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Biostatistics deals with data arising frombiomedical research.
It remains a very active research area with complicated
time-to-event data and missing data emerging in applica-
tion areas including medicine, genetics, neuroscience, and
engineering. Recent advances in biomedical research have
created new challenges and opportunities for statisticians
and data scientists. For example, big data analysis, precision
medicine, artificial intelligence, causal inference, and other
new research fields have inspired data scientists to develop
modern statistical methods and innovative inference proce-
dures.

The present special issue presents statistical research and
new advances in contemporary biostatistics. It provides one
review article and seven research articles contributed by some
of the leading experts in the field.The review article contained
in this issue gives an overview of the current development
in biostatistics, while each of the seven research articles
addresses new challenges in contemporary biostatistics, as
summarized below.

In the review paper “Mixed EffectsModels with Censored
Covariates, with Applications in HIV/AIDS Studies,” by L.
Wu and H. Zhang, the authors focus on the problem of
censored time-dependent covariates in regression analysis
of longitudinal data and time-to-event data. They review
the two-step method and the joint likelihood method and
describe examples from HIV/AIDS studies to illustrate the
problem and applications of the methods.

The research article entitled “A Comparison of Mean-
Based and Quantile Regression Methods for Analyzing Self-
Report Dietary Intake Data,” byM. L. Vidoni et al., compares

the traditional mean-based linear regression with quantile
regression in terms of investigating the relationship between
health behavior intervention and eating indices. The authors
found that only the quantile regression, through modeling
the coefficients across distributions of the outcome, can fully
describe the effect of intervention on healthy and unhealthy
eating indices between intervention and standard care
groups.The results canhelp developmore effective behavioral
intervention trails with heterogeneous populations.

The research article entitled “Atrial Fibrillation Detection
by the Combination of Recurrence Complex Network and
Convolution Neural Network,” by X. Wei et al., proposes an
R wave peak interval independent atrial fibrillation detection
algorithm on the basis of analyzing the synchronization
features of the electrocardiogram signal by a deep neural net-
work. Results show that the sensitivity, specificity, and accu-
racy of the algorithm are all around 95%, and the algorithm
is more effective than the traditional algorithms in terms of
detecting individual variation in the atrial fibrillation.

The research paper entitled “A Note on the Adaptive
LASSO for Zero-Inflated Poisson Regression,” by P. Banerjee
et al., proposes a flexible variable selection approach to effi-
ciently identify correlated features in a zero-inflated Poisson
(ZIP) regression model. The existing approach for variable
selection in a ZIP regression model which satisfies the
oracle property is the EM adaptive LASSO (EM AL), which
generates suboptimal results when the features are correlated.
The proposed approach is able to identify the true model
consistently, and the resulting estimator is as efficient as
oracle.
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The past decade has seen extensive development of
statistical methodology for designing phase I clinical trials
for drug combinations including designs allowing individ-
ualized maximum tolerable dose (MTD) determination in
single agent cancer phase I trials. In the research article “A
Bayesian Adaptive Design in Cancer Phase I Trials Using
Dose Combinations in the Presence of a Baseline Covariate,”
by M. A. Diniz et al., the authors describe a Bayesian
adaptive design for dose finding of a combination of two
drugs in cancer phase I clinical trials. The method takes into
account patients’ heterogeneity possibly related to treatment
susceptibility. The authors accomplish this using escalation
with overdose control principle, and the proposed method
gives a smaller pointwise average bias and a higher percent
of MTD recommendation.

In the research paper “Improved Small Sample Inference
on the Ratio of Two Coefficients of Variation of Two Inde-
pendent Lognormal Distributions,” by A.Wong and L. Jiang,
the authors study the two-sample inference for the ratio of
two coefficients of variation where the data is sampled from
lognormal distributions. They propose a simulated likelihood
ratio method that outperforms existing methods with small
samples in simulation studies.

In the research article “Detecting Spatial Clusters via a
Mixture of Dirichlet Processes,” by M. A. Ray et al., the
authors propose an approach able to detect spatial clusters
with skewed or irregular distributions. Amixture of Dirichlet
processes is used to describe spatial distribution patterns.The
effects of different batches of data collection efforts are also
modeled with a Dirichlet process. Inferences of parameters
including clustering are drawn under a Bayesian framework.

The research article entitled “On the Use of Min-Max
Combination of Biomarkers to Maximize the Partial Area
under the ROC Curve,” by H. Ma et al., adopts and extends
the min-max method to the estimation of the pAUC when
multiple continuous scaled biomarkers are available and
compare the performances of the proposed approach with
existing approaches via simulations. The extensive simulation
results demonstrate that the proposed method provides the
largest pAUC estimates. The proposed method is robust, and
it is encouraged to use this approach in the estimation of the
pAUC for many practical scenarios.

As the editors of this special issue, we hope that readers
of this special issue will find these articles representative
of the contributions of the contemporary biostatistics, in
terms of statistical procedures and practical applications.
We hope that the special issue provides new methods and
novel applications motivated by biomedical examples in the
broad areas of biostatistics and stimulate new interests in
contemporary biostatistics.
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Without the ability to use research tools and procedures that yield consistent measurements, researchers would be unable to draw
conclusions, formulate theories, or make claims about generalizability of their results. In statistics, the coefficient of variation is
commonly used as the index of reliability ofmeasurements.Thus, comparing coefficients of variation is of special interest.Moreover,
the lognormal distribution has been frequently used for modeling data from many fields such as health and medical research. In
this paper, we proposed a simulated Bartlett corrected likelihood ratio approach to obtain inference concerning the ratio of two
coefficients of variation for lognormal distribution. Simulation studies show that the proposed method is extremely accurate even
when the sample size is small.

1. Introduction

In health and medical research, it is common that the
variable of interest, 𝑋, such as the survival time, takes
only positive values and the underlying distribution of this
variable is highly skewed to the right. In this case, the
frequently assumed normal distribution for𝑋 is not suitable.
A standard approach to first transform 𝑋 such that the
transformed variable 𝑌 = 𝑔(𝑋) is normally distributed.
Then the existing statistical theories developed for the normal
distribution can be applied. For 𝑋 > 0 and the distribution
of 𝑋 is highly skewed to the right, the most common
transformation is the logarithmic transformation. In other
words, 𝑌 = log(𝑋) is normally distributed. Hence, 𝑋 is
lognormally distributed.Detailed review of the theories of the
lognormal distribution can be found in Aitchison and Brown
[1], and Crow and Simizu [2]. In practice, Fears et al. [3]
investigated the variability and reproducibility of hormone
assays used by laboratories with the capability of performing
large numbers of tests. They assumed the hormone samples
used in laboratories are independent lognormally distributed.

In this case, it is of special interest to know if each sample
yields consistent measurements.

The coefficient of variation (𝜏) is defined as the ratio of the
standard deviation to the mean, where the mean is assumed
to be non zero. It is an important index for assessment of
the reliability of a measuring procedure. Hence, the problem
considered in Fears et al. [3] can be viewed as testing if the
coefficients of variation used in each laboratory are the same
or not.

Mathematically, if a random variable 𝑋 is distributed as
lognormal(𝜇, 𝜎), then 𝑌 = log(𝑋) is distributed as normal
with mean 𝜇 and variance 𝜎2. It is well-known that

𝐸 (𝑋) = exp{𝜇 + 𝜎2
2 } ,

and var (𝑋) = exp {2𝜇 + 𝜎2} [exp {𝜎2} − 1] .
(1)

Hence, the coefficient of variation, 𝜏, is
𝜏 = √var (𝑋)

𝐸 (𝑋) = √exp {𝜎2} − 1 > 0. (2)
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Nam and Kwon [4] compared various approximate inter-
val estimations of the ratio of two coefficients of variation
for independent lognormal distributions. And their simu-
lation results showed that empirical coverage rates of these
methods are satisfactorily close to the nominal coverage
rate for medium sample size. The aim of this paper is to
develop a more accurate method to obtain inference for
the ratio of two coefficients of variation for independent
lognormal distributions.Moreover, the proposedmethod can
be generalized to test if the coefficients of variation from 𝑘
independent lognormal distributions are heterogeneous.

The rest of the paper is organized as follows. Sec-
tion 2 reviewed the existing methods for obtaining inference
concerning the ratio of two coefficients of variation from
independent lognormal distribution. The simulated Bartlett
corrected likelihood method is proposed in Section 3. A real
data example is presented in Section 4 to illustrate the applica-
tion of themethod discussed in this paper. Simulation studies
are performed to compare the accuracy of the methods
discussed in this paper in Section 5. Extension to testing for
homogeneity of coefficients of variations from 𝑘 independent
lognormal distributions is discussed in Section 6. Some
concluding remarks are recorded in Section 7.

2. Existing Methods for Inference on the Ratio
of Two Coefficients of Variation of Two
Independent Lognormal Distributions

Let (𝑥𝑖1, . . . , 𝑥𝑖𝑛𝑖) be the 𝑖𝑡ℎ sample from the lognormal(𝜇𝑖, 𝜎𝑖)
distribution, where 𝑖 = 1, . . . , 𝑘. Then (𝑦𝑖1, . . . , 𝑦𝑖𝑛𝑖) =
(log𝑥𝑖1, . . . , log𝑥𝑖𝑛𝑖) is the 𝑖𝑡ℎ sample from the normal dis-
tribution with mean 𝜇𝑖 and variance 𝜎2𝑖 . From (2), the 𝑖𝑡ℎ
coefficient of variation is 𝜏𝑖 = √exp{𝜎2𝑖 } − 1. Nam and Kwon
[4] compared fourmethods in obtaining confidence intervals
for 𝜓 = 𝜏1/𝜏2. The following is the summary of the methods
discussed in Nam and Kwon [4]:

(1) Wald type method
Let the observed test statistic be

𝑧𝑊 (𝜓) = 𝜓̂ − 𝜓
√v̂ar (𝜓̂) (3)

where 𝜓̂ = 𝜏1/𝜏2, 𝜏𝑖 = √exp{𝜎̂2𝑖 } − 1, 𝜎̂2𝑖 =
(1/𝑛𝑖) ∑𝑛𝑖𝑗=1(log𝑥𝑖𝑗 − ∑𝑛𝑖

ℎ=1
log𝑥𝑖ℎ/𝑛𝑖)2, and v̂ar(𝜓̂) =

(𝑛1𝜓4[(1 + 𝜏22 )𝜎̂22]2 + 𝑛2[(1 + 𝜏21 )𝜎̂21]2)/2𝑛1𝑛2(𝜏1𝜏2)2.
Then𝑍𝑊(𝜓) is asymptotically distributed as standard
normal distribution.The significance function of 𝜓 is𝑝(𝜓) = Φ(𝑧𝑊(𝜓)), whereΦ() is the cumulative distri-
bution function of the standard normal distribution.

(2) Fieller type method
Let the observed test statistic be

𝑧𝐹 (𝜓) = 𝜏1 − 𝜓𝜏2
√ṽar (𝜏1) + 𝜓2ṽar (𝜏2) (4)

where

ṽar (𝜏𝑖) = 𝜎̂2𝑖 (1 + 𝜏𝑖)22𝑛𝑖𝜏2𝑖 𝑖 = 1, 2. (5)

Then𝑍𝐹(𝜓) is also asymptotically distributed as stan-
dard normal distribution.The significance function of𝜓 is 𝑝(𝜓) = Φ(𝑧𝐹(𝜓)).

(3) Log method
Let the observed test statistic be

𝑧𝐿 (𝜓) = log 𝜏1 − log 𝜏2 − log𝜓
√ṽar (log 𝜏1) + ṽar (log 𝜏2) (6)

where

ṽar (log 𝜏i) = ṽar (𝜏𝑖)𝜏2𝑖 𝑖 = 1, 2. (7)

Then𝑍𝐿(𝜓) is also asymptotically distributed as stan-
dard normal distribution.The significance function of𝜓 is 𝑝(𝜓) = Φ(𝑧𝐿(𝜓)).

(4) Method of variance estimates recovery (MOVER)
This is a method that will directly obtain an approxi-
mate (1 − 𝛼)100% confidence interval for 𝜓 only. Let

𝑙𝑖 = log 𝜏𝑖 − 𝑧𝛼/2√ṽar (log 𝜏𝑖),
and 𝑢𝑖 = log 𝜏𝑖 + 𝑧𝛼/2√ṽar (log 𝜏𝑖).

(8)

Then an approximate (1−𝛼)100% confidence interval
for log𝜓 is (𝐿, 𝑈) where

𝐿 = (log 𝜏1 − log 𝜏2)
− √(log 𝜏1 − 𝑙1)2 + (𝑢2 − log 𝜏2)2,

𝑈 = (log 𝜏1 − log 𝜏2)
+ √(log 𝜏1 − 𝑙1)2 + (𝑢2 − log 𝜏2)2.

(9)

Thus, an approximate (1−𝛼)100%confidence interval
for 𝜓 is (exp{𝐿}, exp{𝑈}). If ṽar(log 𝜏𝑖), for 𝑖 = 1, 2,
to be the same as that obtained in the Log method,
the MOVER method is identical to the Log method.
Note that Hasan and Krishamoorthy [5] proposed an
improved version of the MOVER method.

3. Proposed Method

In this section, we will first review the likelihood basedmeth-
ods and the Bartlett corrected likelihood ratio method. Since
the required Bartlett adjustment for the Bartlett corrected
likelihood ratiomethod is very difficult to obtain, a numerical
algorithm is proposed to approximate the Bartlett adjust-
ment. Then the methods are applied to obtain inference for
the ratio of two coefficients of variaation of two independent
lognormal distribution.
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3.1. Likelihood Based Methods and Bartlett Corrected Like-
lihood Ratio Method. Let (𝑥1, . . . , 𝑥𝑛) be a sample from a
known distribution with probability density function 𝑓(⋅, 𝜃),
where 𝜃 is a 𝑝-dimensional vector of parameters. Let 𝜓 =𝜓(𝜃), which has dimension𝑑 < 𝑝 be the parameter of interest.
The log-likelihood function is

ℓ (𝜃) = ℓ (𝜃; 𝑥1, . . . , 𝑥𝑛) =
𝑛∑
𝑖=1

log𝑓 (𝑥𝑖; 𝜃) . (10)

Under the regularity conditions stated in Barndorff-Nielsen
and Cox [6], we have the standardized maximum likelihood
estimate (MLE) statistic (𝜃 − 𝜃)󸀠[var(𝜃)]−1(𝜃 − 𝜃) and the
likelihood ratio statistic 2[ℓ(𝜃)− ℓ(𝜃)] that are asymptotically
chi-square distributed with 𝑝 degrees of afreedom, 𝜒2𝑝, where𝜃 is the overall MLE, which is the value of 𝜃 that maximizedℓ(𝜃), and var(𝜃) is approximately the inverse of the Fisher’s
expected information. When the parameter of interest is 𝜓 =𝜓(𝜃), Barndorff-Nielsen and Cox [6] showed that similar
statistics can be obtained. The standardized MLE statistic
becomes

𝑄 (𝜓) = (𝜓̂ − 𝜓)󸀠 [var (𝜓̂)]−1 (𝜓̂ − 𝜓) (11)

where 𝜓̂ = 𝜓(𝜃), and var(𝜓̂) can be approximated by the delta
method, which takes the form

var (𝜓̂) ≈ {𝜕𝜓 (𝜃)𝜕𝜃 }󸀠 var (𝜃) {𝜕𝜓 (𝜃)𝜕𝜃 } . (12)

The likelihood ratio statistic is

𝑊(𝜓) = 2 [ℓ (𝜃) − ℓ (𝜃)] , (13)

where 𝜃 is the constrained MLE, which is obtained by
maximizing ℓ(𝜃) for the given 𝜓 value. Both 𝑄(𝜓) and𝑊(𝜓) are asymptotically 𝜒2𝑑. As defined in Fraser [7], the
significance function for𝜓 is defined as 𝑝(𝜓) = 𝑃(𝜒2𝑑 ≤ 𝑞(𝜓))
or 𝑝(𝜓) = 𝑃(𝜒2𝑑 ≤ 𝑤(𝜓)) can be used to obtain inference
concerning 𝜓 where 𝑞(𝜓) and 𝑤(𝜓) are the observed values
of𝑄(𝜓) and𝑊(𝜓), respectively. In particular, the (1−𝛼)100%
confidence region of 𝜓 is

{𝜓 : 𝑞 (𝜓) ≤ 𝜒2𝑑,1−𝛼}
and {𝜓 : 𝑤 (𝜓) ≤ 𝜒2𝑑,1−𝛼} ,

(14)

respectively, where 𝜒2𝑑,1−𝛼 is the (1 − 𝛼)100𝑡ℎ percentile of 𝜒2𝑞 .
It is well-known that these two asymptotic methods have

rate of convergence 𝑂(𝑛−1/2), and they are referred to as
the first-order methods. In statistics literature, there exists
various adjustments to improve the accuracy of the above
methods. In particular, Barndorff-Nielsen [8, 9] introduced
the modified signed log-likelihood ratio statistics, a third-
order method. However, this method is restricted to scalar
parameter of interest only. On the other hand, Bartlett [10]
proposed a transformation of the likelihood ratio statistic

such that the mean of the transformed statistic matched the
mean of the asymptotic distribution. More specifically,

𝑊∗ (𝜓) = 𝑊(𝜓)
𝐵 (15)

where 𝐵 is the Bartlett adjustment such that 𝐸[𝑊∗(𝜓)] = 𝑑.
And𝑊∗(⋅) is known as the Bartlett corrected likelihood ratio
statistic. An obvious choice of 𝐵 is

𝐵 = 𝐸 [𝑊∗ (𝜓)]
𝑑 . (16)

Bartlett [10] showed that the Bartlett corrected likelihood
ratio statistic is also asymptotically 𝜒2𝑑 distributed and it has
rate of convergence 𝑂(𝑛−2). Therefore, it is an extremely
accurate method. Nevertheless, except in a few well-defined
problem, 𝐸[𝑊∗(𝜓)] is very difficult to obtain which hinders
the use of this method in applied statistics. A review of the
Bartlett corrected likelihood ratio method can be found in
Barndorff-Nielsen and Cox [6].

Although, mathematically, the explicit closed form of 𝐵,
or even an asypmptotic expansion of 𝐵, is difficult to obtain,
we propose the following algorithmic way to obtain 𝐸[𝑊(𝜓)]
numerically, and hence, an estimated 𝐵.

Given: (𝑥1, . . . , 𝑥𝑛) is a sample of size 𝑛 from a distribution
with known probability density function 𝑓(⋅; 𝜃).

Interest: Inference concerning 𝜓 = 𝜓(𝜃).
Have: Overall maximum likelihood estimate 𝜃, the con-

strained maximum likelihood estimate 𝜃, and the observed
likelihood ratio statistic 𝑤(𝜓).

Step 1: Simulate𝑀 samples of data of size 𝑛 from 𝑓(⋅; 𝜃).
Step 2: For each set of simulated data, obtain the simulated

observed likelihood ratio statistic. As a result, we have𝑤1(𝜓), . . . , 𝑤𝑀(𝜓).
Step 3: Calculate

𝑤 (𝜓) = ∑𝑀𝑖=1 𝑤𝑖 (𝜓)𝑀 , (17)

which is an estimate of the mean of the likelihood ratio
statistic. Hence, we have 𝐵 = 𝑤(𝜓)/𝑑.

Step 4: The observed simulated Bartlett corrected likeli-
hood ratio statistic is

𝑤∗ (𝜓) = 𝑤 (𝜓)
𝐵 , (18)

is asymptotically distributed as 𝜒2𝑑 with fourth order rate
of convergence. Thus, the significance function is 𝑝(𝜓) =𝑃(𝜒2𝑑 ≤ 𝑤∗(𝜓)), and the (1 − 𝛼)100% confidence region of𝜓 is

{𝜓 : 𝑤∗ (𝜓) ≤ 𝜒2𝑑,1−𝛼} . (19)

As a final note on the proposed algorithm, theoretically,
the choice of𝑀 should be as large as possible. However, the
larger𝑀 is, themore calculations are required to obtain𝑤(𝜓).
Moreover, the more nuisance parameters exist in the model,
the larger𝑀 has to be. We recommend to use trial-by-error
of𝑀 until 𝑤(𝜓) is stablized.
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3.2. Applying Likelihood Based Method to Obtain Inference on
the Ratio of Two Coefficients of Variation of Two Independent
LogNormal Distribution. Let𝑌𝑖 = ∑𝑛𝑖𝑗=1 𝑌𝑖𝑗/𝑛𝑖 and (𝑛𝑖−1)𝑆2𝑖 =∑𝑛𝑖𝑗=1(𝑌𝑖𝑗 − 𝑌𝑖)2. Then 𝑌𝑖 is normally distributed with mean 𝜇𝑖
and variance 𝜎2𝑖 /𝑛, and (𝑛𝑖−1)𝑆2𝑖 /𝜎2𝑖 is 𝜒2𝑛−1. Moreover,𝑌𝑖 and(𝑛𝑖 − 1)𝑆2𝑖 /𝜎2𝑖 are independent. Hence, inference concerning𝜎2𝑖 will be based on 𝜒2𝑛𝑖−1. Since 𝜏𝑖 is a function of 𝜎2𝑖 only,
inference concerning 𝜏𝑖 will be based on 𝜒2𝑛𝑖−1. Let 𝜃 =
(𝜎21 , 𝜎22). Then the likelihood function for 𝜃 can be written as

ℓ (𝜃) = ℓ (𝜎21 , 𝜎22 ; 𝑠21, 𝑠22)
= −𝑛1 − 12 log𝜎21 − (𝑛1 − 1) 𝑠212𝜎21 − 𝑛2 − 12 log𝜎22

− (𝑛2 − 1) 𝑠222𝜎22 .
(20)

It is easy to show that the overall MLE

𝜃 = (𝜎̂21 , 𝜎̂22) = (𝑠21, 𝑠22) . (21)

Since our parameter of interest is 𝜓 = 𝜓(𝜃) = 𝜏1/𝜏2, where
𝜏𝑖 = √exp{𝜎2𝑖 } − 1, we have

𝜎21 = log (𝜓2 exp {𝜎22} − 𝜓2 + 1) . (22)

For a given 𝜓 value, the log-likelihood function in (20) can
be expressed as a function of 𝜎22 only, and is

ℓ (𝜎22) = ℓ (𝜎22 ; 𝑠21, 𝑠22)
− 𝑛1 − 12 log [log (𝜓2 exp {𝜎22} − 𝜓2 + 1)]

− (𝑛1 − 1) 𝑠212 [log (𝜓2 exp {𝜎22} − 𝜓2 + 1)]
− 𝑛2 − 12 log𝜎22 − (𝑛2 − 1) 𝑠222𝜎22 .

(23)

Hence, to solve for the constrained MLE 𝜃 = (𝜎̃21 , 𝜎̃22),
we have to find 𝜎̃22 that maximized (23), and then 𝜎̃21 =
log(𝜓2exp{𝜎̃22} − 𝜓2 + 1). Once we have both the overall and
constrained MLEs, we can obtain the observed likelihood
ratio statistic𝑤(𝜓) as given in (13).Therefore, the significance
function is 𝑝(𝜓) = 𝑃(𝜒21 ≤ 𝑤(𝜓)). Moreover, by applying the
algorithm given in the previous section, we can also obtain
the observed simulated modified likelihood ratio statistic𝑤∗(𝜓) and the corresponding significance function is 𝑝(𝜓) =𝑃(𝜒21 ≤ 𝑤∗(𝜓)).
4. Real Data Example

To illustrate the application of the methods discussed in this
paper, we revisit the example discussed inNam andKwon [4].

Table 1: 95% confidence interval for𝜓 for the experiment by Faupel-
Badger et al. [11].

Method 95% confidence interval for 𝜓
Wald type (2.1798, 3.8620)
Fieller type (2.2705, 3.9992)
Log method (2.2867, 3.9907)
Likelihood ratio (2.2776, 4.0126)
Bartlett correction (2.2770, 4.0138)

Faupel-Badger et al. [11] compare concentrations of estrogen
metabolites by RIA with the concentrations obtained using a
novel and high-performance liquid chromatography-tandem
mass spectrometry (LC-MS/MS). The 10% blinded quality
control samples were used for assessment of quality control of
the laboratory assay. Partial summary of data were presented
in Nam and Kwon [4] and we have

𝑛1 = 48,
𝜎̂21 = (0.1687)2 ,
𝑛2 = 53,
𝜎̂22 = (0.0562)2

(24)

where the first sample is taken from RIA, and the second
sample is taken from LC-MS/MS. Table 1 records the 95%
confidence interval for the ratio of the two coefficients of
variation assuming that the data are obtained from inde-
pendent lognormal distributions obtained by the methods
discussed in this paper. Note that the MOVER method is
identical to the Log method and Hasan and Krishnamoorthy
[5] showed that results from the improved version of the
MOVERmethod are still similar to those obtained by the Log
method. Hence, both the MOVER method and its improved
version are not included in the calculations. Except for the
Wald type, the intervals obtained in Nam and Kwon [4] seem
to be close to each other. Notice that the results from the
Fieller type are different from that reported in Nam and
Kwon [4]. Moreover, we observed that the likelihood ratio
method and the proposed Bartlett correctionmethod seem to
be different from the other methods by having a larger upper
confidence limit.

With the above observation, it is of interest to compare the
accuracy of the methods discussed in this paper, especially
when the sample size is small.

5. Simulation Studies

To compare the accuracy of the methods discussed in this
paper, simulations studies are performed. The parameters
settings are given in Table 2. Other settings have also been
calculated but not reported because the results are very
similar to those presented. However, they are available upon
request. Sincewe are interested in developing amethod that is
accurate even for small sample sizes, hence the chosen sample
sizes in the simulations studies are relatively small.
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Table 2: Parameters settings for simulation studies.

