the performance of clinical trials and convey the progress of research on adaptive and sequential
methods in clinical trial design, we review significant research that has explored novel adaptive
and sequential approaches and their applications in Phase I, II, and III clinical trials and discuss
future directions in this field of research.

1. Clinical Trials

Medicine is of paramount importance for human healthcare. Development of novel
successful medicines is a lengthy, difficult, and expensive process which consists of laboratory
experimentation, animal studies, clinical trials (Phase I, II, and III), and postmarket
followup (Phase IV). Clinical trials are FDA-approved studies conducted in human beings
to demonstrate the safety and efficacy of new drugs for health interventions under pre-
specified conditions. A clinical trial is conducted in a sampled small population and the
conclusions reached will be applied to a whole target population; therefore, statistics is
an indispensable and critical component of clinical trial development and analysis, which



2 Journal of Probability and Statistics

has become increasingly important in contemporary clinical trials. As the gold standard
for the evaluation of a new drug, every contemporary clinical trial must be well designed
according to its specific purpose and conducted properly under governmental regulations.
The major roles of a statistician in a clinical trial are to design an efficient trial with minimum
cost and length and maximum therapeutic effect for patients in the trial, and to draw
convincing conclusions by applying appropriate cutting edge statistical knowledge. In the
past several decades, numerous groundbreaking novel statistical methodologies have been
developed and applied to clinical trials and have significantly improved their performance.
Consequently, clinical trials have evolved from simple observation studies to hypothesis-
driven and well-designed prospective studies. At present, contemporary clinical trials have
become the most important part of modern medicine.

2. Adaptive and Sequential Methods

Classical clinical trials are usually designed with a fixed sample size and schedule without
using the information obtained from the ongoing trial. However, it has become increasingly
common to modify a trial and/or statistical procedures during the conduct of a clinical trial.
Specific modifiable procedures include the patient eligibility and evaluation criteria, drug
or treatment dosage and schedule, laboratory testing or clinical diagnosis, study endpoints,
measurement of clinical response, formulation of study objectives into statistical hypotheses,
appropriate study design according to study purpose, calculation of minimum sample size,
participant randomization, study monitoring with interim/futility analysis, statistical data
analysis plan, and reaching conclusions, and so forth. The purpose of the modification is to
improve the performance of a trial with prompt utilization of data accumulating from within
the trial as well as upcoming related information from the literature.

Recently, adaptive and sequential clinical trials have become increasingly popular.
The sequential method is an approach of frequentist statistics in which data are evaluated
sequentially as they are accumulated and a study is monitored sequentially for stopping
whenever a conclusion is reached with enough evidence. Adaptive design refers to the
modification of aspects of the trial according to data accumulating during the progress of
the trial, while preserving the integrity and validity of the trial. The modifiable aspects
of adaptive trials include, but are not limited to, (a) sample size, (b) addition or removal
of a study arm, (c) dose modification, (d) treatment switch, and so forth [1]. There are
two types of adaptive methods in clinical trials, Bayesian and frequentist approaches
[2]. The frequentist approach performs the modification of trials while controlling for
type I and II errors. The Bayesian approach allows adaption according to the predicted
probability. Common characteristics of sequential and adaptive clinical trials are that the
trial and/or statistical procedures are modified during the conduct of trial according to the
data accumulating during the trial. The sequential method mainly refers to sequentially
monitoring the stopping criteria for futility and efficacy, while adaptive methods include
modification of many more aspects of the trial as listed above, in addition to the decision of
whether to stop the ongoing trial. Considerable novel statistical research has been conducted
in the development of sequential and adaptive methods, especially for Phase I and II clinical
trials. However, only some of these methods have actually been applied to the daily practice
of real clinical trials. In the next 3 sections, we will review significant sequential and adaptive
methods that have been applied to Phase I, II, and III clinical trials and have had a high
impact on the field of clinical trials.
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3. Statistical Methodology of Phase I Clinical Trials

A Phase I trial is one of the most important steps in a drug’s development and is the first
clinical trial in human subjects after laboratory and animal studies of a therapeutic agent
have shown a potential cure effect on the disease. The sample size of a Phase I clinical trial is
relatively small and varies in the range of twenty to eighty. It is a widely accepted assumption
that the therapeutic effect of a drug depends on its toxicity and increases monotonically with
its dosage level. Higher doses are correlated with both severe toxicity and better therapeutic
effect. Therefore, a balance is to be achieved between toxicity level and therapeutic benefit. To
achieve the best therapeutic benefit, a patient should be treated with the maximum dosage of
drug at which the patient can tolerate its associated toxicities with close monitoring. Among
all toxicities patients experience, some are so severe that they limit dose escalation. These
toxicities are called dose limiting toxicity (DLT). In the National Cancer Institute (NCI)
Common Toxicity Criteria, DLT is defined as a group of grade 3 or higher nonhematologic
toxicities and grade 4 hematologic nontransient toxicities. The grades of all toxicities are
classified as below:

grade 0: no toxicity;

grade 1: mild toxicity;

grade 2: moderate toxicity;

grade 3: severe toxicity;

grade 4: life-threatening toxicity;

grade 5: death.

The main goals of a Phase I trial are to determine the dose-toxicity relationship of a
new therapeutic agent and estimate the maximum tolerated dose (MTD) of the agent given
the specified tolerable toxicity level. The highest acceptable DLT level is usually defined as
a target toxicity level (TTL). It can be said that the TTL determines the MTD of the new
therapeutic agent. A careful and thoughtful approach to the design of Phase I trials and
accurate MTD estimation are essential for the fate of the new drug in subsequent clinical
trials.

In a Phase I clinical trial, the well accepted assumption is that the probability of toxicity
increases monotonically with increasing drug dose, although a decrease in the probability
of toxicity at high dose levels could happen in some special cases which are not common
and not considered here. There are nonparametric and parametric manners to describe the
toxicity-dose relationship. In the non-parametric way, the only assumption is that toxicity is
nondecreasing with dose. In the parametric description, a distribution with some parameters
is adapted to model the toxicity-dose curve. From a biological point of view, the human body
has stabilization and self-salvage systems to protect the person from mild toxicity when a
drug dose is at a low level below a certain threshold level, but the probability of toxicity
increases at an accelerated speed once the stabilization and self-salvage systems have been
overcome, and reaches rapidly the worst condition, death, and then levels off. Therefore a
sigmoid shape distribution is an appropriate model to describe the relationship between
toxicity probability and dose. Many statistical designs have been proposed for Phase I clinical
trials; the most commonly used are summarized and compared in Table 1. According to their
algorithm, Phase I clinical trial designs can be grouped into two major categories, rule based
design and model based design [3].
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Table 1: Summary of main Phase I clinical trial designs.

Designs Advantages Disadvantages

Standard 3 + 3
design

Robust.
Simple.
Easy to carry out.

MTD is not a dose with any particular
probability of DLT, but in the range from
20% to 25% DLT.
Can not estimate MTD with target
probability of DLT <20% or >33%.
Not all toxicity data of all patients are
used to determine the MTD.
Many patients are likely to be treated at
low doses.

ID isotonic design

Only assumes a monotonically increasing
relationship between dose and toxicity.
Semiparametric.
Can estimate MTD with different TTL
(0∼100%).
Robust and easy to use.
Good for combination of multiple drugs
and treatments.

The accuracy of MTD may not be as
good as CRM or EWOC.
The trial efficiency may not be as good as
CRM or EWOC.

CRM continual
reassessment
method

Fit parametric model for dose toxicity
relationship.
Adaptive optimal design.
Accurate estimation of MTD.
Improved trial efficiency.
Allow flexible MTD with different TTL.

High risk of patients being treated with
over toxic dosages.
If the parametric model is not reliable,
the result could be questionable.
May fail to find MTD.

EWOC escalation
with overdose
control

Includes all advantages of CRM.
Controls the overdosing probability.
Further improves MTD accuracy and
trial efficiency.

If the parametric model is not reliable,
the result could be questionable.
May fail to find MTD.

3.1. Rule Based Phase I Designs

All rule based designs follow a sequential approach. In rule based designs, a non-decreasing
dose toxicity relationship is the only well accepted assumption required. Therefore rule based
designs are well suited for first in human clinical trials in which the dose toxicity relationship
is not well understood. Common rule based designs include 3 + 3 design [4], isotonic design
[5], accelerated titration design [6], and so forth.

The 3 + 3 designs are rule based up-and-down methods used in Phase I protocol
templates of the cancer therapy evaluation program (CTEP), whose mission is to improve the
lives of cancer patients by sponsoring clinical trials to evaluate new anticancer agents, with a
particular emphasis on translational research to elucidate molecular targets and mechanisms
of drug effects. While 3 + 3 designs have become standard practice among many Phase I
clinical trialists, they are not designed with the intention of producing accurate estimates of
a target quantile. Rather they are designed to screen drugs quickly and identify a dose level
that does not exhibit too much toxicity in a very small group of patients. These 3 + 3 designs
fall into two categories, without dose de-escalation (Figure 1) and with dose de-escalation
(Figure 2). In the 3 + 3 design without dose de-escalation, three patients are assigned to the
first dose level. If no DLT is observed, the trial proceeds to the next dose level and another
cohort of three patients is enrolled. If at least two out of the three patients experience at
least one DLT, then the previous dose level is considered as the MTD; otherwise, if only one
patient experiences the DLT, then three additional patients are enrolled at the same dose level.
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Figure 1: Escalation scheme for 3 + 3 design without dose deescalation (adapted from Lin and Shih [4]).
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Figure 2: Escalation scheme for 3 + 3 design with dose de-escalation (adapted from Lin and Shih [4]).
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If at least one of the three additional patients experiences the DLT, then the previous dose is
considered as the MTD; otherwise, the dose will be escalated. The 3 + 3 design with dose de-
escalation allows three new patients to be treated at a previous dose level if only three patients
were treated at that level previously. Dose reduction continues until a dose level is reached at
which six patients are treated and at most one DLT is observed in the six patients. The MTD is
defined as the highest dose level at which at most one of six patients experiences DLT, and the
immediate higher dose level has at least two patients who experience DLTs. If the first dose
is not tolerable, then the MTD cannot be established within the confines of the study. Hence,
the MTD is identified from the data and is a statistic rather than a parameter. Storer (1989)
was probably the first to examine the characteristics of the 3 + 3 design from the standpoint
of the statistician [7]. The operating characteristics of the 3 + 3 design were discussed in Lin
and Shih (2001) [4]. Note that any design with sampling that is asymmetric about the MTD
will yield a biased result; thus the standard design, and all other designs that approach the
MTD from below, will tend to yield a low estimate of the MTD. The 3 + 3 designs are simple
and can usually determine a reasonable MTD and are thus the most widely used methods
for Phase I clinical trials. But they also have many shortcomings; for example, the methods
are not designed around a quantile of interest; not all toxicity data are used to determine the
MTD; the MTD is not a dose with any particular probability of toxicity. These disadvantages
led to the exploration of extended isotonic design for Phase I clinical trials.

Leung and Wang (2001), for the first time, introduced a semiparametric Phase I
design called isotonic design in which only a non-decreasing dose toxicity relationship is
the required assumption [5]. In their isotonic design, the pool-adjacent-violators algorithm
(PAVA) and isotonic regression are used to update the probability of DLT of each dose level
after the toxicity response of each newly treated cohort has been obtained. The dose allocation
rationale is to treat each new cohort at a dose level with an estimated probability of DLT closer
to the pre-specified target acceptable toxicity level. The trial stops when the same dose has
been tested consecutively for a certain number of cohorts or a maximum number of patients
have been treated. The recommended dose level for the next cohort based on all completed
data after the trial stops is the MTD. Through simulation studies, the isotonic design was
demonstrated to perform substantially better than the 3 + 3 design and comparably to the
continual reassessment method (CRM) [8], Storer’s up-and-down designs, and escalation
with overdose control (EWOC) design [9]. Moreover, the isotonic design is model-free and
especially appropriate in cases where the parametric dosetoxicity relationship is not well
understood.

There are many other rule based designs. All rule based designs can estimate a
reasonable MTD using a stopping rule based either on observed DLTs or on convergence
criteria. Ad hoc additional dose levels can also be added when needed without any impact
on their robustness. Most rule-based designs are practically simple and easy to implement.
At present, 3 + 3 designs are still the most popular in Phase I clinical trials.

3.2. Model Based Designs

In model based designs, three parametric dose-toxicity functions (logistic model, hyperbolic
model, and power function) are usually employed to depict the relationship between dose
and toxicity. Model based designs often fail to find an MTD in first in human studies that are
based on observed DLTs. The most common model based designs are CRM and EWOC. Their
algorithms are illustrated in Figure 3.
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Figure 3: Diagram of model based phase I designs: continuous reassessment design (CRM) and escalation
with overdose control (EWOC).

O’Quigley et al. (1990) originally introduced the CRM, a Bayesian approach to fully
and efficiently use all data and prior information available in a Phase I study [8]. As in rule
based designs, a TTL is specified and the goal is to estimate the dose associated with the TTL,
Γ. A parametric model depicting the dose toxicity relationship and a prior distribution for
each unknown parameter of the model are required to implement CRM. The posterior mean
of each parameter is computed using the prior for the parameter and all available toxicity
data for the probability of toxicity, PDLT, of each dose level. The computation is conducted
and PDLT of each dose level is updated with accumulative toxicity data available when a
new patient is recruited. The main idea of CRM is to treat each patient at the dose level
with PDLT closest to Γ. The MTD is defined as the dose level of the last patient treated in the
trial. In the originally proposed CRM, a one parameter model of dose toxicity function and
a single patient cohort are used. Furthermore, the first patient is proposed to be treated at
a dose level determined purely by a guess in the original CRM, which makes the method
impractical. Therefore, Korn et al. (1994) proposed a modified CRM in which the trial starts
at the lowest dose level, no dose level can be skipped during the dose escalation, and the
trial stops when the same dose has been recommended for a new patient consecutively for a
fixed number of times [10]. However, patients still may be treated at excessively toxic doses
in the modified CRM because of its single patient per cohort and the length of study is still
very long because of the restriction that the toxicity of all treated patients must be obtained
to calculate the new dose level for the next patient. In addition to the modification of Korn
at al. (1994) [10], Faries (1994) [11], in his modified CRM, added another rule that no dose
escalation is allowed for the next patient when the last patient has DLT. This rule can avoid
treating patients at overly toxic doses compared with the traditional 3 + 3 design. In order to
address the ethical requirement that the probability of a patient being treated at overdose
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is under a pre-specified value, Babb et al. (1998) introduced an adaptive dose escalation
scheme called EWOC [9]. The constraint on overdosing of EWOC is a superior feature over
the CRM and its theoretical foundation was further elaborated by Zacks et al. (1998) [12].
A two-parameter model logit (PDLT(xi)) = α + βxi was first used to depict the dose, xi, and
DLT relationship and then the joint posterior for α and β was transformed to a joint posterior
for the MTD and the probability of DLT at the lowest dose level, ρ0. EWOC is also designed
to rapidly approach the MTD in addition to the overdose constraint so that it starts from the
lowest dose level and a single patient per cohort is used. After the toxicity response of the last
enrolled patient has been obtained, the joint posterior for the MTD and ρ0 is updated using
all the available information and the next coming patient is treated at the 25th percentile of
the marginal posterior for the MTD. The trial stops after a fixed number of patients have been
treated and then the MTD is computed as its posterior mean or estimated by minimizing
the posterior expected loss in a loss function. In order to be safe and shorten the length of
the trial, no dose level can be skipped during the dose escalation procedure and multiple
patient cohorts can be used instead in EWOC. Through simulation studies, EWOC has been
shown to be effective in overdose control and have comparable accuracy of estimated MTD
as CRM. Fewer patients are treated at nonoptimal dose levels, resulting in less DLT, and
the estimated MTD has smaller average bias and mean squared error in EWOC than in
some other nonparametric designs, such as four up-and-down designs and two stochastic
approximation methods [9]. It seems that EWOC is a promising alternative design for Phase
I clinical trials, especially when the ethical and safety requirement of overdose control is a
particular concern. Both CRM and EWOC belong to adaptive dose finding designs in which
a Bayesian approach is usually employed and the dose level for the new incoming cohort
is adaptive based on the toxicity responses of the previously treated patients in the ongoing
trial. Another adaptive dose design is the nonparametric adaptive urn design approach for
estimating a dose-response curve [13].

All ruled based designs are robust and simple to implement and usually give a
reasonable MTD under certain rules. Applying some sort of models, such as isotonic
regression, to data can improve the accuracy of the MTD. Model based designs require a
parametric model of dose toxicity relationship and may greatly improve the probability of
estimating the correct MTD compared with rule based designs when certain assumptions
are satisfied. However, model based designs are not robust and should not be used unless
their underlying assumptions can be met with confidence. The accuracy of the estimated
MTD depends substantially on the number of observed DLTs, and the sample size is also
an important factor. Overall, different designs, whether rule based or model based, usually
perform similarly when they are similar in sample size and aggressiveness. Thus, simple
designs, especially standard designs, are still very popular in Phase I clinical trial practices.

The design of Phase I clinical trials can involve one or two stages. Rule based or model
based designs can be implemented in each stage of two stage designs. There are other critical
issues in Phase I clinical trial designs, such as the operating characteristics of 3 + 3 design in
terms of expected toxicity level [14], two or multiple stage Phase I design, within-patient dose
escalation, late toxicity, combination of multiple agents, balance between toxicity and efficacy,
individual MTD, fully utilization of all toxicities [15, 16], and so forth. Some outstanding
research studies have been conducted on these topics, which will not be elaborated on herein
due to space constraints but have been described in several comprehensive review articles
[3, 17–19].
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4. Statistical Methodology of Phase II Clinical Trials

After the safety and MTD of an experimental drug have been established in a Phase I
clinical trial, the drug will enter Phase II clinical trials, which initially evaluate the drug’s
therapeutic effects at the recommended MTD. Phase II trials are sometimes further classified
as Phase IIa and IIb studies. Phase IIa trials screen the promising novel experimental agent for
significant antidisease activity and Phase IIb trials focus on the drug’s improved therapeutic
effectiveness over the standard treatment. Phase II studies provide critical information to
decide whether further testing of the experimental drug in a large confirmatory Phase III trial
is warranted. The surrogate endpoint used in Phase II clinical trials needs to be obtained in
a short time and should be able to assess the treatment’s primary benefit. For cancer trials,
the experimental drug’s antitumor activity and progression-free survival (PFS) of treated
patients are often used as surrogates of the drug’s efficacy. The drug’s anti-tumor activity
is measured as clinical response within a short period of time following the treatment and
is classified as complete response (CR), partial response (PR), progressive disease (PD), or
stable disease (SD). PFS, which is estimated as the time elapsed from the date of treatment to
the date of adverse event, resembles the outcome (overall survival) of the following Phase III
clinical trial and is also widely used when it can be measured in a short time.

4.1. Single Arm Phase II Designs

The most commonly used Phase II clinical trial designs are summarized in Table 2. Phase II
trials can involve either a single arm, which compares the new treatment with the standard
response rate reported by historical data, or two or more arms with patients randomized
among different treatments. In a single arm Phase II trial, two or multistage designs may
be used to improve the trial efficiency and save resources with early termination of a futile
trial. The interim analysis between the consecutive stages examines the accumulated data and
decides whether the trial should stop as suggested by the early evidence of futility or should
continue to next stage. The earliest two stage Phase II design was proposed by Gehan et al.
in 1961 [20], in which a trial is terminated for futility when no patients enrolled in the first
stage show any response or continues with the second stage, enrolling an additional number
of patients to estimate a more accurate response rate with additional patient data. This design
provides interim monitoring and can rule out ineffective drug with minimized sample size.
This design is only appropriate for binary outcomes, which differ from the overall survival
endpoint used in the following Phase III trial. Moreover, this design has no statistical testing
on agents showing some promise and is not optimized. Therefore, Simon (1989) proposed
an optimized two stage Phase II design by controlling both type I and type II errors as
well as optimizing the sample sizes in both stages [21]. This design can quickly screen out
agents without effectiveness while testing further agents with some promise. The design has
two subtypes, optimal and minimax. The optimal subtype minimizes the expected overall
sample size with the probability of the trial stopping after only the first stage so that it is
appropriate for experimental drugs with a high probability of failure after the first stage. The
minimax subtype minimizes the maximum possible sample size when the trial stops after
completion of two stages so that it is better for highly promising experimental drugs. As
with Gehan’s design, Simon’s two stage designs are only appropriate for binary outcomes.
Other investigators have further proposed to conduct multiple interim analyses in Phase II
clinical trials by using multistages. For example, Fleming (1982) [22] and Chang et al. (1987)
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Table 2: Summary of main Phase II clinical trial designs.

Designs Advantages Disadvantages

One stage one
arm design

Compare with historical control.
Smallest sample size.
Simple.

Delay the evaluation of effectiveness.
Historical control may not be valid.
Subject to population differences, time
trends, evaluation bias, and so forth.

Gehan’s two
stage design

With interim monitoring.
Rule out ineffective drug with minimized
sample size.

No testing on agents showing some
promise.
Only suitable for binary outcome.
The endpoint is different from that in
following Phase III trial.

Simon’s two
stage design

The samples in two stages are optimized.
Quickly screen out agents without
effectiveness while testing further agents
with some promise.
Two choices: optimal versus minimax

Only suitable for binary outcome.
The endpoint is different from that in
the following Phase III trial.

Bayesian Phase II
design

Flexible monitoring schedule.
More efficient and robust.

Intensive computation.
Relies heavily on statistician during
trial.

Randomized
Phase II design

Use of randomization.
Reliable control and less bias.
More similar to Phase III trial.

Sample size increases.
Length of trial increases.
Cost increases.

Phase II pick the
winner design

Efficient and effective way of comparing
two or multiple experimental regimens.
Each experimental regimen compared with
historical controls.

Not appropriate for comparison of
adding an experimental agent to
standard regimen.

Phase II
screening design

Limits the sample size required for a
randomized Phase II comparison.
Good for comparison of the addition of an
experimental agent to standard regimen.

No statistical comparison between the
selected arms.

Phase II
randomized
discontinuation
design

Good when significant continued benefit
after initial benefit implies significant
benefit overall, and vice versa, or when
benefit is restricted to a nonidentifiable
subgroup of patients.

May need a large number of patients
treated at a treatment not effective for
them.

Phase II/III
design

Use of Phase II data in Phase III trial.
Minimize delay in starting up Phase III
study.
Use of concurrent control.
Useful for new drugs showing efficacy.

Large sample sizes.
Needs Phase III infrastructure
developed even if it stops early.

[23] studied multiple testing and group sequential methods for Phase II trial designs. But the
issue of inflating overall type I error needs to be considered in these kinds of Phase II designs.

Among the single arm Phase II designs, another major group is Bayesian Phase II
design. For example, Thall and Simon (1994) [24] proposed a Bayesian Phase II design which
continuously examines the results after each new enrolled patient and determines whether
the trial can stop with a solid decision on the efficacy of the experimental drug or should
continue to enroll more patients and obtain enough data for making a decision. Lee and
Liu (2008) [25] proposed a Bayesian approach called predictive probability Phase II design.
This novel Bayesian design provides a flexible monitoring schedule for Phase II clinical trials
which becomes more efficient and robust, but at the cost of intensive computation, and relies
heavily on the statistician during the trial. Yin et al. (2011) further coupled the methods of
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predictive probability monitoring and adaptive randomization in a randomized Phase II trial
and extensively compared this hybrid Bayesian approach with group sequential methods
[26].

4.2. Two or More Arm Phase II Designs

Some Phase II clinical trials may have two arms and randomization is frequently used to
generate a reliable concurrent control arm and reduce biases. This kind of randomized Phase
II trial is more similar to a Phase III trial. Randomized Phase II trials may reduce the so-called
trial effect which often arises due to different patient populations, physician preferences, and
medical environments between current and previous studies. But the sample size, trial length,
and cost increase about 4-fold.

There are several multiple arm Phase II designs [27]. The Phase II “pick the winner”
design is one in which each experimental regimen is compared with a historical control. No
formal statistical comparison between groups is conducted and the simple winner of the
all arms is the winner of the trial. This design provides an efficient and effective way of
comparing two or multiple experimental regimens but is not appropriate for the comparison
of adding an experimental agent to a standard regimen.

Phase II screening design is another Phase II design with multiple arms in which all
experimental arms are compared with the standard treatment arm and all the experimental
arms beating the standard treatment arm are winners. Therefore this design limits the sample
size required for a randomized Phase II comparison and it is appropriate for testing the effect
of adding an experimental agent to a standard regimen. However, it provides no statistical
comparison between the selected (winning) arms.

Some investigators have proposed a novel Phase II randomized discontinuation
design in which all patients receive the same treatment for a period of time and those
with stable disease are randomized to continue or discontinue. This design is particularly
appropriate when the treatment is known to have better therapeutic effects and it is ethical
for all participants to benefit from it, or when the potential subgroup of patients who can
benefit from the treatment is unknown before receiving it. However, this design requires a
large number of patients to be treated with a treatment not effective for them. Therefore this
design has specific applications but is not widely used.

Conventionally, Phase II and III trials are conducted separately in a sequential order
and only an experimental drug that has successfully passed a Phase II trial can enter a Phase
III trial. The resulting gap between trials and time lag may be unnecessary under certain
circumstances. Therefore, a seamless Phase II/III design has been proposed, which uses Phase
II data in a Phase III trial and minimizes delay in starting up the Phase III study [28, 29].
Usually the Phase II part is a randomized Phase II trial which uses a concurrent control. This
nonstop Phase II/III design is particularly useful for new drugs showing efficacy. It usually
requires large sample sizes and requires a Phase III infrastructure to be developed even if it
stops early.

4.3. Other Advanced Topics in Phase II Designs

Categorical tumor response has been the most common endpoint in the Phase II clinical
trial designs. However, from a statistical standpoint, categorizing a continuous tumor change
percentage into a categorical tumor response with 4 levels results in a loss of study power by



12 Journal of Probability and Statistics

not fully utilizing all available data. Several publications have studied extensively the direct
utilization of continuous tumor shrinkage as the primary endpoint for the measurement of
drug efficacy in Phase II clinical trials [30–32]. The success rate of Phase III oncology trials
remains very low (e.g., 50–60%) despite the success demonstrated in the preceding Phase
II trials [30]. The relationship between tumor response/tumor shrinkage percentage and
overall survival as the gold standard for drug efficacy has been revisited [33]. PFS has the
advantage of short follow-up time [34] and has been confirmed as the best estimate of overall
survival [35] so that PFS is recommended as the primary endpoint over categorical tumor
response in Phase II clinical trials when feasible.

5. Statistical Methodology of Phase III Clinical Trials

If an experimental agent exhibits adequate short term therapeutic effects in a Phase II trial,
the drug will be moved forward to a Phase III study for confirmative testing of its long term
effectiveness. The typical endpoint in a Phase III trial is a time to event measurement, such
as progression free survival or overall survival. Phase III trials are large scale in terms of
sample size, resources, efforts, and costs. This Phase collects a large amount of data over a
long period of followup to evaluate the ultimate therapeutic effect of a new drug. The design
of Phase III clinical trials has become a very important research field in order to improve the
performance of these critical clinical trials. The most commonly used Phase III clinical trial
designs are summarized in Table 3.

5.1. Randomization

The earliest design of Phase III clinical trials is a single arm study design using historical
controls from the literature, existing databases, or medical charts. This kind of Phase III
design allows ethical consideration and can increase enrollment as patients are assured of
receiving new therapy. In addition, trials will have shorter time and lower cost, making
this type of trial a good choice for the initial testing of new treatments, or when disease
diagnosis is clearly established, prognosis is well known, or the disease is highly fatal. This
Phase III design, however, provides no comparison to control group data and is vulnerable to
biases because disease and mortality rates have changed over time and literature controls are
particularly poor. Phase III trials conducted using this design tend to exaggerate the value of
a new treatment. In order to avoid bias and eliminate time trends, a concurrent control but
nonrandomized design for Phase III clinical trials was then proposed and implemented. In
this design, randomization does not interfere with treatment selection. It is easier to select
a group to receive the intervention and select the controls matching key characteristics.
Therefore, this design can reduce costs and is relatively simple and easily acceptable to
both the investigator and participant. But in this Phase III design, intervention and control
groups may not be comparable because of selection bias and incomparable different group
populations. It is difficult to prove comparability because it is impractical to have information
on all important prognostic factors and to match several factors. The existence of unknown
or unmeasured factors in large studies is also uncertain. The afterward covariance analysis is
not adequate for offsetting the imbalance between groups.

To eliminate the bias, facilitate masking treatments, and permit the use of statistical
theory, randomization has been employed widely in the Phase III clinical trials [36].
There are two major types of randomization approaches, non adaptive versus adaptive.
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Table 3: Summary of main Phase III clinical trial designs.

Designs Advantages Disadvantages

Historical control
(literature and
existing
databases or
medical charts)

Allows ethical consideration.
Increase enrollment as patients are
assured of receiving new therapy.
Shorter time and less cost.
Good for initial testing of new treatments,
when disease diagnosis is clearly
established, prognosis is well known, or
disease is highly fatal.

Vulnerable to bias.
Disease rate and mortality rate have
changed over time.
No comparison to control group data.
Literature controls particularly poor.
Tends to exaggerate the value of a new
treatment.

Concurrent
control, not
randomized

Eliminates time trends.
Data of comparable quality.
Randomization does not interfere with
treatment selection.
Easier to select a group to receive the
intervention and select the controls
matching key characteristics.
Reduced cost, relative simplicity,
investigator and participant acceptance.

Intervention and control groups may not
be comparable because of selection bias
and different treatment groups are not
comparable.
Difficult to prove comparability because
of the need for information on all
important prognostic factors and
matching several factors is impractical.
Uncertainty about unknown or
unmeasured factors exists even for large
studies.
Covariance analysis not adequate.

Randomized
clinical trials
(RCT)

Considered to be “gold standard”.
Removes potential bias in group
allocation.
Randomization and concurrent control
produce comparable groups.
Guarantees the validity of statistical tests
and valid comparison.
General use.

Subjects may not represent general
patient population.
Increased sample size and cost.
Acceptability of randomization process.
Administrative complexity.

Sequential RCT
design

Continues to randomize subjects until
null hypothesis is either rejected or
“accepted.”
Good for acute response, paired subjects,
and continuous testing.
Good for one-time dichotomous decisions
such as regulatory approval, and so forth.

Multiple testing inflates type I error.
Inhibits adaptation due to the
requirement of prespecifying all possible
study outcomes.

Bayesian RCT
design

Dynamic learning adaptive feature.
Incorporates external evidence.
Add new interventions and drop less
effective ones without restarting trial.
Improves timeliness and clinical
relevance of trial results.
Lowest sample size and cost.

May be criticized as too subjective, not
well planned, or too complicated.

Simple randomization, block randomization, and stratified randomization belong to the
nonadaptive randomization type. The simple randomization is robust against both selection
and accidental biases and appropriate for RCTs with over 200 subjects because of the
possibility of imbalanced group sizes in small RCTs [37]. Block randomization can guarantee
balanced group sizes by pre-specifying the block size and allocation ratio and allocating
subjects randomly within each block [33]. Block randomization is often used with “stratified
randomization” in small RCTs. There are several adaptive randomization approaches:
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adaptive biased coin, covariate adaptive, and response adaptive [33]. The adaptive biased-
coin randomization method can reduce the imbalance of group size and is less affected
by selection bias than permuted-block randomization by decreasing and increasing the
probability of being assigned to an overrepresented group and underrepresented group,
respectively. Randomization can be adaptive to covariate in order to produce balanced groups
in terms of the sample size of several covariates. The most common covariate adaptive
randomization approaches are the Taves’s method [38], Pocock and Simon method [39], and
Frane’s method [40] for both continuous and categorical types. Overall, covariate adaptive
randomization can reduce the imbalance further and handle more covariates simultaneously
than using the combination of block and stratified randomization [41]. Randomization can be
adaptive to response or outcome in order to increase the trial therapeutic effect, taking into
account ethical considerations. Response-adaptive randomization can assign more patients
to receive better treatment by skewing the probability of assigning new patients to the group
showing favorable response as the data of the trial are accumulating while maintaining
a certain study power [41]. The most common approaches used for response-adaptive
randomization are the urn model, biased coin design, and Bayesian’s approach [34]. Each
randomization approach has its own merits and limitations. The selection of randomization
method depends on the specific study purpose.

5.2. Randomized Controlled Phase III Trials

The statistical approach of randomization removes any potential bias in group allocation.
The use of randomization and a concurrent control together produce comparable groups
and make conclusions more convincing. The use of feasible blinding minimizes the bias after
randomization. At present, the standard form of a Phase III trial is a randomized and placebo-
controlled clinical trial (RCT) with double blinds. The control arm may be a placebo or the
standard of care. The use of placebo is only acceptable if there is no other better or standard
therapy available. Interim monitoring is also often considered for a long term confirmatory
RCT. The RCT which guarantees the validity of statistical tests and valid comparisons has
been generally used as the “gold standard” for verifying the efficacy of new drugs. However,
there are still some limitations in RCTs; for example, subjects may not represent the general
patient population; sample size and cost increase substantially; the randomization process
may not be widely accepted; the administrative process may be complex; and so forth.
According to their statistical algorithm and characteristics, besides the conventional fixed
sample Phase III clinical trial in which only one final data analysis is conducted at the end
of the study, other RCT designs with additional analyses before final analysis can be divided
into two distinct categories: sequential RCT design and Bayesian adaptive RCT design.

5.2.1. Group Sequential RCT Design

The scheme of the group sequential design is summarized in Figure 4. In this design, type
I and II errors are explicitly controlled while testing the study hypotheses, and patients
continue to be enrolled and randomized until the primary hypothesis has been proved or
disproved. To design a Phase III clinical trial with the group sequential method, the total
number of stages, the sample size, and stopping criterion at each stage for the null hypothesis
testing as well as the usual specifications in a conventional Phase III clinical trial must be pre-
specified before the trial starts. At each interim stage, all accumulated data up to the point are
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Figure 4: Diagram of group sequential design.

analyzed and the test statistics is compared with critical values generated from the sequential
design to determine whether the trial should stop or continue. A conclusion on the primary
hypothesis must be reached at the final stage when the sequential trial passes all interim
analyses and completes with the final stage.

Multiple testing during the sequential trial may inflate type I error which can be
controlled using the Pocock approach [42], O’Brien-Fleming approach [43], and alpha
spending function [44]. The Pocock approach was the first method for group sequential
testing with given overall type 1 error and power by dividing type I error evenly across the
number of interim and final analyses. For example, in a clinical trial with 2 interim analyses
and 1 final analysis, the Pocock procedure uses the same cut-off for both the interim and
final analyses and the clinical trial can stop and claim a positive outcome if the P value is
less than 0.022 at any of the analysis times. One obvious problem with the Pocock approach
is its too high probability of stopping the trial early. In order to prevent early stopping and
to keep the final P value close to the overall significance level, such as 0.05, O’Brien and
Fleming’s approach [43] uses a very strict cut-off P value at the beginning, then relaxes
the cut-off P value over time. As in the above clinical trial, the P values for the first and
second interim analyses are 0.005 and 0.014, respectively. The P value for the final analysis
is 0.045 which is close to 0.05. Both the Pocock and O’Brien-Fleming approaches maintain
the overall type I error by paying a penalty at the final analysis, but the O’Brien-Fleming
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method involves much less of a penalty at the planned conclusion of the study because it
requires stricter standards earlier. Both methods have some limitations; both require a pre-
specified maximum number of patients, the number of interim analysis, and equal increments
of information between interim stages. Therefore, DeMets and Lan [44] (1994) introduced a
spending function approach to relax the requirement of the equal increments of information.
The approach spends the allowable type I error rate over time according to a chosen spending
principle and the amount of information accrued and allows dropping or adding an interim
analysis during conduct of the trial. There are several types of spending functions proposed
in the literature. Besides the Pocock-type and O’Brien-Fleming-type error spending functions
proposed by Lan and DeMets, the gamma error spending function [45] proposed by Hwang,
Shih, and DeCani and the power error spending function [46] proposed by Jennison and
Turnbull are also commonly used in clinical trials. The conclusions drawn at the interim and
final analyses are affected heavily by the pre-specified boundaries so that the choices of the
type of spending function are very important and depend on the specific purpose of the trial
and its associated clinical program. In addition to efficacy, the safety profile of drug is also an
important factor when considering the early stopping of a trial.

The major advantages of the group sequential RCT design are its abilities to prevent
unnecessary exposure of patients to an unsafe or ineffective new drug or to a placebo
treatment, and to save time and resources by stopping the trial early for efficacy, futility,
and safety. The sequential RCT design is suitable for acute response, paired subjects, and
continuous testing. It is especially appropriate for dichotomized decisions (yes/no) because
the result of the RCT trial is determined to be significant or not according to a pre-specified
significance level (type I error). Although sequential RCT is the most widely used design in
Phase III clinical trials, it has some limitations. Sequential RCT may require larger sample
sizes than Bayesian adaptive RCT as a result of additional variability and comparison of
multiple treatments with similar efficacies. Sequential RCT is somewhat adaptive by using
interim monitoring and stopping rules, but it requires prespecification of all possible study
outcomes, thus inhibiting the full adaptation and utilization of newly accumulated data from
the ongoing trial.

5.2.2. Bayesian RCT Design

Bayesian randomized clinical trials refer to trials in which Bayesian approaches are applied
extensively to some or all of the processes of a trial including randomization, monitoring,
interim and futility analysis, final analysis, and adaptive decisions. Berry and Kadane [47]
proposed optimal Bayesian randomization in 1997 and the practical uses of Bayesian adaptive
randomization in clinical trials have been reviewed by Thall and Wathen [48]. Bayesian
monitoring has been frequently used in some Phase III clinical trials, especially in those
with failure time endpoints [49]. Bayesian analysis in clinical trials has become increasingly
common recently as it can borrow strength from outside the study [50]. Bayesian adaptive
decisions in clinical trials can be made according to a posterior probability or predictive
probability of trial success or from the result of Bayesian final analysis. Bayesian adaptive
decisions have been compared to frequentist sequential approaches [51] and some studies
[52–54] proposed to use Bayesian decision theoretical approaches in the optimization of
designs under various settings.