Study 𝜇1 𝜎1 𝜇2 𝜎2 𝑛1 𝑛2
1 0.6 0.1 3.0 0.5 5 5
2 10 20
3 15 25
4 20 10
5 1.1 0.2 0.8 0.4 5 5
6 10 20
7 15 25
8 20 10
9 2.5 1.2 3.0 0.7 5 5
10 10 20
11 15 25
12 20 10
13 5.0 0.7 6.0 1.4 5 5
14 10 20
15 15 25
16 20 10

For each study, we obtain 10,000 simulated samples.
Theoretically, 𝑀 should be as large as possible because we
want to use 𝑤(𝜓) to be the estimate of 𝐸[𝑊(𝜓)]. However,
numerically, we have 𝑁 simulated samples, and for each
simulated sample, we have to do 𝑀 simulations to obtain𝑤(𝜓). For these simulation studies, we use𝑀 = 500. For each
simulated sample, we compute the 95% confidence interval
obtained by the methods discussed in this paper. Table 3
reported the percentage of samples where the true 𝜓 is less
than the lower 95% confidence limit (le), is within the 95%
confidence interval (cc), and is greater than the upper 95%
confidence limit (ue). The nominal values are 2.5%, 95% and
2.5%, respectively.

From Table 3, the three methods discussed in Nam and
Kwon [4] do not give satisfactory coverage, especially when
the sample sizes are small.The coverage of the likelihood ratio
method is improving when the sample sizes increase and,
in general, it has asymmetric errors. Nevertheless the pro-
posed simulated Bartlett corrected likelihood ratio method
is extremely accurate even when the sample sizes are as small
as 5.

6. Testing Homogeneity of Coefficients of
Variation from 𝑘 Independent Lognormal
Distributions

For 𝑘 samples from independent lognormal(𝜇𝑖, 𝜎𝑖) distribu-
tion, the required log-likelihood function can be written as

ℓ (𝜃) = ℓ (𝜎21 , . . . , 𝜎2𝑘 ; 𝑠21, . . . , 𝑠2𝑘)
= 𝑘∑
𝑖=1

[−𝑛𝑖 − 12 log𝜎2𝑖 − (𝑛𝑖 − 1) 𝑠2𝑖2𝜎2𝑖 ] (25)

Table 3

(a) Empirical coverage rate for the simulation studies 1 to 8

Study Method le cc ue
1 Wald type 0.08 87.78 12.14

Fieller type 3.48 95.50 1.02
Log method 6.28 88.51 5.21

Likelihood ratio 3.12 93.39 3.49
Bartlett correction 2.40 94.90 2.70

2 Wald type 0.20 89.31 10.49
Fieller type 0.82 94.01 5.17
Log method 1.94 92.71 5.35

Likelihood ratio 2.22 94.78 3.00
Bartlett correction 1.92 95.29 2.79

3 Wald type 0.68 92.92 6.40
Fieller type 3.48 95.50 1.02
Log method 3.93 93.25 2.82

Likelihood ratio 2.77 94.57 2.66
Bartlett correction 2.53 94.85 2.27

4 Wald type 1.44 94.14 4.42
Fieller type 7.81 91.99 0.20
Log method 7.04 91.46 1.50

Likelihood ratio 3.15 94.23 2.62
Bartlett correction 2.88 94.85 2.27

5 Wald type 0.05 87.47 12.48
Fieller type 2.99 95.28 1.73
Log method 5.88 88.45 5.67

Likelihood ratio 3.13 93.39 3.48
Bartlett correction 2.42 94.90 2.68

6 Wald type 0.13 89.18 10.69
Fieller type 0.67 93.59 5.74
Log method 1.84 92.58 5.58

Likelihood ratio 2.25 94.75 3.01
Bartlett correction 2.00 95.23 2.77

7 Wald type 0.57 92.73 6.70
Fieller type 2.87 95.26 1.87
Log method 3.68 93.20 3.12

Likelihood ratio 2.70 94.66 2.64
Bartlett correction 2.52 94.90 2.58

8 Wald type 1.34 94.14 4.52
Fieller type 7.36 92.28 0.36
Log method 6.68 91.63 1.69

Likelihood ratio 3.15 94.34 2.49
Bartlett correction 2.88 94.83 2.29

(b) Empirical coverage rate for the simulation studies 9 to 16

Study Method le cc ue
9 Wald type 0.00 82.10 17.90

Fieller type 0.01 98.88 1.11
Log method 1.27 90.26 8.47

Likelihood ratio 2.99 93.61 3.40
Bartlett correction 2.40 94.94 2.66
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(b) Continued.

Study Method le cc ue
10 Wald type 0.00 83.91 16.09

Fieller type 0.00 90.18 9.82
Log method 0.07 90.86 9.07

Likelihood ratio 2.04 94.82 3.14
Bartlett correction 1.92 95.24 2.84

11 Wald type 0.00 89.36 10.64
Fieller type 0.00 96.70 3.30
Log method 0.96 93.93 5.11

Likelihood ratio 2.75 94.59 2.66
Bartlett correction 2.48 94.97 2.55

12 Wald type 0.02 92.69 7.29
Fieller type 0.47 99.16 0.37
Log method 3.62 93.86 2.52

Likelihood ratio 3.17 94.34 2.49
Bartlett correction 2.96 94.71 2.33

13 Wald type 0.00 79.33 20.67
Fieller type 2.01 97.99 0.00
Log method 10.56 88.87 0.57

Likelihood ratio 3.52 94.54 2.94
Bartlett correction 2.68 95.03 2.29

14 Wald type 0.01 91.26 8.73
Fieller type 0.64 99.32 0.04
Log method 3.15 94.73 2.12

Likelihood ratio 2.44 94.69 2.87
Bartlett correction 2.10 95.19 2.71

15 Wald type 0.59 93.88 5.53
Fieller type 5.44 94.56 0.00
Log method 6.29 93.43 0.28

Likelihood ratio 3.01 94.48 2.51
Bartlett correction 2.84 94.83 2.33

16 Wald type 1.60 94.18 4.22
Fieller type 12.16 87.84 0.00
Log method 10.64 89.36 0.00

Likelihood ratio 3.01 94.48 2.51
Bartlett correction 2.95 94.71 2.34

where 𝑠2𝑖 is the unbiased sample variance estimate of the 𝑖𝑡ℎ
sample given in Section 3. It is well-known that the overall
MLE is

𝜃 = (𝜎̂21 , . . . , 𝜎̂2𝑘) = (𝑠21, . . . , 𝑠2𝑘) . (26)

The aim is to test

𝐻0: 𝜏1 = ⋅ ⋅ ⋅ = 𝜏𝑘 = 𝜏
V𝑠 𝐻𝑎: not all coefficients of variation are the same, (27)

which, in this case, is the same as testing

𝐻0: 𝜎21 = ⋅ ⋅ ⋅ = 𝜎2𝑘 = 𝜎2
V𝑠 𝐻𝑎: not all variances are the same. (28)

Therefore, when 𝐻0 is true, the log-likelihood function can
be re-written in terms of 𝜎2 and is

ℓ (𝜎2) = ℓ (𝜎2; 𝑠21, . . . , 𝑥2𝑘)
= 𝑘∑
𝑖=1

[−𝑛𝑖 − 12 log𝜎2 − (𝑛𝑖 − 1) 𝑠2𝑖2𝜎2 ] , (29)

and the constrained MLE is

𝜎̃2 = ∑𝑘𝑖=1 (𝑛𝑖 − 1) 𝑠2𝑖
∑𝑘𝑖=1 (𝑛𝑖 − 1) , (30)

which is the usual pooled variance estimate. The observed
likelihood ratio statistic is

𝑤 = 2 [ℓ (𝜃) − ℓ (𝜎̃2)] , (31)

which is asymptotically distributed as 𝜒2𝑘−1. Hence, the
observed simulated Bartlett corrected likelihood ratio statis-
tic is

𝑤∗ = 𝑤
𝑤/ (𝑘 − 1) , (32)

where 𝑤 is obtained by the algorithm given in Section 2.
Simulation studies are performed to compare the accu-

racy of the likelihood ratiomethod and the simulated Bartlett
corrected likelihood ratio method. In particular, three sam-
ples of data from lognormal(𝜇𝑖, 𝜎) distribution are generated.𝑤 is calculated and 𝑤∗ is also the calculation with 𝑀 =1000. We repeat this process 𝑁 = 10,000. The proportion of
samples that have 𝑝-values less than 5% is reported in Table 4
for various sample sizes. The choice of 𝜇𝑖 is not important
because it does not involve in any of the calculations and,
hence, we take it to be 0. Different choices of 𝜎 result in
similar results and are not reported, but they are available
upon request. Table 4 reported the cases 𝜇𝑖 = 0 and 𝜎 = 1.
When sample sizes are small, the likelihood ratio method
does not give satisfactory results, but it is improving when
the sample sizes increase. The simulated Bartlett corrected
likelihood ratiomethod consistently gives extremely accurate
result even when the sample sizes are small.

7. Conclusion

The lognormal distribution has been frequently used for
modeling positive valued right skewed data, which com-
monly arise in health and medical research. In this paper,
we proposed a simulated Bartlett corrected likelihood ratio
approach to obtain inference concerning the ratio of two
coefficients of variation for lognormal distribution. Simu-
lation studies show that the proposed Bartlett correction
method is extremely accurate even when the sample size is
small. Moreover, the proposed proposed Bartlett correction
method is extended to test homogeneity of 𝑘 coefficients of
variation from independent lognormal distributions.
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Table 4: The proportion of samples rejected at 5% level of significance for testing 𝐻0 : 𝜏1 = 𝜏2 = 𝜏3 = 𝜏 when data are generated from
lognormal(0, 1) distribution.

Proportion of samples rejected at 𝛼 = 0.05
(𝑛1, 𝑛2, 𝑛3) Likelihood ratio Bartlett correction
(5, 5, 5) 0.0658 0.0512
(5, 10, 15) 0.0646 0.0524
(10, 10, 10) 0.0565 0.0495
(10, 15, 20) 0.0529 0.0487
(50, 50, 50) 0.0544 0.0523

Data Availability

The data set for compared concentrations of estrogen
metabolites by RIA with the concentrations obtained using a
novel and high-performance liquid chromatography-tandem
mass spectrometry (LC-MS/MS) is from previously reported
in Faupel-Badger et al. [11], which has been cited. This data
set was further analyzed in Nam and Kwon [4], which was
also cited in themanuscript.The other numerical examples in
the submitted paper are based on simulation studies, which is
available from the corresponding author upon request.
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In mean-based approaches to dietary data analysis, it is possible for potentially important associations at the tails of the intake
distribution, where inadequacy or excess is greatest, to be obscured due to unobserved heterogeneity. Participants in the upper or
lower tails of dietary intake data will potentially have the greatest change in their behavior when presented with a health behavior
intervention; thus, alternative statistical methods to modeling these relationships are needed to fully describe the impact of the
intervention. Using data from Tu Salud ¡Si Cuenta! (Your Health Matters!) at Home Intervention, we aimed to compare traditional
mean-based regression to quantile regression for describing the impact of a health behavior intervention on healthy and unhealthy
eating indices. The mean-based regression model identified no differences in dietary intake between intervention and standard
care groups. In contrast, the quantile regression indicated a nonconstant relationship between the unhealthy eating index and
study groups at the upper tail of the unhealthy eating index distribution. The traditional mean-based linear regression was unable
to fully describe the intervention effect on healthy and unhealthy eating, resulting in a limited understanding of the association.

1. Introduction

Many health behavior interventions focus on positive lifestyle
changes in the areas of increasing physical activity and
healthy diets. Adopting these behavior changes can prevent
or reduce the negative health consequences of obesity in
minority US populations. Mexican Americans are particu-
larly prone to physical inactivity and poor diets because of
lack of fruit and vegetable consumption compared to Non-
Hispanic Whites [1, 2]. Despite research showing poorer
dietary intake than other ethnic groups, within the Mexican
American population there is heterogeneity in healthy and
unhealthy food intake [3].

Dietary intake data is typically measured using self-
report tools and individual food intake is aggregated into
compositional data or patterns to describe overall diets.

When the dietary data are analyzed using mean-based
approaches, such as ordinary least squares (OLS) regression,
potentially important relationships with disease risk at the
lower and upper levels of the distribution could be obscured
due to unobserved heterogeneity. Participants in the upper
or lower tails of dietary intake data, where inadequacy or
excess is greatest, will theoretically have the greatest change
in their behavior when presented with a health behavior
intervention; thus, alternative statisticalmethods tomodeling
these relationships are needed to fully describe the impact
of the intervention. This is particularly notable in certain
populations, such as Mexican Americans, where variation
in factors such as acculturation and language influence
food choices and adherence to traditional and western diet
patterns [3–6].
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As an alternative to mean-based regression, quantile
regression (QR) was developed by Koenker and Bassett and
has primarily been used in the fields of risk management
and business [7]. Quantile regression has been extended for
handling longitudinal data based on different approaches that
account for serial correlations within a subject and has been
used as an important alternative to mean-based regression
approaches because of its flexibility for modeling nonnormal
data, or heterogeneous conditional distributions [8]. QR can
model the conditional distribution of the response, not only
on the conditional mean, giving the research critical insights
when valuable information lies in the tails. Despite QR being
computationally intensive and not equipped to handle small
data sets, it is more robust to outliers than mean-based
regression, where estimates of the conditional mean can be
strongly influenced by outliers.

Application of QR to health and behavioral sciences is
increasing and could be a valuable statistical tool for health
researchers. QR has been used to evaluate the effects of
physical activity or dietary intake on varying quantile levels
of certain variables, such as BMI [9–12], waist circumference
[13], socioeconomic status [14], and risk factors of disease
outcomes including health-related scores and biomarker data
[15–19]. A limited number of studies have introduced a QR-
based approach specifically applied to behavioral data [20–
22]. Yet, there is limited research focusing on how to use
and apply QR results to improve behavioral interventions
and maintenance of behavior change over time by possibly
addressing the upper and lower tails of the population
distribution differently.

The goal of this review was to compare traditional mean-
based linear regression with QR through the illustration of
their applications to real data from the behavioral inter-
vention study aimed at improving healthy eating and to
demonstrate the usefulness of QR in fully describing the
relationships.

2. Linear Quantile Mixed Effect Regression

Let 𝑦𝑖𝑡 be the measurement for the 𝑖-th subject (𝑖 = 1, . . . , 𝑛)
at time 𝑡 (𝑡 = 1, . . . , 𝑛𝑖), then we define a linear mixed effect
regression model as

y𝑖𝑡 = 𝑥𝑇𝑖𝑡𝛽 + 𝑧𝑇𝑖𝑡𝛾𝑖 + 𝜀𝑖𝑡, (1)

where 𝑥𝑖𝑡 is a vector of 𝑝 covariates at 𝑡, 𝛽 is an unknown𝑝 × 1 vector of regression parameters, and the correlation
among the observations within the i-th subject is induced
by the subject-level residuals, i.e., 𝑞 × 1 vector 𝛾

𝑖
and an

associated vector 𝑧𝑖𝑡 for 𝑞 random effect variables. The error
term can be defined as 𝑧𝑇

𝑖𝑡
𝛾
𝑖
+ 𝜀
𝑖𝑡
, where random errors for

individual records, 𝜀𝑖𝑡, are independent of each other. We
assume that linear quantile mixed models are determined
based on the asymmetric Laplace distribution (ALD) [23],
which has a good performance on data generated from
many error distributions, and a relationship with the L1-
norm objective function [7]. Let a response variable 𝑦 be an

ALD, denoted ALD(𝜇, 𝜎, 𝜏), then we can define a probability
density function,

𝑓 (𝑦 | 𝜇, 𝜎, 𝜏) = 𝜏 (1 − 𝜏)𝜎 exp {−𝜌𝜏 (𝑦 − 𝜇𝜎 )} , (2)

where 0 < 𝜏 < 1 is the skewness parameter, 𝜇 is the location
parameter, 𝜎 is the scale parameter, and a loss function𝜌𝜏(V) = (𝜏−𝐼(V ≤ 0)) represents the contribution by residuals
V. Assuming the location parameter is 𝜇𝜏,𝑖𝑡 = 𝑥𝑇𝑖𝑡𝛽𝜏 + 𝑧𝑇𝑖𝑡𝛾𝑖,
a quantile regression model related to the 𝜏-th quantile of a
response variable 𝑦𝑖𝑡, conditional on 𝑥𝑖𝑡 and 𝑧𝑖𝑡, has the form:

𝑞𝜏 (𝑦𝑖𝑡) = 𝑥𝑇𝑖𝑡𝛽𝜏 + 𝑧𝑇𝑖𝑡𝛾𝑖+𝜀𝜏,𝑖𝑡, 0<𝜏<1, (3)

where 𝛽
𝜏
is a vector of quantile-specific regression parame-

ters corresponding to the coefficient 𝛽 in a linear regression
model (1) and 𝜀𝜏,𝑖𝑡 ∼ ALD(0, 𝜎, 𝜏), which are also dependent
on 𝜏. The objective function for 𝑦𝑖𝑡 for fixed 𝜏 is expressed as

𝑄𝑛 (𝛽𝜏) =
𝑛∑
𝑖=1

𝑛𝑖∑
𝑡=1

𝜌𝜏 (𝑦𝑖𝑡 − 𝑥𝑇𝑖𝑡𝛽 − 𝑧𝑇𝑖𝑡𝛾𝑖) . (4)

We can estimate quantile-specific regression parameters that
minimize the objective function above. As we assume 𝑦𝑖𝑡 ∼
ALD(𝜇𝑖𝑡, 𝜎, 𝜏), ALD is determined as a scale mixture of
normal distribution based on Laplace distribution with the
skewness parameter 𝜏 that is treated here as a quantile level.
Then a likelihood for 𝑦𝑖𝑡 at 𝜏-th quantile can be expressed as

𝐿 (𝛽, 𝜎 | 𝑦𝑖𝑡, 𝜏)
= 𝜏 (1 − 𝜏)𝜎𝑁 exp{− 𝑛∑

𝑖=1

𝑛𝑖∑
𝑡=1

𝜌𝜏 (𝑦𝑖𝑡 − 𝑥
𝑇

𝑖𝑡
𝛽 − 𝑧𝑇
𝑖𝑡
𝛾
𝑖𝜎 )} . (5)

If 𝜎 is considered a nuisance parameter, then the maximiza-
tion of this likelihood above is equivalent to theminimization
of the objective function of quantile regression (4) defined
above.More details regarding estimation process are available
elsewhere [8].

3. Example

3.1. Tu Salud ¡Si Cuenta! (Your Health Matters!) at Home
Intervention. The behavioral data used in the current study
were from the Tu Salud ¡Si Cuenta! (Your Health Matters!)
at Home Intervention. One of the main objectives of this
randomized control trial was to increase participant intake
of healthy foods and decrease unhealthy food intake through
exposure to community health workers delivering a behav-
ioral modification intervention. The study was conducted in
the Texas Rio Grande Valley area and included participants
who were Mexican American adults, aged 18-75 years, and
enrolled in the ongoing Cameron County Hispanic Cohort
[1, 24] . Participants were randomly selected and randomized
into either the intervention or standard care group from June
2010 to April 2013. The intervention group received up to six
monthly community health work home visits in the first 6
months of the intervention, which included lifestyle change
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education, motivation, and support. No other intervention
elements, other than that equivalent to the standard care
group, were offered during the last 6 months of the trial. The
standard care group participants were potentially exposed to
a community-wide physical activity and healthy diet cam-
paign across the 12 months. Data were collected at baseline,
6- and 12-month follow-ups.

Participants completed a dietary intake questionnaire
that asked if yesterday they had eaten 20 commonly and
culturally appropriate foods and how many times with the
following responses available: no, once, twice, three times,
four times, and five or more times [25, 26]. Responses were
summed into Healthy and Unhealthy Eating Indices (HEI
and UNHEI, respectively). The HEI score was comprised
responses to the 10 healthy food items (baked or grilled
fish, turkey or chicken; eggs; beans; fruit; fruit juice; orange
vegetables; other vegetables; salad; whole grain breads; and
whole grain cereals) with a possible response range from
0 to 50. The UNHEI was composed of the responses to
the 9 unhealthy food items (baked goods; french fries or
chips; fried meat; frozen desserts; red and processed meats;
nonchocolate candy; regular sodas; sweetened or sports
drinks; and white bread) with a possible range from 0 to
45 [27]. Both HEI and UNHEI scores appeared to be well-
approximated by a normal distribution.

3.2. Quantile Regression and Mean-Based Regression. To
assess intervention effect on healthy and unhealthy eating, a
multivariable longitudinal QR and mean-based model were
conducted based on the linear mixed effect model equation
below.

y𝑖𝑡 = 𝛼 + 𝛽1x1𝑖
+ 𝛽21v1𝑖𝑡 + 𝛽22v2𝑖𝑡 + 𝛽31x1𝑖v1𝑖𝑡 + 𝛽32x1𝑖v2𝑖𝑡+𝑢𝑇𝑖𝑡𝛿+𝛾𝑖 + 𝜀𝑖𝑡,

(6)

where the index score, y𝑖𝑡, can be either the HEI or UNHEI
measurement for the 𝑖-th participant (𝑖 = 1, . . . , 𝑛) at visit𝑡 (𝑡 = 1, 2, 3) and a binary variable x1 for study group
(x1=1 if intervention) and v1𝑖 and v2𝑖 are dummy variables
for two follow-up visits, i.e., month 6 (visit 2) and month 12
(visit 3), respectively. Interaction terms between study group
and follow-up visits were included in the model to obtain
estimates of the intervention effect at each time point. 𝑢𝑖𝑡 is a
vector of a set of potential confounders that were adjusted for
in themodel (i.e., gender, age, diabetes,marital status, years in
school, employment status, type of insurance, generation, and
preferred language) and 𝛿 is an associated parameter vector.
We also considered a random intercept by including an error
term 𝛾𝑖 for the 𝑖-th subject. We used lqmm R package [8] for
QR models and SAS proc mixed for mean-based models.

3.3. Results. There were 500 participants randomized to
either the standard care or intervention groups, n=250
respectively. At baseline, the mean HEI score was 6.6 (stan-
dard deviation (SD)=3.3) for the standard care group and
6.9 (SD=3.5) for the intervention group. The mean UNHEI
score for the standard care group was 5.4 (SD=3.4) and for
the intervention group was 5.6 (SD=3.6).

Results from QR and mean-based regression are pre-
sented in Figure 1. The red line indicates estimated beta
coefficients based on mean-based model for the effect of the
study group at each time point, showing slight differences
(i.e., beta coefficient <0.4) in mean HEI and mean UNHEI
between intervention and standard care groups at baseline
and follow-ups.

With regard to HEI, the results for QR and mean-
based regression do not substantially differ. In contrast,
the QR results indicate a nonconstant relationship between
unhealthy eating and study groups at the upper tail of
the distribution of the UNHEI. At baseline, the association
between the distribution of UNHEI scores and study groups
is not constant, as the intervention group is more likely to be
in the upper tail of the UNHEI distribution at the start of the
study. Atmonth 6, the effect of the intervention is inconsistent
across the UNHEI distribution. For example, at the upper tail
of the UNHEI distribution the intervention group had higher
UNHEI scores, yet around the quantile level 𝜏=0.05 and 0.75
the intervention group reported lower UNHEI scores than
the control group.The strength of the association in the upper
tail of the distribution is attenuated at 6 months compared
to baseline. More strikingly, at the 12-month follow-up QR
suggests that there is an increase in unhealthy food intake in
intervention group compared to control for the participants
in the upper tail of the UNHEI data distribution.

4. Discussion

Mean-based regression results showedminimal differences in
the healthy eating index at any visit between intervention and
standard care groups, likewise for the unhealthy eating index.
These results would lead a researcher to incorrectly assume
that the intervention failed to increase intake of healthy foods
or decrease unhealthy food intake or possibly conclude that
the reasons for the lack of change might not be due to the
intervention itself but to information bias or environmental
changes in the community based intervention.

In contrast, the results of the QR highlight a different
relationship between the study groups and outcomes. The
estimated coefficients were not constant across the dis-
tribution of the UNHEI outcome at baseline and follow-
ups. These results may indicate a baseline imbalance in the
UNHEI outcome,which undermean-based regressionwould
have not been identified, and approaches to adjust for the
imbalance should be considered. Likewise at the 6-month
follow-up, the protective effect of the intervention would
have also been ignored using mean-based methods. The QR
results for the unhealthy index at the 12-month follow-up
identified an inconsistent relationship between study group
and UNHEI. At the lower tail of UNHEI, the intervention
was protective, then this relationship reversed at the upper tail
of UNHEI. Overall, there was little difference in the UNHEI
between intervention and standard care groups, except at the
upper tail of the UNHEI distribution. This indicates purely
mean-based approach may not be appropriate for evaluating
the effect of the intervention on dietary uptake behaviors in
populations with unobserved heterogeneity.



4 Journal of Probability and Statistics

Healthy Index (HEI)

baseline month 6 month 12

baseline month 6 month 12

Unhealthy Index (UNHEI)

0.2 0.4 0.6 0.8 1.00.0

Quantile Level

−2

−1

0

1

2

In
te

rv
en

tio
n 

Eff
ec

t

0.2 0.4 0.6 0.8 1.00.0

Quantile Level

−2

−1

0

1

2

In
te

rv
en

tio
n 

Eff
ec

t
0.2 0.4 0.6 0.8 1.00.0

Quantile Level

−2

−1

0

1

2

In
te

rv
en

tio
n 

Eff
ec

t

0.2 0.4 0.6 0.8 1.00.0

Quantile Level

−2

−1

0

1

2

In
te

rv
en

tio
n 

Eff
ec

t

0.2 0.4 0.6 0.8 1.00.0

Quantile Level

−2

−1

0

1

2

In
te

rv
en

tio
n 

Eff
ec

t

0.2 0.4 0.6 0.8 1.00.0

Quantile Level

−2

−1

0

1

2

In
te

rv
en

tio
n 

Eff
ec

t

Figure 1: Estimated adjusted∗ parameter of x1 for study group (intervention vs. standard care) at each visit based on mean-based regression
(red line) and quantile regression (black line with 95% confidence limits) by quantile levels of healthy (HEI) and unhealthy index (UNHEI).∗Adjusted for gender, age, diabetes, marital status, years in school, employment status, type of insurance, generation, and preferred language.

5. Conclusions

The traditional mean-based linear regression was unable to
fully describe the relationship between healthy and unhealthy
eating and the intervention, resulting in a limited under-
standing of the intervention effect. Use of quantile regression
identified a different relationship bymodeling the coefficients
across the distribution of the outcome resulting in a more
complete picture of the association. These findings from
the quantile regression results could be applied towards
developing more effective behavioral intervention trials in
heterogeneous populations.
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Background. Evaluation of diagnostic assays and predictive performance of biomarkers based on the receiver operating
characteristic (ROC) curve and the area under the ROC curve (AUC) are vital in diagnostic and targeted medicine.The partial area
under the curve (pAUC) is an alternative metric focusing on a range of practical and clinical relevance of the diagnostic assay. In
this article, we adopt and extend the min-maxmethod to the estimation of the pAUCwhenmultiple continuous scaled biomarkers
are available and compare the performances of our proposed approach with existing approaches via simulations. Methods. We
conducted extensive simulation studies to investigate the performance of different methods for the combination of biomarkers
based on their abilities to produce the largest pAUC estimates. Data were generated from different multivariate distributions with
equal and unequal variance-covariancematrices. Different shapes of the ROC curves, false positive fraction ranges, and sample size
configurations were considered. We obtained the mean and standard deviation of the pAUC estimates through re-substitution and
leave-one-pair-out cross-validation.Results. Our results demonstrate that the proposedmethodprovides the largest pAUCestimates
under the following three important practical scenarios: (1) multivariate normally distributed data for nondiseased and diseased
participants have unequal variance-covariance matrices; or (2) the ROC curves generated from individual biomarker are relative
close regardless of the latent normality distributional assumption; or (3) the ROC curves generated from individual biomarker
have straight-line shapes. Conclusions. The proposed method is robust and investigators are encouraged to use this approach in the
estimation of the pAUC for many practical scenarios.

1. Introduction

The area under the entire curve (AUC) is one of the most
commonly used summary indices in receiver operating
characteristic (ROC) analysis and can be interpreted as the
average value of sensitivity for all possible values of specificity
[1]. The empirical estimate of the AUC is closely related
to the Mann-Whitney U statistic for comparing ratings of
nondiseased and diseased participants [1]. Althoughmethods
based on the AUC have been well developed and widely
implemented [2, 3], one of the major limitations of the
AUC is that it summarizes the performance over the entire
curve, including regions that may not be clinically relevant
(e.g., the regions with low specificity levels). The partial area
under the ROC curve (pAUC) can be used as a summary

index of diagnostic/prognostic accuracy over a certain range
of specificity that is of clinical interest [4, 5]. In many
applications, tests with false positive rates outside of a
particular domain will be of no practical use and hence are
irrelevant for evaluating the accuracy of the test. In particular,
for a certain disease with low prevalence, the unnecessary
follow-up resulting from high false positive rate will burden
the health system. There are several proposed methods for
analyzing the pAUC [4, 6–10].

When multiple continuous-scaled biomarkers are avail-
able in the evaluation of prognostic accuracy, it may be
possible to improve the accuracy by combining several
biomarkers. The use of linear combination is popular due
to its ease of implementation and interpretation. Finding
optimal linear combination to maximize the area under
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the ROC curve has been extensively studied [11–14]. By
extending Fisher’s discriminant function, Su and Liu [11]
first proposed the best linear combination to maximize AUC
based on the multivariate normality assumption. Su and Liu’s
method relies on the strong distributional assumption, and
therefore pAUC may have unsatisfactory performance for
many practical scenarios when the distributional assumption
is not satisfied. Liu et al. [12] provided an approach to
construct the best linear combination that can produce the
ROC curve dominating any other ROC curves in some
particular specificity ranges. However, this approach depends
on the distributional assumption about the mean vectors and
the specificity range. Therefore, it may fail to be dominant
for a particular range of specificity and sensitivity that may
be of clinical interest. In addition, this approach involves
the calculation of the eigenvector corresponding to the
eigenvalue, and thus the stability of this approach depends
on the behavior of eigenvector under small perturbation of
the corresponding matrix [15].

Under the assumption of generalized linear model, Jin
and Lu [13] proved that the combination coefficients from
the estimates of logistic regression yielded ROC curve with
the highest sensitivity uniformly over the entire range of
specificity. Without distributional assumptions on the data,
Pepe and Thompson [16] considered maximizing AUC and
pAUC through rank-based estimate, i.e., the Mann-Whitney
U statistic [1]. They proposed an algorithm to search for
optimal linear combinations with number of biomarkers
equal to 2. This approach was computationally formidable
when the number of biomarkers is greater than or equal to
3 [17]. Hsu and Hsueh [18] and Yu and Park [19] proposed
methods to maximize the partial area under the ROC curve
based on the multivariate normality assumption.

Liu et al. [20] developed a nonparametric min-max
approach that reduces data into two dimensions to maximize
the Mann-Whitney statistic of the AUC. This approach is
robust against distributional assumptions due to its non-
parametric nature and is computationally efficient since the
min-max procedure involves searching for only one single
coefficient. Although useful, this approach was developed
based on the full range of specificity. In many medical areas,
the ROC curve is only clinically relevant and of interest when
the assay has high specificities. For example, high specificity
of an assay is required for screening any healthy population.
Similarly, in using diagnostic assay with multiple genes, only
high sensitivity and specificity classifiers have clinical utility
(Sparano 2015).

We adapt and extend the min-max method to estimating
the pAUC when several markers are considered. This article
is organized as follows. In Section 2, we provide a thorough
review of existing methods that maximize the AUC and
pAUC. In Section 3, we extend the min-max combination
method to the optimization of the pAUC and discuss the
leave-one-pair-out (LOPO) cross-validation approach for
evaluation of the combination methods based on their accu-
racy for future observations. In Section 4, we then conduct
extensive simulations to investigate the performance of the
different combination methods based on their abilities to
yield the largest pAUC estimates. In Section 5, two real

life examples are presented. We then discuss the results in
Section 6 and provide guidelines for practical use of the
different approaches.

2. Existing Methods

2.1. Definition. Without loss of generality, we consider the
partial area under the ROC curve (pAUC) over the range of
high specificity values, i.e.,𝑝𝐴𝑈𝐶𝑡0 = ∫𝑡0

0
𝑅𝑂𝐶 (𝑡) 𝑑𝑡. (1)

In this article, 𝑡0 less than or equal to 0.2, i.e., specificity
greater than or equal to 0.8, were considered. This is due to
the fact that an assay is unlikely to be used if it has a lower
specificity rate.

Let 𝑋𝑖, 𝑖 = 1, . . . , 𝑛1, and 𝑌𝑗, 𝑗 = 1, . . . , 𝑛2, be the
biomarker levels for nondiseased and diseased participants.
The corresponding empirical estimate of pAUC by utilizing
the Mann-Whitney U statistic is𝑝𝐴𝑈𝐶 = 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (𝑋𝑖 < 𝑌𝑗 𝑎𝑛𝑑 𝑋𝑖 > 𝑄 (1 − 𝑡0)) (2)

where 𝑄(1 − 𝑡0) is the (1 − 𝑡0) quantile of the empirical
distribution of X.

Assume that we have p diagnostic tests or biomarkers on
each subject, n1 nondiseased participants with ratings

X𝑖 = (𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑝)𝑇 , 𝑖 = 1, 2, . . . , 𝑛1, (3)

and n2 diseased participants with ratings

Y𝑖 = (𝑌𝑖1, 𝑌𝑖2, . . . , 𝑌𝑖𝑝)𝑇 , 𝑖 = 1, 2, . . . , 𝑛2. (4)

The best linear combination coefficient c = (𝑐1, 𝑐2, . . . , 𝑐𝑝)𝑇
which maximizes the pAUC can be estimated by maximizing
the empirical estimate of pAUC, i.e.,𝑝𝐴𝑈𝐶

= 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (X𝑇𝑖 ĉ < Y𝑇𝑗 ĉ 𝑎𝑛𝑑 X𝑇𝑖 ĉ > 𝑄 (1 − 𝑡0)) (5)

where 𝑄(1 − 𝑡0) is the (1 − 𝑡0) quantile of the empirical
distribution of XT

i ĉ.

2.2. Su and Liu’s Method for pAUC. Assume that X𝑖 and Y𝑗
follow multivariate normal distribution with mean vector
𝜇𝑥,𝜇𝑦 ∈ R𝑝 and 𝑝 × 𝑝 covariance matrices Σ𝑥 and Σ𝑦, i.e.,
X𝑖 ∼ 𝑀𝑉𝑁(𝜇𝑥,Σ𝑥) and Y𝑗 ∼ 𝑀𝑉𝑁(𝜇𝑦,Σ𝑦), respectively.
Su and Liu derived the best linear combination coefficient
c = (𝑐1, 𝑐2, . . . , 𝑐𝑝)𝑇 that can maximize AUC based on the
invariance property of ROC curve to scalar transformation
and Fisher’s discriminant coefficient [11]. When the two
covariance matrices are equal or proportional to each other,
the best linear coefficient based on Su and Liu’s method also
generates theROCcurve dominating all the otherswithin any
range of specificities.
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2.3. Liu et al.’s Method for pAUC. By realizing the unsatisfac-
tory performance from the use of Su and Liu’s best linear
combination coefficient, Liu et al. considered the scenario
where Σ𝑥 ̸= Σ𝑦 [12]. The authors provided an approach
to construct best linear combination that can maximize
sensitivity over a certain range of specificities. In particular,
if the high specificity region of an ROC curve is of interest,
then the best linear combination coefficient is proportional
to

Σ
−1/2
𝑦 𝛼𝑝 (6)

where 𝛼𝑝 is the eigenvector corresponding to the smallest
eigenvalue of matrix Σ−1/2𝑦 Σ𝑥Σ

−1/2
𝑦 . It has been showed that

this linear combination produces the ROC curve dominat-
ing any other ROC curves in some particular specificity
ranges.

2.4. Logistic Regression for pAUC. The logistic regression has
been widely used to predict binary outcomes by considering
linear combination of multiple predictors [13]. It models the
probability of disease for a given subject with covariates X𝑖 by
using the logit link function, i.e.,

Pr (𝐷𝑖 = 1) = exp (𝛽0 + X𝑇𝑖 c)1 + exp (𝛽0 + X𝑇𝑖 c) , (7)

where 𝛽0 is the intercept and X𝑖 and c are defined as
before. Under the assumption of generalized linear model,
the estimate of c followed by the logistic regression can
maximize the likelihood function of binary outcomes. Jin
and Lu proved that this estimate also provides the highest
sensitivity uniformly over the entire range of specificity. This
implies that the best linear combination equals ĉ resulting in
an ROC curve which not only has the maximum full AUC,
but also dominates any other ROC curves within any range
of potential interest and therefore leads to the maximum
pAUC.

2.5. Pepe andThompon’sMethod for pAUC. Without distribu-
tional assumptions on the data X and Y, Pepe andThompson
[16] considered maximizing AUC and pAUC through rank-
based estimate, i.e., the Mann-Whitney U statistics [1]. For
simplicity, they proposed an algorithm to search for optimal
linear combinations with number of biomarkers equal to 2
(p=2), i.e., X𝑖 = (𝑋𝑖1, 𝑋𝑖2)𝑇 for 𝑖 = 1, 2, . . . , 𝑛1 and Y𝑖 =(𝑌𝑖1, 𝑌𝑖2)𝑇 for 𝑖 = 1, 2, . . . , 𝑛2. Based on the fact that the ROC
curve is variant to scale transformation, in order tomaximize
AUC or pAUC, finding the best combination coefficient c =(𝑐1, 𝑐2)𝑇, where 𝑐1, 𝑐2 ∈ (−∞,+∞) is equivalent to finding c =(1, 𝛼)𝑇, where 𝛼 ∈ (−∞,+∞). Let [0, 𝑓𝑝𝑓0] denote the range
of false positive of potential interest. The estimate of AUC
based on the Mann-Whitney U statistics and the estimate of
pAUC can be obtained as

𝐴𝑈̂𝐶 (𝛼) = 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (𝑋𝑖1 + 𝛼𝑋𝑖2 < 𝑌𝑗1 + 𝛼𝑌𝑗2) (8)

and 𝑝𝐴𝑈̂𝐶 (𝛼) = 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (𝑋𝑖1 + 𝛼𝑋𝑖2 < 𝑌𝑗1
+ 𝛼𝑌𝑗2 𝑎𝑛𝑑 𝑋𝑖1 + 𝛼𝑋𝑖2 > 𝑄 (1 − 𝑓𝑝𝑓0, 𝛼)) , (9)

respectively, where𝑄(1−𝑓𝑝𝑓0, 𝛼) is the (1−𝑓𝑝𝑓0) quantile of𝑋𝑖1+𝛼𝑋𝑖2.The authors chose to implement a semiparametric
method based on Heagerty and Pepe [21] to estimate 𝑄(1 −𝑓𝑝𝑓0, 𝛼), while they also pointed out that other quantile
estimation methods may be applied.

2.6.Min-MaxMethod for AUC. Liu et al. considered themin-
max combination of biomarkers [20]. Let𝑋𝑖,max = max

1≤𝑘≤𝑝
𝑋𝑖𝑘,𝑌𝑖,max = max

1≤𝑘≤𝑝
𝑌𝑖𝑘 (10)

be the maximum value of p biomarkers for nondiseased and
diseased participants, respectively. Similarly, let𝑋𝑖,min = min

1≤𝑘≤𝑝
𝑋𝑖𝑘,𝑌𝑖,min = min

1≤𝑘≤𝑝
𝑌𝑖𝑘 (11)

be the minimum value of p biomarkers for nondiseased and
diseased participants, respectively.

The nonparametric estimate of AUC based on the Mann-
Whitney U statistics by linearly combining the minimum and
maximum values of p biomarkers for each subject can be
obtained as𝐴𝑈̂𝐶 (𝛼)

= 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (𝑋𝑖,max + 𝛼𝑋𝑖,min < 𝑌𝑗,max + 𝛼𝑌𝑗,min) . (12)

Since this is not a continuous function of 𝛼, a search
rather than a derivative-based method is required for the
maximization. The searching method for the best value of 𝛼
is exactly the same as Pepe andThompson’s method.

3. Methodology Extension: Min-Max Method
for pAUC

We extend the min-max method to maximize the pAUC.
Let [0, 𝑓𝑝𝑓0] denote the range of false positive of potential
interest. By considering only the minimum and maximum
values of p biomarkers for each individual, it follows that the
nonparametric estimate of pAUC can be obtained as

𝑝𝐴𝑈𝐶 (𝛼) = 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (𝑋𝑖,max + 𝛼𝑋𝑖,min < 𝑌𝑗,max

+ 𝛼𝑌𝑗,min 𝑎𝑛𝑑 𝑋𝑖,max + 𝛼𝑋𝑖,min > 𝑄 (1 − 𝑓𝑝𝑓0, 𝛼)) (13)
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where 𝑄(1 − 𝑓𝑝𝑓0, 𝛼) is the (1 − 𝑓𝑝𝑓0) quantile of 𝑋𝑖,max +𝛼𝑋𝑖,min. For simplicity, the (1−𝑓𝑝𝑓0) quantile of the empirical
distribution of𝑋𝑖,max +𝛼𝑋𝑖,min can be used to estimate 𝑄(1 −𝑓𝑝𝑓0, 𝛼). Then the Pepe and Thompson’s [16] algorithm can
be applied to search for the optimal value of 𝛼 to maximize
the estimate of the pAUC.

The new marker (𝑋𝑖,max, 𝑌𝑖,max) has larger sensitivity and
smaller specificity for any given threshold c than any other
individual marker, given that

Pr {𝑌𝑖,max > 𝑐} = 1 − Pr {𝑌𝑖,max ≤ 𝑐}= 1 − Pr {𝑌𝑖𝑗 ≤ 𝑐, 1 ≤ 𝑗 ≤ 𝑝}≥ 1 − Pr {𝑌𝑖𝑘 ≤ 𝑐} = Pr {𝑌𝑖𝑘 > 𝑐} (14)

and

Pr {𝑋𝑖,max ≤ 𝑐} = Pr {𝑋𝑖𝑗 ≤ 𝑐, 1 ≤ 𝑗 ≤ 𝑝}≤ Pr {𝑋𝑖𝑘 ≤ 𝑐} (15)

for all 1 ≤ 𝑘 ≤ 𝑝; similarly, the new marker (𝑋𝑖,min, 𝑌𝑖,min)
has smaller sensitivity and larger specificity for any given
threshold c than any other individual marker, given that

Pr {𝑌𝑖,min > 𝑐} = Pr {𝑌𝑖𝑗 > 𝑐, 1 ≤ 𝑗 ≤ 𝑝}≤ Pr {𝑌𝑖𝑘 > 𝑐} (16)

and

Pr {𝑋𝑖,min ≤ 𝑐} = 1 − Pr {𝑋𝑖,min > 𝑐}= 1 − Pr {𝑋𝑖𝑗 > 𝑐, 1 ≤ 𝑗 ≤ 𝑝}≥ 1 − Pr {𝑋𝑖𝑘 > 𝑐} = Pr {𝑋𝑖𝑘 ≤ 𝑐} (17)

for all 1 ≤ 𝑘 ≤ 𝑝. Therefore, we expect that the linear
combination of the min-max biomarkers may provide larger
partial area under the ROC curve than other methods. We
employ simulation study to investigate howwell the proposed
method performs compared to other established methods.

The cross-validation has been widely used to evaluate
the generalizability of the statistical results. Huang et al. [22]
proposed a LOPO approach to evaluating the performance of
the linear combination coefficient to estimate AUC for future
observations. The estimate of AUC based on LOPO cross-
validation is as follows:𝑝𝐴𝑈𝐶𝐶𝑉 = 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (X𝑇𝑖 ĉ(−𝑖𝑗) < Y𝑇𝑗 ĉ

(−𝑖𝑗)) (18)

where ĉ(−𝑖𝑗) is the best linear combination coefficient based
on the observed data without both the ith observation from
nondiseased subject and the jth observation from diseased
subject. They also demonstrated that the 5-fold and 10-fold
cross-validation can be computationally efficient and the
resulting estimate can be asymptotically unbiased for the
future observations.

We implement the LOPO cross-validation on the pAUC
to evaluate the generalizability of the statistical results. The
estimate of the pAUC based on the LOPO cross-validation
can be obtained as

𝑝𝐴𝑈𝐶𝐶𝑉 = 1𝑛1𝑛2 𝑛1∑𝑖=1 𝑛2∑𝑗=1𝐼 (X𝑇𝑖 ĉ(−𝑖𝑗)< Y𝑇𝑗 ĉ
(−𝑖𝑗) 𝑎𝑛𝑑 X𝑇𝑖 ĉ

(−𝑖𝑗) > 𝑄 (1 − 𝑓𝑝𝑓0, 𝛼)) (19)

where𝑄(1−𝑓𝑝𝑓0, 𝛼) is the (1−𝑓𝑝𝑓0) quantile of X𝑇𝑖 ĉ(−𝑖𝑗). For
simplicity, in our simulation study the (1 − 𝑓𝑝𝑓0) quantile of
the empirical distribution of X𝑇𝑖 ĉ

(−𝑖𝑗) will be used to estimate
of 𝑄(1 − 𝑓𝑝𝑓0, 𝛼).
4. Simulation

4.1. Description of Simulations. We conducted extensive
simulation studies to investigate the performance of our
proposed method with established combination methods
based on the partial area under the ROC curves. Ratings
of participants were simulated from different multivariate
distributions with equal and unequal variance-covariance
matrices. We examined false positive fraction ranges 0 – 0.1
and 0 – 0.2 and we considered different samples sizes: 50:50,
50:100, 100:50, and 100:100 for nondiseased and diseased
participants, respectively.

For each simulated dataset, we computed the pAUCbased
on four different approaches: (1)min-max, denoted as MIN-
MAX; (2) Su and Liu’s [11], denoted as SULIU; (3) Liu et
al.’s (2006), denoted as LIU; and the (4) logistic regression,
denoted as LOGISTIC. In addition, we utilized two esti-
mation methods: the re-substitution (denoted as Re-Sub)
and 10-fold leave-one-pair-out cross-validation (denoted as
LOPO) in computing the pAUC.The re-substitution method
estimated the pAUC based on the linear combination of the
coefficients derived using all the data for eachmethod.The re-
substitution method is usually overoptimistic for estimating
the diagnostic/prognostic accuracy for future observations
due to the reason between training set and validation set
in the discipline of machine learning [22]. We obtained the
mean of the pAUC by averaging over the 1,000 simulations,
and standard deviation was the square root of the estimated
sample variance of the estimated pAUC from 1,000 simulated
datasets.

4.2. Multivariate Normal Distributions with Equal Variance-
Covariance. We first compared the performance of the min-
max approach on the pAUC with the other methods by
generating dataset consisting of ratings from multivariate
normal distributions (p=4) with different mean vectors and
equal variance-covariance matrices (scenario #1). Exploiting
the invariance property of the ROC curve to monotonically
increasing transformation of the ratings, the distributions
of ratings of nondiseased participants were set to be a
multivariate normal distribution with mean 𝜇𝑥 = (0, 0, 0, 0)𝑇
and variance-covariance matrix
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Σ𝑥 = ( 1 0.5 0.5 0.50.5 1 0.5 0.50.5 0.5 1 0.50.5 0.5 0.5 1 ) . (20)

Under this scenario, ratings of diseased participants
were generated from multivariate normal distributions with
variance-covariance matrix Σ𝑦 equal to Σ𝑥, and the mean
vectors were selected to generate the AUC equal to 0.70, 0.73,
0.76, and 0.80 for markers # 1, 2, 3, and 4, respectively (Case
#1), and the AUC equal to 0.6, 0.7, 0.8, and 0.9 for markers #
1, 2, 3, and 4, respectively (Case #2).

4.3. Multivariate Normal Distributions with Unequal Vari-
ance-Covariance. We also considered multivariate normal
distributions with different mean and unequal variance-
covariance matrices for nondiseased and diseased partici-
pants (scenario #2).The mean settings are the same as Case 1
andCase 2 as discussed in scenario 1.The variance-covariance
matrices were

Σ𝑥 = ( 1 0.2 0.2 0.20.2 1 0.2 0.20.2 0.2 1 0.20.2 0.2 0.2 1 ),
and Σ𝑦 = ( 1 0.8 0.8 0.80.8 1 0.8 0.80.8 0.8 1 0.80.8 0.8 0.8 1 ).

(21)

4.4. Multivariate Log-Normal Distributions with Unequal
Variance-Covariance. We investigated the performance of
the different combination methods by generating dataset
consisting of ratings from multivariate log-normal distribu-
tions (scenario #3). Ratings were first generated similarly to
scenario #2 and then exponentiated to obtain themultivariate
log-normal marker values.

4.5. Multivariate Gamma Distributions. We further exam-
ined the performance of the different combination methods
by generating gamma ROC curves with the AUC settings in
Case 1 and Case 2 (scenario #4). The gamma family is one of
the well-known families of ROC curves [9, 10, 23–26]. Due
to the concavity and flexibility in the shape, Ma et al. [9] and
Ma et al. [10] demonstrated that the families of gamma ROC
curves provided practically reasonable straight-line shaped
concave ROC curves, where the statistical inference based on
pAUCs is preferable.

The probability density function of the underlying rating
model of the gamma ROC curve has the following form:𝑓 (𝑥; 𝜅, 𝜃) = 1𝜃𝜅 1𝜏 (𝜅)𝑥𝜅−1𝑒−𝑥/𝜃. (22)

When 𝜅 approaches 0, the gammaROC curve approaches
the shape of a straight-line and when 𝜅 > 1 the shape of

the gamma ROC curve resembles an ROC curve with latent
normality assumptions. When 𝜅=1 the gamma ROC curve is
equivalent to the power-law ROC curve [23, 27]. Here we are
interested in the investigation of a scenario with straight-line
shaped gammaROCcurves (𝜅=1/3), because this type of ROC
curves cannot be generated by the previous scenarios.

Each simulated dataset consisted of ratings generated
from multivariate gamma distributions with 𝜅=1/3. Due
to the invariance property of the ROC curves, without
any loss of generality, we set 𝜃=1 for latent ratings of
nondiseased participants. We then selected 𝜃 for the latent
diseased ratings to reflect the targeted area under the ROC
curve in Case #1 and Case #2. The between-modality cor-
relation of 0.5 was established using a Gaussian copula
model [28]. All the programs were written by the first
author in R version 2.15.3 and are available: https://duke
.box.com/s/u32h7aayxd9bjo41b619xpb21sj1nm67.

4.6. Simulation Results. We compared the performance of
the min-max method in estimating the pAUC with three
established methods assuming the ratings are from multi-
variate normal distributions with equal variance-covariance
matrices (Table 1). The SULIU and LOGISTIC almost always
performed better than the min-max and LIU based on
the pAUCs estimated from both the re-substitution and
the LOPO cross-validation. In addition, the performances
of SULIU and LOGISTIC approaches were similar when
the AUCs were either close or further apart. The min-max
approach produced slightly smaller pAUC estimates than that
of SULIU and LOGISTIC when the AUCs among biomarkers
were relatively close (i.e., Case #1), while this approach
became worse when the AUCs were far apart (i.e., Case #2).

Moreover, we examined the performance of the four
methods, i.e., MIN-MAX, SULIU, LIU, and LOGISTIC,
assuming ratings are from multivariate normal distributions
with unequal variance-covariance matrices (Table 2). When
the AUCs were close (Case #1), the min-max method was
superior to the other methods in terms of its ability to
produce the largest pAUCs based on both the re-substitution
and the LOPO cross-validation. When the AUCs were far
apart (i.e., Case #2), the SULIU and LOGISTIC methods
had similar performances superior to the other two methods.
The SULIU method was slightly better than the LOGIS-
TIC based on the LOPO cross-validation since this takes
into account the normality of data with unequal variance-
covariance matrices. It should be noted that the difference
in the estimates of the pAUCs between the re-substitution
and the LOPO cross-validation was very small under this
scenario.