Bayesian RCT design is dynamic learning adaptive in nature as it prespecifies the
approaches to combine all available data accumulated during the process of the study,
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calculate probabilistic estimation of uncertainty, control the probability of false-positive and
false-negative conclusions, and change the study design correspondingly [55]. Bayesian and
adaptive RCT design cannot only compare multiple active treatments but can also allow the
ongoing trial to add new emerging effective interventions, discontinue less effective ones
proved by accumulated within-trial data, or focus on patient subgroups identified by certain
biomarkers for whom interventions are more (or less) effective so that the trial tests the most
current interventions, improves the clinical relevance, and targets biomarkers that predict
response to alternative intervention. Using external existing data from previous studies
during the design stage and the accumulated within-trial data to update the design results in
smaller sample size, shorter time, and reduced cost of Bayesian and adaptive RCT [56]. But
Bayesian RCT may be criticized as being too subjective, not well planned, or too complicated.

Both Bayesian and sequential RCT designs have their advantages and disadvantages.
Instead of biasing toward either Bayesian or sequential methods, statisticians and investiga-
tors should choose the design of Phase III clinical trial that best fits the goals of the trial and
is most likely to provide the best performance.

5.2.3. Adaptive Sample Size Calculation and Adaptive Stopping

In the planning stage of a Phase III clinical trial, sample size is one of the most important
factors to be considered because the budget for the trial depends on the minimum required
sample size. Usually sample size is fixed in a trial, but an adaptive sample size calculation is
often used in adaptive clinical trials and the sample size is adjusted based on the observed
data at the interim analysis [1]. Sample size determination depends on the expected treatment
difference and its standard deviation; however, their initial estimations often turn out to be
too large or small as suggested by the accumulating data from the ongoing trial or other
newly completed studies. In this case, keeping the original sample size will lead to an
underpowered or overpowered trial, and so the sample size should be adjusted according
to the updated effect size for the ongoing trial. There are several approaches for sample
size adjustment based on the criteria of treatment effect size, conditional power, and/or
reproducibility probability [57–61]. The observed treatment effect and estimated standard
deviation from a limited number of subjects at the interim analysis may not be of statistical
significance. Therefore, these factors should not be weighed too heavily and the targeted
clinically meaningful difference in the ongoing clinical trial should always be considered fully
in the adaptive sample size calculation.

The fate of an ongoing Phase III trial is determined at its data monitoring committee
(DMC) meeting, which makes recommendations based on the available data according to
stopping rules in the statistical guidelines. The common factors considered in stopping
rules are safety, efficacy, futility, benefit-risk ratio, weight between the short term and long
term treatment effects, and conditional power or predictive power [1]. Current tools for
monitoring Phase III trials are stopping boundaries, conditional and predictive powers,
futility index, repeated confidence interval, and Bayesian monitoring tools. Even though the
stopping rules are usually stipulated in the design stage, adaptive stopping is becoming
more and more common due to unpredicted events during the conduct of the trial, such
as a change in the DMC meeting date because of unavailability of committee members,
different patient accrual progress, and deviation in the analysis schedule. Moreover, the true
variability in the parameters to construct these boundaries of stopping rules is never known
and it is very common that the initial estimates of the variability and treatment effect in
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the design phase are inaccurate as shown by the preliminary results of the ongoing trials.
These deviations could affect substantially the stopping boundaries so that adaptive stopping
becomes especially desirable in these cases. To stop a trial prematurely under adaptive
stopping algorithm, thresholds for the number of subjects randomized and some rules (such
as utility rules, futility rules, etc.) in terms of boundaries must pass.

6. Concluding Remarks

Clinical trials remain an indispensable component of new drug development. Novel
statistical approaches have been applied to clinical trials and have significantly improved
their performance in every step from design, conduct, and monitoring to data analysis
and drawing final conclusions. As modern medicine progresses, increasingly complex
requirements and factors need to be considered in clinical trials, which in turn create new
challenges for statisticians. In the future, more novel statistical approaches, frequentist and
Bayesian, should be developed to enhance the performance of clinical trials in terms of
therapeutic effect, safety, accuracy, efficiency, simplicity, and validity of conclusions and to
expedite the development of effective new drugs to improve human healthcare.
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We extend a Bayesian adaptive phase I clinical trial design known as escalation with overdose
control (EWOC) by introducing an intermediate grade 2 toxicity when assessing dose-limiting
toxicity (DLT). Under the proportional odds model assumption of dose-toxicity relationship, we
prove that in the absence of DLT, the dose allocated to the next patient given that the previously
treated patient had a maximum of grade 2 toxicity is lower than the dose given to the next patient
had the previously treated patient exhibited a grade 0 or 1 toxicity at the most. Further, we prove
that the coherence properties of EWOC are preserved. Simulation results show that the safety of
the trial is not compromised and the efficiency of the estimate of the maximum tolerated dose
(MTD) is maintained relative to EWOC treating DLT as a binary outcome and that fewer patients
are overdosed using this design when the true MTD is close to the minimum dose.

1. Introduction

Cancer phase I clinical trials are sequential designs enrolling late stage cancer patients who
have exhausted standard treatment therapies [1]. For cytotoxic agents or combinations of
biologic with cytotoxic drugs, the main objectives of these trials are to characterize treatment-
related toxicities and estimate a dose level that is associated with a predetermined level of
dose limiting toxicity (DLT). Such a dose is called maximum tolerated dose (MTD) or phase
II dose. Specifically, the MTD, γ , is defined as the dose that is expected to produce DLT after
one cycle of therapy in a specified proportion θ of patients:

P
(
DLT | Dose = γ

)
= θ. (1.1)

Although the definition of DLT depends on the cancer type and the agent under study, it
is typically defined as a grade 3 or 4 nonhematologic and grade 4 hematologic toxicity for
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cytotoxic agents, see the National Cancer Institute (NCI) common toxicity criteria [2]. The
value chosen for the target probability of DLT θ depends on the nature and severity of the
DLT; it is set relatively high when the DLT is a transient, reversible, and nonfatal condition
and low when it is lethal or life threatening.

Model-based designs for cancer phase I clinical trials have been studied extensively in
the last two decades; see O’Quigley et al. [3], Gatsonis and Greenhouse [4], Durham and
Flournoy [5], Korn et al. [6], Whitehead and Brunier [7], Whitehead [8], Babb et al. [9],
Gasparini and Eisele [10], Mukhopadhyay [11], and Haines et al. [12]. In particular, the con-
tinual reassessment method (CRM) first proposed by O’Quigley et al. [3] is Bayesian outcome
adaptive, and has been modified and extended by many authors; see, for example, Faries [13],
Moller [14], Goodman et al. [15], O’Quigley and Shen [16], Piantadosi et al. [17], Cheung
and Chappell [18], Storer [19], and Leung and Wang [20]. The attribute of the CRM is that at
each stage of the trial, we seek a dose for which a Bayes estimate of the probability of DLT is
closest to the target probability of DLT θ. Escalation with overdose control (EWOC) originally
proposed by Babb et al. [9] is another alternative Bayesian outcome adaptive design for dose
finding in early phase cancer trials. Unlike CRM, its main feature is that at each stage of the
trial, we seek a dose for which the posterior probability of exceeding the MTD γ is bounded
by a feasibility bound α. Statistical properties of EWOC have been studied by Zacks et al. [21],
Tighiouart et al. [22], and Tighiouart and Rogatko [23], and examples of phase I trials using
EWOC can be found in [24–33]. Further literature review of statistical methods for dose find-
ing in cancer phase I trials can be found in Ting [34] and Chevret [35].

The above methods allocate future doses based on a binary outcome of DLT of
previously treated patients. Such designs may not be efficient in the sense that the dose rec-
ommended for the next patient is the same regardless whether the previously treated patient
had no toxicity or had an intermediate grade 2 toxicity. The work we present in this
manuscript is motivated by the ethical concern raised by clinical colleagues regarding dose
escalation in the absence of DLT. Specifically, if the current patient experiences drug related
grade 2 toxicity at the most, then the dose to be allocated to the next patient should not be as
high as the one had the current patient experienced a maximum of grade 0 or 1 toxicity. We
present a Bayesian outcome adaptive design which is an extension of EWOC by accommo-
dating an intermediate grade 2 toxicity to the model. We use a proportional odds model
to describe the dose-toxicities relationship and the design is termed EWOC proportional
odds model, written as EWOC-POM. We show that the design satisfies the above ethical
consideration without compromising the safety and efficiency of the trial. Furthermore, we
show that the design maintains the coherence properties of EWOC.

Cancer phase I clinical trials designs taking into account all grades and types of toxici-
ties have been proposed by many authors with the goal of improving the safety and efficiency
of the trial, see Gordon and Willson [36], Wang et al. [37], Bekele and Thall [38], Yuan et al.
[39], Potthoff and George [40], Bekele et al. [41], Van Meter et al. [42, 43], Iasonos et al.
[44], Lee et al. [45], and Chen et al. [46]. Some of these methods use multivariate models for
characterizing the different grades of toxicities as a function of dose while others summarize
the information from all toxicity grades into a continuous score. Depending on the underlying
scenarios, in general, adding multiple toxicity grades information to the model has little effect
on the safety of the trial with a modest gain in the precision of the estimate of the MTD. Our
contribution in this manuscript is motivated by the ethical constraint that dose escalation in
the absence of DLT should be mitigated by the occurrence of an intermediate grade 2 toxicity.
The model and design we propose is constructed in such a way as to maintain the main
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properties of EWOC while at the same time, satisfying those ethical considerations raised by
our clinical colleagues.

The manuscript is organized as follows. In Section 2, we give a detailed description
of the methodology and describe the trial design. In Section 3, we state and prove the ethical
considerations and coherence properties of EWOC-POM. The simulation results of the design
operating characteristics and comparison with EWOC design are included in Section 4.
Section 5 contains some final remarks and discussion of practical implementations.

2. Method

2.1. Model

Let G = 0, 1, . . . , 4 be the maximum grade of toxicity experienced by a patient by the end of
one cycle of therapy and define DLT as a maximum of grade 3 or 4 toxicity. Let

Y =

⎧
⎪⎪⎨

⎪⎪⎩

0 if G = 0 or 1
1 if G = 2
2 if G = 3 or 4.

(2.1)

We model the dose-toxicities relationship by assuming that

P
(
Y ≥ j | x) = F

(
αj + βx

)
, j = 1, 2, (2.2)

where F(·) is a known strictly increasing cdf. This implies that α2 ≤ α1. We assume that β > 0
so that the probability of DLT is an increasing function of dose. The MTD, γ , is defined as the
dose that is expected to produce DLT in a specified proportion θ of patients:

P
(
Y = 2 | x = γ

)
= F
(
α2 + βγ

)
= θ. (2.3)

The value chosen for the target probability θ depends on the nature and clinical manageabil-
ity of the DLT; it is set relatively high when the DLT is a transient, correctable, or nonfatal
condition and low when it is lethal or life threatening. Suppose that dose levels in the trial
are selected in the interval [Xmin, Xmax].

2.1.1. Likelihood

Let Dn = {(xi, Yi), i = 1, . . . , n} be the data after enrolling n patients to the trial. The likelihood
function for the parameters α1, α2, and β is

L
(
α1, α2, β | Dn

)
=

n∏

i=1

[
1 − F

(
α1 + βxi

)]I(Yi=0) [
F
(
α1 + βxi

) − F
(
α2 + βxi

)]I(Yi=1)

× [F(α2 + βxi)
]I(Yi=2)

,

(2.4)

where I(·) is the indicator function.
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We reparameterize model (2.2) in terms of ρ0 = P(Y = 2 | x = Xmin), the probability
that a DLT manifests within the first cycle of therapy for a patient given dose x = Xmin, ρ1 =
P(Y ≥ 1 | x = Xmin), the probability that a grade 2 or more toxicity manifests within the first
cycle of therapy for a patient given dose x = Xmin, and the MTD γ . This reparameterization
is convenient to clinicians since γ is the parameter of interest. Assuming that the dose is
standardized to be in the interval [0, 1], it can be shown that

α1 = F−1(ρ1
)
, α2 = F−1(ρ0

)
,

β =
1
γ

(
F−1(θ) − F−1(ρ0

))
.

(2.5)

The conditions α2 ≤ α1, β > 0, and (2.2) imply that 0 ≤ ρ0 ≤ ρ1 and 0 ≤ ρ0 ≤ θ. Define

F1
(
ρ0, ρ1, γ ;x

)
= F

(
F−1(ρ1

)
+
(
F−1(θ) − F−1(ρ0

))x
γ

)

F2
(
ρ0, ρ1, γ ;x

)
= F

(
F−1(ρ0

)
+
(
F−1(θ) − F−1(ρ0

))x
γ

)
.

(2.6)

Using (2.4), (2.5), and (2.6), the likelihood of the reparameterized model is

L
(
ρ0, ρ1, γ | Dn

)
=

n∏

i=1

[
1 − F1

(
ρ0, ρ1, γ ;xi

)]I(Yi=0)[
F1
(
ρ0, ρ1, γ ;xi

) − F2
(
ρ0, ρ1, γ ;xi

)]I(Yi=1)

× [F2
(
ρ0, ρ1, γ ;xi

)]I(Yi=2)
.

(2.7)

2.1.2. Prior and Posterior Distributions

Let g(ρ0, ρ1, γ) be the prior distribution on Ω, where Ω = {(x, y, z) : 0 ≤ x ≤ θ, x ≤ y ≤
1, Xmin ≤ z ≤ Xmax}. Using Bayes rule, the posterior distribution of the model parameters is
proportional to the product of the likelihood and prior distribution

π
(
ρ0, ρ1, y | Dn

) ∝ L
(
ρ0, ρ1, γ | Dn

) × g
(
ρ0, ρ1, γ

)
. (2.8)

We designed an MCMC sampler based on the Metropolis-Hastings algorithm [47, 48] to
obtain model operating characteristics. We also used WinBUGS [49] to estimate features of
the posterior distribution of the MTD and design a trial. The WinBUGS code is included in
the Appendix section. In the absence of prior information about the MTD and probability of
DLT at Xmin, we specify vague priors for the model parameters as follows:

γ ∼ Unif[Xmin, Xmax]

ρ0 ∼ Unif[0, θ]

ρ1 | ρ0 ∼ Unif
[
ρ0, 1

]
.

(2.9)
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2.1.3. Trial Design

Dose levels in the trial are selected in the interval [Xmin, Xmax]. The adaptive design proceeds
as follows. The first patient receives a dose x1 > Xmin that is deemed to be safe by the clinician.
Denote by Πk(γ) = Π(γ | Dk) the marginal posterior cdf of the MTD, k = 1, . . . , n − 1. The
(k+1)−st patient receives the dose xk+1 = Π−1

k
(α) so that the posterior probability of exceeding

the MTD is equal to the feasibility bound α. This is the overdose protection property of
EWOC, where at each stage of the design, we seek a dose to allocate to the next patient
while controlling the posterior probability of exposing patients to toxic dose levels. The trial
proceeds until a predetermined number of n patients are enrolled to the trial. At the end of
the trial, we estimate the MTD as γ̂ = Π−1

n (α).

3. Properties of EWOC-POM

3.1. Characteristics of EWOC-POM

The proposed design EWOC-POM assigns dose levels to future patients by taking into
account the maximum observed toxicity grade during the first cycle of therapy according
to the following properties.

(i) At each stage of the design, we seek a dose to allocate to the next patient while
controlling the posterior probability of exposing patients to toxic dose levels.

(ii) If the maximum grade of toxicity experienced by patient k − 1 within one cycle of
therapy is grade 2, then the dose allocated to patient k is lower than the dose that
would have been given to patient k had the maximum grade of toxicity experienced
by patient k − 1 been grade 0 or 1.

Property (i) is the overdose protection defining characteristic of EWOC which is also satisfied
by EWOC-POM. Property (ii) is naturally appealing because when a patient experiences
grade 2 dose-related toxicity, then it is ethical not to increase the dose by the same amount
had this patient exhibited grade 0 or 1 toxicity at the most. Characteristic (ii) is summarized
in the following theorem.

Theorem 3.1. Let Dk = {(Y1, x1), . . . , (Yk, xk)} be the data on the first k patients generated by the
design described in Section 2.1.3, and, Πk(γ ;Yk) be the cdf of γ given the data Dk. Let xk+1 =
Π−1

k
(α;Yk) and x′

k+1=Π
−1
k
(α;Y ′

k
). Suppose that for all x ∈ [Xmin, Xmax] and all (ρ0, ρ1) such that 0≤

ρ0 ≤ ρ1 ≤ 1 and ρ0 ≤ θ, (F1 − F2)/(1 − F1) is a monotonically decreasing function in γ . Then,
x′

k+1 ≥ xk+1 whenever Yk
′ = 0 and Yk = 1.

The proof of Theorem 3.1 is given in the Appendix section. It is easy to verify that the
monotonicity condition of Theorem 3.1 holds for the logistic function F(w) = 1/(1 + e−w).
Using this link function and the uniform priors given in (2.9) with θ = 0.33, Figure 1 gives
all possible dose assignments for patients 1 and 2 and selected situations for patients 3 and
4 using the trial design described in Section 2.1.3. The dose has been standardized so that
Xmin = 0 and Xmax = 1, and the first patient is given dose 0.10. If this patient experiences
grade 0 or 1 toxicity at the most, the dose recommended for patient 2 is 0.36. On the other
hand, if patient 1 experiences grade 2 toxicity at the most, the dose recommended for patient 2
is 0.22, much lower than 0.36. This figure also illustrates some of the coherence properties
stated in Theorem 3.2 below.



6 Journal of Probability and Statistics

Dose: 0.1
G = 2

0.36

0.22

0.04

0.53

0.4

0.19

0.4
0.24
0.1

0.64

0.55

0.4

Patient: 1 2 3 4

G = 0, 1

G = 3, 4

Figure 1: Tree of possible dose allocations for patients 1 and 2 and selected situations for patients 3 and 4.
G = 0, 1 corresponds to Y = 0, G = 2 corresponds to Y = 1, and G = 3, 4 corresponds to Y = 2 or DLT.

3.2. Coherence of EWOC-POM

In cancer phase I clinical trials, it is ethical not to increase a dose of a cytotoxic agent for the
next patient if the previously treated patient exhibited DLT when given the same dose level.
Furthermore, it is desirable not to decrease the dose of an agent for the next patient if the pre-
viously treated patient did not experience DLT when given that same dose level. These two
properties are known as coherence in escalation and de-escalation, respectively, see Cheung
[50]. A design that satisfies both of these properties is said to be coherent. Tighiouart and
Rogatko [23] show that EWOC is coherent. The next theorem states some of the coherence
properties of EWOC-POM.

Theorem 3.2. Suppose that for all x ∈ [Xmin, Xmax] and all (ρ0, ρ1) such that 0 ≤ ρ0 ≤ ρ1 ≤ 1 and
ρ0 ≤ θ, F1 and F2 are monotonically decreasing in γ . Then the design EWOC-POM described in 2.1.3
is coherent in deescalation. Furthermore, if the toxicity response for patient k is Yk = 0, then the dose
allocated to patient k + 1 satisfies xk+1 ≥ xk.

The proof of Theorem 3.2 is given in the Appendix section.

4. Simulation Studies

We compare the design operating characteristics of EWOC-POM with the original EWOC
by simulating a large number of trials under several scenarios. We used the logistic function
F(w) = 1/(1+e−w) to model the dose-toxicities relationship in (2.2). EWOC was implemented
as in Tighiouart et al. [22] using the same logistic function to model the dose-toxicity
relationship. For all scenarios, we standardize the dose to be in the interval [0, 1], θ = 0.33, the
feasibility bound α = 0.25, and the trial sample size is n = 30. The priors in (2.9) were adopted
for EWOC-POM. We also carried out design operating characteristics for θ = 0.20, and the
conclusions regarding the performance of EWOC-POM relative to EWOC were essentially
the same.