Furthermore, we studied the performance of the differ-
ent combination methods assuming multivariate log-normal
distributions. From Table 3, under this scenario where data
are highly skewed, the min-max approach dominated the
other approaches when the AUCs were close (Case #1).
On the other hand, the LOGISTIC approach performed
better when the AUCs are far apart. It is interesting to
observe that the LIU method was suboptimal under both
cases in terms of its ability to estimate the pAUC through
the LOPO cross-validation whereas the SULIU method had

https://duke.box.com/s/u32h7aayxd9bjo41b619xpb21sj1nm67
https://duke.box.com/s/u32h7aayxd9bjo41b619xpb21sj1nm67
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the worst performance since the normality assumption was
violated.

Lastly, we considered the performance of different com-
bination methods by generating gamma ROC curves. From
Table 4, (Scenario #4) where data suggest a straight-line
shape ROC curve, when the AUCs were close, the min-max
approach performed better than the other three approaches
in obtaining the largest pAUCs through both the re-
substitution and the LOPO cross-validation. When the AUCs
were far apart (Case #2), the min-max approach yielded the
best pAUC estimates through LOPO cross-validation. The
LOGITIC approach was best based on the re-substitution.

5. Example

5.1. Example 1. We used data from Cancer and Leukemia
Group B study 90206, a Phase III clinical trial of metastatic
renal-cell carcinoma [29, 30], to provide an example of our
proposed method. The study randomized 732 patients, 369
to anti-VEGF treatment and 363 to a control group [29, 30].
The trial was designed with 588 deaths so that the log-rank
statistic would have 86% power to detect a hazard ratio
of 0.76 for deaths assuming a two-sided significance level
of 0.05. The trial collected plasma from patients in order
to study the relationship of angiogenic and inflammatory
markers with clinical outcomes. A primary objective of the
correlative science study was to associate the anti-VEGF
biomarkers from the angioma assay with overall survival and
build a prognostic model that predicts the clinical outcome
[31, 32]. Another objective was to correlate the anti-VEGF
biomarkers with the best objective response rate (defined as
either partial or complete response). The angioma multiplex
array has gone through a rigorous evaluation to ensure
data quality [31, 32]. Markers performed include Ang-2,
bFGF, BMP-9, CRP, Endoglin, Gro-a, HGF, ICAM-1, IGFBP-
1, IGFBP-2, IGFBP-3, IL-6, IL-8, MCP-1, OPN, P-selectin,
Pai-1-active, Pai-1-total, PDGF-AA, PDGF-BB, PEDF, PlGF,
SDF-1, TGF𝛽1, TGF𝛽2, TGF𝛽3-R3, TSP-2, VCAM-1, VEGF,
VEGF-C, VEGF-D, VEGF-R1, and VEGF-R2.

We used the random forest, LASSO, and adaptive LASSO
to select the top three biomarkers of the 33 biomarkers for
best objective response. The top three genes (HGF, IL 6, and
VEGF R2) with highest full AUC (0.576, 0.610, and 0.563)
were chosen as an example to demonstrate the scenariowhere
the AUCs were close to each other as a potential advantage
of the use of the proposed method. The empirical estimates
for the pAUC for these three biomarkers are 0.012, 0.012,
and 0.028. The correlation matrices for nonresponders and
responders are

𝐶𝑜𝑟𝑟𝑥 = ( 1 0.530 0.3190.530 1 0.2730.319 0.273 1 )
and 𝐶𝑜𝑟𝑟𝑦 = ( 1 0.453 0.2190.453 1 0.2250.219 0.225 1 ) . (23)

The proposed method provided the following combina-
tion:

max {𝐻𝐺𝐹, 𝐼𝐿 6, 𝑎𝑛𝑑 𝑉𝐸𝐺𝐹 𝑅2}−min {𝐻𝐺𝐹, 𝐼𝐿 6, 𝑎𝑛𝑑 𝑉𝐸𝐺𝐹 𝑅2} (24)

with the estimated pAUC of 0.0427 and the estimated stan-
dard deviation of 0.0080 based on 1,000 bootstrap sampling.

In contrast, the SULIU method provided the following
combination:𝐻𝐺𝐹 + 1.36 ∗ 𝐼𝐿 6 − 1.81 ∗ 𝑉𝐸𝐺𝐹 𝑅2 (25)

with the estimated pAUC of 0.0426 and the estimated
standard deviation of 0.0084.

The LIU method provided the following combination:𝐻𝐺𝐹 − 1.21 ∗ 𝐼𝐿 6 − 0.06 ∗ 𝑉𝐸𝐺𝐹 𝑅2 (26)

with the estimated pAUC of 0.0254 and the estimated stan-
dard deviation of 0.0099, whereas the LOGISTIC’s method
had the following combination:𝐻𝐺𝐹 + 1.52 ∗ 𝐼𝐿 6 − 1.88 ∗ 𝑉𝐸𝐺𝐹 𝑅2 (27)

with the estimated pAUC of 0.0422 and the estimated
standard deviation of 0.0084.

5.2. Example 2. In this section, the proposed method MIN-
MAX as well as the SULIU, LIU, and the LOGISTIC is
applied to a real dataset of 125 females onDuchenneMuscular
Dystrophy (DMD) dataset. This biomedical data originally
containing 209 observations (134 for “normals” and 75 for
“carriers”) has been studied by Cox et al. [33] in order to
develop screening methods to identify carriers of a rare
genetic disorder based on fourmeasurements made on blood
samples. This dataset has been widely studied in the literature
for improving the classification accuracy by using ROC
analysis. The main objective is to combine four markers
to increase the diagnostic accuracy of screening females as
potential DMD carriers. For example, Kang et al. [14] applied
the stepwise methods to combine four makers in this data
to improve AUC; Hsu and Hsueh [18] and Yu and Park [19]
applied their proposed algorithm to pAUC in this data.

Since four different variables M1–M4 were measured in
each blood sample, we processed the data by taking average
values for each measurement if one had blood drawn at
several different time points. Among the 125 females, there
are 87 normals and 38 carriers.

Similarly, we investigated the performance of the four
different methods on the pAUC over the range 0–0.2. Since
the four measurements are in different scales, we applied
the standardization method by dividing each value by the
range of that variable before the use of MIN-MAX approach.
M1∗- M4∗ denote the standardized marker values. The
empirical estimates for the pAUC for these four biomark-
ers are 0.1472, 0.0436, 0.1086, and 0.1229 for the M1–M4,
respectively. The empirical estimates for the full AUC are
0.9034, 0.6057, 0.8232, and 0.8814. The correlation matrices
for nonrespondents and respondents are
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Table 5: The coefficients of the optimal linear combination and the corresponding estimated pAUC.

Method M1 M2 M3 M4 pAUC
MIN-MAX - - - - 0.161
SULIU 1 12.6333 7.7165 13.6415 0.137
LIU 1 0.5248 0.7805 -0.1087 0.151
LOGISTIC 1 0.6950 1.3806 0.2545 0.156

𝐶𝑜𝑟𝑟𝑥 = ( 1 −0.380 0.012 0.236−0.380 1 0.130 0.1550.012 0.130 1 0.2810.236 0.155 0.281 1 )
and 𝐶𝑜𝑟𝑟𝑦 = ( 1 −0.037 0.688 0.625−0.037 1 −0.222 −0.0980.688 −0.222 1 0.6120.625 −0.098 0.612 1 )

(28)

The proposed method provided the following combina-
tion (Table 5):

max {𝑀1∗,𝑀2∗,𝑀3∗,𝑀4} + 6.6667∗min {𝑀1∗,𝑀2∗,𝑀3∗,𝑀4∗} (29)

with the estimated pAUC of 0.161 and the estimated standard
deviation of 0.0119 based on 1,000 bootstrap sampling.

In contrast, the SULIU method provided the following
combination (Table 5):𝑀1 + 12.6333 ∗ 𝑀2 + 7.7165 ∗𝑀3 + 13.6415 ∗𝑀4 (30)

with the estimated pAUC of 0.137 and the estimated standard
deviation of 0.0157.

The LIU method provided the following combination
(Table 5):𝑀1 + 0.5248 ∗𝑀2 + 0.7805 ∗ 𝑀3 − 0.1087 ∗𝑀4 (31)

with the estimated pAUC of 0.151 and the estimated standard
deviation of 0.0135, whereas the LOGISTIC’s method had the
following combination (Table 5):𝑀1 + 0.6950 ∗𝑀2 + 1.3806 ∗ 𝑀3 + 0.2545 ∗𝑀4 (32)

with the estimated pAUC of 0.156 and the estimated standard
deviation of 0.0138.

Figure 1 presents the performance for each method.

6. Discussion

In this article, we extend the min-max method to the
estimation of the pAUC and compare its performances to
three commonly utilized methods. The proposed method
has the advantage of both the min-max method and Pepe
and Thompson’s method [16]. The expected advantages of
this approach are threefold. First, it may yield larger partial
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area under the ROC curves. Second, it is a nonparametric
approach and therefore it is robust against distributional
assumptions. Lastly, it is computationally feasible and effi-
cient since the min-max procedure involves searching for
only one single coefficient. Our works [9, 10] have shown
that the use of pAUC not only is clinically useful but also is
statistically more efficient than the use of the full AUC in the
families of area under theROCcurves that are nearly straight-
line shaped. Another advantage of this method demonstrated
through our simulation study is that in the scenario of
straight-line shaped gamma ROC curves the estimate of
pAUC based on re-substitution is close to the estimate based
on the LOPO cross-validation. This implies that the min-max
method on pAUC leads to good generalizability.

As pointed out by several authors [14, 22, 34], the use
of the re-substitution to estimate the area under the ROC
curve could usually lead to the overoptimistic result, or
upward biased estimates for independent dataset, or future
observations. Huang et al. [22] proposed to use the LOPO
cross-validation to obtain less biased estimates. Kang et al.
[14] applied the LOPO cross-validation to compare different
combination methods to maximize the AUC. Because the
estimates through cross-validation lead to more reliable
results in terms of its ability to generalize to an indepen-
dent dataset, we recommend using cross-validation which
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performs better when decisions based on the re-substitution
and the cross-validation approaches are different. Based on
our simulation results, it is not surprising to observe that
the standard deviation of the estimated pAUC decreased as
the sample size increased and that the estimate of the pAUC
based on the re-substitution approachwas becoming closer to
the estimate of the pAUCbased on the LOPOcross-validation
as the sample size increased.

Evaluation of diagnostic assays and prognostic perfor-
mance of biomarkers will continue to remain an important
research topic in several medical areas. This is especially
true in oncology where diagnostic assays based on several
combinations of biomarkers are developed and validated.
For example, a 22-gene model was developed and validated
to predict prostate cancer risk [35]. In addition, identifying
predictive markers of clinical outcomes is a hot area of
research as finding the optimal treatment to tailor patients
is attractive not only to patients but also to physicians,
insurance company, and society as a whole. Currently, several
predictors or signatures of outcomes are being used to guide
therapies in clinical trials [35]. For example OncotypeDx, a
21-gene expression signature, is being used to select treatment
in patients with breast cancer based on the recurrence
score [36]. Recognizing the fact that more predictors will
continue to be applied in the clinic, it is critical that when a
combination of biomarkers is developed this would result in
the highest pAUC.

Based on our extensive simulations, our recommenda-
tions are the following:

(1) Use the SULIU or LOGISTIC approach to estimate
the pAUC with approximately equal variance multivariate
normal data regardless whether the AUCs among biomarkers
are relatively close or far apart. The LIU’s approach underes-
timated the pAUC approximately by 1/3. This is partly due to
the instability of the eigenvector of the identity matrix, since
LIU’s approach involves the calculation of the eigenvector
corresponding to the smallest eigenvalue of Σ−1/2𝑦 Σ𝑥Σ

−1/2
𝑦

which is an identitymatrix under this scenariowhenΣ𝑥 = Σ𝑦,
and the eigenvector corresponding to the smallest eigenvalue
is not stable under small perturbation of the identity matrix
[15].

(2) Utilize the min-max approach to estimate the pAUC
with unequal variance multivariate normal data when the
AUCs are relatively close and use the SULIU’s approach when
the AUCs are far apart.

(3) Employ the min-max approach to estimate the pAUC
with highly skewed data when the AUCs are relatively close,
but use the LOGISTIC method when the AUCs are far apart.

(4) Use the min-max approach to estimate the pAUC
with straight-line shaped ROC curves regardless whether the
AUCs are close or far apart.

In summary, the min-max approach seems to be robust
and investigators are encouraged to use it in the estima-
tion of the pAUC. It is simple to implement and is com-
putationally feasible. In an era of personalized medicine,
it is anticipated that the evaluation of diagnostic assays
and the performance of the combination of biomarkers
will remain an important area of research not only in

diagnosing patients but also in treating patients with the
disease.
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In this paper, R wave peak interval independent atrial fibrillation detection algorithm is proposed based on the analysis of the
synchronization feature of the electrocardiogram signal by a deep neural network. Firstly, the synchronization feature of each
heartbeat of the electrocardiogram signal is constructed by a Recurrence Complex Network. Then, a convolution neural network
is used to detect atrial fibrillation by analyzing the eigenvalues of the Recurrence Complex Network. Finally, a voting algorithm
is developed to improve the performance of the beat-wise atrial fibrillation detection. The MIT-BIH atrial fibrillation database is
used to evaluate the performance of the proposed method. Experimental results show that the sensitivity, specificity, and accuracy
of the algorithm can achieve 94.28%, 94.91%, and 94.59%, respectively. Remarkably, the proposed method was more effective than
the traditional algorithms to the problem of individual variation in the atrial fibrillation detection.

1. Introduction

Atrial fibrillation (AF) is the most common type of cardiac
arrhythmia in clinical setting, affecting about 1–2% of the
general population [1]. Clinical progress indicates that the
presence of AF is associated with an increased risk for stroke,
heart failure, hospitalization, and death [2]. However, the
occurrence of AF is usually unknown because for many
patients, the condition is asymptomatic and thus remains
undetected. As a result, there is a pressing need to develop
AF detection methods.

Electrocardiogram (ECG) is commonly used as a diag-
nostic tool for AF detection, and considerable research has
been conducted on ECG. These works are either based on
RR interval (RRI, i.e., the interval between two adjacent QRS
complex waves) variability or abnormal atrial activity (AA)
(AlGhatri [3]). Previous results showed that the RRI-based

algorithms are robust compared with the AA-based algo-
rithms (Kikillus [4] and Dash [5]). However, such methods
failed to be effective if the patient has a pacemaker, is taking
rate-control drugs, or has other simultaneous heart problems,
such as atrioventricular (AV) block [6]. Thus, it is necessary
to develop AF detection algorithms based on the AA feature,
namely, designing rate-independent methods [7].

In view of the atrial activity, during AF, the P-wave is
replaced by fibrillatory waves. Thus, a natural way to detect
AF is to check the absence of P-waves. Previous algorithms
were proposed to address this issue [8–10]; however, the
results were not satisfactory because P-wave fiducial point
detection is challenging, especially for dynamic monitoring
applications.

Recently, signal processing techniques have been
employed to extract AA features from ECG waves for AF
detection. Stridh et al. proposed using a time-frequency
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distribution estimation method to estimate the fibrillation
frequency of the ECG signal, in which a set of parameters
describing the fundamental frequency, amplitude, shape, and
signal-to-noise ratio of the atrial waveforms are derived based
on the frequency-shift of an adaptively updated spectral
profile [11]. Lee et al. analyzed the dominant frequency of
the atrial activity by using the variable frequency complex
demodulation (VFCDM) method [12]. The value of the
dominant frequency has been shown to be a distinctive
feature for AF detection. In another ECG-based pattern
analysis method for the classification of normal sinus
rhythm and atrial fibrillation (AF) beats [13], the denoised
and registered ECG beats were subjected to independent
component analysis (ICA) for data reduction, and the ICA
weights were used as features for classification using Naive
Bayes and Gaussian mixture model (GMM) classifiers. All of
these methods use handcraft features for pattern recognition.
Such features are not invariant on different personalities. In
their experiments, the classification accuracy was estimated
by tenfold cross-validation, where the probability that
the training set contains training samples of every user
who provides test ECG samples is great. We use the term
individual variation to refer to the above phenomena.
However, in ECG monitoring applications, it is crucial that
the system is able to tackle this problem.

Magnitude-squared coherence, a frequency domainmea-
sure of the linear phase relation between two signals, has been
shown to be a reliable discriminator of AF [14, 15]. However,
the accuracy of the corresponding AF detection algorithm is
relatively low; thus, it has to be combinedwith the RRI feature
in order to achieve acceptable accuracy. The Recurrence
Complex Network has been employed to detect AF from dog
epicardial signals recorded by an epicardial mapping system
with 128 unipolar electrodes [16]. It has been demonstrated
that the phase space of the Recurrence Complex Network is
suitable for between distinguishing normal sinus rhythm and
atrial fibrillation beats. However, in [16], only two numerical
features calculated from the adjacent matrix of the complex
network are used to detect AF.This processmay cause the loss
of a lot of discriminating information of the adjacent matrix.

The objective of this paper is to improve the performance
of the AF detection algorithm by combining the Recurrence
Complex Network (RCN) with convolution neural network
(CNN). As one of the deep learning algorithms [17], CNN
has great potential in feature extraction and has been applied
to image processing and speech recognition with notable
success [18–20]. In the proposed algorithm, CNN is exploited
to learn robust AF features from the output of the RCN and
then to detect AF signal with high accuracy. The proposed
AF detection algorithm is composed of two procedures.
The first is a heartbeat classification procedure that can
distinguish between AF beat and normal beat based on
the ECG waveform of a single heartbeat. The second is a
voting procedure that improves classification performance
by fusing the classification results of multiple beats. The first
procedure is the crucial part, in which the synchronization
feature of each heartbeat is first extracted by the RCN, and
then, a CNN is used to extract more abstract AF features
and recognize an AF heartbeat. Experimental results on the

MIT-BIH database show that the AF features learned by the
CNN are robust to the variation of the ECG signals between
different personalities so that the proposed algorithm has
good generalization ability.

2. The Data

The real data (surface ECGs) used in this method were
provided by the MIT-BIH AF database (AFDB) [21]. The
database is from Physionet [22] and includes 25 long-term
(10 hour) annotated ECG recordings of humans with AF and
contains 299 AF episodes. Each recording contains two ECG
signals (ECG1 and ECG2), which are sampled at 250HZ and
12-bit resolution. In this work, only ECG1 signals are used to
evaluate the AF detection methods.

3. Methods

3.1. Data Preprocessing. For each data recording, a seven-
order Butterworth bandpass filter is applied with poles at 0.5
Hz and 49 Hz to reduce baseline wander (BW) and noise.
Then, the onset of the QRS wave is detected by finding
the local maximums of the convolution between the ECG
recording and a set of predefined QRS models. At each QRS
onset point, the QRS wave is canceled based on the most
matched model. The remaining signals are departed into
segments; each ofwhich is approximately theAA segment of a
heartbeat. All the segments are interpolated into 128 bit data
samples with the Fourier transform interpolation. Next, an
AF detection algorithm is developed based on such samples.
Themain ECG preprocessing steps are illustrated in Figure 1,
which clearly illustrates the changing process of the data.
Figure 1(a) shows that the Butterworth filter can successfully
correct the baseline and reduce the effects of the noise. In
Figure 1(b), the right figure only contains information outside
the QRS wave. It shows that the ventricular signals are almost
removed; thus, the output signal essentially represents theAA
signal. These are the single heartbeats before and after the
interpolation operation, as shown in Figure 1(c).

3.2. Extracting Low Level AF Features Based on the Recurrence
Complex Network. The ECG data is a nonstationary time
series [23]; thus, it can be analyzed by the Recurrence
Complex Network (RCN), a popular tool for processing
nonstationary time series [23, 24]. Traditionally, there are
two issues that need to be explored when applying the RCN:
the construction of the recurrence matrix and the extraction
of the RCN features. This section mainly focuses on the
construction of the recurrence matrix from the ECG data.

The recurrence matrix is obtained by the phase space
reconstruction method. Generally, there are two kinds of
phase space construction methods: the time delay method
and the derivative reconstruction method [24]. In this
study, the time delay method was selected because the
derivation is sensitive to the calculation error. Let 𝑥(𝑡) ={𝑥(𝑡1) 𝑥(𝑡2) ⋅ ⋅ ⋅ 𝑥(𝑡𝑁)} denote an ECG data of length 𝑁,
and then, the vector 𝑋(𝑡𝑖) = [𝑥(𝑡𝑖) 𝑥(𝑡𝑖+𝜏) ⋅ ⋅ ⋅ 𝑥(𝑡𝑖+(𝑚−1)𝜏)]
represents a vector in the phase space. Here, 𝑚 is the
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embedding dimension, and 𝜏 is the embedding delay time.
If the parameters𝑚 and 𝜏 are properly specified, the dynamic
characteristics of the data will be transferred into the rela-
tionship between the vectors in the phase space, and it will
be much easier to observe and extract the dynamic features
of the data than that in the original space.

The most common method for choosing the time delay
parameter 𝜏 is based on the mutual information between the
coordinates of the phase space (Frase [25]). By the assignment[𝑠𝑖, 𝑞𝑖] = [𝑥(𝑡𝑖), 𝑥(𝑡𝑖+𝜏)], a couple of random variables 𝑆 and𝑄 are defined, where 𝑠𝑖 = 𝑥(𝑡𝑖) is an instance of 𝑆, and 𝑞𝑖 =𝑥(𝑡𝑖+𝜏) is an instance of𝑄.The average amount of information
gained from a specific value of 𝑆, named the entropy𝐻(𝑆), is
defined as the following:

𝐻(𝑆) = −∑
𝑖

𝑃𝑆 (𝑠𝑖) log𝑃𝑆 (𝑠𝑖) , (1)

where 𝑃𝑆(𝑠𝑖) is the probability that the observed value of the
random variable 𝑆 is 𝑠𝑖.

The entropy 𝐻(𝑄) is defined in the same way. Moreover,
the joint entropy of the couple [𝑆, 𝑄] can be defined as

𝐻(𝑆, 𝑄) = −∑
𝑖,𝑗

𝑃𝑆,𝑄 (𝑠𝑖, 𝑞𝑗) log𝑃𝑆,𝑄 (𝑠𝑖, 𝑞𝑗) , (2)

where 𝑃𝑆,𝑄(𝑠𝑖, 𝑞𝑗) is the probability that the observed values
of 𝑆 are 𝑠𝑖, and 𝑄 is 𝑞𝑗.

Then, the mutual information between 𝑆 and 𝑄 can be
defined as 𝐼(𝑆,𝑄):

𝐼 (𝑆, 𝑄) = 𝐻 (𝑆) + 𝐻 (𝑄) − 𝐻 (𝑆, 𝑄) , (3)

In recalling the definitions of the random variables 𝑆 and𝑄, it can be determined that 𝐼(𝑆,𝑄) is a function of 𝜏. The
research work of [25] demonstrated that the proper value of
the time delay 𝜏 corresponds with the first local minimum of𝐼(𝑆,𝑄).

The problem of determining the embedding dimension𝑚
was explored in depth in [26], in which an efficient method
for determining the embedding dimension 𝑚 was developed
based on the fact that a low embedding dimension results in
points that are far apart in the high dimensional phase space
being moved closer together in the reconstructed space [27].
This method was adopted in our AF detection algorithm, and
in the following part, we briefly review it.

Consider again the ECG data 𝑥(𝑡) ={𝑥(𝑡1) 𝑥(𝑡2) ⋅ ⋅ ⋅ 𝑥(𝑡𝑁)}. Suppose that the vectors
constructed with dimension 𝑑 are 𝑋𝑑(𝑡𝑖) =[𝑥(𝑡𝑖) 𝑥(𝑡𝑖+𝜏) ⋅ ⋅ ⋅ 𝑥(𝑡𝑖+(𝑑−1)𝜏)], where 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑁−(𝑑−1)𝜏,
and the nearest neighbor of 𝑋𝑑(𝑡𝑖) in the phase space
is 𝑋𝑑(𝑡𝑛(𝑖,𝑑)). The vectors constructed with dimension𝑑 + 1 are 𝑋𝑑+1(𝑡𝑖) = [𝑥(𝑡𝑖) 𝑥(𝑡𝑖+𝜏) ⋅ ⋅ ⋅ 𝑥(𝑡𝑖+𝑑𝜏)], where𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑁−𝑑𝜏.Then, a quantity measure of the difference
of the two phase spaces in view of the distances between the
adjacent vectors is defined as

𝑎 (𝑖, 𝑑) = 󵄩󵄩󵄩󵄩𝑋𝑑 (𝑡𝑖) − 𝑋𝑑 (𝑡𝑛(𝑖,𝑑))󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋𝑑+1 (𝑡𝑖) − 𝑋𝑑+1 (𝑡𝑛(𝑖,𝑑))󵄩󵄩󵄩󵄩 ,
𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑁 − 𝑑𝜏

(4)

where ‖ ⋅ ‖ is a measurement of the Euclidian distance, such
as the maximum norm. According to Cao, etc. [26], the
parameter 𝑑 can be determined by the function:

𝐸1 (𝑑) = (𝑁 − 𝑑𝜏)∑𝑁−(𝑑+1)𝜏𝑖=1 𝑎 (𝑖, 𝑑 + 1)
(𝑁 − (𝑑 + 1) 𝜏)∑𝑁−𝑑𝜏𝑖=1 𝑎 (𝑖, 𝑑) (5)

Having chosen appropriate parameters for the phase
space, the dynamic character of the original data can be
represented by the following 𝐿 × 𝐿 recurrence matrix 𝑅:

𝑅 (𝑖, 𝑗) = 󵄩󵄩󵄩󵄩󵄩𝑋 (𝑡𝑖) − 𝑋 (𝑡𝑗)󵄩󵄩󵄩󵄩󵄩 , 𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ 𝐿 (6)

where 𝐿 = 𝑁 − (𝑚 − 1)𝜏. The matrix 𝑅 is a symmetric matrix
with the diagonal element of 0. In our algorithm, 𝑁=128, 𝜏 =4, and 𝑚 = 10 (see Section 4.1), such that 𝐿 = 92.

Traditionally, the recurrence matrix is binarilized, and
some numerical features are extracted through the manual
method. Then, the input samples can be classified with
algorithms such as fuzzy c-means (FCM). However, it is
difficult to manually define the appropriate features for the
ECG data. To solve this problem, we propose to extract
features from the recurrence matrix automatically by using
the convolution neural network (CNN). Firstly, we calculate
the eigenvalues of the recurrence matrix, and then, they
are sent into the CNN. The CNN extracts the features and
classifies the data. The eigenvalues of each data sample form
a 92-byte feature vector.

3.3. AF Detection Based on the Convolutional Neural Network

3.3.1. Architecture of the CNN. The convolutional neural net-
work (CNN) addresses the feature learning problem through
the calculation of multiple levels of data representations by
the operation involved in the multiple layers of the CNN.
Except for the first layer and the top layer, the main part of
theCNN is composed of alternating layers of convolution and
pooling.

As illustrated in Figure 2, the convolution layer adopted
in this study consists of a group of fully connected feature
maps 𝐶𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑜) (assume𝑁𝑜 is the total number).
Each feature map 𝐶𝑗 is obtained by a summation of the
convolutions from all the input feature maps (assume 𝑁𝐼 is
the total number),𝑂𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝐼), and a series of weight
vectors𝑊𝑖,𝑗, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝐼, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑂, i.e.,

𝐶𝑗 = 𝜎(𝑁𝐼∑
𝑖=1

𝑂𝑖 ∗W𝑖,𝑗) , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑜 (7)

where 𝜎(𝑥) is a nonlinear activation function, for example,𝜎(𝑥) = 1/(1 + exp(−𝑥)). The term feature map is borrowed
from image processing applications, in which the input and
output of each layer of the CNN are 2-dimensional arrays.
However, the input of the CNN is a 1-dimensional vector, and
as a result, all of the feature maps are 1-dimensional vectors
in our AF detection algorithm.

The weight vectors of the convolutional layer, 𝑊𝑖,𝑗, 𝑖 =1, 2, ⋅ ⋅ ⋅ , 𝑁𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑂, can be seen as trainable feature
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pooling layer.

extraction operators; each of which enhances one kind of
feature and weakens the others. When the CNN is trained
with sufficient training data, the feature maps, which are
obtained by using these weight vectors, will be turned into an
appropriate representation for recognition of the input data.

Each convolutional layer is followed by a pooling layer,
as shown in Figure 2. The pooling layer is also composed
of feature maps. Each feature map 𝑃𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑜)
in the pooling layer is obtained by applying a pooling
operation to the units of a convolution layer feature maps𝐶𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑜). There are usually two kinds of pooling
operations: maximization pooling and averaging pooling.
Here, averaging pooling was adopted, which is defined as

𝑝𝑗,𝑚 = 𝑟 𝐺∑
𝑛=1

𝑐𝑗,(𝑚−1)×𝑠+𝑛 (8)

where𝑝𝑗,𝑚 is the𝑚-th unit of𝑃𝑗; 𝑐𝑗,𝑘 is the 𝑘-th unit of𝐶𝑗;𝐺 is
the pooling size, which determines a pooling window; 𝑠 is the
shift size, which determines the overlap of adjacent pooling
windows; and 𝑟 is the scaling factor, which is selected as one
in 𝐺. By the pooling operation, the resolutions of the feature
maps are reduced so that the features learned by the CNN are
robust to small variations in location.

The CNN used for AF detection has six layers (as
illustrated in Figure 3). It consists of one input layer; two
convolutional layers, which are denoted as C1 and C2,
respectively; two pooling layers which are denoted as S1 and
S2, respectively; and one output layer. The 92 eigenvalues of
the reconstructed recurrence matrix form the ECG sample of
a heartbeat and are mounted into the input layer. The output
layer has only two units 𝑜𝑛, where 𝑛 = 1, 2; 𝑜1 corresponds
with the normal heat beat class, and 𝑜2 corresponds with the
AF heart beat class. Suppose that the output units are denoted

as the units in the final pooling layer (assume𝑁𝐹 is the total
number) by 𝑝𝐹,𝑚, where 𝑚 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝐹, and the weight
between 𝑝𝐹,𝑚 and 𝑜𝑛 is𝑤𝑚,𝑛, where𝑚 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝐹, 𝑛 = 1, 2.
Then, the final outputs can be calculated as follows:

𝑜𝑛 = exp (∑𝑁𝐹𝑚=1 𝑝𝐹,𝑚𝑤𝑚,𝑛)
∑2𝑛󸀠=1 exp (∑𝑁𝐹𝑚=1 𝑝𝐹,𝑚𝑤𝑚,𝑛󸀠) (9)

The CNN can be trained with the back-propagation (BP)
algorithm with the loss function:

𝐸𝑥𝑖 (𝜃) = − 2∑
𝑛=1

𝑦𝑖,𝑛𝑜𝑛 (10)

where 𝜃 denotes all of the weights of the CNN, 𝑥𝑖 is an
input sample, and 𝑦𝑖 = [𝑦𝑖,1 𝑦𝑖,2] is the binary encoding
vector target label for 𝑥𝑖. Details of the training algorithm are
available in [28].

The number of feature maps in each convolutional layer
and the pooling parameters are chosen experimentally in
Section 4.

3.3.2. AF Detection. The input ECG data is preprocessed
and segmented into 128-bit samples, where each sample
corresponds to the atrial activity (AA) signal of one heartbeat.
Then, the recurrence matrix is calculated. The eigenvalues of
the recurrence matrix, which form a 92-byte feature vector,
are sent to a CNN. The details of the CNN are introduced in
the following.

C1 layer: The C1 layer is a convolution layer. It consists
of six feature maps with a vector of 1∗80. Each unit of one
feature map in this layer obtains the input from a local area.
The size of the convolution kernel determines the size of the
receptive field of neurons. Therefore, it is important to set
an appropriate convolution kernel size. Here, the convolution
kernel is set to be 13, and the size of the output feature map
is 80(92-13+1=80). The inner information of the input data is
extracted through different convolution kernels.

S2 layer: The S2 layer is a pooling layer. The obtained
feature from C1 is sampled according to the principle of
local image characteristics. The sampling is achieved by
using a pooling function to several units in a region of a
size determined by the pooling size parameter. After the
experiment, the size is set as 2. Therefore, the size of the
obtained feature map in this layer is 40 (80/2=40). The
further feature extraction will cause it to be invariant to small
variations in location. The resolution of the obtained feature
map is reduced, but most of the information is retained.

C3 layer: The C3 layer is similar to that of C1. The size of
the obtained feature map is 28 (40-13+1=28). As mentioned
above, the pooling layer increases the receptive field of
neurons. Therefore, a better feature structure is acquired for
the depth structure.

S4 layer: This layer is the same as the S2 layer. The size of
the feature maps is 14 (28/2=14).

Output layer: The output layer is fully connected to S4
layer. The number of S4 neurons is 12∗14=168. Each neuron
is connected to the output. There are 168∗2=336 connections
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Figure 3: Structure diagram of the CNN.

because the output layer consists of two neurons. The output
will be closer to the desired output after several times of
training through the BP algorithm to update the weights of
the network.

3.4. Majority Voting. Although the beat-wise AF detection
algorithm is important in exploring the underlying feature
of AF, its classification accuracy is relatively low. To improve
algorithm performance, the majority voting methodology
was adopted. Before AF detection, the ECG data is seg-
mented into beat-wise data samples. Each adjacent 𝐺 sample
is used as a collective candidate for AF detection. The
samples of one candidate are classified using the above
method, and then, the classification results are integrated
by majority voting to determine whether it is AF data. The
parameter 𝐺 will be determined experimentally in the next
section.

4. Experiments and Discussion

All programs and graphs were created in Matlab (R2015b
version 8.6.0.267246, Mathworks). The 23 recordings in the
database were divided into two groups. The first group
contains 15 recordings, and the second group contains 8
recordings. The recordings of the two groups were obtained
from different subjects. From the first group, 120,000 NSR
(Normal sinus rhythm) heartbeat AA data samples and
120,000 AF samples, respectively, were obtained with the
preprocessing method detailed in Section 3.1. All of the
240,000 sampleswere used to construct the training set. From
the second group, 40,000 NSR heartbeat AA data samples
and 40,000 AF samples, respectively, were obtained with the
same preprocessing method.These 80,000 samples were used
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Figure 4: Selection of the delay time.

to construct the testing set. The goal of such an arrangement
is to test whether the AF detection algorithms can be adapted
to different individuals.

4.1. Choice of Time Delay and Embedding Dimension. There
are two parameters of the reconstructed phase space that
need to be determined: the delay time and the embedding
dimension. Figure 4 plots the MI versus the delay time 𝜏.
The delay time corresponding to the first local minimum of
MI (𝜏 = 4) is selected for the phase space. Figure 5 plots
the function 𝐸1(𝑑). It can be seen that when the dimension
exceeds 9, the 𝐸1 value is close to 1 and does not significantly
change with an increased embedding dimension. Based on
Cao’s method,𝑚 is set as 10.



Journal of Probability and Statistics 7

Table 1: Classification rates of CNN under different lengths of the convolution kernel.

length of convolution kernel 5 9 13 17
training set 75.68% 77.17% 82.37% 78.3%
testing set 74.39% 73.5% 80.77% 71.2%

Table 2: Classification rates of CNN under different number of feature maps.

𝑁𝑐1
𝑁𝑐3 3 6 9 12

train test train test train test train test
3 74.28% 77.29% 76.95% 75.29% 80.13% 74.94% 76.87% 79.75%
6 73.23% 76.96% 82.19% 77.42% 82.45% 74.95% 73.92% 59.95%
9 71.71% 74.74% 78.08% 79.89% 80.91% 75.65% 82.59% 79.65%
12 74.66% 71.1% 82.37% 80.77% 79.94% 71.11% 82.2% 76.31%
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Figure 5: Selection of the embedding dimension.

4.2.The Effects of Varying CNN Parameters. In order to select
the best parameters for the CNN, the performance of the
CNN is evaluated using different parameters.

(1) Effects of Different Convolution Kernel Lengths. There are
four parameters that need to be determined: the pooling size,
the length of the convolution kernels, the number of feature
maps in theC1 layer, and the number of featuremaps in theC3
layer. In the present algorithm, the length of the input vector
of the CNN is not too large; thus, the big pooling size may
result in information loss. Therefore, the pooling size is fixed
at 2.

As an initiation, the number of feature maps in the
C1 layer and C2 layer is set as 6 and 12, respectively,
according to ref. [18], and the effects of different lengths of
convolution kernels are observed. Table 1 shows the classifi-
cation rates of the CNN under different convolution kernel
lengths. A length of 13 produced the maximal classification
rate.

(2) Effects of Various Number of Feature Maps. Table 2
illustrates the accuracy of different feature maps in C1 layer
(𝑁𝑐1) and C3 layer (𝑁𝑐3). The results reveal that the CNN
performs best when𝑁𝑐1 = 6 and𝑁𝑐3 = 12.

4.3. Experimental Results of Beat-Wise AF Detection. To illus-
trate the effectiveness of the CNN, the CNN is compared with
other popular classification methods. Three measurements
are used to evaluate the methods: accuracy (AC), sensitivity
(SE), and specificity (SP). The inputs of all three classifiers
are the low level features obtained by the method detailed
in Section 3.2. Table 3 demonstrates that the CNN greatly
outperforms the others.

Most of the rate-independent AF detection algorithms
are unable to solve the problem of individual variation.
According to our investigation, only the Magnitude-squared
coherence (MSC) algorithm [15] and the Recurrence Com-
plex Network (RCN) algorithm [16] can recognize the sam-
ples of different individuals based on beat-wise AA samples.
Table 4 presents a comparison of the proposed beat-wised
AF detection algorithm (BWAD) with these two algorithms.
For the contrast experiments, all of the ECG recordings are
preprocessed with the method described in Section 3.1, and,
the training and testing sets are constructed as previously
described. In the BWAD algorithm, the low level features are
first extracted and then, the CNN is used to extract the high-
level features and classify them. As for the MSC algorithm,
the feature vectors are calculated between each data sample
and the previous sample, and the samples are classified based
on a hand measurement that is detailed in [15]. For the
RCN algorithm, the recurrence matrix is calculated the same
as that in the proposed algorithm, and, the samples are
classified based on two hand measurements that are detailed
in [16].

It can be seen that the proposed BWAD algorithm
outperforms the traditional algorithms. Traditional algo-
rithms perform poorly in beat-wise rate-independent AF
detection because they rely on manually obtained features.
In contrast, the BWAD algorithm effectively solves this
problem by using CNN to extract high-level features for
classification.

4.4. Experimental Results of Majority Voting. The perfor-
mance of the proposed algorithm can be improved by
majority voting, in which the outputs of𝐺 adjacent heartbeat
samples are integrated to obtain an accurate result. Table 5
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Table 3: Comparison of CNN with typical classification methods.

method AC SE SP
SVM 61.34% 56.25% 66.37%
KNN 70.95% 88.97% 52.93%
CNN 80.77% 89.18% 72.37%

Table 4: Comparison with traditional rate-independent AF detection algorithms.

methods AC SE SP
MSC 66.31% 71.54% 61.09%
RCN 60.03% 66.16% 53.91%
BWAD 80.77% 89.18% 72.37%

Table 5: Results of majority voting under different parameters.

𝐺 AC SE SP
13 92.92% 94.81% 90.99%
15 92.97% 96.06% 89.87%
17 94.09% 94.30% 93.88%
19 94.12% 95.72% 92.52%
21 94.59% 94.28% 94.91%

Table 6: Comparison of the time spent in each process.

Remove QRS wave and
noise reduction The interpolation process RCN extracting feature

process
Testing
process

0.11 seconds 0.00023 seconds 0.0075 seconds 0.00092 seconds

lists the classification rates of the voting algorithm under
different parameters (𝐺). It can be seen that a larger 𝐺 value
usually leads to a better performance.

4.5. The Calculation of the Complexity. The configuration of
the computer used for the program is an Intel Pentium Dual-
Core with a processor speed of 2.2GHz and a memory size
of 3.18GB. For the proposed algorithm, training the CNN is a
time-consuming process. However, the training process can
be carried out off-line. The training process (i.e., the whole
data preprocessing process and the CNN training process
(10 times)) requires approximately 9.65 hours for the 24,000
samples. Table 6 lists the results.

As for the testing process, it was determined that the
process of removing theQRSwave and reducing the noisewas
themost time-consuming process. After several experiments,
the time spent in each process for one sample was obtained,
and it was revealed that the testing process is about 0.1186
seconds for a sample. Therefore, this method can be used in
real-time signal processing.

5. Conclusion

In this paper, a novel rate-independent AF detection algo-
rithm that combines RCN and CNN based on AA features
is presented. Firstly, the recurrence matrix is calculated with
RCN, and the eigenvalues of the matrix are extracted to

characterize atrial activity. Then, CNN is employed, which
leverages the multilayer structures and presents an increas-
ingly abstract representation of the input. These signals are
distinguished through the optimization of the network so as
to extract high-level features and classify the input sample.
Finally, majority voting is utilized to improve algorithm
performance.

In the experiments, the training set and testing set are
constructed with a special arrangement so that the data
samples of each set are obtained from different subjects. The
proposed algorithm achieves an accuracy of 94.59%, which
is comparable to popular RRI-based methods. Moreover,
the proposed rate-independent algorithm is applicable to
patients with rate-controlled drugs or pacemakers. Further-
more, the developedmethod solves the problem of individual
variation. Therefore, it is evident that the proposed method
can detect AF with superior performance.
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We consider the problem of modelling count data with excess zeros using Zero-Inflated Poisson (ZIP) regression. Recently, various
regularizationmethods have been developed for variable selection in ZIPmodels. Among these, EMLASSO is a popularmethod for
simultaneous variable selection and parameter estimation. However, EM LASSO suffers from estimation inefficiency and selection
inconsistency. To remedy these problems, we propose a set of EM adaptive LASSOmethods using a variety of data-adaptive weights.
We show theoretically that the new methods are able to identify the true model consistently, and the resulting estimators can be
as efficient as oracle. The methods are further evaluated through extensive synthetic experiments and applied to a German health
care demand dataset.

1. Introduction

Modern research studies routinely collect information on a
broad array of outcomes including count measurements with
excess amount of zeros. Modeling such zero-inflated count
outcomes is challenging for several reasons. First, traditional
count models such as Poisson and Negative Binomial are
suboptimal in accounting for excess variability due to zero-
inflation [1, 2]. Second, alternative zero-inflated models such
as the Zero-Inflated Poisson (ZIP) [2] and Zero-Inflated
Negative Binomial (ZINB) [1] models are computationally
prohibitive in the presence of high-dimensional and collinear
variables.

Regularization methods have been proposed as a pow-
erful framework to mitigate these problems, which tend to
exhibit significant advantages over traditional methods [3,
4]. Essentially all these methods enforce sparsity through a

suitable penalty function and identify predictive features by
means of a computationally efficient Expectation Maximiza-
tion (EM) algorithm. Among these, EM LASSO is particu-
larly attractive due to its capability to perform simultaneous
model selection and stable effect estimation. However, recent
research suggests that EM LASSO may not be fully efficient
and its model selection result could be inconsistent [5, 6].
This led to a simple modification of the LASSO penalty,
namely, the EM adaptive LASSO (EM AL). EM AL achieves
“oracle selection consistency” by allowing different amounts
of shrinkage for different regression coefficients.

Previous studies have not, however, investigated the EM
AL at sufficient depth to evaluate its properties under diver-
sified and realistic scenarios. It is not yet clear, for example,
how reliable the resulting parameter estimates are in the
presence ofmulticollinearity. In particular, the actual variable
selection performance of EM AL depends on the proper
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construction of the data-adaptive weight vector. When the
features to be associated possess an inherent collinearity, EM
AL is expected to produce suboptimal results, a phenomenon
that is especially evident when the sample size is limited
[7]. Several remedies have been suggested for linear and
generalized linear models (GLMs) such as the standard error-
adjusted adaptive LASSO (SEAL) [7, 8]. However, there is
a lack of similar published methods for zero-inflated count
regression models. In addition, complete software packages
of these methods have not been made available to the
community.

We address these issues by providing a set of flexible vari-
able selection approaches to efficiently identify correlated fea-
tures associated with zero-inflated count outcomes in a ZIP
regression framework. We have implemented this method as
AMAZonn (A Multicollinearity-adjusted Adaptive LASSO
for Zero-inflated Count Regression). AMAZonn considers
two data-adaptive weights: (i) the inverse of the maximum
likelihood (ML) estimates (EM AL) and (ii) inverse of the
ML estimates divided by their standard errors (EM SEAL).
We show theoretically that AMAZonn is able to identify the
true model consistently, and the resulting estimator is as effi-
cient as oracle. Numerical studies confirmed our theoretical
findings. The rest of the article is organized as follows. The
AMAZonn method is proposed in the next section, and its
theoretical properties are established in Section 3. Simulation
results are reported in Section 4 and one real dataset is
analyzed in Section 5.Then, the article concludes with a short
discussion in Section 6. All technical details are presented in
the Appendix.

2. Methods

2.1. Zero-Inflated Poisson (ZIP) Model. Zero-inflated count
models assume that the observations originate either from
a “susceptible” population that generates zero and positive
counts according to a count distribution or from a “nonsus-
ceptible” population, which produces additional zeros [1, 2].
Thus, while a subject with a positive count is considered to
belong to the “susceptible” population, individuals with zero
counts may belong to either of the two latent populations.
We denote the observed values of the response variable as
y = (𝑦1, 𝑦2, . . . , 𝑦𝑛)󸀠. Following Lambert [2], a ZIP mixture
distribution can be written as

𝑃 (𝑦𝑖 = 𝑘) = {{{{{
𝑝𝑖 + (1 − 𝑝𝑖) 𝑒−𝜆𝑖 if 𝑘 = 0,
(1 − 𝑝𝑖) 𝑒−𝜆𝑖𝜆𝑘𝑖𝑘! if 𝑘 = 1, 2, . . . , (1)

where 𝑝𝑖 is the probability of belonging to the nonsusceptible
population and 𝜆𝑖 is the Poisson mean corresponding to the
susceptible population for the 𝑖th individual (𝑖 = 1, . . . , 𝑛). It
can be seen from (1) that ZIP reduces to the standard Poisson
model when 𝑝𝑖 = 0. Also, 𝑃(𝑦𝑖 = 0) > 𝑒−𝜆𝑖 , indicating zero-
inflation.Theprobability of belonging to the “nonsusceptible”
population, 𝑝𝑖, and the Poisson mean, 𝜆𝑖, are linked to the
explanatory variables through the logit and log links as

logit (𝑝𝑖) = z󸀠𝑖𝛾 and (2)

Table 1:The AMAZonn data-adaptive weights. 𝛽ML and 𝛾ML denote
the ML estimates based on the unpenalized ZIP model, corre-
sponding to count and zero submodels, respectively. SE denotes the
standard errors of the corresponding ML estimates.

Weighting Scheme Count Zero

AMAZonn - EM AL 1󵄨󵄨󵄨󵄨󵄨𝛽𝑗ML

󵄨󵄨󵄨󵄨󵄨
1󵄨󵄨󵄨󵄨󵄨𝛾𝑗ML

󵄨󵄨󵄨󵄨󵄨
AMAZonn - EM SEAL

𝑆𝐸 (𝛽𝑗ML
)󵄨󵄨󵄨󵄨󵄨𝛽𝑗ML

󵄨󵄨󵄨󵄨󵄨
𝑆𝐸 (𝛾𝑗ML

)󵄨󵄨󵄨󵄨󵄨𝛾𝑗ML

󵄨󵄨󵄨󵄨󵄨
log (𝜆𝑖) = x󸀠𝑖𝛽, (3)

where x𝑖 and z𝑖 are vectors of covariates for the 𝑖th subject
(𝑖 = 1, . . . , 𝑛) corresponding to the count and zero models,
respectively, and 𝛾 = (𝛾0, 𝛾1, . . . , 𝛾𝑞)󸀠 and 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑝)󸀠
are the corresponding regression coefficients including the
intercepts.

For 𝑛 independent observations, the ZIP log-likelihood
function can be written as

𝐿 (𝛽, 𝛾) = ∑
𝑦𝑖=0

log {𝑒𝑧󸀠𝑖𝛾 + 𝑒−𝑒𝑥󸀠𝑖𝛽}
+ ∑
𝑦𝑖>0

{𝑦𝑖𝑥󸀠𝑖𝛽 + 𝑒−𝑥󸀠𝑖𝛽} − 𝑛∑
𝑖=1

log {1 + 𝑒𝑧󸀠𝑖 𝛾}
− ∑
𝑦𝑖>0

log (𝑦𝑖!) .
(4)

2.2. 	e AMAZonn Method. AMAZonn considers two data-
adaptive weights in the EM adaptive LASSO framework: (i)
the inverse of the maximum likelihood (ML) estimates (EM
AL) and (ii) inverse of the ML estimates divided by their
standard errors (EM SEAL). As defined by Tang et al. [6], the
EM adaptive LASSO formulation for ZIP regression is given
by

𝜃̂
∗ = argmin {−𝐿 (𝜃)} + ]1

𝑝∑
𝑗=1

𝑤1𝑗 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 + ]2
𝑝∑
𝑗=1

𝑤2𝑗 󵄨󵄨󵄨󵄨󵄨𝛾𝑗󵄨󵄨󵄨󵄨󵄨 , (5)

where 𝜃 = {𝛽, 𝛾} is the parameter vector of interest with
known weights 𝑤1 = (𝑤11, . . . , 𝑤1𝑝)󸀠 and 𝑤2 = (𝑤21, . . . ,𝑤2𝑝)󸀠. As noted by Qian and Yang [7], the inverse of the
maximum likelihood (ML) estimates as weights may not
always be stable, especially when the multicollinearity of
the design matrix is a concern. In order to adjust for this
instability, AMAZonn additionally considers the inverse of
the ML estimates divided by their standard errors as weights.
We refer to these two methods as AMAZonn - EM AL and
AMAZonn - EM SEAL, respectively (Table 1).

2.3. 	e EM Algorithm. In order to efficiently estimate the
parameters in the above optimization problem (5), we resort
to the EM algorithm. To this end, we define a set of latent
variables 𝑧𝑖 as follows:𝑧𝑖 = 1 if 𝑦𝑖 is from the zero state, and
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𝑧𝑖 = 0 if 𝑦𝑖 is from the count state, 𝑖 = 1, . . . , 𝑛.
(6)

We consider the latent variables 𝑧𝑖’s as the “missing data” and
rewrite the complete-data log-likelihood function in (4) as
follows:

𝐿 (𝜃) = 𝑛∑
𝑖=1

[𝑧𝑖𝑋𝑖𝛾 − log (1 + exp (𝑋𝑖𝛾))
+ (1 − 𝑧𝑖) {𝑦𝑖𝑋𝑖𝛽 − (𝑦𝑖 + 1) log (1 + 𝑋𝑖𝛽)}] .

(7)

With the above formulation, the objective function in (5) can
be rewritten as

𝑄∗ (𝜃) = −𝐿 (𝜃) + ]1
𝑝∑
𝑗=1

𝑤1𝑗 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 + ]2
𝑝∑
𝑗=1

𝑤2𝑗 󵄨󵄨󵄨󵄨󵄨𝛾𝑗󵄨󵄨󵄨󵄨󵄨 , (8)

which can be iteratively solved as follows:

(1) At iteration t, the E step computes the expectation of𝑄∗(𝜃) by substituting 𝑧𝑖 with its conditional expec-
tation given observed data and current parameter
estimates

𝑧̂(𝑡)𝑖 = {{{{{{{{{
(1 + [[[

exp (−𝑋𝑖𝛾̂(𝑡))1 + exp (−𝑋𝑖𝛽̂(𝑡))]]]) if 𝑦𝑖 = 0,
0 if 𝑦𝑖 > 0.