4.1. Algorithm

For a given scenario determined by ρ0, ρ1, and γ , the first patient receives dose 0, and
the next dose x2 is determined according to the trial design described in 2.1.3. The second
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Figure 2: Dose-toxicity relationship for the nine scenarios considered in the design operations characteris-
tics. The solid curves correspond to P(Y = 2 | x) = P(DLT | x) and the dashed curves in bold correspond
to P(Y > 1 | x). The horizontal dashed lines represent the target probability of DLT θ = 0.33 and the vertical
lines correspond to the true values of the MTD γ .

response y2 is then generated from model (2.2) reparameterized in terms of ρ0, ρ1, and γ
with x = x2. This process is repeated until all n patients have been enrolled to the trial. We
considered 9 scenarios corresponding to a fixed value for ρ0 = 0.05, three values of ρ1, 0.2,
0.5, and 0.8, and three values of the MTD γ , 0.1, 0.5, and 0.7. The corresponding dose-toxicity
relationships for these nine scenarios are illustrated in Figure 2. For each model and each
scenario, we simulated M = 1000 trials. EWOC and EWOC-POM were compared in terms
of the proportion of patients exhibiting DLT, the average bias, biasave = M−1(

∑M
i=1 γ̂i − γtrue),

and the estimated mean square error MSE = M−1(
∑M

i=1 (γ̂i − γtrue)
2), where γ̂i is the Bayes
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Figure 3: Summary statistics for trial safety for EWOC and EWOC-POM under all scenarios. Each graph
represents mean proportion obtained from all patients from all 1000 simulated trials.
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Table 1: Percent of trials with estimated MTD within 5% of the dose range and 10% of the dose range of
the true MTD γ and percent of trials for which the rate of DLT exceeds 40% for EWOC and EWOC-POM
under the nine scenarios.

Scenarios
Percent of trial with estimated MTD Percent of Trial

Within 0.05 of γ Within 0.10 of γ with rate of DLT >0.4
EWOC EWOC-POM EWOC EWOC-POM EWOC EWOC-POM

γ = 0.1, ρ1 = 0.2 98.3 98.4 100 100 7.5 6.6
γ = 0.1, ρ1 = 0.5 98.3 97.5 100 100 7.5 3.0
γ = 0.1, ρ1 = 0.8 98.3 96.4 100 100 7.5 2.9
γ = 0.5, ρ1 = 0.2 39.6 40.5 70.3 71.3 0.2 0.0
γ = 0.5, ρ1 = 0.5 39.6 35.6 70.3 63.2 0.2 0.0
γ = 0.5, ρ1 = 0.8 39.6 31.0 70.3 59.4 0.2 0.0
γ = 0.7, ρ1 = 0.2 24.3 27.6 49.1 53.3 0.0 0.0
γ = 0.7, ρ1 = 0.5 24.3 23.2 49.1 45.7 0.0 0.0
γ = 0.7, ρ1 = 0.8 24.3 20.1 49.1 37.1 0.0 0.0

estimate of the posterior distribution of the MTD at the end of the ith trial with respect to the
asymmetric loss function:

L
(
x, γ
)
=

{
α
(
γ − x

)
if x ≤ γ

(1 − α)
(
x − γ

)
if x > γ.

(4.1)

We also compared the models with respect to the proportion of patients that were overdosed.
Here, a dose x is defined as an overdose if x > x∗, where x∗ is defined as the dose for which
P(DLT | x∗) = θ + 0.05. This probability is calculated using the parameter values from the
corresponding scenario. These models are further compared with respect to the proportion
of patients that were overdosed given that the previously treated patient exhibited grade
2 toxicity. Finally, we compared EWOC-POM to EWOC in terms of the proportion of trials
for which the probability of DLT exceeds 0.4. This gives us an estimate of the probability
that a prospective trial will result in an excessively high DLT rate. As for the proportion of
trials with correct MTD recommendation, we presented percent of trials with estimated MTD
within 10% and 20% of the dose range of the true MTD for EWOC-POM and EWOC.

4.2. Results

Figure 3 shows that the proportion of patients exhibiting DLT is always less than 34% for
both EWOC and EWOC-POM under all scenarios and 4% fewer patients experiencing DLT
under EWOC-POM when the MTD is small (γ = 0.1) and ρ1 = 0.8. The same figure shows
that the proportion of patients that are overdosed using EWOC is uniformly higher relative
to EWOC-POM when the MTD is small. The same trend is observed when γ = 0.5 except
when ρ1 = 0.2. The difference in the proportion of patients being overdosed when γ = 0.7 is
negligible. The last panel of Figure 3 shows that the proportion of patients that are overdosed
given that the previously treated patient exhibited grade 2 toxicity using EWOC is uniformly
higher relative to EWOC-POM when γ = 0.1, 0.5 except when ρ1 = 0.2. The difference in these
proportions when γ = 0.7 is negligible. The last two columns of Table 1 show that the percent
of trials with DLT rate of 0.4 or more is 7.5% at the most for EWOC and 6.6% for EWOC-
POM. A more detailed comparison is shown in Figure 4, where side-by-side box plots of
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Figure 4: Box plots for the proportion of DLTs for EWOC-POM and EWOC under the nine scenarios.
Each box plot was constructed from the DLT rates of the 1000 simulated trials. The dashed horizontal line
corresponds to the target probability of DLT θ = 0.33.

the distributions of the proportion of DLTs for EWOC-POM and EWOC under the nine
scenarios are displayed. These results show that EWOC-POM maintains the safety of the trial
relative to EWOC and is much safer when the true MTD is close to the minimum dose by
reducing the number of patients that are exposed to toxic doses.

Figure 5 shows that the estimated MTDs using EWOC and EWOC-POM are very close
in general, with the highest difference observed when ρ1 = 0.8. This is reflected by the
estimated bias and RMSE shown in Figure 5. This is expected since EWOC-POM is charac-
terized by a conservative dose escalation when a patient experiences grade 2 toxicity. The
highest absolute value of the bias is 0.04 and is achieved when γ = 0.5, 0.7 and ρ1 = 0.8. This
constitutes 4% of the range of the dose and is practically not significant. The percent of trials
with estimated MTD within 5% of the dose range and 10% of the dose range of the true MTD
γ under the nine scenarios are shown in columns 2–5 of Table 1. These results further confirm
that the precision of the estimate of the MTD is similar between the two models, with a higher
precision for EWOC achieved when γ = 0.5 and ρ1 = 0.8. Values other than 5% and 10% of the
dose range were also used, and the conclusions were essentially the same. We conclude that
EWOC-POM maintains the efficiency of the trial relative to EWOC for all practical purpose.

These simulation results suggest that EWOC-POM is a good alternative design for
cancer phase I clinical trials which takes into account the ethical consideration that dose
escalation in the absence of DLT is mitigated by the occurrence of a grade 2 toxicity.

4.3. Model Robustness

Model robustness with respect to assumption of proportional odds model in (2.2) was
assessed by simulating the toxicity responses from a nonproportional odds model:

P
(
Y ≥ j | x) = F

(
αj + βjx

)
, j = 1, 2. (4.2)
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Figure 5: Summary statistics for trial efficiency for EWOC and EWOC-POM under all scenarios. Each
graph represents a mean value obtained from all patients from all 1000 trials.

The same logistic link function F(w) = 1/(1 + e−w) was used. We considered two differ-
ent models M1 and M2 corresponding to the set of parameters α2 = −3.94, β1 = 22.36, β2 =
32.36 for model M1 and α2 = −1.94, β1 = 22.36, β2 = 12.36 for M2. For each model Mi, i = 1, 2,
we considered three different values for the intercept term α1, α1 = −1.38, 0.00, 1.38 which
correspond to ρ1 = 0.2, 0.5, 0.8. These parameters have been selected so that ρ0 = 0.020 for
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Figure 6: Dose-toxicity relationship under the proportional (EWOC-POM) and nonproportional odds
models (M1 and M2) when the true MTD γ = 0.1. The dashed horizontal line corresponds to the target
probability of DLT θ = 0.33.

model M1, ρ0 = 0.126 for model M2, and the true MTD is γ = 0.1. Figure 6 shows the graphs
of the probabilities of DLT and probability of grade 2 or more toxicity as a function of dose
for the proportional odds model POM and models M1 and M2 when ρ1 = 0.2. For each
scenario, we simulated 1000 trials with n = 30 patients where at each stage of the trial, the
next dose is calculated using the trial design described in 2.1.3 as in Section 4.1 but the toxicity
response is generated using the nonproportional odds model (4.2). The simulation results are
summarized in Table 2. The maximum difference in proportion of patients exhibiting DLT
(averaged across the simulated trials) between model Mi, i = 1, 2 and EWOC-POM is 3%.
Under model M2, the proportion of patients that are overdosed is higher than EWOC-POM,
and this proportion is 13% higher when ρ1 = 0.2.

The percent of trials with DLT rate exceeding 0.4 is less than 15% in all cases. This
percent is highest for model M2; however, this is still relatively small compared to the results
obtained in [42]. The percent of trials with estimated MTD within 10% of the dose range of
the true MTD is 100% between the three models and across all scenarios and very good within
5% of the dose range of the true MTD.

In summary, EWOC-POM seems to be robust to model misspecification when the
true MTD is near the initial dose. On the other hand, the model is sensitive to model
misspecification when the true MTD is high but the safety of the trial is not compromised. We
also conducted similar simulations (results not shown) when the true MTD is γ = 0.5, 0.7. We
found that under all scenarios, the proportion of patients exhibiting DLT is always less than
33% but the bias tends to be higher for high values of ρ1 and γ . This is the case when the prob-
ability of DLT curve increases very slowly as a function of dose which results in a very slow
dose escalation scheme.

5. Discussion

In this paper, we proposed a Bayesian adaptive design for dose-finding studies in cancer
phase I clinical trials. The method addresses the ethical concern regarding dose escalation in
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Table 2: Summary statistics for trial safety and efficiency under model misspecification when the true MTD
γ = 0.1. Rows 2–6 give the summary statistics based on all patients from all 1000 trials.

Statistics Model ρ1

0.2 0.5 0.8

Proportion of DLTs
EWOC-POM 0.337 0.312 0.299

M1 0.328 0.304 0.289
M2 0.357 0.342 0.331

Proportion overdosed
EWOC-POM 0.274 0.155 0.200

M1 0.240 0.203 0.173
M2 0.404 0.351 0.322

MTD estimate
EWOC-POM 0.093 0.090 0.087

M1 0.094 0.092 0.090
M2 0.095 0.090 0.086

Bias
EWOC-POM −0.007 −0.010 −0.013

M1 −0.006 −0.007 −0.010
M2 −0.005 −0.010 −0.013

Root MSE
EWOC-POM 0.022 0.021 0.023

M1 0.016 0.016 0.017
M2 0.027 0.029 0.031

Percent of trial with DLT rate >40%
EWOC-POM 6.6 3.0 2.9

M1 1.5 1.2 0.8
M2 14.7 11.6 12.6

Percent of trial with estimated MTD within 0.05 of γ
EWOC-POM 98.4 97.5 96.4

M1 99.7 99.5 99.5
M2 91.1 91.2 88.1

Percent of trial with estimated MTD within 0.10 of γ
EWOC-POM 100.0 100.0 100.0

M1 100.0 100.0 100.0
M2 100.0 100.0 100.0

the absence of DLT. Specifically, if the current patient experiences drug-related grade 2
toxicity at the most, then it is ethical not to escalate the dose for the next patient by the same
amount as the one had the current patient experienced a maximum of grade 0 or 1 toxicity.
The method termed EWOC-POM is an extension of EWOC by accommodating an interme-
diate grade 2 toxicity to the model. We used a proportional odds model to describe the dose-
toxicities relationship for simplicity. We proved that if the maximum grade of toxicity
experienced by patient k − 1 within one cycle of therapy is grade 2, then the dose allocated to
patient k is lower than the dose that would have been given to patient k had the maximum
grade of toxicity experienced by patient k−1 been grade 0 or 1. Furthermore, we also showed
that the coherence properties of EWOC are maintained.

We studied design operating characteristics by simulating a large number of trials
under different scenarios of the dose-toxicity relationships. EWOC-POM was compared to
EWOC with respect to the primary goals of cancer phase I trials, safety and efficiency of the
estimate of the MTD. We found that in general, the safety of the trial is not compromised
when we account for an intermediate grade 2 toxicity. In particular, when the unknown MTD
is close to the initial dose, a substantial number of patients are overdosed when using EWOC
relative to EWOC-POM, and if the current patient experiences grade 2 toxicity, then the next
patient is more likely to be overdosed using EWOC compared to EWOC-POM. The loss in
efficiency of the estimate of the MTD by introducing an extra parameter to the model is very



14 Journal of Probability and Statistics

marginal as was shown by the simulation results of the various scenarios. We also showed
that the proportional odds assumption is robust to model misspecification when the true
MTD is close to the minimum dose. However, the bias of the estimate of the MTD increases as
a function of the MTD under model misspecification. In any case, safety of the trial as assessed
by the number of patients exhibiting DLT and number of patients that are overdosed was
never compromised.

We have shown that Theorem 3.1 holds under the proportional odds assumption using
EWOC scheme with link functions satisfying monotonicity conditions as a function of the
MTD. One can easily prove that a similar ethical constraint stated in Theorem 3.1 can be estab-
lished using the Bayesian CRM originally proposed in O’Quigley et al. [3]. In fact, a more
general theorem can be established for a Bayes estimate using a general convex loss function.
Extensions of EWOC-POM to accommodate patients’ baseline characteristics ([30]) and time
to event DLT for late onset toxicities are being investigated. In conclusion, EWOC-POM is a
good alternative design to EWOC if clinicians expect to see a substantial number of grade 2
toxicities induced by the agent or drug combinations under study.

Appendix

Proof of Theorem 3.1. To simplify notation and presentation of the proof, we assume that
Xmin = 0, ρ0 ≤ ρ1 are fixed, and let us drop the nuisance parameters ρ0 and ρ1 from F1(ρ0, ρ1,
γ ;x), and F2(ρ0, ρ1, γ ;x). Let Lk(γ) = Lk(ρ0, ρ1, γ | Dk), and π(γ) be a proper prior density for
γ . If Yk = 0, Lk(γ) = Lk−1(γ)[1−F1(γ ;xk)], and if Yk = 1, Lk(γ) = Lk−1(γ)[F1(γ ;xk)−F2(γ ;xk)].
Using Bayes’ rule,

∏
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where

A =
∫∫1
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Since γ ≤ γ ′ and (F1 − F2)/(1 − F1) is monotonically decreasing in γ , then [F1(γ ′;xk) −
F2(γ ′;xk)]/[1 − F1(γ ′;xk)] ≤ [F1(γ ;xk) − F2(γ ;xk)]/[1 − F1(γ ;xk)], which implies that [1 −
F1(γ ;xk)][F1(γ ′;xk) − F2(γ ′;xk)] ≤ [F1(γ ;xk) − F2(γ ;xk)][1 − F1(γ ′;xk)]. Hence, Πk(t; 0) ≤
Πk(t; 1), which implies that Π−1

k
(α; 0) ≥ Π−1

k
(α; 1), that is, xk+1 ≥ x′

k+1. This completes the
proof of Theorem 3.1.

Proof of Theorem 3.2. Using the notation in the proof of Theorem 3.1, if Yk = 0, then Lk(γ) =
Lk-1(γ)[1 − F1(γ ;xk)], and if Yk = 2, then Lk(γ) = Lk−1(γ)F2(γ ;xk). Since both F1 and F2 are
monotonically decreasing in γ , then the result of the theorem follows from the proof of
Theorem 1 in Tighiouart and Rogatko [23].

WinBUGS Code

# Assume that the toxicity response Y has 3 categories:

# Y = 1 if patient has grade 0 or 1 toxicity

# Y = 2 if patient has a grade 2 toxicity

# Y = 3 if patient has grade 3 or 4 toxicity, that is, DLT

# Dose is standardized between 0 and 1.

model {
for (i in 1 : N) {
# Likelihood

logit(eta[i,1])<- -(logit(rho1)) − (1/mtd)∗(logit(theta) − logit(rho0))∗X[i]

logit(eta[i,3])<- logit(rho0) + (1/mtd)∗(logit(theta) − logit(rho0))∗X[i]

# rho1 = P(grade 2 or more toxicity at initial dose)

# rho0 = P(DLT or grade 3 or 4 toxicity at initial dose)

# MTD = dose producing DLT in theta fraction of the population

}
for (i in 1 : N) {
p[i,1] <-eta[i,1]

p[i,3]<-eta[i,3]

p[i,2]<-1-(eta[i,1]+eta[i,3])

Y[i]∼dcat(p[i,])

}
# Prior Distributions

rho0 ∼ dunif(0, theta)

rho1 ∼ dunif(rho0, 1)
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mtd ∼ dunif(0,1)

}
# Data

list(Y = c(1, 2, 2, 2, 3, 1, 2, 3, 3, 1, 2, 2, 1, 3),dose =

c(0.1,0.3262,0.3873,0.4390,0.4892,0.3810,0.4298,0.4681,0.3980,

0.3339,0.3650,0.3788,0.3986,0.4308),theta = 0.33333333,N = 14)

# Initial values

list(rho0 = 0.05, rho1 = 0.15, mtd = 0.3).
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The main objective of cancer phase I clinical trials is to determine a maximum tolerated dose
(MTD) of a new experimental treatment. In practice, most of these trials are designed so that three
patients per cohort are treated at the same dose level. In this paper, we compare the safety and
efficiency of trials using the escalation with overdose control (EWOC) scheme designed with three
or only one patient per cohort. We show through simulations that the number of patients per
cohort does not impact the proportion of patients given therapeutic doses, safety of the trial, and
efficiency of the estimate of the MTD. Additionally, we present guidelines and tabulated values on
the number of patients needed to design a phase I cancer clinical trial using EWOC to achieve a
given accuracy of the estimate of the MTD.

1. Introduction

Cancer phase I clinical trials are small studies whose main objective is to determine a
maximum tolerated dose (MTD) of a new experimental drug or combination of known drugs
for use in a phase II trial. Patients are typically accrued to the trial sequentially in cohorts of
size m and dose level assignment to a given cohort of patients is dependent upon the dose
levels and toxicity outcomes of the previously treated cohorts of patients. A large number
of statistical methodologies which account for the sequential nature of the data generated
by such designs have been proposed in the literature, see [1, 2] for a comprehensive review
of such methods. In particular, the continual reassessment method (CRM) proposed by [3]
and its modifications [4–8] and escalation with overdose control (EWOC) described in [9–
15] are Bayesian adaptive designs that produce consistent sequences of doses and can be
easily implemented in practice using published tutorials and free interactive software, see,
for example, [16–19].
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The work we present here has been motivated by the frequent requests by clinicians
and review committees at Cancer Center Institutions the authors worked at on (1) the number
of patients that should be included in each cohort, and (2) the number of patients required to
conduct a phase I cancer clinical trial. Denote by mP a design that treats patients in successive
cohorts of size m simultaneously at the same dose level. For a given fixed number of patients
in the trial, an advantage of an mP design with m > 1 over a 1P design is a shorter time of
completion of the trial. However, it is not clear how the two designs compare with respect to
safety of the trial and efficiency of the estimate of the MTD using EWOC. Goodman et al. [5]
argue for the use of more than one patient per dose level in a modified version of the CRM
to reduce the duration of the trial and toxicity incidence associated with the original CRM.
In this paper, we compare a 3P design with a 1P design in terms of the number of patients
given therapeutic doses, that is, doses in a neighborhood of the “true” MTD. In addition,
safety of the trial and efficiency of the estimate of the MTD will be compared using extensive
simulations.

The number of patients that are enrolled in a cancer phase I clinical trial is typically
between 12 and 40 and trial duration depends on the study design and length of the study
cycle to resolve toxicity outcome. An increasing number of clinicians we work with inquire
about the number of patients they need to accrue in order to estimate the MTD with an
acceptable degree of accuracy. We are not aware of any published methodologies for sample
size determination (SSD) in cancer phase I clinical trials based on power calculation or
precision of some Bayes estimates using either frequentist or Bayesian adaptive designs.
As a point of fact, most sample size recommendations are based on prespecified stopping
rules, see, for example, [20] on selecting the number of patients by considering different
stopping rules using the CRM. Lin and Shih [21] and Ivanova [22] describe sample size
recommendations based on the expected number of patients allocated to each dose selected
from a set of prespecified dose levels.

In this paper, we address the SSD problem using the traditional approach; we estimate
the sample size based on a desired accuracy of the Bayes estimate on the average. Specifically,
we seek the smallest number of patients so that the posterior variance of the MTD on the
average over all possible trials is no more than a specified margin. This procedure is not
based on a specific stopping rule and consequently preserves the coherent nature of EWOC,
see [15] for the coherence EWOC.

This paper is organized as follows. Section 2 describes dose escalation with overdose
control using cohorts of size m. In Section 3, we present two criteria to sample size deter-
mination in this Bayesian setting. Comparisons of designs that treat cohorts of size m > 1
simultaneously over the ones that treat one patient at a time are presented in Section 4. In
that section, we also give tabulated values relating the number of patients on the trial and the
corresponding average posterior variance and length of the highest posterior density interval.
Section 5 contains some concluding remarks and discussion.

2. mP Design Using EWOC

EWOC is a Bayesian adaptive design permitting precise determination of the MTD while
directly controlling the likelihood of an overdose. It is the first statistical method to directly
incorporate formal safety constraints into the design of cancer phase I clinical trials. Zacks
et al. [10] and Tighiouart and Rogatko [15] discuss statistical properties and coherence of
the method, and a comparison of EWOC with alternative phase I design methods is given
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in [9]. Babb and Rogatko [11] provide a summary of Bayesian phase I design methods
and Tighiouart et al. [12] studied the performance of EWOC under a richer class of prior
distributions for the model parameters. The defining property of EWOC is that the expected
proportion of patients treated at doses above the MTD is equal to a specified value α, the
feasibility bound. This value is selected by the clinician and reflects his/her level of concern
about overdosing. Zacks et al. [10] showed that among designs with this defining property,
EWOC minimizes the average amount by which patients are underdosed. This means that
EWOC approaches the MTD as rapidly as possible, while keeping the expected proportion
of patients overdosed less than the value α. Zacks et al. [10] also showed that, as a trial
progresses, the dose sequence defined by EWOC approaches the MTD (i.e., the sequence
of recommended doses converges in probability to the MTD). Eventually, all patients beyond
a certain time would be treated at doses sufficiently close to the MTD.

EWOC has been used to design over a dozen of phase I studies approved by the
Research Review Committee and the Institute Review Board of the Fox Chase Cancer
Center, Philadelphia, Winship Cancer Institute, Atlanta, and Cedars Sinai Medical Center,
Los Angeles (see [23–29] for some of the published trials).

We adopt the-logistic-based model to represent the dose-toxicity relationship the
following:

Prob(DLT | Dose = x) =
exp

(
β0 + β1x

)

1 + exp
(
β0 + β1x

) , (2.1)

where (β0, β1) ∈ (−∞,∞) × (0,∞) so that the probability of dose limiting toxicity (DLT) is an
increasing function of dose. The MTD γ is defined as the dose expected to produce DLT in a
specified proportion θ of patients. Let ρ0 be the probability of a DLT at the starting dose. To
facilitate interpretation of model parameters by the clinicians, we further parameterize model
(2.1) in terms of (ρ0, γ), see [9, 12] for more details. Suppose we plan to enroll n patients in
the trial in cohorts of size m. Dose levels in the trial are selected in the interval [Xmin, Xmax]
and an mP design proceeds as follows. We first specify prior distributions for ρ0 and γ . Then,
the first cohort of m patients receives the dose x1 = Xmin. Let d1 be the number of toxicities
observed among the first m patients. The likelihood given the observed data thus far is

L1
(
ρ0, γ | D1

)
= p

(
ρ0, γ, x1

)d1
(
1 − p

(
ρ0, γ, x1

))m−d1 , (2.2)

where

p
(
ρ0, γ, x1

)
=

exp
{

ln
[
ρ0/

(
1 − ρ0

)]
+ ln

[
θ
(
1 − ρ0

)
/ρ0(1 − θ)

](
x1/γ

)}

1 + exp
{

ln
[
ρ0/

(
1 − ρ0

)]
+ ln

[
θ
(
1 − ρ0

)
/ρ0(1 − θ)

](
x1/γ

)} (2.3)

and D1 = {(x1, d1)}. Let Π1(x) be the marginal posterior cumulative distribution function
(cdf) of the MTD γ given D1. The second cohort of m patients receives the dose x2 = Π−1

1 (α)
so that the posterior probability of exceeding the MTD is equal to the feasibility bound α. In
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general, the likelihood of the data after observing the toxicity outcomes of the ith cohort of m
patients is

Li

(
ρ0, γ | Di

)
=

i∏

j=1

p
(
ρ0, γ, xj

)dj
(
1 − p

(
ρ0, γ, xj

))m−dj , (2.4)

where xj is the dose assigned to the jth cohort of m patients, p(ρ0, γ, xj) is given by (2.3) with
x1 replaced by xj , and Di = {(x1, d1), . . . , (xi, di)}. The (i + 1)st cohort of m patients receives
the dose xi+1 = Π−1

i (α) where Πi(x) is the marginal posterior cdf of γ given Di. This process
is repeated until a total of k cohorts are enrolled in the trial. This completes the description
of an mP design. For a given sample size n, we propose to compare the performance of a 1P
with a 3P design by estimating the percent of patients treated within a neighborhood of the
true MTD. Other comparisons include safety and efficiency of the estimate of the MTD under
the two designs.

3. Sample Size Determination

An increasing number of clinicians inquire about the number of patients they need to accrue
in the design of cancer phase I trials to achieve a specific goal. Sample size recommendation
based on the expected number of patients treated at each dose level in “3 + 3” designs
and A + B designs have been studied in [21, 22], respectively. However, these methods apply
to a prespecified set of discrete doses and it is not clear how they can be applied to continuous
doses. Unlike the frequentist approach, there is no consensus on a specific Bayesian method
for the SSD problem, see Adcock [30] for a review of Bayesian approaches. In this paper, we
present numerical results based on the posterior variance of the MTD and highest posterior
density (HPD) interval, see [31].

Denote by Var(γ | Dn) the posterior variance of the MTD given that n patients have
been accrued to the trial. The first criterion is to find the smallest n that satisfies

EDn

[
Var

(
γ | Dn

)] ≤ η, (3.1)

where the above expectation is taken with respect to the marginal distribution of the data
and η is specified by the clinician. In other words, we require an estimate of the MTD within
a given accuracy as measured by the posterior variance on the average overall possible trials.
In the second criteria, we seek the smallest n such that

EDn[l(Dn)] ≤ d, (3.2)

where l(Dn) is the length of the HPD interval (a, a + l(Dn)) determined by the constraint on
the coverage probability

P
[
γ ∈ (a, a + l(Dn)) | Dn

]
= 1 − α1. (3.3)

This is also known as the average length criteria (ALC) because for each realization
of a trial Dn, the corresponding HPD interval is determined by (3.3) and the lengths of these
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HPD intervals are averaged out with respect to the marginal distribution of the data in (3.2).
The tolerance values of the average length of the HPD interval d and coverage probability
1-α1 are prespecified by the clinician. Since both the posterior distribution of the MTD and
marginal distribution of the data are intractable, Monte Carlo averages were used to estimate
the left hand sides of (3.1) and (3.2). Details on the computation of Var(γ | Dn) and l(Dn) can
be found in [9, 18].

4. Numerical Results

The simulation results presented below all assume that the feasibility bound α = 0.25 and
that the dose levels are standardized so that the starting dose for each trial is x1 = 0 and
all subsequent dose levels are selected from the unit interval. Independent uniform prior
distributions were put on the parameters ρ0 and γ on the intervals [0, θ], [0, 1], respectively.

4.1. Comparison of Designs 3P with 1P

We simulate trials under different scenarios corresponding to different values of ρ0 and γ . For
the 1P design, the first patient receives dose 0 and the next dose x2 is determined as described
in Section 2. The second response y2 is then generated from the logistic model (2.3). This
process is repeated until a trial of n patients is generated. The same process applies to the
3P design except that 3 patients will be given the same dose at each stage of the trial and
3 responses are generated from model (2.3) independently instead of 1. Since 0 ≤ ρ0 ≤ θ
and 0 ≤ γ ≤ 1, we considered 12 scenarios corresponding to combinations of three values
of ρ0, {θ/4, θ/2, 3θ/4} with four values of γ , 0.2, 0.4, 0.6, and 0.8. We will refer to θ/4, θ/2,
3θ/4 as low, intermediate, and high values for ρ0, respectively. Similarly, 0.2 and 0.4 will
be referred to as low values for the MTD γ and 0.6 and 0.8 as high values. The same value
θ = 0.3 was used in all simulations. For each design, each sample size n = 12, 18, 24, 30,
and each combination of (ρ0, γ), we simulated 5000 trials and calculated the proportions of
patients given therapeutic doses, that is, doses in an ε-neighborhood of the true MTD, for
ε = 0.05, 0.1, 0.15, 0.2.

Table 1 gives the estimated proportions of patients given doses in an ε-neighborhood
of the true MTD under designs 1P and 3P and the difference in these proportions between
the two designs for low values of the true MTD γ and different sample sizes. Table 2 gives
the corresponding estimates for high values of the true MTD and Table 3 gives the average of
these estimates across the 12 combination of (ρ0, γ). For low values of the true MTD, design
1P assigns more patients to doses near the MTD than design 3P in general and the difference
can be as high as 16% for ε = 0.05, (ρ0, γ) = (0.4, 0.075), and n = 12. For high values of
the MTD, Table 2 shows that design 1P always assigns more patients to doses near the MTD
than design 3P and the highest difference is about 16% for ε = 0.2, (ρ0, γ) = (0.6, 0.075),
and n = 12. The estimated difference in the proportions of patients given doses in an ε-
neighborhood of the true MTD between the 1P design and 3P design averaged across the
12 entertained scenarios for (ρ0, γ) for different sample sizes show that the proportion of
patients given therapeutic doses under design 1P is always greater than the corresponding
proportion under design 3P, the largest of these differences is about 5%. The practical impact
of this difference is unimportant because of the relatively small number of patients involved
in phase I cancer clinical trials. In Tables 4 and 5, we present differences in (i) the proportions
of patients exhibiting DLT, (ii) the proportions of patients given doses above the “true” MTD,
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Table 3: Estimated proportions of patients given doses in an ε-neighborhood of the true MTD under
designs 1P and 3P and differences between these proportions on the average.

Sample size n

12 18 24 30

0.05

1P 0.1436 1P 0.1625 1P 0.1781 1P 0.1920
3P 0.0924 3P 0.1230 3P 0.1459 3P 0.1644
diff. 0.0512 diff. 0.0395 diff. 0.0322 diff. 0.0276

ε

0.10

1P 0.2956 1P 0.3200 1P 0.3405 1P 0.3587
3P 0.2860 3P 0.3101 3P 0.3322 3P 0.3497
diff. 0.0096 diff. 0.0099 diff. 0.0083 diff. 0.0090

0.15
1P 0.4115 1P 0.4412 1P 0.4640 1P 0.4839
3P 0.3888 3P 0.4239 3P 0.4516 3P 0.4714
diff. 0.0227 diff. 0.0173 diff. 0.0124 diff. 0.0125

0.20

1P 0.4988 1P 0.5340 1P 0.5589 1P 0.5801
3P 0.4517 3P 0.4991 3P 0.5333 3P 0.5564
diff. 0.0471 diff. 0.0349 diff. 0.0256 diff. 0.0237

(iii) the bias, and (iv) the mean square error between the 1P and 3P designs. Table 6 gives the
average values of these statistics, averaged across the 12 entertained scenarios for (ρ0, γ).
Based on (i) and (ii), the results indicate that the two designs are equally safe and that no
practical gain is achieved in terms of the efficiency of the estimate of the MTD according
to (iii) and (iv). From an ethical point of view, we recommend the 1P design to prevent
the occurrence of three simultaneous DLTs if we were to use the 3P design. This should be
discussed with the clinician after assessing the importance of the length of the trial.

4.2. Sample Size Determination

In this section, we present tabulated values for average posterior standard deviation of the
MTD and average length HPD interval that are achieved for even sample sizes n = 6, . . . , 40
and selected values of θ, the target probability of DLT. Table 7 summarizes the results for
θ = 0.3. For a given sample size n, each entry in the table was calculated according to the
following algorithm:

Set j = 1.

(i) Generate (ρ0,j , γj) ∼ Uniform [0, θ] × [0, 1] and independently.

(ii) Simulate a trial of n patients Dn,j according to the EWOC algorithm described in
Section 4.1 with (ρ0,j , γj) as the true model parameters.

(iii) Calculate the posterior variance Var(γ | Dn,j) and HPD (aj , aj + l(Dn,j)) using (3.3).

(iv) Repeat steps (i)–(iii) for j = 2, . . . ,M.
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Table 6: Estimated proportions of patients exhibiting DLTs, treated above the MTD, MSE, and bias of the
MTD under designs 1P and 3P and differences between these proportions on the average.

Sample size n
12 18 24 30

Proportion of DLTs

1P 0.2546 1P 0.2580 1P 0.2607 1P 0.2616
3P 0.2444 3P 0.2523 3P 0.2563 3P 0.2595
diff. 0.0102 diff. 0.0057 diff. 0.0044 diff. 0.0021

Proportion above the MTD

1P 0.1895 1P 0.2001 1P 0.2040 1P 0.2067
3P 0.1685 3P 0.1888 3P 0.1984 3P 0.2029
diff. 0.0210 diff. 0.0113 diff. 0.0056 diff. 0.0038

MSE

1P 0.0427 1P 0.0394 1P 0.0371 1P 0.0351
3P 0.0429 3P 0.0395 3P 0.0365 3P 0.0344
diff. −0.0002 diff. −0.0001 diff. 0.0006 diff. 0.0007

Bias

1P 0.0186 1P 0.0190 1P 0.0181 1P 0.0193
3P 0.0271 3P 0.0261 3P 0.0259 3P 0.0244
diff. −0.0085 diff. −0.0071 diff. −0.0078 diff. −0.0051

The left hand sides of (3.1) and (3.2) are estimated by

EDn

[
Var

(
γ | Dn

)] ≈ 1
M

M∑

j=1

Var
(
γ | Dn,j

)
,

EDn[l(Dn)] ≈ 1
M

M∑

j=1

l
(
Dn,j

)
.

(4.1)

In the numerical results presented here, we took M = 1000. When θ = 0.3, Table 7
shows that with 6 patients, we can estimate the MTD with an average posterior standard
deviation equal to 25% of the range of the dose and that a 17% decrease in the average
posterior standard deviation is achieved when increasing the sample size from 6 to 40
patients. Similarly, the average length of the 90% HPD interval is 74% of the dose range when
6 patients are enrolled in the phase I trial and a reduction of 16% of this length is achieved
when increasing the number of patients from 6 to 40. Figures 1 and 2 show the average
posterior standard deviation and average lengths of the 95% HPD intervals as functions of
the sample size n and target probability of DLT θ.

4.3. Illustrative Example

A randomized phase I clinical trial of the combination bortezomib and melphalan as
conditioning for autologous stem cell transplant in patients with multiple myeloma was
designed using EWOC and the results published in [27]. patients are randomized to arm
A where a fixed dose of melphalan (100 mg/m2) is given before bortezomib and arm B
where the same fixed dose of melphalan is given after bortezomib. The doses available for
bortezomib are 0.4, 0.7, 1.0, 1.3, and 1.6 mg/m2 with the first patient in either arm receiving
1.0 mg/m2. For each arm, the MTD is defined to be the dose level of bortezomib that when
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Table 7: Average posterior standard deviation and average length of HPD of the posterior distribution of
the MTD that are achieved for a given sample size for θ = 0.3.

n Mean SD Length of 90% HPD Length of 95% HPD
6 0.2453 0.7386 0.8161
8 0.2399 0.7238 0.8040
10 0.2351 0.7111 0.7925
12 0.2309 0.6985 0.7818
14 0.2281 0.6913 0.7755
16 0.2248 0.6821 0.7678
18 0.2221 0.6748 0.7608
20 0.2197 0.6673 0.7546
22 0.2176 0.6624 0.7500
24 0.2153 0.6557 0.7439
26 0.2136 0.6505 0.7395
28 0.2119 0.6455 0.7352
30 0.2102 0.6410 0.7313
32 0.2085 0.6350 0.7257
34 0.2072 0.6313 0.7221
36 0.2057 0.6262 0.7176
38 0.2050 0.6240 0.7162
40 0.2036 0.6200 0.7123

administered in combination with 100 mg/m2 of melphalan (either before or after) to a
patient results in a probability equal to θ = 0.33 that a dose limiting toxicity will be manifest.
In this trial, we start at α = 0.3 and increase α in small increments of 0.05 until α = 0.5, this
value being a compromise between the therapeutic aspect of the Bortezomib and its toxic
side effects. Since the doses in this trial are discrete, the dose allocated to the next patient
is obtained by rounding down the dose recommended by EWOC algorithm to the nearest
discrete dose, see [9, 15] on how to conduct a trial in the presence of a prespecified set of
discrete doses.

Figure 3 shows all the possible dose sequences that could be realized for the first four
patients, assuming that only one patient is treated at each dose and a selected situation for
patient 5. The principal investigator (PI) wanted to determine the number of patients to
accrue in each arm so that the posterior standard deviation of the MTD is no more than
one-fifth the range of the dose level. This statistical constraint combined with the logistics
such as availability of the resources for the PI, number of patients available, and limits on the
duration of the trial leads us to select 20 patients per arm. In fact, a sample size of 20 results
in an average posterior standard deviation ED20[(Var(γ | D20))

1/2] ≈ 0.228; This is just below
one-fifth the range of dose levels 0.4–1.6.

5. Concluding Remarks

The objectives of this paper are to provide a rational for the choice of cohort sizes and number
of patients to accrue in a phase I cancer clinical trial when the Bayesian adaptive design
EWOC is used. In these trials, patients are typically enrolled in cohorts of size three for
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Figure 1: Estimated mean posterior standard deviation as a function of the number of patients accrued to
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Figure 2: Estimated mean length of HPD of the posterior distribution of the MTD as a function of the
number of patients accrued to the trial for different target probabilities of DLT θ.

no apparent reason other than being in agreement with the traditional “3 + 3” design and
shortening the duration of the trial. We have shown through simulations that the two designs
are equally safe and that no practical gain is achieved in terms of the efficiency of the estimate
of the MTD. Depending on how important the length of the trial is to the clinician and the
institution, we recommend using one patient per dose level to avoid seeing simultaneous
toxic events when a group of patients is treated at the same dose level as was the case in
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Figure 3: All the possible dose sequences that could be realized for the first four patients and a selected
situation for patient 5. It assumes no simultaneous treatment of patients.

a recent phase I trial of the drug TGN1412, see [32]. In that trial, six volunteers were given
what was believed to be a safe dose of an anti-inflammatory drug TGN1412. Shortly after,
all 6 were admitted into intensive care due to severe reactions including swelling of the head
and neck.