(9)

(2) In theM step, the expected penalized complete-data
log-likelihood (5) can be minimized the with respect
to 𝜃 as

𝑄∗ (𝜃 | 𝜃(𝑡)) = −2𝐸(𝐿 (𝜃 | 𝜃(𝑡)) + ]1
𝑝∑
𝑗=1

𝑤1𝑗 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨
+ ]2
𝑝∑
𝑗=1

𝑤2𝑗 󵄨󵄨󵄨󵄨󵄨𝛾𝑗󵄨󵄨󵄨󵄨󵄨 .
(10)

(3) Continue this process until convergence, 𝑡 = 1, 2, . . ..
It is to be noted that (10) can be further decomposed as

𝑄∗ (𝜃 | 𝜃(𝑡)) = 𝑄∗1 (𝛽 | 𝜃(𝑡)) + 𝑄∗2 (𝛾 | 𝜃(𝑡)) , (11)

where 𝑄∗1 is the weighted penalized Poisson log-likelihood
defined as

𝑄∗1 (𝛽 | 𝜃(𝑡)) = −2 [ 𝑛∑
𝑖=1

(1 − 𝑧̂(𝑡)𝑖 )
⋅ {𝑦𝑖𝑋𝑖𝛽 − (𝑦𝑖 + 1) log (1 + 𝑋𝑖𝛽)}]
+ ]1
𝑝∑
𝑗=1

𝑤1𝑗 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 ,
(12)

and 𝑄∗2 is the penalized logistic log-likelihood defined as

𝑄∗2 (𝛾 | 𝜃(𝑡)) = −2[ 𝑛∑
𝑖=1

𝑧̂(𝑡)𝑖 𝑋𝑖𝛾 − log (1 + exp (𝑋𝑖𝛾))]
+ ]2
𝑝∑
𝑗=1

𝑤2𝑗 󵄨󵄨󵄨󵄨󵄨𝛾𝑗󵄨󵄨󵄨󵄨󵄨 ,
(13)

both of which can be minimized separately using computa-
tionally efficient coordinate descent algorithms developed for
GLMs [9].

2.4. Selection of Tuning Parameters. We select the tuning
parameters based on the minimum BIC [10] criterion, which
is known to provide better variable selection performance
as compared to other information criteria [11]. This can be
effortlessly incorporated in our formulation by using existing
implementations for zero-inflated count models [3, 4, 6].

3. Oracle Properties

Recently, Tang et al. [6] showed that the EM adaptive
LASSO (i.e., AMAZonn - EMAL) enjoys the so-called oracle
properties, i.e., the estimator is able to identify the true model
consistently, and the resulting estimator is as efficient as
oracle. Here we extend these results to the AMAZonn - EM
SEAL estimator and show that the AMAZonn - EM SEAL
estimator also maintains the same theoretical properties. For
the sake of completeness, we provide a combined general
proof for both AMAZonn estimators.

Without being too rigorous mathematically, recall that
the log-likelihood function for the ZIP regression model is
given by

𝐿 (𝜃; 𝜐𝑖) = ∑
𝑦𝑖=0

log [𝜓𝑖 + (1 − 𝜓𝑖) 𝑓 (0; 𝜆𝑖)]
+ ∑
𝑦𝑖>0

log [(1 − 𝜓𝑖) 𝑓 (𝑦𝑖; 𝜆𝑖)] , (14)

where 𝜐𝑖’s are the observed data (i.i.d observations from the
ZIP distribution), 𝑓(.; 𝜆𝑖) is the probability mass function
of Poisson distribution with parameter 𝜆𝑖 = exp(𝑋𝑖𝛽) and𝜓𝑖 = exp(𝑋𝑖𝛾)/(1+exp(𝑋𝑖𝛾)), 𝑖 = 1, . . . , 𝑛.The corresponding
penalized log-likelihood is given by

𝑄 (𝜃) = −𝐿 (𝜃; 𝜐𝑖) + ]1𝑛
𝑝∑
𝑗=1

𝑤1𝑗 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 + ]2𝑛
𝑝∑
𝑗=1

𝑤2𝑗 󵄨󵄨󵄨󵄨󵄨𝛾𝑗󵄨󵄨󵄨󵄨󵄨 . (15)

Let us denote the true coefficient vector as 𝜃0 = (𝛽𝑇0 , 𝛾𝑇0 )𝑇.
Decompose 𝜃0 = (𝜃𝑇10, 𝜃𝑇20)𝑇 and assume that 𝜃𝑇20 contains
all zero coefficients. Let us denote the subset of true nonzero
coefficients as A = {𝑗 : 𝜃𝑗0 ̸= 0} and the subset of selected
nonzero coefficients as Â = {𝑗 : 𝜃𝑗 ̸= 0}. With this
formulation, the Fisher information matrix can be written as

𝐼 (𝜃0) = [𝐼11 𝐼12𝐼21 𝐼22] , (16)
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where 𝐼11 is the Fisher information corresponding the true
nonzero submodel.The oracle property of AMAZonnmay be
developed based on certain mild regularity conditions which
are as follows:

(A1): The Fisher information matrix 𝐼(𝜃) is finite and
positive definite for all values of 𝜃.

(A2): There exists functions 𝐺𝑗𝑘𝑙 such that

𝜕3𝐿 (𝜃; 𝜐𝑖)𝜕𝜃𝑗𝜕𝜃𝑘𝜕𝜃𝑙 ≤ 𝐺𝑗𝑘𝑙 (𝜐𝑖) ∀𝜃, (17)

where 𝑔𝑗𝑘𝑙 = 𝐸𝜃0(𝐺𝑗𝑘𝑙(𝜐𝑖)) < ∞ for all 𝑗, 𝑘, 𝑙.
Theorem 1. Under (A1) and (A2), if ]1𝑛 󳨀→ ∞, ]2𝑛 󳨀→ ∞,
]1𝑛/√𝑛 󳨀→ 0, ]2𝑛/√𝑛 󳨀→ 0, then the AMAZonn estimators
obey the following oracle properties:

(1) consistency in variable selection: lim𝑛𝑃(Â = A) = 1,
and

(2) asymptotic normality of the nonzero coefficients:√𝑛(𝜃̂−
𝜃0)󳨀→𝑑N(0, 𝐼−111 ).

4. Simulation Studies

In this section, we conduct simulation studies to evaluate
the finite sample performance of AMAZonn. For compar-
ison purposes, the performance of both AMAZonn and
EM LASSO is evaluated. For each simulated dataset, the
associated tuning parameters are selected by the minimum
BIC criterion for all the methods under consideration. All
the examples reported in this section are obtained from
published papers with slight modifications within the scope
of the current study [11, 12].

Specially, three scenarios are considered: in the data
generatingmodels of Simulations 1 and 2, we consider all con-
tinuous predictors, whereas in Simulation 3, both continuous
and categorical variables are included. For each experimental
instance, we randomly partition the data into training and
test sets: models are fitted on the training set and prediction
errors based on mean absolute scaled error (MASE) are
calculated on the held-out samples in the test set. For an
exhaustive comparison, we considered three sets of sample
sizes {𝑛𝑇, 𝑛𝑃} = {200, 200}, {500, 500}, and {1000, 1000},
where 𝑛𝑇 and 𝑛𝑃 represent the size of the training and test
data, respectively. The corresponding regression coefficients
and intercepts are chosen so that a desired level of sparsity
proportion (𝜙) is achieved. In order to remain as model-
agnostic as possible, we consider the same set of predictors
for both zero and count submodels (i.e., X = Z). Such
models are common in many practical applications where no
domain-specific prior information about the zero-inflation
mechanism is available. Below we provide the detailed data
generation steps for both simulation examples:

Simulation 1.

(1) Generate 40 predictors from the multivariate normal
distribution with mean vector 0, variance vector 1,

and variance-covariance matrix 𝑉, where the ele-
ments of 𝑉 are 𝜌|𝑗1−𝑗2| ∀𝑗1 ̸= 𝑗2 = 1, . . . , 40.
The values of pairwise correlation 𝜌 varies from 0
(uncorrelated) to 0.4 (moderate collinearity) to 0.8
(high collinearity).

(2) The count and zero regression parameters are chosen
as follows:(𝛽1, . . . , 𝛽8)= (−1, −0.5, −0.25, −0.1, 0.1, 0.25, 0.5, 0.75)󸀠 ,

(𝛽9, . . . , 𝛽16) = (0.2, . . . , 0.2)󸀠 ,
(𝛽17, . . . , 𝛽40) = (0, . . . , 0)󸀠 ,
(𝛾1, . . . , 𝛾8)= (−0.4, −0.3, −0.2, −0.1, 0.1, 0.2, 0.3, 0.4)󸀠 ,
(𝛾9, . . . , 𝛾16) = (0.2, . . . , 0.2)󸀠 ,
(𝛾17, . . . , 𝛾40) = (0, . . . , 0)󸀠 .

(18)

(3) The zero-inflated count outcome 𝑦 is simulated
according to (1) with the above parameters and input
data.

Simulation 2. It is similar to Simulation 1 except that the
count and zero regression parameters are chosen as follows:

(𝛽1, . . . , 𝛽10) = (0.05, −0.25, 0.05, 0.25,
− 0.15, 0.15, 0.25, −0.2, 0.25, −0.25)󸀠 ,

(𝛽11, . . . , 𝛽30) = (−0.2, 0.25, 0.15,
− 0.25, 0.2, 0, . . . , 0)󸀠 ,

(𝛽31, . . . , 𝛽40) = (0.27, −0.27, 0.14, 0.2,
− 0.2, 0.2, 0, . . . , 0)󸀠 ,

(𝛾1, . . . , 𝛾10) = (−0.5, −0.4, −0.3, −0.2,
− 0.1, 0.1, 0.2, 0.3, 0.4, 0.5)󸀠 ,

(𝛾11, . . . , 𝛾30) = (−0.2, 0.25, 0.15, −0.25, 0.2, 0, . . . , 0)󸀠 ,
(𝛾31, . . . , 𝛾40) = (0.27, −0.27, −0.14, −0.2,

− 0.2, 0.2, 0, . . . , 0)󸀠 .

(19)

Simulation 3.

(1) First simulate 𝑋1, . . . , 𝑋6 independently from the
standard normal distribution. Consider the fol-
lowing as the continuous predictors: {𝑋1}, {𝑋2},{𝑋3, 𝑋23, 𝑋33}, {𝑋4}, {𝑋5} and {𝑋6, 𝑋26, 𝑋36}.

(2) Simulate 5 continuous variables from themultivariate
normal distribution with mean 0, variance 1, and
AR(𝜌) correlation structure for varying 𝜌 in {0, 0.4,
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Table 2: Results of Simulations 1–3. Average (over 200 replications) of Mean Absolute Scale Errors (MASEs) of AMAZonn and EM LASSO
is reported.

𝜌 𝜙 𝑛 Simulation 1 Simulation 2 Simulation 3
AMAZonn

- EM
SEAL

AMAZonn
- EM AL

EM
LASSO

AMAZonn
- EM
SEAL

AMAZonn
- EM AL

EM
LASSO

AMAZonn
- EM
SEAL

AMAZonn
- EM AL

EM
LASSO

0.0

0.3 200 0.91 0.92 0.91 0.60 0.61 0.62 0.97 1.03 1.00500 0.90 0.90 0.91 0.60 0.60 0.61 0.97 0.99 1.001000 0.91 0.91 0.92 0.58 0.58 0.60 0.97 0.98 0.980.4 200 1.12 1.13 1.12 0.75 0.75 0.76 1.18 1.23 1.23500 1.05 1.05 1.06 0.73 0.73 0.74 1.11 1.17 1.201000 1.03 1.03 1.04 0.71 0.71 0.72 1.11 1.16 1.160.5 200 1.28 1.28 1.27 0.87 0.87 0.87 1.40 1.46 1.46500 1.16 1.16 1.17 0.84 0.84 0.85 1.28 1.33 1.361000 1.15 1.15 1.19 0.80 0.80 0.82 1.23 1.30 1.31

0.4

0.3 200 1.05 1.06 1.09 0.63 0.63 0.63 0.96 1.01 0.99500 1.04 1.04 1.05 0.61 0.61 0.62 0.95 0.97 0.991000 0.96 0.96 0.98 0.58 0.58 0.59 0.97 0.98 0.980.4 200 1.21 1.22 1.22 0.75 0.75 0.76 1.19 1.22 1.23500 1.18 1.18 1.21 0.71 0.71 0.72 1.14 1.19 1.221000 1.13 1.14 1.18 0.68 0.68 0.70 1.13 1.18 1.170.5 200 1.42 1.43 1.42 0.83 0.84 0.83 1.34 1.40 1.43500 1.26 1.26 1.32 0.80 0.81 0.82 1.27 1.32 1.351000 1.23 1.23 1.30 0.75 0.75 0.77 1.27 1.34 1.33

0.8

0.3 200 1.32 1.31 1.36 0.62 0.63 0.63 0.96 1.00 1.01500 1.13 1.13 1.23 0.59 0.59 0.61 0.97 0.99 1.011000 1.13 1.13 1.21 0.56 0.56 0.58 0.95 0.96 0.960.4 200 1.52 1.52 1.58 0.71 0.72 0.72 1.18 1.21 1.23500 1.31 1.32 1.45 0.68 0.68 0.69 1.12 1.19 1.201000 1.24 1.24 1.37 0.64 0.64 0.64 1.12 1.17 1.160.5 200 1.56 1.58 1.61 0.78 0.78 0.78 1.37 1.42 1.44500 1.44 1.45 1.65 0.73 0.73 0.76 1.29 1.34 1.391000 1.33 1.36 1.52 0.69 0.70 0.69 1.26 1.33 1.34

0.8} as before, and quantile-discretize each of them
into 5 new variables based on their quantiles: (−∞,Φ−1(1/5)], (Φ−1(1/5),Φ−1(2/5)], (Φ−1(2/5),Φ−1(3/5)], (Φ−1(3/5),Φ−1(4/5)], and (Φ−1(4/5),∞), leading
to a total of 20 categorical variables.

(3) With the above input data and parameters, the zero-
inflated count outcome 𝑦 is simulated according to
(1), where the two sets of regression parameters are
chosen as follows:

(𝛽1, . . . , 𝛽10) = (0, 0, 0.1, 0.2, 0.1, 0, 0, 23 , −1, 13) ,(𝛽11, . . . , 𝛽30) = (−2, −1, 1, 2, 0, . . . , 0) ,
(𝛾1, . . . , 𝛾10) = (0, 0, 0.1, 0.2, 0.1, 0, 0, 23 , −1, 13) ,(𝛾11, . . . , 𝛾30) = (−2, −1, 1, 2, 0, . . . , 0) .

(20)

The resulting performance measures iterated over 200 repli-
cations (Table 2) reveal that AMAZonn performs as well
as or better than EM LASSO in most of the simulation
scenarios. For highly collinear designs, AMAZonn - EM
SEAL stands out to be the best estimator for almost every
sample size and zero-inflation proportion, highlighting the
benefit of incorporating data-adaptive weights based on both
ML estimates and their standard errors. This phenomenon is
also apparent in the analysis of German health care data in
Section 5, where the parameter estimates from theAMAZonn
- EM SEAL method appear to be more parsimonious than
those from other methods.

5. Application to German Health Care
Demand Data

Next, we apply our method to the German health care
demand data [3], a subset of the German Socioeconomic
Panel (GSOEP) dataset [13], which has also been used for
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Table 3: Summary of predictors in German health care demand data.

Variables Mean (sd) or Frequency Description
health 6.84 (2.19) health satisfaction: 0 (low) - 10 (high)
handicap 216 / 1596 1 : handicap, 0 : otherwise
hdegree 6.16 (18.49) degree of handicap in percentage points
married 1257 / 555 1 :married, 0 : otherwise
schooling 11.83 (2.49) years of schooling
hhincome 4.52 (2.13) household income per month in German marks/1000
children 703 / 1109 1 : children under 16 in household, 0 : otherwise
self 153 / 1659 1 : self-employed, 0 : otherwise
civil 198 / 1614 1 : civil servant, 0 : otherwise
bluec 566 / 1246 1 : blue collar employee, 0 : otherwise
employed 1506 / 306 1 : employed, 0 : otherwise
public 1535 / 277 1 : public health insurance, 0 : otherwise
addon 33 / 1779 1 : addon insurance, 0 : otherwise
age30 1480 / 332 1 if age ≥ 30
age35 1176 / 636 1 if age ≥ 35
age40 919 / 893 1 if age ≥ 40
age45 716 / 1096 1 if age ≥ 45
age50 535 / 1227 1 if age ≥ 50
age55 351 / 1461 1 if age ≥ 55
age60 147 / 1665 1 if age ≥ 60

Table 4: Model selection performance of EM LASSO and AMA-
Zonn on German health care data.

Methods BIC Time (in seconds)
EM LASSO 9062.744 50.252
AMAZonn - EM AL 9002.487 26.215
AMAZonn - EM SEAL 8982.924 26.528

illustration purposes in previous studies [3, 14]. The original
data contains number of doctor office visits for 1, 812 West
German men aged 25 to 65 years in the last three months of
1994 (response variable of interest), which is supplemented
with complementary information on twelve annual waves
from 1984 to 1995 including health care utilization, cur-
rent employment status, and insurance arrangements under
which subjects are protected [3].Thegoal of the original study
was to investigate how the employment characteristics of the
Germannationals are related to their health care demand.The
distribution of the dependent variable (Figure 1) reveals that
many doctor visits are zeros (41.2%), confirming that classical
methods such as Poisson regression are inappropriate for
modeling this outcome.

In the model fitting process, along with the original
variables, the interactions between age groups and health
condition are also considered, resulting in 28 candidate
predictors (Table 3). The fitting results from the full models
indicate that both EM adaptive LASSO methods provide
competitive model selection performance (Table 4), often
leading to sparser model selection than EM LASSO (Table 5).
In addition, the AMAZonn - EM SEAL method appears
to choose even fewer numbers of variables. Such feature of
AMAZonn - EM SEAL can be appealing in many practical

situations, where data collinearity between variables is a
concern and a more aggressive feature selection is desired.
While the computational overheads of both EM adaptive
LASSO methods are similar, they are an order of magnitude
faster than EM LASSO (Table 4), further confirming that
AMAZonn offers a viable alternative to existing methods.

6. Discussion

In recent years, there has been a huge influx of zero-
inflated count measurements spanning several disciplines
including biology, public health, and medicine. This has
motivated the widespread use of zero-inflated count models
in many practical applications such as metagenomics, single-
cell RNA sequencing, and health care research. In this
article, we propose the AMAZonn method for adaptive
variable selection in ZIP regression models. Both our sim-
ulation and real data experience suggest that AMAZonn
can outperform EM LASSO under a variety of regression
settings while maintaining the desired theoretical properties
and computational convenience. Our preliminary results are
rather encouraging, and for practical purposes, we provide
a publicly available R package implementing this method:
https://github.com/himelmallick/AMAZonn.

We envision a number of improvements that may further
refine AMAZonn’s performance. While AMAZonn relies on
ML estimates to construct the weight vector, these estimates
may not be available in ultrahigh dimensions [7]. Alternative
initialization schemes could further improve on this such
as the ridge estimates [15]. Extension to other zero-inflated
models such as marginalized zero-inflated count regression
[16, 17], two-part and hurdle models [18], and multiple-
inflation models [19] can form a useful basis for further

https://github.com/himelmallick/AMAZonn
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Figure 1: Number of doctor office visits in the German health care data.

investigations. Although we only focused on variable selec-
tion for fixed effects models, future work could include an
extension to other regularization problems such as grouped
variable selection [12, 20] as well as sparse mixed effects
models [21].

Appendix

Proof. It is to be noted that both logistic and Poisson
distributions belong to the exponential family. Since the
objective function in (10) can be decomposed into weighted
logistic and Poisson log-likelihoods (each belonging to the
GLM family without the penalties), Theorem 1 is the direct
application ofTheorem4 inZou [22].Therefore, if ]1𝑛 󳨀→ ∞,
]2𝑛 󳨀→ ∞, ]1𝑛/√𝑛 󳨀→ 0, and ]2𝑛/√𝑛 󳨀→ 0, then both the
AMAZonn - EM AL and AMAZonn - EM SEAL estimators
hold the oracle properties: with probability tending to 1, the
estimate of zero coefficients is 0, and the estimate for nonzero
coefficients has an asymptotic normal distribution withmean
being the true value and variance which approximately equals
the submatrix of the Fisher information matrix containing
nonzero coefficients. Hence the proof is complete.
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We proposed an approach that has the ability to detect spatial clusterswith skewed or irregular distributions. Amixture of Dirichlet
processes (DP) was used to describe spatial distribution patterns.The effects of different batches of data collection efforts were also
modeled with a Dirichlet process. To cluster spatial foci, a birth-death process was applied due to its advantage of easier jumping
between different numbers of clusters. Inferences of parameters including clustering were drawn under a Bayesian framework.
Simulations were used to demonstrate and assess the method.We applied the method to an fMRI meta-analysis dataset to identify
clusters of foci corresponding to different emotions.

1. Introduction

This work was motivated by a study aiming to detect centers
of activated foci from a functionmagnetic resonance imaging
(fMRI) metadataset. In summary, fMRI metadata is a col-
lection of fMRI studies identifying areas of the brain that
are significantly activated by stimuli to examine a specific
outcome. FMRIs are expensive which leads to small sample
sizes and therefore can use metadata to increase sample size
and power. To identify spatial clusters, finite mixture models
are generally implemented [1–3].Mixture components, repre-
senting a cluster, typically share a common parametric family
with each component containing respective parameters [1, 2].
Each component also has a mixing proportion or weight that
is respective to the frequency of data in that component [1].
Because of the model’s ease of implementation, this allows
various applications such as pattern recognition, computer
vision, signal and image analysis, andmachine learning to list
a few [4].

One commonly used distribution in the aforementioned
finite mixtures is the normal distribution [1, 5], appreciat-
ing its established properties and, in the Bayesian context,
conjugacy. However, when it comes to clustering, assuming
normality for each part of the mixture can potentially lead to

oversensibility, e.g., when one cluster is formed by a mixture
of two normal distributions but with rather close centers.
This type of oversensibility in many research fields should be
avoided; one example is emotional foci inferred from brain
imaging data, where a certain emotion is covered by a wide
region.

To infer the number of clusters, under the Bayesian
framework, different methods have been proposed. Revers-
ible jump Markov chain Monte Carlo has been commonly
used to infer the number of clusters [6, 7]. At each iteration,
a decision is made between splitting one cluster to two, com-
bining two clusters to one, or no movement. One potential
difficulty of this approach is the risk of being trapped at a local
maximum.Recently, theDirichlet process (DP) has beenused
often to estimate the number of clusters [8, 9]. This process
has the ability to capture irregular patterns. DP has the ability
to detect clusters without being burdened about additional
clustering parameters. However, this feature of clustering also
has an inherit weakness in that it tends to produce more
clusters, making interpretations more difficult.

To overcome the aforementioned gaps, we implemented
a mixture of Dirichlet processes (DP). These processes have
the ability to describe irregular patterns [8, 9] and by using
it as our common parametric family allows the model to
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identify more complex patterns than the normal distribution
would be able to identify. Furthermore, motivated from our
previous work with the spatial Cox process application in
[10], we elected to incorporate the birth-death process to
statistically determine the number of clusters. Compared to
other clustering approaches noted earlier, the birth-death
process has the advantage of quick convergence and, by
controlling birth rate, embraces a potential of generating
redundant clusters.

The remainder of the article is organized as follows. In
Section 2, we introduce the model structure, notation,
and priors and hyperpriors, simulations are presented in
Section 3, the application of the model to an fMRI meta-
analysis dataset is in Section 4, and conclusions and discus-
sion are in Section 5.

2. Methods

2.1. The Model. We let 𝑠𝑟𝑗 denote the (𝑥, 𝑦, 𝑧) coordinate of a
spatial point in a three-dimensional space, in particular, point
j in group (study) r, 𝑗 = 1, . . . , 𝐽𝑟 and 𝑟 = 1, . . . , 𝑅. We have∑𝑅𝑟=1 𝐽𝑟 = 𝑛, where 𝑛 is the total number of observed points.
It straightforwardly follows that 𝑠 = (𝑠1,1 ⋅ ⋅ ⋅ 𝑠𝑅,𝐽𝑅) represents
all points in the study. We model 𝑠𝑟𝑗 as

𝑠𝑟𝑗 = 𝑝𝑟 + 𝜃𝑟𝑗 + 𝜖, (1)

where 𝑝𝑟 denotes the effect of group 𝑟, while 𝜃𝑟𝑗 represents
the mean of 𝑠𝑟𝑗 for the 𝑗𝑡ℎ point in group 𝑟 after adjusting
for group effects, 𝑝𝑟, and 𝜖 denotes some random error. By
modeling the random error as a standardmultivariate normal
distribution, the distribution of 𝑠𝑟𝑗 satisfies

𝑠𝑟𝑗 ∼ 𝑀𝑉𝑁3 (𝑝𝑟 + 𝜃𝑟𝑗, Σ) (2)

with

𝑃 (𝑠𝑟𝑗 | 𝑝𝑟, 𝜃𝑟𝑗, Σ) = (2𝜋)−3/2 |Σ|−1/2
⋅ exp [−12 (𝑠𝑟𝑗 − 𝑝𝑟 − 𝜃𝑟𝑗)󸀠 Σ−1 ((𝑠𝑟𝑗 − 𝑝𝑟 − 𝜃𝑟𝑗))] ,

(3)

where Σ = 𝜎2𝐼3 is the covariance matrix.