The simulation results were obtained by generating the toxicity responses using
the logistic model (2.3). This assumption may not be true in practice and the operating
characteristics of EWOC may be sensitive to model misspecification. However, for the
purpose of model comparisons between 1P and 3P designs, any model misspecification for
the probability of toxicity response will affect the two designs the same way.

In the second part of the paper, we addressed the SSD problem by giving tabulated
values of the number of patients to accrue in a cancer phase I clinical trial as a function of
the posterior standard deviation and length of the HPD interval of the MTD on the average
over all possible trials. Although this aspect of the trial never received much emphasis in the
literature due to the relatively small number of patients and logistical issues associated with
such trials, we felt that providing a measure of the accuracy of the estimate of the MTD that
can be achieved for a given sample size would help the clinicians understand what can and
cannot be achieved during this phase of the trial. Our results show that in general, there is
17% decrease in the average posterior standard deviation of the MTD when the sample size
increases from 6 to 40 patients and that for a sample size of 20 patients, the average posterior
standard deviation of the MTD is about one-fifth the range of the dose levels. Although
this decrease in the average posterior standard deviation seems modest, we note that this
is dependent upon the use of prior distribution for the MTD. A more informative prior based
on past data will result in smaller average posterior standard deviations and narrower HPD
intervals.
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In adaptive optimal procedures, the design at each stage is an estimate of the optimal design
based on all previous data. Asymptotics for regular models with fixed number of stages are
straightforward if one assumes the sample size of each stage goes to infinity with the overall
sample size. However, it is not uncommon for a small pilot study of fixed size to be followed
by a much larger experiment. We study the large sample behavior of such studies. For simplicity,
we assume a nonlinear regression model with normal errors. We show that the distribution of the
maximum likelihood estimates converges to a scale mixture family of normal random variables.
Then, for a one parameter exponential mean function we derive the asymptotic distribution of the
maximum likelihood estimate explicitly and present a simulation to compare the characteristics of
this asymptotic distribution with some commonly used alternatives.

1. Introduction

Elfving [1] introduced a geometric approach for determining a c-optimal design for linear
regression models. Kiefer and Wolfowitz [2] developed the celebrated equivalence theorem
which provides an efficient method for verifying if a design is D-optimal, again for a linear
model. These two results were generalized by Chernoff [3] and White [4] to include nonlinear
models, respectively. See Bartroff [5], O’Brien and Funk [6], and references therein for
extensions to the geometric and equivalence approaches. Researchers in optimal design have
built an impressive body of theoretical and practical tools for linear models based on these
early results. However, advances for nonlinear models have not kept pace.

One reason for the prevalence of the linear assumption in optimal design is that the
problem can be explicitly described. The goal of optimal design is to determine precise
experiments. Define an approximate design, proposed by Kiefer and Wolfowitz [7], as ξ =
{xi,wi}K1 , where ξ is a probability measure on X consisting of support points xi ∈ X and
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corresponding design weights wi; wi are rational and defined on the interval [0, 1] and∑
wi = 1. Then the optimal design problem is to find the design that maximizes precision

for a given experimental interest. Typically, this precision is achieved by maximizing some
concave function, φ, of Fisher’s information matrix. For example, when the estimation of
all the parameters is the primary interest then the D-optimality criteria, where φ is equal to
the determinant of the inverse of Fisher’s information, are the most popular method. See
Pukelsheim [8] for a detailed discussion of common optimality criteria.

The basic principles for nonlinear models are the same as for linear models except
Fisher’s information will be a function of the model parameters. As a result, optimal designs
depend on the parameters and thus are only optimal in the neighborhood of the true
parameters. The term locally optimal design is commonly used for nonlinear optimal designs
to reflect this dependence on the parameters of interest.

To overcome this dependence Fisher [9] and Chernoff [3] suggest using expert
knowledge to approximate the locally optimal design. Ford et al. [10] suggest optimal designs
in nonlinear problems are to be used to provide a benchmark or to construct sequential or
adaptive designs. Atkinson et al. [11] suggest using a polynomial expansion to approximate
the nonlinear model with a linear one.

Stein [12] provides the earliest two-stage procedure in which the information from the
first stage is used to determine design features for the second stage. In this paper we examine
a two-stage adaptive optimal design procedure. An adaptive optimal design uses the data
from all previous stages to estimate the locally optimal design of the current stage. Many,
including Box and Hunter [13], Fedorov [14], White [15], and Silvey [16], have suggested
using such designs. Recently, Lane et al. [17], Dragalin et al. [18], Fedorov et al. [19], Yao
and Flournoy [20], and so forth have investigated the properties and performance of these
procedures.

Lane et al. [17] show that the optimal stage-one sample size is of the order
√
n, where

n is the overall sample size, in a two-stage regression model. Luc Pranzato obtains this
relationship for a more general model (personal communication, 2012). However, in certain
experiments, for example, early phase clinical trials or bioassay studies, it is common to
use designs with very small stage-one sample sizes. Current literature has characterized the
adaptive optimal design procedure under the assumption that both stage-one and stage-two
sample sizes are large.

In this paper we characterize the asymptotic distribution of the maximum likelihood
estimate (MLE) when the stage-one sample size is fixed. The distribution for a nonlinear
regression model with normal errors and a one parameter exponential mean function is
derived explicitly. Then for a specific numeric example the differences between the finite
stage-one sample distribution are compared with other candidate approximate distributions.

2. Adaptive Optimal Procedure for a Two-Stage Nonlinear
Regression Model with Normal Errors

2.1. The Model

Let {yij}ni,2
1,1 be observations from a two-stage experiment, where ni is the number of

observations and xi is the single-dose level used for the ith stage, i = 1, 2. Assume that

yij = η(xi, θ) + εij , εij ∼ N
(

0, σ2
)
, (2.1)
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where η(x, θ) is some nonlinear mean function. In most practical examples it is necessary to
consider a bounded design space, that is, xi ∈ X = [a, b], −∞ < a < b < ∞. It is assumed
that yij are independent conditional on treatment xi, where x1 is fixed and x2 is selected
adaptively. Denote the adaptive design by ξA = {xi,wi}2

1, where wi = ni/n.
The likelihood for model (2.1) is

Ln

(
θ | y1, y2

)

∝ exp
{
− n1

2σ2

(
y1 − η(x1, θ)

)2 − n2

2σ2

(
y2 − η(x2, θ)

)2
}
,

(2.2)

where yi = n−1
i

∑ni

1 yij are the stage specific sample means, and the total score function is

S =
d

dθ
lnLn

(
θ | y1, y2

)
=

n1

2σ2

(
y1 − η(x1, θ)

)dη(x1, θ)
dθ

+
n2

2σ2

(
y2 − η(x2, θ)

)dη(x2, θ)
dθ

= S1 + S2,

(2.3)

where Si represents the score function for the ith stage.

2.2. The Adaptive Optimal Procedure

Fix the first stage design point x1 and let θ̃n1 represent an estimate based on the first-stage
complete sufficient statistic y1. The locally optimal design point for the second stage is

x∗ = arg max
x∈X

Var
y2|x

(S2) = arg max
x∈X

(
dη(x, θ)

dθ

)2

, (2.4)

which is commonly estimated by x∗|θ=θ̃n1
for use in stage 2. Because the adaptive optimal

design literature assumes n1 is large, the MLE of the second stage design point, x∗|θ=θ̂n1
, where

θ̂n1 is the MLE of θ based on the first stage data, is traditionally used to estimate x∗.
However, when n1 is small the bias of the MLE can be considerable. Therefore,

for some mean functions η using a different estimate would be beneficial. In general, the
adaptively selected stage two treatment is

x2 = arg max
x∈X

(
dη(x, θ)

dθ

)2
∣∣∣∣∣
θ=θ̃n1

. (2.5)
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2.3. Fisher’s Information

Since x1 ∈ X = [a, b], a bounded design space, but y ∈ R, there is a positive probability
that x2 will equal a or b. Denote these probabilities as πa = P(x2 = a) and πb = P(x2 = b),
respectively. Then the per subject information can be written as

M(ξA, θ) =
1
n

Var(S) =
1
σ2

[

w1

(
dη(x1, θ)

dθ

)2

+w2

(

πa

(
dη(a, θ)

dθ

)2

+ πb

(
dη(b, θ)

dθ

)2

+Ex2

[(
dη(x2, θ)

dθ

)2

I(a < x2 < b)

])]

,

(2.6)

where x2 is the random variable defined by the onto transformation (2.5) of y1.

3. Asymptotic Properties

We examine three different ways of deriving an asymptotic distribution of the final MLE
which may be used for inference at the end of the study. The first is under the assumption
that both n1 and n2 are large. The second considers the data from the second stage alone.
Finally, assume a fixed first-stage sample size and a large second-stage sample size.

3.1. Large Stage-1 and Stage-2 Sample Sizes

If dη(x2, θ)/dθ is bounded and continuous and provided common regularity conditions that
hold,

√
n
(
θ̂n − θt

) D−→ N
(

0,M−1(ξ∗, θ)
)
, (3.1)

as n1 → ∞ and n2 → ∞, where ξ∗ = {(x1, n1), (x∗, n2)}. This result is used to justify the
common practice of using x∗|θ=θ̂n1

to estimate x∗ in order to make inferences about θ. Howev-
er, if dη(x2, θ)/dθ is not bounded and continuous then it is very difficult to obtain the result
in (3.1) and for certain mean functions the result will not hold. In such cases the asymptotic
variance in (3.1) must be replaced with limn1 →∞M−1(ξA, θ). Lane et al. [17] examine using the
exact Fisher’s information for an adaptive design ξA, M(ξA, θ), instead of M(ξ∗, θ) in (3.1) to
obtain an alternative approximation of the variance of the MLE θ̂n.

3.2. Distribution of the MLE If Only Second-Stage Data Are Considered

Often pilot data are discarded after being used to design a second experiment then the
derivation of the distribution of the MLE using only the second-stage data takes if x2 to be
fixed:

√
n2

(
θ̂n2 − θt

) D−→ N
(

0,M−1
2 (x2, θ)

)
, (3.2)
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as n2 → ∞, where M2(x2, θ) = σ−2(dη(x2, θ)/dθ)
2. The estimate θ̂n2 will likely perform

poorly in comparison to θ̂n if n1 and n2 are relatively of the same size but conceivably may
perform quite well when n1 is much smaller than n. For this reason it represents an informa-
tive benchmark distribution.

3.3. Fixed First-Stage Sample Size; Large Second-Stage Sample Size

When the first-stage sample size is fixed and the second stage is large we have the following
result.

Theorem 3.1. For model (2.1) with x2 as defined in (2.5) if dη/dθ /= 0 for all x ∈ X, θ ∈ Θ, x2 is an
onto function of y1, |dη/dθ| < ∞ and provided common regularity conditions,

√
n
(
θ̂n − θt

) D−→ UQ (3.3)

as n2 → ∞, where Q ∼ N(0, σ2) and U = ((dη(x2, θ))/dθ)
−1 is a random function of y1.

Proof. As in classical large sample theory (cf. Ferguson [21] and Lehmann [22]):

√
n
(
θ̂n − θ

)
≈

(
1/

√
n
)
S

−(1/n)(d/dθ)S, (3.4)

since S(θ̂n) can be expanded around S(θt) as

S
(
θ̂n
)
= S(θt) +

(
θ̂n − θt

) d

dθ
S(θt) +

1
2

(
θ̂n − θt

)2 d2

dθ2
S(θ∗), (3.5)

where θt is the true value of the parameter and θ∗ ∈ (θt, θ̂n). Solving for
√
n(θ̂n − θt) gives

√
n
(
θ̂n − θt

)
=

(
1/

√
n
)
S(θt)

−(1/n)
(
(d/dθ)S(θt) + (1/2)

(
θ̂n − θt

)
(d2/dθ2)S(θ∗)

) . (3.6)

It can be shown that θ̂n is consistent for θt if n2 → ∞ and n1/n → 0 which gives the result in
(3.4).

Now, decompose the right hand side of (3.4) as

(
1/

√
n
)
S

−(1/n)(d/dθ)S =

(
1/

√
n
)
(S1 + S2)

−(1/n)((d/dθ)S1 + (d/dθ)S2)

=

(
1/

√
n
)
S1

−(1/n)((d/dθ)S1 + (d/dθ)S2)
+

(
1/

√
n
)
S2

−(1/n)((d/dθ)S1 + (d/dθ)S2)
.

(3.7)
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As n2 → ∞, S1/
√
n → 0, (n2/n) → 1, and (1/n)(d/dθ)S2 � 0 as n → ∞. Thus, the first term

in (3.7) goes to 0 as n → ∞. Write the second term in (3.7) as

(
1/

√
n
)
S2

−(1/n)((d/dθ)S1 + (d/dθ)S2)
=

(

− (1/n)(d/dθ)S1(
1/

√
n
)
S2

− (1/n)(d/dθ)S2(
1/

√
n
)
S2

)−1

. (3.8)

Further as n2 → ∞, (1/n)(d/dθ)S1 → 0 and (1/
√
n)S2 � 0,

(1/n)(d/dθ)S1(
1/

√
n
)
S2

p−→ 0,

(1/n)(d/dθ)S2(
1/

√
n
)
S2

=
(1/n)

(
y2 − η(x2, θ)

)(
d2η(x2, θ)/dθ2) +w2

((
dη(x2, θ)

)
/dθ
)2

(
1/

√
n
)
n2
(
y2 − η(x2, θ)

)((
dη(x2, θ)

)
/dθ
)

=
(

1√
n

)
d2η(x2, θ)/dθ2

dη(x2, θ)/dθ
+
√
w2
(
dη(x2, θ)

)
/dθ

√
n2
(
y2 − η(x2, θ)

) .

(3.9)

The first term in (3.9) goes to 0. To evaluate the second term, it is important to recognize that
εi2 = y2 − η(x2, θ) ∼ N(0, σ2/n2) and y1 ∼ N(0, σ2/n1) are independent and thus

y2 − η(x2, θ),
dη(x2, θ)

dθ
(3.10)

are independent. Because of this independence,

√
n2
(
y2 − η(x2, θ)

)
(
dη(x2, θ)

dθ

)−1

∼ UQ, (3.11)

where U is a random function of y1 and Q ∼ N(0, σ2) as determined by ((dη(x2, θ))/dθ)
−1.

Now, with
√
w2 → 1 as n2 → ∞ the result follows from an application of Slutsky’s theorem.

Remark 3.2. Provided dη(x, θ)/dθ is bounded and continuous UQ is the asymptotic
distribution of

√
n(θ̂n − θt) as n → ∞. The important case for this exposition is presented in

Theorem 3.1. However, the two other potential cases can be shown easily.

Case 1. n1 → ∞, n2 → ∞, and n → ∞. As n1 → ∞, x2 → x∗ which implies that U →
((d(x∗, θ))/dθ)−1, a constant, and thus UQ converges to asymptotic distribution of

√
n(θ̂n−θt)

given in (3.1).

Case 2. n1 → ∞, n2 fixed, and n → ∞. Just as in Case 1, U → M−1(x∗, θ), where M(x∗, θ) =
((dη(x∗, θ))/dθ)−2. Note that M(x∗, θ) differs from M(ξ∗, θ) which depends on x1 and x∗.
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Therefore UQ → N(0, σ2M−1(x∗, θ)). Look back at (3.7) in the proof, but now take n2 to be
fixed; (1/

√
n)S2 → 0 and (1/

√
n)(d/dθ)S2 → 0 and the only term left is

(
1/

√
n
)
S1

−(1/n)(d/dθ)S1
. (3.12)

Consider the following: (1/
√
n)S1 → N(0, σ2M−1(x∗, θ)) and (1/

√
n)(d/dθ)S1 → M−1(x∗,

θ) as n → ∞. Therefore,
√
n(θ̂n − θt) → N(0, σ2M−1(x∗, θ)) as n → ∞ which is equivalent

to UQ.

4. Example: One Parameter Exponential Mean Function

In model (2.1) let η(x, θ) = e−θx, where x ∈ X = [a, b], 0 < a < b < ∞ and θ ∈ (0,∞). The
simplicity of the exponential mean model facilitates our illustration, but it is also important in
its own right. For example, Fisher [9] used a variant of this model to examine the information
in serial dilutions. Cochran [23] further elaborated on Fisher’s application using the same
model.

For this illustration we use the MLE of the first-stage data to estimate the second-stage
design point. Here,

θ̂n1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− lny1

x
, if y1 ∈

(
e−θx, 1

)
,

0, if y1 ≥ 1,

θ, if y1 ≤ e−θx.

(4.1)

The adaptively selected second-stage treatment as given by (2.5) is

x2 = arg max
x∈X

(
x2e−2θx

)
=

⎧
⎪⎪⎨

⎪⎪⎩

θ̂−1
n1
, if y1 ∈

(
e−a

−1x1 , e−b
−1x1

)
,

b, if y1 ≥ e−b
−1x1 ,

a, if y1 ≤ e−a
−1x1 .

(4.2)

Thus, the exact per subject Fisher information is

M(ξA, θ) =
1
n

Var(S) = w1x
2
1e

−2θx1 +w2πaa
2e−2θa

+w2πbb
2e−2θb +w2Ex2

[
x2

2e
−2θx2 · I(a < x2 < b)

]
.

(4.3)

For this example M(ξA, θ) → M(ξ∗, θ) as n1 → ∞. For more detailed information on the
derivations of (4.1), (4.2), and (4.3) see Lane et al. [17].

The asymptotic distributions of the MLE in Sections 3.1 and 3.2 can be derived easily.
For the asymptotic distribution of the MLE in Section 3.3 consider the following corollary. For
details on the functions h, v1, and v2 see the proof of the corollary.
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Corollary 4.1. If η(x, θ) = e−θx in model (2.1) then

√
n
(
θ̂n − θ

) D−→ UQ (4.4)

as n → ∞, where UQ is defined by

P(UQ ≤ t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P

(
U ≥ t

q
| −∞ < q ≤ 0

)
Φ
(
q
)
, if t ∈ (−∞, 0),

P

(
U ≤ t

1
| 0 < q ≤ ∞

)
(
1 −Φ

(
q
))
, if t ∈ (0,∞),

(4.5)

whereΦ(·) is the standard normal cumulative distribution function. LetΨ(q) = Φ(
√
n(q−η(x, θ))/

σ) and h(s) = s−1eθs. Then if h(a) < h(b),

P

(
U ≥ t

q
| −∞ < q ≤ 0

)
Φ
(
q
)
= Φ
(

t

σh(1/θ)

)

+ [1 − (Ψ(v2(h(a))) −Ψ(v1(h(a))))]

×
[
Φ
(

t

σh(a)

)
−Φ
(

t

σh(1/θ)

)]

+ [Ψ(v2(h(b))) −Ψ(v2(h(a)))]

×
[
Φ
(

t

σh(b)

)
−Φ
(

t

σh(a)

)]
,

P

(
U ≤ t

q
| 0 < q ≤ ∞

)
(
1 −Φ

(
q
))

= Φ
(

t

σh(b)

)

+ [Ψ(v2(h(a))) −Ψ(v1(h(a)))]

×
[
Φ
(

t

σh(1/θ)

)
−Φ
(

t

σh(a)

)]

+ [1 − (Ψ(v2(h(b))) −Ψ(v2(h(a))))]

×
[
Φ
(

t

σh(a)

)
−Φ
(

t

σh(b)

)]
.