2.2. Prior and Hyperprior Distributions. We start from the
prior distribution of 𝜃𝑟𝑗. To detect underlying clusters of 𝑠𝑟𝑗
due to similarities of 𝜃𝑟𝑗, we describe the prior of 𝜃𝑟𝑗 as a
mixture of distribution 𝐺𝑘, 𝑘 = 1, . . . , 𝐾. Common choices of𝐺𝑘 are normal distributions. To improve flexibility, we relax
such normalizing assumptions in the mixture and assume𝐺𝑘
is generated from a DP, i.e., 𝐺𝑘 ∼ 𝐷𝑃(𝛼,𝐺0𝑘), where 𝛼 is
the precision parameter and 𝐺0𝑘 is a base distribution and
taken as𝐺0𝑘 = 𝑀𝑉𝑁3(𝜇𝑘, Σ𝑘). In particular, 𝜃𝑟𝑗 ∼ ∑𝐾𝑘=1 𝜋𝑘𝐺𝑘,
where 0 < 𝜋𝑘 < 1 such that ∑𝐾𝑘=1 𝜋𝑘 = 1. For the number of
clusters K, we assign a truncated Poisson prior distribution
to 𝐾, 𝑃(𝐾) = (𝜆𝐾/𝐾!) exp(−𝜆), 𝐾 = 1, . . . , 𝑛. We assign a
Dirichlet distribution with parameter 1 to 𝜋 = (𝜋1, . . . , 𝜋𝐾),
which implies that 𝜋 is k-dimensional uniformly distributed.

The prior distribution of 𝜇𝑘 from the base distribution 𝐺0𝑘
is chosen to be 𝜇𝑘 ∼ 𝑀𝑉𝑁3(𝜉, 𝜅−1), where 𝜉 = (𝜉1, 𝜉2, 𝜉3),
which are known and set as the midpoint of observed interval
of variation of the data. Parameter 𝜅 is set as

𝜅 =
[[[[[[[
[

1𝑅21 0 0
0 1𝑅22 0
0 0 1𝑅23

]]]]]]]
]
, (4)

where 𝑅21, 𝑅22, and 𝑅23 are the range of the data for each
dimension. This prior setting is adopted from [1] and we feel
it is reasonable for this setting given the fact that the number
and location of clusters are unknown. We let Σ𝑘 = 𝜎𝑘𝐼3 with𝜎𝑘 ∼ 𝐼𝐺(20, 0.5) since the range of the observed data is small.
For group effect, 𝑝𝑟, we assume it is small with 𝑝𝑟 ∼ 𝐺𝑝,
where 𝐺𝑝 ∼ 𝐷𝑃(𝛼𝑝, 𝐺0𝑝) with 𝛼𝑝 specified later and 𝐺0𝑝 =𝑇𝑀𝑉𝑁3(𝜇𝑝, Σ𝑝, 𝑙𝑜𝑤𝑒𝑟 = −𝑙, 𝑢𝑝𝑝𝑒𝑟 = 𝑙), where the lower and
upper limits are defined as 10% of the absolute range of the
data. We let 𝜇𝑝 ∼ 𝑀𝑉𝑁3(0, 𝐼3) and Σ𝑝 = 𝜎2𝑝𝐼3, with 𝜎2𝑝 ∼𝐼𝐺(5, 0.5). The variance component of the random error,Σ = 𝜎2𝐼3, 𝜎2 is assumed to follow a relatively noninformative
Inverse Gamma (IG) distribution, 𝜎2 ∼ 𝐼𝐺(0.5, 0.5). The
precision parameters 𝛼 and 𝛼𝑝 are selected byminimizing the
deviance information criterion (DIC) [11, 12].

2.3. Conditional Posterior Distributions and Posterior Com-
puting. Sampling parameter estimates from their posterior
distributions can be achieved via Gibbs sampler, in which
the statistical inference on the number of clusters is modeled
using the birth-death process. The birth-death process is one
type of continuous-time Markov chain originally introduced
in [13]. This process is often used to simulate realizations of
point processes as they can be difficult to directly sample
from [1]. These realizations are further used for likelihood
inferences for model parameters [1]. The birth-death scheme
allows events to randomly occur throughout the chain; these
events are either a “birth” or “death.” If a birth occurs, the
number of components increases by one, while if a death
occurs, the number of components decreases by one.

Recall considering a finite mixture prior for 𝜃𝑟𝑗 such
that all 𝜃𝑟𝑗 are assumed independently distributed with each
generated from one of 𝐾 Dirichlet processes denoted as 𝐺𝑘,
i.e.,

𝑃 (𝜃𝑟𝑗 | 𝐾,𝜋,𝜙, 𝛼) = 𝐾∑
𝑘=1

𝜋𝑘𝐺𝑘 (𝛼, 𝐺0𝑘) , (5)

where each 𝐺𝑘(𝛼, 𝐺0𝑘) represents a DP but 𝐾 is unknown,
𝜋 = (𝜋1, . . . , 𝜋𝐾) are the mixing proportions, and 𝜙 =(𝜇1, Σ𝑘, . . . ,𝜇𝐾, Σ𝐾) are the component specific parameters
for each DP. For cluster assignment, we introduce an index
variable 𝑍𝑟𝑗 that indicates the assignment of observation
rj and 𝑍𝑟𝑗 takes the values of 1 to 𝐾. Denoted by 𝑧𝑟𝑗 ∈
𝑧, where 𝑧 = (𝑧1,1, . . . , 𝑧𝑅,𝐽𝑅) represents the realization of
independently and identically distributed discrete random
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variables 𝑍 = (𝑍1,1, . . . , 𝑍𝑅,𝐽𝑅) with probability mass func-
tion,

𝑃 (𝑍𝑟𝑗 = 𝑘 | 𝜋,𝜙, 𝜂) = 𝜋𝑘 (𝑘 = 1, . . . , 𝐾) . (6)

The joint posterior distribution is proportional to

𝑃 (𝜗 | 𝑠) ∝ 𝑅∏
𝑟

𝑃 (𝑝𝑟 | 𝐺𝑝) 𝑃 (𝐺𝑝 | 𝛼, 𝐺0𝑝)
⋅ 𝐺0𝑝 (𝑝𝑟; 𝜇𝑝, 𝜎2𝑝) 𝑃 (𝜇𝑝) 𝑃 (𝜎2𝑝)
⋅ 𝐽𝑟∏
𝑗

𝑃 (𝑠𝑟𝑗 | 𝜙)
× 𝑃 (𝜃𝑟𝑗 | 𝑧,𝜋, 𝐺1, . . . , 𝐺𝐾)
⋅ 𝐾∏
𝑘=1

𝑃 (𝐺𝑘 | 𝛼, 𝐺0𝑘) 𝐺0𝑘 (𝜃𝑟𝑗; 𝜇𝑘, 𝜎2𝑘)
⋅ 𝑃 (𝜇𝑘) 𝑃 (𝜎2𝑘) × 𝑃 (𝜋) 𝑃 (𝐾) 𝑃 (𝑍) 𝑃 (𝜎2) ,

(7)

where 𝜗 = (𝑝𝑟, 𝜃𝑟𝑗, 𝜎2, 𝛼𝑝,𝜇𝑝, 𝜎2𝑝, 𝐾,𝜇1, . . . ,𝜇𝐾, 𝜎21 , . . .,𝜎2𝐾, 𝛼,𝜋) is a vector of all estimable parameters. From here,
the birth-death algorithmandMarkov chain can be described
for introducing and assigning clusters for 𝜃𝑟𝑗:

(1) Starting with the initial model 𝑦 = {(𝜋1, 𝜙1), . . .,(𝜋𝐾, 𝜙𝐾)}, let (𝜋𝑘, 𝜙𝑘) represent themixing proportion
and cluster specific parameters for the unique 𝜃𝑟𝑗
clusters. Let the birth rate be 𝛽(𝑦) = 𝜆𝑏.

(2) Calculate the death rate for each component:

𝛿𝑘 (𝑦) = 𝐿 (𝑦 \ (𝜋𝑘, 𝜙𝑘))𝐿 (𝑦) 𝑃 (𝐾 − 1 | 𝛼, ⋅)𝐾𝑃 (𝐾 | 𝛼, ⋅)
(𝑘 = 1, . . . , 𝐾) .

(8)

(3) Calculate the total death rate 𝛿(𝑦) = ∑𝐾𝑘=1 𝛿𝑘(𝑦). To
quicken convergence, we elected not to model the
time to next jump as exponential and allowed an event
to occur at each iteration of the Markov chain.

(4) Simulate the type of event, birth or death, with the
respective probabilities:

𝑃 (𝑏𝑖𝑟𝑡ℎ) = 𝛽 (𝑦)𝛽 (𝑦) + 𝛿 (𝑦) ,
𝑃 (𝑑𝑒𝑎𝑡ℎ) = 𝛿 (𝑦)𝛽 (𝑦) + 𝛿 (𝑦) .

(9)

(5) Adjust the model 𝑦 to reflect the birth or death by the
following:

(i) Birth: Simulate a new component (𝜋𝐾+1, 𝜙𝐾+1)
from each parameter's respective (independent)
prior distributions, 𝜋𝐾+1 from 𝐾(1 − 𝜋)𝐾−1
and 𝜙𝐾+1 from base distribution, such that the

model becomes 𝑦 = {(𝜋1, 𝜙1), . . . , (𝜋𝐾, 𝜙𝐾),(𝜋𝐾+1, 𝜙𝐾+1)}. It can be mentioned that 𝐾(1 −𝜋)𝐾−1 is the Beta distribution with parameters(1, 𝐾) and can be easily simulated from 𝑌1 ∼𝐺(1, 1) and 𝑌2 ∼ 𝐺(𝐾, 1) such that 𝜋𝐾+1 =𝑌1/(𝑌1 + 𝑌2).
(ii) Death: Select a component to die with the prob-

abilities 𝛿𝑘(𝑦)/𝛿(𝑦) for 𝑘 = 1, . . . , 𝐾 such that
the model becomes 𝑦 = {(𝜋1, 𝜙1), . . . , (𝜋𝐾−1,𝜙𝐾−1)}.

(6) Given the current state of themodel at time 𝑡, simulate
values for all remaining parameters.

(7) Go to step (2).
Incorporating the birth-death process into our model, we

need to further define the likelihood for removing cluster 𝑖:
𝑃 (Φ \ (𝜋𝑖, 𝐺𝑖) | 𝑠) ∝ 𝑅∏

𝑟

𝑃 (𝑝𝑟 | 𝐺𝑝) 𝑃 (𝐺𝑝 | 𝛼, 𝐺0𝑝)
⋅ 𝐺0𝑝 (𝑝𝑟; 𝜇𝑝, 𝜎2𝑝) 𝑃 (𝜇𝑝) 𝑃 (𝜎2𝑝) 𝐽𝑟∏

𝑗

𝑃 (𝑠𝑟𝑗 | 𝜙)
× 𝑃 (𝜃𝑟𝑗 | 𝑧,𝜋, 𝐺1, . . . , 𝐺𝐾) 𝐾(𝑖)∏

𝑘=1

𝑃 (𝐺𝑘 | 𝛼, 𝐺0𝑘)
⋅ 𝐺0𝑘 (𝜃𝑟𝑗; 𝜇𝑘, 𝜎2𝑘) × 𝑃 (𝜇𝑘) 𝑃 (𝜎2𝑘) 𝑃 (𝜋) 𝑃 (𝐾) 𝑃 (𝑍)
⋅ 𝑃 (𝜎2) ,

(10)

where 𝐾(𝑖) = 𝑖 ∉ (1, . . . , 𝐾). The birth-death process is
conditional on the prespecified birth rate, 𝜆𝑏. By setting
this birth rate, which controls how often a “birth” of a new
component occurs, equal to 𝜆 as suggested and done in [1],
this computationally allows the death rates to be a likelihood
ratio absent of 𝜆. In other words, the likelihood of the data
drives the death rates and ultimately the decision of a new
cluster. Given that decision is a “birth,” the new cluster’s
parameters 𝜇𝐾+1,𝜎2𝐾+1, and 𝜋𝐾+1 are sampled from their prior
distributions:

𝜇𝐾+1 ∼ 𝑀𝑉𝑁3 (𝜉, 𝜅−1)𝜎2𝐾+1 ∼ 𝐼𝐺 (20, 0.5)𝜋𝐾+1 ∼ 𝐾 (1 − 𝜋)𝐾−1 .
(11)

The mixing proportions are adjusted by multiplying all
current proportions by (1−𝜋𝐾+1) if a birth occurs or dividing
by (1 − 𝜋𝑖) if a death occurs.

To simulate values for all remaining parameters and
hyperparameters, we implement the Gibbs sampler. Condi-
tional posterior distributions are listed below. Note that “⋅”
denotes data and other parameters not listed.The conditional
posterior of 𝑍𝑟𝑗 is

𝑃 (𝑍𝑟𝑗 = 𝑘 | 𝜋, 𝜃𝑟𝑗, 𝐺𝑘, ⋅)
∝ 𝑃 (𝜃𝑟𝑗 | 𝑍𝑟𝑗 = 𝑘, 𝐺𝑘, ⋅) 𝑃 (𝐺𝑘 | ⋅) 𝑃 (𝑍𝑟𝑗 = 𝑘)
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= {{{
𝛼𝑀𝑉𝑁3 (𝜇𝑘, Σ𝑘)𝛼 + 𝑛𝑘 − 1 + ∑𝐶𝑘𝑐=1 𝛿𝑐 (𝜃𝑟𝑗)𝛼 + 𝑛𝑘 − 1

}}}𝜋𝑘,
(12)

where 𝑐 = 1, . . . , 𝐶𝑘 is the number of subclusters for cluster𝑘 ∈ (1, . . . , 𝐾), 𝑛𝑘 is the number of foci in cluster 𝑘, and 𝛿𝑐(𝜃𝑟𝑗)
denotes the unit point mass,

𝜋 | Z ∼ 𝐷𝑖𝑟 (𝑛1 + 1, . . . , 𝑛𝐾 + 1) , (13)

and

𝑃 (𝜃𝑟𝑗 | 𝑘, ⋅) ∝ ∏
𝑍𝑟𝑗∈𝑘

𝑃 (𝑠𝑟𝑗 | 𝑝𝑟, 𝜃𝑟𝑗, ⋅)
⋅ 𝑃 (𝜃𝑟𝑗 | 𝑍𝑟𝑗 = 𝑘, 𝐺𝑘) 𝑃 (𝐺𝑘 | 𝐺0𝑘, 𝛼)
⋅ 𝐺0𝑘 (𝜃𝑟𝑗;𝜇𝑘, 𝜎2𝑘) = ∏

𝑍𝑟𝑗∈𝑘

{𝑀𝑉𝑁3 (𝑝𝑟 + 𝜃𝑟𝑗, Σ)}

⋅ {{{
𝛼𝑀𝑉𝑁3 (𝜇𝑘, Σ𝑘)𝛼 + 𝑛𝑘 − 1 + ∑𝑛𝑘𝑞=1,𝑞 ̸=𝑟𝑗 𝛿𝜃𝑞 (𝜃𝑟𝑗)𝛼 + 𝑛𝑘 − 1

}}} ,

(14)

which is the distribution of a DP with 𝛿𝜃𝑞(𝜃𝑟𝑗) being the unit
point mass and 𝑛𝑘 the number of foci in some cluster 𝑘 ∈(1, . . . , 𝐾),

𝜇𝑘 | ⋅ ∼ 𝑀𝑉𝑁3 ((𝜅 + 𝑛𝑘𝜎−2𝑘 𝐼3)−1
⋅ (𝜅𝜉 + 𝑛𝑘𝜎−2𝑘 𝐼3𝜃𝑟𝑗) , (𝜅 + 𝑛𝑘𝜎−2𝑘 𝐼3)−1) , (15)

where 𝜃𝑟𝑗 = ∑𝑟𝑗∈𝑘 𝜃𝑟𝑗/𝑛𝑘 and denotes the average of all 𝜃𝑟𝑗 in
cluster k,

𝜎2𝑘 | ⋅ ∼ 𝐼𝐺(3 × 𝑛𝑘2 + 20, 0.5
+ 12 ∑
𝑍𝑟𝑗∈𝑘

(𝜃𝑟𝑗 − 𝜇𝑘)󸀠 (𝜃𝑟𝑗 − 𝜇𝑘)) ,
(16)

where 𝑛𝑘 is the number of foci in cluster 𝑘, 𝑘 = 1, . . . , 𝐾. The
conditional posterior of 𝑝𝑟 is generated from a DP again:

𝑃 (𝑝𝑟 | ⋅) ∝ 𝑅∏
𝑟=1

𝑃 (𝑠𝑟𝑗 | 𝑝𝑟, 𝜃𝑟𝑗, ⋅) 𝑃 (𝜃𝑟𝑗 | ⋅) 𝑃 (𝑝𝑟 | 𝐺𝑝)
⋅ 𝑃 (𝐺𝑝 | 𝐺0𝑝, 𝛼𝑝) 𝐺0𝑝 (𝑝𝑟; 𝜇𝑝, 𝜎2𝑝)
= 𝑅∏
𝑟=1

{𝑀𝑉𝑁3 (𝑝𝑟 + 𝜃𝑟𝑗, Σ)}
⋅ {{{
𝛼𝑝𝑇𝑀𝑉𝑁3 (𝜇𝑝, Σ𝑝, −𝑙, 𝑙)𝛼𝑝 + 𝑅 − 1

+ ∑𝑅𝑞=1,𝑞 ̸=𝑟 𝛿𝑝𝑞 (𝑝𝑟)𝛼𝑝 + 𝑅 − 1
}}} ,

(17)

where 𝛿𝑝𝑞(𝑝𝑟) is the unit point mass. The conditional poste-
rior distributions for the related hyperparameters are

𝜇𝑝 | ⋅ ∼ 𝑀𝑉𝑁3 ((1 + 𝑅𝜎−2𝑝 )−1
⋅ (𝑅𝜎−2𝑝 (𝑝𝑟)) , (1 + 𝑅𝜎−2𝑝 )−1 𝐼3) , (18)

where𝑝𝑟 = ∑𝑟∈𝑅 𝑝𝑟/𝑅 and represents the average group effect
and

𝜎2𝑝 | ⋅ ∼ 𝐼𝐺(3 × 𝑅2 + 5, ∑𝑅𝑟=1 (𝑝𝑟 − 𝜇𝑝)2 + 12 ) . (19)

Lastly, the sampling distribution for Σ is

𝜎2 | ⋅ ∼ 𝐼𝐺(3 × 𝑛 + 12 ,
1 + ∑𝑍𝑟𝑗∈𝑛 (𝑠𝑟𝑗 − 𝑝𝑟 − 𝜃𝑟𝑗)󸀠 (𝑠𝑟𝑗 − 𝑝𝑟 − 𝜃𝑟𝑗)2 ) .

(20)

The sampling of unique values for 𝜃𝑟𝑗 and 𝑝𝑟 can be
performed using Neal’s algorithm 8 [14]. It works by intro-
ducing 𝑚 auxiliary parameters that are independent to other
parameters to represent potential values for 𝜃𝑟𝑗 and 𝑝𝑟 [14].
Algorithm 8 for updating clustering assignments, denoted as𝑐, is as follows:

(i) The state of the Markov chain consists of 𝑐 ={𝑐1, . . . , 𝑐𝑛} and Φ = (𝜙𝑐; 𝑐 ∈ 𝑐1, . . . , 𝑐𝑛) with 𝜙𝑐
denoting cluster parameters, e.g., 𝜃𝑐 in our applica-
tion. Repeatedly sample as follows:

(ii) For 𝑖 = 1, . . . , 𝑛, let 𝑘− be the number of distinct 𝑐𝑙
for 𝑙 ̸= 𝑖, and ℎ = 𝑘− + 𝑚. Label these 𝑐𝑙 with values
in {1, . . . , 𝑘−}. If 𝑐𝑖 = 𝑐𝑙 for some 𝑙 ̸= 𝑖, draw values
independently from base distribution 𝐺0 for those 𝜙𝑐
for which 𝑘− < 𝑐 ≤ ℎ. If 𝑐𝑖 ̸= 𝑐𝑙 for all 𝑙 ̸= 𝑖, let 𝑐𝑖
have the label 𝑘− + 1, and draw values independently
from 𝐺0 for those 𝜙𝑐 for which 𝑘− + 1 < 𝑐 ≤ ℎ. Draw
a new value for 𝑐𝑖 from {1, . . . , ℎ} using the following
probabilities:

𝑃 (𝑐𝑖 = 𝑐 | 𝑐−𝑖, 𝑦𝑖, 𝜙1, . . . , 𝜙ℎ)
= {{{{{

𝑛−𝑖,𝑐𝑛 − 1 + 𝛼𝐹 (𝑦𝑖, 𝜙𝑐) for 1 ≤ 𝑐 ≤ 𝑘−(𝛼/𝑚)𝑛 − 1 + 𝛼𝐹 (𝑦𝑖, 𝜙𝑐) for 𝑘− < 𝑐 ≤ ℎ,
(21)

where 𝐹(𝑦𝑖, 𝜃𝑐) is the likelihood with 𝜃𝑐 and observa-
tion 𝑖, 𝑦𝑖, involved. In our case, it is 𝑠𝑖𝑗,

(iii) where 𝑛−𝑖,𝑐 is the number of 𝑐𝑙 for 𝑙 ̸= 𝑖 that are equal
to 𝑐 and 𝑏 is the appropriate normalizing constant.
Change the state to contain only those 𝜙𝑐 that are now
associated with one or more observation.
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(iv) For all 𝑐 ∈ {𝑐1, . . . , 𝑐𝑛}, draw new values from 𝜙𝑐 | 𝑦𝑖
such that 𝑐𝑖 = 𝑐, or perform some other update to 𝜙𝑐
that leaves this distribution invariant [14].

Thus, the value for 𝜃𝑟𝑗 for those foci in cluster 𝑘 and subcluster𝑐may be sampled from

𝜃𝑘,𝑐 | ⋅ ∼ 𝑀𝑉𝑁3 ((𝜎−2𝑘 + 𝑛𝑘,𝑐𝜎−2)−1
⋅ (𝜎−2𝑘 𝜇𝑘 + 𝑛𝑘,𝑐𝜎−2(𝑠𝑟𝑗 − 𝑝𝑟)) , (𝜎−2𝑘 + 𝑛𝑘𝜎−2)−1
⋅ 𝐼3) ,

(22)

where 𝑛𝑘,𝑐 are the number of foci in some cluster 𝑘 and
subcluster 𝑐 and (𝑠𝑟𝑗 − 𝑝𝑟) denotes the mean of the observed
data after adjusting for group effect.The value for 𝑝𝑟 for those
groups (studies) in group cluster 𝑐 (different 𝑐 notation than
subclusters above) may be sampled from

𝑝𝑐 | ⋅ ∼ 𝑇𝑀𝑉𝑁3 ((𝜎−2𝑝 + 𝑛𝑐𝜎−2)−1
⋅ (𝜎−2𝑝 𝜇𝑝 + 𝑛𝑐𝜎−2(𝑠𝑟𝑗 − 𝜃𝑟𝑗)) , (𝜎−2𝑝 + 𝑛𝑐𝜎−2)−1 𝐼3,
− 𝑙, 𝑙) ,

(23)

where 𝑛𝑐 is the number of groups in cluster 𝑐 and similarly(𝑠𝑟𝑗 − 𝜃𝑟𝑗) denotes the mean of the observed data after
adjusting for individual effect.

2.4. Determining the Clusters. To estimate the number of
clusters and the center of each cluster and cluster assignment,
we implement the same least-squared Euclidean distance
method introduced in [15] and used previously in our work
in [10] and reiterated below. This method draws inferences
on clusters based on a set of converged MCMC iterations
and chooses one iteration as the final estimates for the
clusters and related parameters. This final MCMC iteration is
selected due to its smallest Euclidean distance to the expected
cluster assignments estimated based on a set of independent
converged MCMC iterations. This approach incorporates
all clustering information in the MCMC sampling process
[15]:

(1) After the prespecified number of MCMC burn-ins,
let the MCMC simulations continue for an additional𝑊 iterations. An averaged clustering matrix is then
created, denoted as𝐴, and is an 𝑛×𝑛matrix with each
block or (𝑖, 𝑗)𝑡ℎ entry denoting how often foci 𝑖 and𝑗 (𝑖, 𝑗 = 1, . . . , 𝑛) are in the same cluster. Specifically,
each (𝑖, 𝑗)𝑡ℎ entry is the proportion of theW iterations
that two foci are in the same cluster.

(2) Let the MCMC run additional 𝐹 iterations, where, for
each iteration,

(a) create an 𝑛×𝑛matrix using indicators to denote
which foci are clustered together; i.e., let the

(𝑖, 𝑗)𝑡ℎ entry denote a 1 if foci 𝑖 and 𝑗 are in one
cluster and 0 otherwise.

(b) use Euclidean distance to determine the sim-
ilarity between this indicator matrix and the
averaged clustering matrix 𝐴.

(3) Among the 𝐹 iterations, select the iteration and re-
spective clustering pattern, number of clusters, and
parameters that produce the smallest Euclidean dis-
tance.

3. Inference

3.1. Simulation Settings. Simulations were utilized to illus-
trate and assess the proposed method. We assumed an fMRI
metadata study setting including 50 studies, with each study
containing 10 foci. Collectively these foci were simulated
from three clusters centered as (x,y,z) talairach coordinates
at (1, 1, 1)𝑇, (2, 2, 2)𝑇, and (4, 4, 4)𝑇 containing 150, 150, and
200 foci, respectively. It was also assumed that half the data,
250 foci or half from each individual cluster, came from one
study cluster centered at (0.1, 0.1, 0.1)𝑇 and the remaining
data from a second study cluster centered at (0.4, 0.4, 0.4)𝑇.
These study clusters were linear shifts to cluster centers. For
example, 75 foci in cluster one were centered at (1.1, 1.1, 1.1)𝑇
and the other half were centered at (1.4, 1.4, 1.4)𝑇; the study
effect was a linear shift to all three dimensions from the
cluster center. We made various alterations to this general
setting:

(1) Normal setting: We simulated data from a multivari-
ate normal for each cluster with respective means
described above and a variance of Σ = 0.002𝐼3. This
creates spheres with little variation and we expect the
method to have the ability to correctly identify the
clusters.

(2) Chi-squared (skewed) setting: The method’s ability
to cluster in the presence of abnormal patterns is an
important factor in spatial clustering. For this setting,
we applied the same scenario as in the normal setting
in respect of clusters 1 and 2 but simulated cluster
3 using a chi-squared distribution with 4 degrees of
freedom.