(4.6)

If h(b) < h(a), then

P

(
U ≥ t

q
| −∞ < q ≤ 0

)
Φ
(
q
)
= Φ
(

t

σh(1/θ)

)

+ [1 − (Ψ(v2(h(b))) −Ψ(v1(h(b))))]

×
[
Φ
(

t

σh(b)

)
−Φ
(

t

σh(1/θ)

)]

+ [Ψ(v1(h(b))) −Ψ(v1(h(a)))]

×
[
Φ
(

t

σh(b)

)
−Φ
(

t

σh(a)

)]
,
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P

(
U ≤ t

q
| 0 < q ≤ ∞

)
(
1 −Φ

(
q
))

= Φ
(

t

σh(a)

)

+ [Ψ(v2(h(b))) −Ψ(v1(h(b)))]

×
[
Φ
(

t

σh(1/θ)

)
−Φ
(

t

σh(b)

)]

+ [1 − (Ψ(v1(h(b))) −Ψ(v1(h(a))))]

×
[
Φ
(

t

σh(b)

)
−Φ
(

t

σh(a)

)]
.

(4.7)

Proof. First, we find the distribution of U where U = h(z) and the random variable z is
defined by

z =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− x1

lny1
, if y1 ∈ (e−x1/a, e−x1/b

)
,

− x1

lna
, if y1 ≤ e−x1/a,

− x1

ln b
, if y1 ≥ e−x1/b.

(4.8)

Figure 1 illustrates the map from U to z ∈ [a, b] where θ = 1, σ = .5, a = .25, and b = 4.
Lambert’s product log function (cf. Corless et al. [24]) is defined as the solutions to

wew = c (4.9)

for some constant c. Denote the solutions to (4.9) by W(w). Let

V (c) = argy1

{(
− x1

lny1

)−1

exp
{
θ
−x1

lny1

}
= c

}

. (4.10)

Then

V (c) = exp
{

θx1

W(−θ/c)
}
. (4.11)

The W function is real valued on w ≥ −1/e, single valued at w = −1/e, and double valued
on w ∈ (−1/e, 0). U ∈ {θe,max{h(a), h(b)}}, x1 ∈ [a, b], 0 < a < b < ∞. Therefore V (c) is real
valued for all θ ∈ (0,∞). For simplicity, define v1 = minV (c) and v2 = maxV (c) for a given
c.

We present the proof for the cumulative distribution function (CDF) of U and the CDF
of UQ for the case where x∗ ∈ [a, b] and h(a) < h(b). The derivation of the distributions under
alternative cases is tedious and does not differ greatly from this case.
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Figure 1: Map of z = −x1/ lny1 for θ = 1, a = .25, and b = 4.

Note in this case the domain of U is [h(1/θ) = θe, h(b)]. If h(1/θ) < U < h(a), then

P(U ≤ t1) = P
(
h
(
y1

)
< t
)
= P
(
v1(t1) < y1 < v2(t1)

)
= Ψ(v2(t1)) −Ψ(v1(t1)). (4.12)

If U = h(a), then

P(U ≤ h(a)) = Ψ(v2(h(a))). (4.13)

If U ∈ (h(a), h(b)), then

P(U ≤ t1) = P
(
v1(t1) < y1 < v2(t1)

)
. (4.14)

However, since t1 < h(a) P(y1 < v1(t1)) = 0,

P(U ≤ t1) = Ψ(v2(t1)). (4.15)

If U ≥ h(b), then

P(U ≤ h(b)) = 1. (4.16)

Thus,

P(U ≤ t1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if t1 ≤ h

(
1
θ

)
,

Ψ(v2(t1)) −Ψ(v2(t1)), if t1 ∈
(
h

(
1
θ

)
, h(a)

)
,

Ψ
(
e−x1/a

)
, if t1 = h(a),

Ψ(v2(t1)), if t1 ∈ (h(a), h(b)),

1, if h(b) ≤ t1 ≤ ∞.

(4.17)
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Figure 2: CDF of U for θ = 1, x1 = 2, n1 = 5, σ = .5, a = .25, and b = 4.

Figure 2 plots the CDF of U for θ = 1, x1 = 2, n1 = 5, σ = .5, a = .25, and b = 4. The distribution
is a piecewise function with discontinuities at the boundary points a and b.

Now consider the distribution of UQ. Recall q ∼ N(0, σ2) and U and Q are independ-
ent. If t ∈ (−∞, 0), then

P(UQ ≤ t) = P

(
U ≥ t

q
| 0 <

t

q
≤ h

(
1
θ

))
P

(
0 <

t

q
≤ h

(
1
θ

))

+ P

(
U ≥ t

q
| h
(

1
θ

)
<

t

q
≤ h(a)

)
P

(
h

(
1
θ

)
<

t

q
≤ h(a)

)

+ P

(
U = h(a) | t

q
= h(a)

)
P

(
t

q
= h(a)

)

+ P

(
U ≥ t

q
| h(a) < t

q
≤ h(b)

)
P

(
h(a) <

t

q
≤ h(b)

)

+ P

(
U = h(b) | t

q
= h(b)

)
P

(
t

q
= h(b)

)

+ P

(
U ≥ t

q
| h(b) < t

q
≤ ∞

)
P

(
h(b) <

t

q
< ∞

)
.

(4.18)

The distribution is symmetric, thus the derivation of the CDF if t ∈ (0,∞) is analogous.

4.1. Comparisons of Asymptotic Distributions

First, consider the distribution described in (3.1) using M(ξA, θ) in place of M(ξ∗, θ) and
the distribution described in (3.2). When n1 is significantly smaller than n2, M(ξA, θ) and
M(x2, θ) can differ significantly as a function of y1. This is primarily because M(x2, θ) is a
function of x2, whereas M(ξA, θ) is an average over y1. Through simulation it can be seen that
a N(0,M−1(x2, θ)) is a better approximate distribution of

√
n(θ̂n − θ) than N(0,M−1(ξA, θ))

for only a small interval of x2, and this interval has a very small probability. For these reasons
the distribution of the MLE using only the second stage data as described in Section 3.2 is not
considered further.
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Figure 3: In each plot the solid line represents the CDF of
√
n(θ̂n−θ) obtained via Monte Carlo simulations.

The dotted-dashed line is the P(T1 ≤ t), where T1 ∼ N(0,M−1(ξ∗, θ)). The dotted line is the P(T2 ≤ t), where
T2 ∼ N(0,M−1(ξA, θ)). The dashed line is the P(T3 ≤ t), where T3 ∼ Q. Values θ = 1, x1 = 2, n1 = 5, σ = .5,
a = .25, and b = 4 were used.

Now for a set of numeric examples consider three distributions: (3.1), (3.1) using
M(ξA, θ) in place of M(ξ∗, θ) and the distribution of UQ defined in (3.3). An asymptotic
distribution can be justified in inference if it is approximately equal to the true distribution.
In this case the true distribution is that of

√
n(θ̂n−θ). However, θ̂n does not have a closed form

and thus its distribution cannot be obtained analytically or numerically. To approximate this
distribution 10,000 Monte Carlo simulations have been completed for each example to create
a benchmark distribution.

Figure 3 plots the three different candidate approximate distributions, found exactly
using numerical methods, together with the distribution of

√
n(θ̂n − θ) approximated using

Monte Carlo simulations, for θ = 1, x1, σ = .5, a = .25, b = 4, n1 = 5, and n = {30, 1000}. Note
the y-axis represents P(Ti ≤ t), i = 1, 2, 3, where T1 is N(0,M−1(ξ∗, θ)), T2 is N(0,M−1(ξA, θ)),
and T3 is UQ. When n = 30 it is difficult, graphically, to determine if T2 or T3 provides a better
approximation for

√
n(θ̂n − θ). It seems that if t ∈ (−4, 0) the distribution T3 is preferable to

T2; however, when t ∈ (0, 4) the opposite appears to be the case. It is fairly clear that for this
example T1 performs poorly.

When n = 1000, it is clear that T3 is much closer to
√
n(θ̂n − θ) than both T1 and

T2. Further, comparing the two plots one can see how the distribution of
√
n(θ̂n − θ) has

nearly converged to UQ but still differs from those T1 and T2 significantly, as predicted by
Theorem 3.1 and Corollary 4.1.

Using only graphics it is difficult to assess which of T1, T2, and T3 is nearest
√
n(θ̂n − θ)

for a variety of cases. To get a better understanding, the integrated absolute difference of the
CDFs of T1, T2, and T3 versus that of

√
n(θ̂n−θ) for x1 = 2, σ = .5, a = .25, b = 4, n = {5, 10, 15},

and n = {30, 50, 100, 400} is presented in Table 1. First, consider the table where θ = .5. The
locally optimal stage-1 design point is x1 = 2 when θ = .5; as a result this scenario is the most
generous to distribution T1. However, even for this ideal scenario T3 outperforms T1 and T2

for all values of n1. In many cases the difference between T3 and T1 is quite severe. In this
scenario T3 outperforms T2; however, the differences are not great.
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Table 1: Integrated absolute difference of the cumulative distributions (×100) of T1 ∼ N(0,M−1(ξ∗, θ)),
T2 ∼ N(0,M−1(ξA, θ)), and T3 ∼ UQ versus the approximate cumulative distribution of

√
n(θ̂n−θ) obtained

via Monte Carlo simulations for various n1 and various moderate sizes of n. The values θ = 1, x1 = 2, σ = .5,
a = .25, and b = 4 were used.

(a) (θ = .5)

n1
n = 30 n = 50 n = 100 n = 400

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

5 19 24 11 16 17 8 15 16 7 14 15 5
10 11 13 8 9 12 7 9 11 6 7 12 4
15 9 10 8 8 9 6 6 9 5 4 10 3

(b) (θ = 1)

n1
n = 30 n = 50 n = 100 n = 400

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

5 30 33 25 30 27 19 34 24 12 39 21 6
10 40 40 32 26 27 22 23 28 16 26 20 8
15 34 34 33 27 28 24 21 23 17 18 20 9

(c) (θ = 1.5)

n1
n = 30 n = 50 n = 100 n = 400

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

5 32 33 31 39 25 25 42 21 23 42 17 21
10 34 33 22 27 25 16 32 22 10 35 19 12
15 35 35 32 26 26 21 26 22 13 28 21 7

Next, examine the results for θ = 1 and θ = 1.5. Once again T3 outperforms T1 and
T2 in all but 2 cases, where in many cases its advantage is quite significant. Also note that
T2 outperforms T1 about half the time when θ = 1 and the majority of the time when θ =
1.5. This supports our observation that when the distance between x1 and x∗ increases the
performance of T1 compared with T2 and T3 worsens which indicates a lack of robustness for
the commonly used distribution T1. This lack of robustness is not evident for T1 and T2.

One final comparison is motivated by the fact that if n1 → ∞, T1, T2, and T3 have the
same asymptotic distribution. Although our method is motivated by the scenario where n1 is
a small pilot study, there is no theoretical reason that T3 will not perform competitively when
n1 is large. Table 2 presents the integrated differences for the distributions T2 and T3 from√
n(θ̂n − θ) for x1 = 2, θ = 1, σ = .5, a = .25, b = 4, n1 = {50, 100, 200}, and n = {400, 1000}. T1 is

not included in the table due to the lack of robustness; it can perform better or worse than the
other two distributions based on the value of θ. Even with larger values of n1, T3 performs
slightly better when n1 = 50 and 100 and only slightly worse when n = 200 indicating that
using T3 is robust for moderately large n1.

5. Discussion

Assuming a finite first-stage sample size and a large second-stage sample size, we have
shown for a general nonlinear one parameter regression model with normal errors that the
asymptotic distribution of the MLE is a scale mixture distribution. We considered only one
parameter for simplicity and clarity of exposition.
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Table 2: Integrated absolute difference of the cumulative distributions (×100) of T1 ∼ N(0,M−1(ξ∗, θ)),
T2 ∼ N(0,M−1(ξA, θ)), and T3 ∼ UQ versus the approximate cumulative distribution of

√
n(θ̂n−θ) obtained

via Monte Carlo simulations for various n1 and various large sizes of n. The values θ = 1, x1 = 2, σ = .5,
a = .25, and b = 4 were used.

n1
n = 400 n = 1000

T2 T3 T2 T3

50 13 9 13 5
100 10 9 8 4
200 11 14 4 7

For the one parameter exponential mean function, the distribution of the adaptively
selected second-stage treatment and the asymptotic distribution of the MLE were derived
assuming a finite first-stage sample size and a large second-stage sample size. Then the
performance of the normalized asymptotic distribution of the MLE, UQ, was analyzed and
compared to popular alternatives for a set of simulations.

The distribution of UQ was shown to represent a considerable improvement over the
other proposed distributions when n1 was considerably smaller than n. This was true even
when n1 is moderately large in size.

Since the optimal choice of n1 was shown to be of the order
√
n for this model in

Lane et al. [17], the usefulness of these findings could have significant implications for many
combinations of n1 and n.

Suppose it is desired that P(D1 ≤ √
n(θ̂n − θ) ≤ D2 = 1 − α), where α is the desired

confidence level and θt is the true parameter. If one was to use the large sample approximate
distribution given in (3.1), D1 and D2, and therefore n, cannot be determined until after stage
1. However, using (3.1) with M(ξA, θ) in place of M(ξ∗, θ) or by using UQ on can compute
the overall sample size necessary to solve for D1 and D2 before stage one is initiated. One
could determine n initially using (3.1) with M(ξA, θ) or UQ and then update this calculation
after stage-1 data is available. Such same size recalculation requires additional theoretical
justification and investigation of their practical usefulness.

We have not, in this paper, addressed the efficiency of the estimate θ̂n. One additional
way to improve inference would be to find biased adjusted estimates θ̃n that are superior
to θ̂n for finite samples. We have not investigated the impact on inference of estimating
the variances in the distributions of UQ, N(0,M−1(ξ∗, θ)), N(0,M−1(ξA, θ), and N(0,
M−1(x2, θ)). Instead, the distributions themselves are compared. For some details on the
question of estimation and consistency see Lane et al. [17] and Yao and Flournoy [20].
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We describe a design for cancer phase I clinical trials that takes into account patients heterogeneity
thought to be related to treatment susceptibility. The goal is to estimate the maximum tolerated
dose (MTD) given patient’s specific dichotomous covariate value. The design is Bayesian adaptive
and is an extension of escalation with overdose control (EWOC). We will assess the performance
of this method by comparing the following designs via extensive simulations: (1) design using a
covariate; patients are accrued to the trial sequentially and the dose given to a patient depends on
his/her baseline covariate value, (2) design ignoring the covariate; patients are accrued to the trial
sequentially and the dose given to a patient does not depend on his/her baseline covariate value,
and (3) design using separate trials; in each group, patients are accrued to the trial sequentially and
EWOC is implemented in each group. These designs are compared with respect to safety of the
trial and efficiency of the estimates of the MTDs via extensive simulations. We found that ignoring
a significant baseline binary covariate in the model results in a substantial number of patients
being overdosed. On the other hand, accounting for a nonsignificant covariate in the model has
practically no effect on the safety of the trial and efficiency of the estimates of the MTDs.

1. Introduction

The main objective of cancer phase I clinical trials is to determine a maximum tolerated dose
(MTD) of a new experimental drug or combination of known drugs for use in a phase II
trial. These trials enroll advanced stage cancer patients who have exhausted all standard
therapies sequentially in cohorts of size one or more patients and dose level assignment to
a given cohort of patients is dependent upon the dose levels and toxicity outcomes of the
previously treated cohorts of patients. Adaptive statistical designs for cancer phase I clinical
trials have been studied extensively in the last two decades, see for example, O’Quigley et al.
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[1], Durham and Flournoy [2], Korn et al. [3], Whitehead [4], Babb et al. [5], Gasparini and
Eisele [6], Mukhopadhyay [7], and Haines et al. [8]. See also Ting [9] and Chevret [10] for a
more comprehensive review of these statistical designs.

A key assumption implied by the definition of the phase I target dose (MTD) is that
every subgroup of the patient population has the same MTD. That is, it is assumed that
the patient population is homogeneous in terms of treatment tolerance and every patient
should be treated at the same dose. As a result, no allowance is made for individual
patient differences in susceptibility to treatment. Recent progress in our understanding of
pharmacokinetics and the genetics of drug metabolism has led to the development of new
strategies of drug allocation that accommodate individual patient needs, see [11–13]. For
example, Newell [14] showed how impaired renal function can result in reduced clearance
of carboplatin and a dosing formulae based on renal function was developed. In this paper,
we present design operating characteristics of a design proposed by Babb et al. [5] known as
escalation with overdose control (EWOC) by accounting for patients heterogeneity thought
to be related to treatment susceptibility. In the case of a binary covariate, we will assess the
performance of this method by comparing the following designs via extensive simulations:
(1) design using a covariate; patients are accrued to the trial sequentially and the dose
given to a patient depends on his/her covariate value, (2) design ignoring the covariate;
patients are accrued to the trial sequentially and the dose given to a patient does not depend
on his/her covariate value, and (3) design using separate trials; in each group, patients
are accrued to the trial sequentially and EWOC is implemented in each group. O’Quigley
et al. [15] investigated the performance of a two-stage continual reassessment method
(CRM) using a binary covariate. They considered 3 different models for the dose-toxicity
relationship and maximum likelihood method was used to estimate the model parameters.
This required starting the escalation scheme using some ad hoc mechanism until the first
toxicity is observed. They found that significant gains can be made using the two-sample
CRM when there are group imbalances. However, there may not be enough patients in one
group to detect that effect. O’Quigley and Paoletti [16] considered a two-group CRM design
incorporating ordering of the two groups with respect to treatment tolerability in designing a
phase I trial. Babb and Rogatko [17] extended EWOC to allow the utilization of information
concerning individual patient differences in susceptibility to treatment. This was applied to
a trial involving patients with advanced adenocarcinomas of gastrointestinal origin treated
with PNU-214565 (PNU). PNU is a murine Fab fragment of the monoclonal antibody 5T4
fused to a mutated superantigen staphylococcal enterotoxin A (SEA). Preclinical testing
demonstrated that the action of PNU is moderated by the neutralizing capacity of anti-
SEA antibodies. Consequently, dose levels were adjusted during the trial according to
each patient’s pretreatment plasma concentration of anti-SEA antibodies. However, design
operating characteristics were not studied.

This paper is organized as follows. Section 2 describes the model likelihood and prior
distributions and the conduct of the trial using EWOC scheme for three different designs.
We present some simulation results in Section 3 and concluding remarks are presented in
Section 4.

2. Method

2.1. Model

In this section, we describe a Bayesian adaptive design which accounts for patient
heterogeneity thought to be related to treatment susceptibility. Let Xmin and Xmax denote
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the minimum and maximum dose levels available for use in the trial. Clinicians choose these
levels in the belief that Xmin is safe when administered to humans and Xmax is too toxic, see
[18] how these levels were selected for a real prospective trial. Denote by Z the observable
baseline binary covariate taking values 0 or 1 and let

Pz(x) = Prob(DLT | Dose = x,Z = z), (2.1)

be the probability of dose limiting toxicity (DLT) for a patient with baseline covariate z and
treated with dose level x. For simplicity, we consider the logistic model to describe the dose-
toxicity relation

Pz(x) =
exp

(
β0 + β1x + ηz

)

1 + exp
(
β0 + β1x + ηz

) . (2.2)

We assume that β1 ≥ 0 so that Pz(x) is an increasing function of dose x. This is a reasonable
assumption for cytotoxic agents. Model (2.2) implies a constant odds ratio of toxicity between
the two groups of patients in the sense that this odds ratio does not depend on the dose level.

The MTD for a patient with covariate value z is defined as the dose γ(z) that results
in a probability equal to θ(z) that a DLT will manifest within one cycle of therapy. The value
chosen for the target probability of DLT θ(z) would depend on the nature and consequences
of the dose-limiting toxicity; it would be set relatively high when the DLT is a transient,
correctable or nonfatal condition, and low when it is life threatening or lethal [5]. We will
assume that θ(z) is constant in z although the methodology can be adapted to different target
probabilities of toxicities. In practice, clinicians use a constant target probability of DLT θ
since we do not know a priori how the treatment under study affects the different groups
of patients defined by their baseline covariate value. It follows from the dose-toxicity model
(2.2) that the MTD is

γ(z) =
1
β1

(
logit(θ) − α − ηz

)
. (2.3)

Let ρ0,z be the probability of DLT at the initial dose given to a patient with covariate
value z. In the statistical design of a phase I clinical trial, it is convenient to specify the prior
distribution on parameters the clinicians can easily interpret. For instance, Babb and Rogatko
[17] reparameterized model (2.2) in terms of the MTD associated with the maximum-
anticipated plasma concentration of anti-SEA antibodies and the probabilities of DLT
when the minimum allowable dose is administered to patients with pretreatment anti-SEA
concentrations selected to span the range of this covariate. Here, we reparameterize model
(2.2) in terms of γ0 = γ(0), γ1 = γ(1), and ρ0,0. We chose this reparameterization because the
MTDs for each group are the parameters of interest. However, other parameterizations such
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as difference between the MTDs in both groups are possible. Using the definition of the MTDs
and probability of toxicity at the initial dose x1, one can show that

β0 =
1

(
γ0 − x1

)
[
γ0logit

(
ρ0,0

) − x1logit(θ)
]
,

β1 =
1

(
γ0 − x1

)
[
logit(θ) − logit

(
ρ0,0

)]
,

η =

(
γ0 − γ1

)

(
γ0 − x1

)
[
logit(θ) − logit

(
ρ0,0

)]
.

(2.4)

We note that the probability of DLT does not depend on the parameter γ1 when z = 0. Denote
by p(ρ0,0, γ0, γ1, x1) and p(ρ0,0, γ0, x0) the probabilities of DLT for a patient with covariate
value 1 and 0, respectively. These probabilities are obtained using the dose-toxicity model
(2.2) with β0, β1, η given by (2.4).

2.2. Likelihood

Suppose that after the lth patient with baseline covariate value z is treated with dose xz,l,
there are ml patients with covariate value z = 0 and kl patients with covariate value z = 1.
Let yz,l be the toxicity outcome (1 for DLT and 0 for no DLT) for the ith patient with covariate
value z. The likelihood of the data is

L
(
ρ0,0, γ0, γ1 | Dl

)
=

ml∏

i=1

[
p
(
ρ0,0, γ0, x0,i

)y0,i
(
1 − p

(
ρ0,0, γ0, x0,i

))1−y0,i
]

×
kl∏

j=1

[
p
(
ρ0,0, γ0, γ1, x1,i

)y1,i
(
1 − p

(
ρ0,0, γ0, γ1, x1,i

))1−y1,i
]
,

(2.5)

where Dl = {(x0,1, y0,1), . . . , (x0,ml , y0,ml), (x1,1, y1,1), . . . , (x1,kl , y0,kl)} and ml + kl = l.
Let h(ρ0,0, γ0, γ1) be a prior distribution on the parameters ρ0,0, γ0, and γ1. The

posterior distribution is

π
(
ρ0,0, γ0, γ1 | Dl

)
= c(Dl)L

(
ρ0,0, γ0, γ1 | Dl

)
h
(
ρ0,0, γ0, γ1

)
, (2.6)

where c(Dl) is a normalizing constant. This joint posterior is clearly intractable and WinBugs
and a Markov chain Monte Carlo sampler will be devised to estimate features of this joint
posterior distribution as in Tighiouart et al. [18].

2.3. Prior Distributions

Another advantage of the reparameterization in (2.4) is the natural specification of vague
but proper prior densities for the model parameters. Indeed, under the assumption that
γ0, γ1 belong to [Xmin, Xmax] with prior probability 1 and no prior assumptions on whether
one group can tolerate higher doses better than the other, we can take (γ0, γ1) ∼ Uniform
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[Xmin, Xmax]
2 and γ0 independent of γ1. If on the other hand, we have a priori belief that one

group can tolerate higher doses better than the other group for example, then (γ0, γ1) can be
taken to be uniform on the triangle Xmin < γ0 < γ1 < Xmax. Design operating characteristics
should be performed when designing prospective trials when considering informative priors.
The prior distribution for ρ0,0 is taken as a uniform in [0, θ], which reflects a lack of prior
knowledge regarding the probability of DLT at the initial dose.

2.4. Trial Design

Denote by A and B the two groups of patients corresponding to covariate values 0 and 1,
respectively. We assume that the support of the MTDs γ0 and γ1 are contained in [Xmin, Xmax].
That is, we assume that dose levels Xmin and Xmax are identified a priori such that γ0, γ1

belong to [Xmin, Xmax] with prior (and hence posterior) probability 1. We note that if the
prior distribution π(γ1) is independent of the joint prior distribution of (ρ0,0, γ0), then π(γ1)
is never updated unless a patient in group B is enrolled in the trial. In the case of such priors,
the trial proceeds as follows.

The first patient in either group receives the dose x1 = Xmin. Let Πz,1 be the marginal
posterior cdf of the MTD γz, z = 0, 1. Suppose that the first patient belongs to group A. If the
second patient belongs to group A, then he or she will receive the dose x0,2 = Π−1

0,1(α) so that
the posterior probability of exceeding the MTD γ0 is equal to the feasibility bound α. If the
second patient belongs to group B, then he or she will receive the dose x1 = Xmin. In general,
the first time a patient is assigned to a given group always receives x1 = Xmin no matter how
many patients have been enrolled in the other group. Once l patients have been enrolled in
the trial with at least one patient treated in each group, the l + 1-st patient with covariate
value z receives the dose xz,l+1 = Π−1

z,l
(α). The trial proceeds until a total of npatients have

been accrued. At the end of the trial, we estimate the MTD as γ̂z = Π−1
z,n(α), z = 0, 1.

3. Simulation Studies

3.1. Comparison of Three Designs

In order to assess the operating characteristics of this design when designing a prospective
trial, we explored the behavior of this method when we adjust for a significant covariate. We
also evaluated the performance of this design when adjusting for a nonsignificant baseline
covariate. Finally, its performance was also explored when two parallel trials are used
instead of adjusting for a binary baseline covariate. Therefore, we study design operating
characteristics by comparing the following designs.

(i) Design using a covariate; patients are accrued to the trial sequentially and the dose
given to a patient is calculated assuming model (2.2).

(ii) Design ignoring the covariate; patients are accrued to the trial sequentially and the
dose given to a patient is calculating assuming model (2.2) without the covariate,
that is, as in the original EWOC.

(iii) Design using separate trials; in each group, patients are accrued to the trial
sequentially and EWOC is implemented in each group.

Comparisons will be carried out under several scenarios for the true values of the MTDs γ0

and γ1. Since the main goal of cancer phase I clinical trials is to efficiently estimate the MTD
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while protecting patients from potentially toxic side effects, we will assess the safety of the
trial and efficiency of the estimate of the MTDs by simulating a large number of trials M
under each model and compare the proportion of patients exhibiting DLT, the average bias
biasave = M−1 ∑M

i=1 γ̂z,i − γz,true and the estimated mean square error MSE = M−1 ∑M
i=1(γ̂z,i −

γz,true)
2, where γ̂z,i is the MCMC estimate of the Bayes estimate of the marginal posterior

distribution of the MTD at the end of the ith trial, z = 0, 1. In addition, the models are further
compared with respect to the proportion of patients that were overdosed. Here, a patient
with baseline covariate z is overdosed if this patient has been given a dose x such that x >
x∗, where x∗ is defined as the dose for which P(DLT | x∗, z) = θ + 0.05. This probability is
calculated using the parameter values from the corresponding scenario.

3.2. Simulation Setup

The simulation results presented below all assume that the feasibility bound α = 0.25 and
that the dose levels are standardized so that the starting dose x1 equals to the minimum dose
for each trial Xmin = 0 and all subsequent dose levels are selected from the unit interval.
The target probability of DLT is fixed at θ = 0.33, ρ0,0 = 0.05, and the total sample size is
n = 42. We consider several scenarios corresponding to combinations of four possible values
of γ0, γ1, 0.2, 0.4, 0.6, and 0.8. In all simulations, the prior distributions for ρ0,0, γ0, γ1 were
taken as uniform in [0, θ] × [Xmin, Xmax]

2 with ρ0,0, γ0, γ1 independent a priori.
For design (1), a patient is randomly selected from either group A or B with equal

probability so that the total number of patients in group A, m, equals to the total number of
patients in group B, k. For each pair (γ0, γ1) in {0.2, 0.4, 0.6, 0.8}×{0.2, 0.4, 0.6, 0.8}, we simulate
1000 trials and calculate the proportion of patients that were overdosed, the proportion of
patients exhibiting DLT, the average bias, and the estimated MSE. For design (2), the covariate
for each patient is recorded but it is not taken into account when calculating the dose level
for the next patient. Again, we simulate 1000 trials and calculate the proportion of patients
that were overdosed, the proportion of patients exhibiting DLT, the average bias, and the
estimated MSE. For the third design, separate trials are simulated in each group and the
summary statistics are calculated based on 1000 simulated trials in each group. In all cases,
the responses yz,i are generated from model (2.2).

3.3. Results

Table 1 gives the overall proportion of patients exhibiting DLT, the proportion exhibiting
DLT in each group, the proportion of patients in each group that are overdosed, the bias,
and MSE of the estimates of the MTDs when design (i) in Section 3.1 is used. Table 2 gives
the summary statistics corresponding to the safety of the trial when design (ii) is used.
The overall proportion of patients exhibiting DLT is always less than θ = 0.33 under all
entertained scenarios and it is uniformly lower for a design which accounts for the baseline
covariate relative to the design ignoring this covariate. The same conclusion holds when
comparison of these two designs is carried out within each group. On the other hand, the
proportion of patients being overdosed in group A is much higher when the two groups of
patients differ in their susceptibility to treatment and this difference is not taken into account.
This proportion can be as high as 16% in the case where (γ0, γ1) = (0.4, 0.8). This is not
surprising because when a difference in the MTDs is not taken into account in the model, then
the sequence of doses generated by the design tends to cluster around a weighted average of
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Table 1: EWOC with Covariate. Design operating characteristic with respect to safety and efficiency of the
trial.

(γ0, γ1) 0.2, 0.4 0.2, 0.6 0.2, 0.8 0.4, 0.6 0.4, 0.8 0.6, 0.8
Proportion of DLTs 0.3032 0.2735 0.2505 0.2442 0.2231 0.1954
Proportion of DLTs in group A 0.3058 0.2758 0.2495 0.2432 0.2230 0.1932
Proportion of DLTs in group B 0.3007 0.2713 0.2514 0.2451 0.2232 0.1975
Proportion overdosed in group A 0.5958 0.6236 0.6199 0.3174 0.3738 0.1029
Proportion overdosed in group B 0.0934 0.0448 0.0102 0.0373 0.0044 0.0019
Bias (γ1) −0.0090 −0.0122 −0.0174 −0.0326 −0.0432 −0.0910
Bias of (γ2) −0.0585 −0.1218 −0.2185 −0.1075 −0.2014 −0.2013
MSE (γ1) 0.0484 0.0501 0.0505 0.0916 0.0968 0.1476
MSE (γ2) 0.1068 0.1711 0.2622 0.1635 0.2451 0.2437

Table 2: EWOC with no Covariate. Design operating characteristic with respect to safety of the trial.

(γ0, γ1) 0.2, 0.4 0.2, 0.6 0.2, 0.8 0.4, 0.6 0.4, 0.8 0.6, 0.8
Proportion of DLTs 0.3156 0.3172 0.3143 0.2824 0.2702 0.2370
Proportion of DLTs in group A 0.3170 0.3180 0.3105 0.2856 0.2737 0.2389
Proportion of DLTs in group B 0.3142 0.3164 0.3180 0.2791 0.2668 0.2350
Proportion overdosed in group A 0.6495 0.7415 0.775 0.4091 0.5298 0.1761
Proportion overdosed in group B 0.0184 0.0006 0.0000 0.0109 0.0000 0.0003

the two “true” MTDs, where the weights depends on the number of patients in each group. If
on the other hand, the models accounts for the difference in the MTDs, then the distribution
of the sequence of doses is bimodal clustering around the two “true” MTDs, as displayed
in Figure 1, which shows the histogram of all doses with fitted density (dashed line) when
(γ0, γ1) = (0.3, 0.6). The difference in the proportion of patients being overdosed in group
B between the two designs is practically negligible. When the two MTDs are equal and the
design does account for the baseline covariate, Tables 3 and 4 show that the proportions of
DLTs (overall and within each group) is no more than the target probability of DLT θ, and
the differences in these proportions between the two designs are practically not important.
No design is uniformly better than the other in terms of the proportion of patients being
overdosed. For instance, when γ0 = γ1 = 0.2, the proportion of patients in group A is 0.336
when a covariate is used and this proportion is 0.275 when the covariate is not taken into
account. On the other hand, when γ0 = γ1 = 0.4, the proportion of patients in group A is
0.179 when a covariate is used but this proportion is 0.21 when the covariate is not taken into
account. In fact, these proportions are equal on the average across the four scenarios for the
true value of the MTD γ = γ0 = γ1. Tables 3 and 4 also show that the bias and MSE of the
estimates of the MTD is higher when a nonsignificant covariate is used in the model, with the
higher values obtained the true MTD is high, γ = 0.6, 0.8.

Table 5 gives the summary statistics when separate trials enrolling n = 21 patients
are used. As before, the proportion of patients exhibiting DLT does not exceed the target
probability of DLT θ. When the true MTDs are the same, the overall proportion of patients
that are overdosed using a model with a baseline covariate (Table 3) is lower than the
corresponding proportion if parallel trials were used (Table 5) when γ = 0.2, 0.4. The
differences in these proportions for γ = 0.6, 0.8 are negligible. The bias of the estimate of
the MTD is about the same for both designs. In the case where the MTDs γ0 and γ1 are
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Table 3: EWOC with Covariate. Design operating characteristic with respect to safety and efficiency of the
trial.

γ0 = γ1 0.2 0.4 0.6 0.8
Proportion of DLTs 0.3337 0.2721 0.2183 0.1759
Proportion of DLTs in group A 0.3319 0.2751 0.2222 0.1764
Proportion of DLTs in group B 0.3356 0.2691 0.2143 0.1754
Proportion overdosed in group A 0.3361 0.1790 0.04995 0.0008
Proportion overdosed in group B 0.3346 0.1802 0.0497 0.0010
Bias (γ1) −0.0134 −0.0387 −0.0965 −0.2002
MSE (γ1) 0.0716 0.1373 0.2142 0.3425

Table 4: EWOC with no Covariate. Design operating characteristic with respect to safety and efficiency of
the trial.

γ0 = γ1 0.2 0.4 0.6 0.8
Proportion of DLTs 0.3243 0.2939 0.2527 0.2109
Proportion of DLTs in group A 0.3251 0.2944 0.2515 0.2083
Proportion of DLTs in group B 0.3236 0.2934 0.2539 0.2134
Proportion overdosed in group A 0.2755 0.2108 0.0774 0.0023
Proportion overdosed in group B 0.2761 0.2050 0.0749 0.0026
Bias (γ1) −0.0119 −0.0197 −0.0537 −0.1198
MSE (γ1) 0.0353 0.0684 0.1032 0.1537

Table 5: EWOC. Design operating characteristic with respect to safety and efficiency of the trial.

γ 0.2 0.4 0.6 0.8
Proportion of DLTs 0.3372 0.2778 0.2162 0.1737
Proportion overdosed 0.3684 0.2067 0.0417 0.0001
Bias (γ) −0.0086 −0.0249 −0.08124 −0.1915
MSE (γ) 0.0464 0.0858 0.1381 0.2246
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Figure 1: Histogram and fitted density (dashed line) of dose allocations for patients 2 through 80 based
on 1000 simulated trials using the model with covariate. The true MTDs are γ0 = 0.3, γ1 = 0.6, and ρ0 =
0.05, θ = 0.33, α = 0.25.
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different, more patients are overdosed using a model with a baseline covariate compared to
using parallel trials and the differences in the bias and MSE are negligible, see Tables 1 and 5.

Based on these results, we recommend adjusting for a baseline covariate thought to be
related to treatment susceptibility when designing a cancer phase I trials whenever possible.
We stand to lose little if we were to use a design with a covariate when in fact there is no
difference between the MTDs of the two groups.

4. Discussion

We have presented design operating characteristics of a Bayesian adaptive design which
accounts for a patient dichotomous baseline covariate using EWOC scheme. The design is
suitable for cancer phase I clinical trials where the goal is to estimate the conditional MTD
given patients’ covariate value.

We have found that if the two MTDs are different and the design does not adjust for
this heterogeneity, then the trial will result in more patients being overdosed. If the two
MTDs are the same and the design adjusts for patients’ heterogeneity, then slightly more
patients can be overdosed if the true MTD is low relative to a design with no covariate but
these proportions are equal on the average across the four scenarios for the true value of the
MTD. Thus, we stand to lose little if we do include a statistically nonsignificant covariate
in the model. Incidentally, this conclusion is in agreement with the findings in O’Quigley
et al. [15]. We carried out other simulations (results not shown) for various sample sizes,
allocation ratios, probability of DLT at the initial dose ρ0. The results and conclusions were
essentially the same. Ratain et al. [13] showed the importance of including patient’s plasma
concentration of anti-SEA antibodies in order to determine the MTD of the agent PNU-214565
as a function of this continuous baseline covariate. In a similar trial, Tighiouart and Rogatko
[16] showed how more patients were overdosed when a baseline covariate, cancer type,
was not accounted for in the model. Indeed, a retrospective analysis of a cancer phase I
trial using a baseline continuous covariate showed that nonsmall cell cancer patients and
pancreatic patients were treated at suboptimal doses whereas renal cell carcinoma patients
were overdosed, with 36.4% experiencing DLT; the target probability of DLT was θ = 0.2. This
last example is in agreement with the simulation results we obtained in this paper. We are in
the process of determining model operating characteristics in the presence of a continuous
covariate, more than one covariate, and interaction term. An important question is to decide
whether or not to include patients’ covariate values during the trial. Although the previous
results seem to indicate that we stand to lose little in terms of the proportion of patients being
overdoses and the efficiency of the estimate of the MTDs when covariate information is taken
into account in the model when in fact, this covariate is not predictive of DLT, determining
the value of this covariate may involve a monetary cost. This is the case when patients need
to be genotyped and certain biomarker expressions need to be determined.
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