(3) Large variance setting: The last scenario is designed
to assess the robustness of the method with respect
to the distance between and among clusters. To this
end, we applied the normal setting but considered
increasing levels (referred to large1, large2, large3, and
large4 settings, resp.) of Σ: Σ = 0.01𝐼3, 0.05𝐼3, 0.1𝐼3,
and 0.2𝐼3, representing gradually closer distances
among clusters.

For each setting, we implemented a grid search for a
single dataset to estimate values of 𝛼𝑝 and 𝛼 based on the
minimization of DIC. We let precision parameter values be
0.01, 0.05, 0.1, 0.5, 1, 2, and 5. Based on 𝛼𝑝 and 𝛼 estimates,
100MCdatasets were generated with 2500 burn-in iterations,
500 working iterations to calculate the probability matrix
for determining the clusters, and 100 additional iterations
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Table 1: Simulation assessments for three foci-level clusters.

Scenario (𝛼𝑝 , 𝛼) Median Num. of
Clusters (SD)∗ Cluster index Average Sensitivity

(SD)∗ Average Specificity
(SD)∗ Average Accuracy

(%) (SD)∗
Normal (0.1, 1.0)

∗∗IC: 3 (0.88) 1 0.96 (0.13) 1 (0)
0.96 (0.13)2 0.96 (0.13) 1 (0)

3 0.96 (0.13) 1 (0)

∗∗SC: 2 (0.32) 1 0.93 (0.26) 1 (0.04) 0.96 (0.13)
2 1 (0.04) 0.93 (0.26)

Chi-squared (0.05, 0.1)
IC: 19 (2.17)

1 0.94 (0.09) 0.91 (0.15)
2 0.74 (0.43) 0.96 (0.02) 0.54 (0.13)
3 0.09 (0.03) 0.94 (0.16)

SC: 2 (0.56) 1 0.76 (0.37) 0.9 (0.1) 0.82 (0.18)
2 0.88 (0.11) 0.78 (0.36)

Large 1 (0.05, 0.1)
IC: 3 (0.82)

1 0.96 (0.13) 1 (0)
0.96 (0.13)2 0.96 (0.13) 1 (0)

3 0.96 (0.13) 1 (0)

SC: 2 (0.29) 1 0.92 (0.27) 1 (0) 0.96 (0.14)
2 1 (0) 0.92 (0.27)

Large 2 (0.01, 0.5)
IC: 3 (0.77)

1 0.99 (0.04) 1 (0)
0.99 (0.02)2 0.99 (0.03) 1 (0)

3 1 (0.01) 1 (0)

SC: 2 (0.14) 1 1 (0.02) 1 (0.01) 1 (0.01)
2 1 (0.01) 1 (0)

Large 3 (0.05, 0.05)
IC: 5 (1.25)

1 0.91 (0.13) 1 (0)
0.92 (0.07)2 0.88 (0.16) 1 (0)

3 0.96 (0.09) 1 (0)

SC: 2 (0.37) 1 0.97 (0.06) 0.98 (0.03) 0.97 (0.04)
2 0.98 (0.03) 0.98 (0.03)

Large 4 (0.01, 2.0)
IC: 9 (1.3)

1 0.66 (0.14) 0.99 (0.01)
0.62 (0.09)2 0.33 (0.08) 0.99 (0.01)

3 0.8 (0.17) 1 (0)

SC: 1 (0.36) 1 0.04 (0.17) 0.99 (0.05) 0.51 (0.08)
2 0.98 (0.07) 0.05 (0.18)

∗SD: standard deviation across 100 MC replicates; ∗∗IC: individual foci cluster; SC: study effect clusters.

to infer the number of clusters and individual foci cluster
centers.

Model assessment consists of three evaluations: sensitiv-
ity, specificity, and accuracy. Sensitivity and specificity are
defined by their generic definitions, the proportion of foci
that are correctly assigned to their simulated cluster, and
the proportion of foci that are correctly not assigned their
nonsimulated cluster. Accuracy is defined as the percentage
of foci that are correctly clustered. Note that the definition
of accuracy takes into account both true positive and true
negatives. In addition to our methodology, we applied a
very common existing clustering approach for continuous
data, K-means, to our simulation settings. Although this
method cannot adjust for additional covariates, it allows for
a comparison to existing methods. Lastly, to highlight the
advantage of using a mixture of DPs over existing clustering

approaches, we applied our approach, a revised version
of our approach using a mixture of multivariate normal
distributions rather than DPs, and Kmeans to the normal and
chi-squared simulation scenarios. As the emphasis was on
clustering performance, the group effect was assumed to be
known for these two settings.

3.2. Simulation Results. Table 1 summarizes the findings on
the three foci-level cluster identifications and the quality of
the identified clusters. The proposed method gives high sen-
sitivities and specificities across all scenarios. The accuracy
of cluster assignment overall is higher than 90% when the
variation in the data is relatively small and only dropping
once clusters were large enough to overlap (scenario Large 4).
The proposed methodology was also accurate at identifying
the correct number of clusters as indicated by the median
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Table 2: Kmeans simulation assessments for three foci-level clusters.

Scenario: Median Num. of
Clusters (SD)∗ Cluster index Average Sensitivity

(SD)∗ Average Specificity
(SD)∗ Average Accuracy

(%) (SD)∗
Normal 5 (0.95)

1 0.73 (0.29) 0.98 (0.09)
0.7 (0.12)2 0.72 (0.3) 0.98 (0.08)

3 0.67 (0.26) 1 (0)

Chi-squared 10 (0.5)
1 0.58 (0.19) 0.99 (0.01)

0.5 (0.09)2 0.86 (0.28) 0.92 (0.03)
3 0.16 (0.08) 0.98 (0.11)

Large 1 5 (0.98)
1 0.68 (0.33) 1 (0.04)

0.7 (0.13)2 0.76 (0.26) 0.96 (0.12)
3 0.67 (0.26) 1 (0)

Large 2 7 (1.29)
1 0.61 (0.27) 0.99 (0.06)

0.58 (0.11)2 0.61 (0.27) 0.99 (0.06)
3 0.54 (0.27) 1 (0)

Large 3 9 (0.94)
1 0.49 (0.19) 1 (0)

0.46 (0.08)2 0.47 (0.17) 1 (0)
3 0.43 (0.24) 1 (0)

Large 4 10 (0.57)
1 0.43 (0.16) 1 (0.01)

0.41 (0.07)2 0.42 (0.14) 1 (0.01)
3 0.38 (0.2) 1 (0)

∗SD: standard deviation across 100 MC replicates.

number of individual and study clusters. In comparison,
results from the Kmeans approach indicate relatively lower
statistics in sensitivity and specificity (Table 2). The accuracy
is around 70%, when the variations in the data are relatively
small. However, compared to the proposed method, the
Kmeans approach often inferred a higher number of clusters
as indicated by the larger median number of clusters. The
computation time of a single dataset for the mixture of
DPs took, on average, 7-8 hours on a high performance
computer (Dell cluster with 88 compute nodes, 3120 total
central processing unit cores, 20664 Giga-bytes of RAM, and
61440 total graphic processing unit cores).

After removing study effects, the comparison between
the mixture of DPs, mixture of normal, and Kmeans is as
expected (Table 3). Both mixtures performed exceptionally
well at identifying the three normally distributed clusters
while the Kmeans performance was adequate with an overall
accuracy of 80% (compared to 100% for bothmixtures). Once
the data deviated from normality, the mixture of normals
approach was unable to differentiate the clusters resulting
in low accuracy (32%). The Kmeans approach performed
similarly to the mixture of DPs with both approaches having
low sensitivities for the third cluster which was skewed but
with the mixture of DPs resulting in superior accuracy. The
mixture of DPs was able to differentiate clusters 1 and 2 as
indicated by 99% sensitivity and 100% specificity measures
but tended to “overcluster” cluster 3 into smaller clusters
as indicated by the large median number of clusters, 14%
sensitivity, and 100% specificity. In regard to overall accuracy,

the mixture of DPs outperformed themixture of normals and
Kmeans when the data are skewed.

4. Real Data Application

For this application, we applied the proposed method to
a meta-analysis dataset. Constructed originally in [16], this
data consists of a total of 162 neuroimaging publications,
of which 57 were PET and 105 were fMRI. Among these
162 publications, there were 437 contrasts or studies. Only
those foci that were deemed significantly activated by their
study specific criteria were included for a total of 2,478 foci.
Summary statistics for this data can be seen in Tables 4 and
5.

As with the simulation studies, grid search and DIC were
used to estimate values for 𝛼𝑝 and 𝛼. Potential precision
parameters values were 0.01, 0.05, 0.1, 0.5, 1, 2, 5, and 7.5. Each
combination was performed over 2,600 iterations, 2,000 of
those for burn-in, 500 for the probability matrix calculation,
and final 100 to infer individual clusters and their centers. To
assist with the magnitude of the likelihood calculations, the
data was scaled down by 10.

It was found that the precision parameter combination
of 𝛼𝑝 = 0.05 and 𝛼 = 1 produced the smallest DIC.
Convergence, with the initial 2,000 discarded, was checked
based on trace plots. Based on the proposed method, we
identified four study clusters and 14 individual foci clusters.
A single DIC setting for this data took, on average, 72
hours to run on the HPC. The break down of the 14
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Table 3: Comparison of approaches for selected simulated settings assuming study effect is known.

Setting Approach Median Num. of
Clusters (SD)∗ Cluster index Average Sensitivity

(SD)∗ Average Specificity
(SD)∗

Average
Accuracy (%)

(SD)∗

Normal

DP 3 (0)
1 1 (0) 1 (0)

1 (0)2 1 (0) 1 (0)
3 1 (0) 1 (0)

Mixture 3 (0)
1 1 (0) 1 (0)

1 (0)2 1 (0) 1 (0)
3 1 (0) 1 (0)

Kmeans 3 (0.6)
1 0.81 (0.36) 0.93 (0.16)

0.8 (0.22)2 0.79 (0.38) 0.94 (0.15)
3 0.79 (0.25) 1 (0)

Chi-squared

DP 16 (1.76)
1 0.99 (0.01) 0.99 (0.01)

0.65 (0.01)2 0.99 (0.01) 0.97 (0.01)
3 0.14 (0.03) 1 (0)

Mixture 1 (0.29)
1 0.06 (0.24) 0.98 (0.11)

0.32 (0.1)2 0.95 (0.22) 0.06 (0.24)
3 0.05 (0.21) 1 (0)

Kmeans 10 (0.22)
1 0.99 (0.06) 0.98 (0.01)

0.62 (0.1)2 0.87 (0.34) 0.93 (0.03)
3 0.16 (0.06) 0.94 (0.17)

∗SD: standard deviation across 100 MC replicates.

Table 4: Descriptive statistics∗.
Min. 1st Qu. Median Mean 3rd Qu. Max.

Number of foci per pub. 1.00 5.75 10.00 15.11 17.25 110.00
Number of foci per study 1.00 2.00 4.00 5.67 7.00 47.00
Number of subjects per pub. 4.00 9.00 11.00 12.26 14.00 40.00
Number of studies per pub. 1.000 1.000 2.000 2.67 4.000 12.000
∗Min: minimum, 1st Qu: 25% percentile, 3rd Qu: 75% percentile, Max: maximum, pub: publication.

Table 5: Frequency of emotions.

Emotions Frequency of studies Frequency of foci
(% of total studies) (% of total foci)

aff∗ 175 (40.05%) 881 (35.55%)
anger 26 (5.95 %) 166 (6.7%)
disgust 44 (10.07%) 337 (13.6%)
fear 68 (15.56%) 367 (14.81%)
happiness 36 (8.24%) 178 (7.18%)
mixed 41 (9.38%) 195 (7.87%)
sadness 45 (10.3%) 348 (14.04%)
surprise 2 (0.46%) 6 (0.24%)
Total 437 2478
∗aff: affective.

individual foci clusters by center location, brain location, foci
frequency, and study frequency can be seen in Table 6. The
frequency of each foci-associated emotion within each of
the 14 clusters can be seen in Table 7. The affective emotion
was dominating in all clusters with fear being the second

dominating emotion in clusters 1, 2, 3, 11, and 13, disgust
in clusters 5 and 14, sadness in clusters 6 and 10, and a
mixture of emotions in the remaining clusters. When only
focusing on those foci that fell within known brain regions
of interest, as seen in Table 8, the dominating emotion, other
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Table 6: Meta-data cluster results.

Cluster Centers Brian Regions Cluster Index # of foci per cluster (% of total foci) # of studies per cluster (% of all studies)
(-9.11, -14.45, 1.4) Temporal Mid L 1 1615 (65.17) 386 (88.33)
(-0.83, -4.64, 0.54) Temporal Mid L 2 188 (7.59) 139 (31.81)
(16.75, -10.63, -11.33) Temporal Mid R 3 148 (5.97) 117 (26.77)
(3.48, -5.52, -2.15) Temporal Inf L 4 102 (4.12) 84 (19.22)
(2.08, -4.61, -0.14) Temporal Mid R 5 77 (3.11) 67 (15.33)
(0.87, -7.7, -0.63) Temporal Pole Sup L 6 67 (2.7) 59 (13.5)
(0.99, -6.33, 2.62) Cerebelum 6 R 7 55 (2.22) 43 (9.84)
(2.3, -5.89, 0.32) NA 8 54 (2.18) 46 (10.53)
(0.43, -6.59, 0.6) Postcentral L 9 41 (1.65) 36 (8.24)
(-0.18, -4.99, 0.11) Cerebelum 6 R 10 39 (1.57) 38 (8.7)
(1.69, -5.25, 1.43) Temporal Sup R 11 38 (1.53) 34 (7.78)
(-0.64, -5.93, 1.77) Postcentral L 12 22 (0.89) 20 (4.58)
(1.29, -5.28, 1.23) Precentral R 13 18 (0.73) 17 (3.89)
(0.45, -5.31, -0.87) Occipital Inf R 14 14 (0.56) 14 (3.2)
R: right hemisphere, L: left hemisphere.

than affective, was sadness, fear, and disgust, respectively.
When compared to the number of clusters identified by the
spatial Cox Point process (53) and Kmeans (20) performed
in [10], fewer clusters were identified with our current
application. It should be noted that this particular data does
not visually indicate distinct clusters and is closer to a more
uniform distribution throughout the brain which may lead
to an inaccurate number of identifiable clusters. However,
given the results from our previous analysis in [10] and
findings in simulation studies, it is possible that the clusters
formed were rather subtle and actually might not be distinct
enough.

5. Conclusion and Discussion

Modeling the realization of observed foci as a linear associ-
ation of study effect and individual foci cluster effect with
a multivariate normal random error was motivated by the
limitation of the spatial Cox process to statistically distin-
guish between a cluster and a mode or peak of a cluster. The
overall aim remained to identify activated regions within the
brain using fMRI coordinate-based metadata. By modeling
the data in this fashion, it was hopeful that the distribution
could statistically differentiate between clusters and modes
of clusters while retaining the flexibility and robustness to
mimick the behavior of the data.

Simulation studies demonstrated that the method can
fit data generated from normal or abnormal distributions.
Furthermore, it was able to identify clusters within covariates
while retaining the integrity to identify individual clus-
ters. Both the proposed method and Kmeans were unable
to correctly identify clusters when they were large and
overlapped and both the mixture of normals and mixture
of DPs performed poorly at identifying a cluster severely
skewed.

When applied to a fMRI metadataset, the method iden-
tified a relatively low number of clusters. Given the low

sensitivity findings in the simulated study with high noise,
it can be concluded that this data had a high likelihood of
being too broad. When the same data was analyzed with the
spatial Cox process, the difference in the results was extreme.
Not only were the number of clusters substantially less, but
also none of the cluster centers identified from the proposed
method came close to those identified in the firstmethod. It is
worthmentioning that themeta-analysis data is not distinctly
grouped and is more uniformly distributed throughout the
brain and perhaps the model used did not provide the best
fit.

The primary advantage to this method, besides its flexi-
bility, is its ability to describe irregular spatial patterns and its
sampling design to statistically differentiate clusters. Because
of its adaptable nature, this model can also adjust for any
covariate(s) of interest. However, based on simulation studies
and the fMRI metadata application, the proposed method
tends to be too insensitive and has a difficult time identi-
fying clusters when data are not distinctly differentiated. A
potential limitation in the approach is that eachDPwithin the
mixture was assumed to have the same precision parameter.
It was noted that, during the simulation studies when the
mixture of DPs was attempting to fit the Chi-squared simula-
tions (without study effect), it was overclustering the skewed
cluster. However, when the precision parameter was smaller,
the identifiability of cluster 3 became more accurate but
became more inaccurate for clusters 1 and 2. Thus, to further
improve flexibility and accuracy for this approach when
data is skewed, each DP potentially requires its own unique
precision parameter. Furthermore, this method’s clustering
ability is limited by the identification of study effects which
may be improved by implementing stronger restrictions
or could be an effect of having multiple DPs. Our future
work will focus on these issues, allowing study effect to
be random rather than a fixed effect, and identifying if a
large number of DPs within the model is indeed a limita-
tion.
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Table 7: Breakdown of emotions and their frequencies by individual foci cluster∗.
Cluster Index: Total foci in that cluster

Emotion Frequency of emotion (% of total cluster foci)

Cluster: 1 1615 Cluster: 2 188 Cluster: 3 148
aff 562 (34.8) aff 57 (30.32) aff 53 (35.81)
anger 110 (6.81) anger 10 (5.32) anger 12 (8.11)
disgust 225 (13.93) disgust 18 (9.57) disgust 22 (14.86)
fear 234 (14.49) fear 35 (18.62) fear 31 (20.95)
happiness 121 (7.49) happiness 17 (9.04) happiness 8 (5.41)
mixed 131 (8.11) Mixed 18 (9.57) mixed 8 (5.41)
sadness 228 (14.12) sadness 33 (17.55) sadness 13 (8.78)
surprise 4 (0.25) surprise 1 (0.68)

Cluster: 4 102 Cluster: 5 77 Cluster: 6 67
aff 44 (43.14) aff 35 (45.45) aff 22 (32.84)
anger 6 (5.88) anger 3 (3.9) anger 4 (5.97)
disgust 15 (14.71) disgust 13 (16.88) disgust 5 (7.46)
fear 9 (8.82) fear 5 (6.49) fear 14 (20.9)
happiness 9 (8.82) happiness 5 (6.49) happiness 6 (8.96)
mixed 4 (3.92) Mixed 7 (9.09) Mixed 4 (5.97)
sadness 15 (14.71) sadness 9 (11.69) sadness 11 (16.42)

surprise 1 (1.49)

Cluster: 7 55 Cluster: 8 54 Cluster: 9 41
aff 21 (38.18) aff 19 (35.19) aff 13 (31.71)
anger 7 (12.73) anger 2 (3.7) anger 5 (12.2)
disgust 7 (12.73) disgust 9 (16.67) disgust 8 (19.51)
fear 6 (10.91) fear 7 (12.96) fear 8 (19.51)
happiness 3 (5.45) mixed 9 (16.67) happiness 2 (4.88)
mixed 4 (7.27) sad 8 (14.81) mixed 1 (2.44)
sadness 7 (12.73) sad 4 (9.76)

Cluster: 10 39 Cluster: 11 38 Cluster: 12 22
aff 15 (38.46) aff 20 (52.63) aff 9 (40.91)
anger 2 (5.13) anger 1 (2.63) anger 2 (9.09)
disgust 5 (12.82) disgust 2 (5.26) disgust 3 (13.64)
fear 3 (7.69) fear 7 (18.42) fear 3 (13.64)
happiness 3 (7.69) happiness 2 (5.26) mixed 2 (9.09)
mixed 4 (10.26) sad 6 (15.79) sad 3 (13.64)
sadness 7 (17.95)

Cluster: 13 18 Cluster: 14 14
aff 5 (27.78) aff 6 (42.86)
anger 2 (11.11) disgust 3 (21.43)
disgust 2 (11.11) happiness 1 (7.14)
fear 5 (27.78) mixed 2 (14.29)
happiness 1 (5.56) sad 2 (14.29)
mixed 1 (5.56)
sadness 2 (11.11)
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Table 8: Breakdown of emotions and their frequencies by individual foci cluster for ROI∗.
Cluster Index: Total foci in that cluster

Emotion Frequency of emotion (% of total cluster foci)
Cluster: 1 489 Cluster: 2 63 Cluster: 3 54
aff 217 (44.38) aff 29 (46.03) aff 21 (38.89)
anger 20 (4.09) anger 3 (4.76) anger 3 (5.56)
disgust 68 (13.91) disgust 8 (12.7) disgust 4 (7.41)
fear 63 (12.88) fear 13 (20.63) fear 8 (14.81)
happiness 28 (5.73) happiness 2 (3.17) happiness 6 (11.11)
mixed 22 (4.5) mixed 4 (6.35) mixed 5 (9.26)
sadness 71 (14.52) sadness 4 (6.35) sadness 7 (12.96)
Cluster: 4 34 Cluster: 5 25 Cluster: 6 20
aff 15 (44.12) aff 13 (52) aff 8 (40)
anger 1 (2.94) anger 1 (4) disgust 1 (5)
disgust 4 (11.76) disgust 4 (16) fear 4 (20)
fear 3 (8.82) fear 1 (4) happiness 1 (5)
happiness 1 (2.94) happiness 2 (8) mixed 1 (5)
mixed 1 (2.94) mixed 2 (8) sadness 5 (25)
sadness 9 (26.47) sadness 2 (8)
Cluster: 7 19 Cluster: 8 17 Cluster: 9 16
aff 6 (31.58) aff 6 (35.29) aff 9 (56.25)
anger 1 (5.26) anger 2 (11.76) fear 3 (18.75)
disgust 4 (21.05) disgust 3 (17.65) happiness 2 (12.5)
mixed 2 (10.53) happiness 1 (5.88) sadness 2 (12.5)
sadness 6 (31.58) mixed 1 (5.88)

sadness 4 (23.53)
Cluster: 10 15 Cluster: 11 9 Cluster: 12 7
aff 6 (40) aff 3 (33.33) aff 3 (42.86)
anger 1 (6.67) anger 1 (11.11) anger 1 (14.29)
disgust 2 (13.33) disgust 2 (22.22) disgust 1 (14.29)
fear 2 (13.33) fear 1 (11.11) fear 2 (28.57)
happiness 1 (6.67) sadness 2 (22.22)
mixed 2 (13.33)
sadness 1 (6.67)
Cluster: 13 6 Cluster: 14 5
aff 3 (50) aff 3 (60)
disgust 1 (16.67) happiness 1 (20)
sadness 2 (33.33) sadness 1 (20)
∗ROI: region of interest; aff: affective.

Data Availability

Data is not currently publicly available but available upon
request from Professor Tor D. Wager at the University of
Colorado.

Conflicts of Interest

No conflicts of interest exist for any author.

Acknowledgments

Dr. Kang’s effort was supported by an NIH Grant
1R01MH105561. Dr. Zhang and Dr. Ray’s efforts were

supported by their start funds provided by the University of
Memphis.

References

[1] M. Stephens, “Bayesian analysis of mixture models with an
unknown number of components—an alternative to reversible
jumpmethods,”TheAnnals of Statistics, vol. 28, no. 1, pp. 40–74,
2000.

[2] M. Aitkin and R. Healey, “Estimation and hypothesis testing in
finite mixture models. Journal of the Royal Statistical Society,”
Journal of the Royal Statistical Society. Series B (Methodological),
pp. 67–75, 1985.

[3] G. J.McLachlan and K. E. Basford,MixtureModels: Applications
to Clustering, Marcel Dekker, New York, NY, USA, 1988.



12 Journal of Probability and Statistics

[4] M. A. T. Figueiredo and A. K. Jain, “Unsupervised learning of
finite mixture models,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, no. 3, pp. 381–396, 2002.

[5] J.-M. Marin, K. Mengersen, and C. . Robert, “Bayesian mod-
elling and inference on mixtures of distributions,” in Bayesian
thinking: modeling and computation, vol. 25 of Handbook
of Statist., pp. 459–507, Elsevier/North-Holland, Amsterdam,
2005.

[6] P. J. Green, “Reversible jump Markov chain Monte Carlo com-
putation and Bayesian model determination,” Biometrika, vol.
82, no. 4, pp. 711–732, 1995.

[7] P. J. Green and D. I. Hastie, “Reversible jump mcmc,” Genetics,
vol. 1550, no. 3, pp. 1391–1403, 2009.

[8] M. D. Escobar and M. West, “Bayesian density estimation and
inference using mixtures,” Journal of the American Statistical
Association, vol. 90, no. 430, pp. 577–588, 1995.

[9] C. E. Antoniak, “Mixtures of Dirichlet processes with appli-
cations to Bayesian nonparametric problems,” The Annals of
Statistics, vol. 2, pp. 1152–1174, 1974.

[10] M. Ray, J. Kang, and H. Zhang, “Identifying Activation Centers
with Spatial Cox Point Processes Using fMRI Data,” IEEE
Transactions on Computational Biology and Bioinformatics, vol.
13, no. 6, pp. 1130–1141, 2016.

[11] P. Congdon, Bayesian statistical modelling, vol. 704, John Wiley
& Sons, 2007.

[12] D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. van der Linde,
“Bayesian measures of model complexity and fit,” Journal of the
Royal Statistical Society: Series B (Statistical Methodology), vol.
64, no. 4, pp. 583–639, 2002.

[13] C. Preston, “Spatial birth-and-death processes,” Advances in
applied probability, vol. 70, no. 03, pp. 405–408, 1975.

[14] R. M.Neal, “Markov chain sampling methods for Dirichlet pro-
cess mixture models,” Journal of Computational and Graphical
Statistics, vol. 9, no. 2, pp. 249–265, 2000.

[15] D. B. Dahl, “Model-based clustering for expression data via a
dirichlet process mixture model,” Bayesian Inference for Gene
Expression and Proteomics, pp. 201–218, 2006.

[16] H. Kober, L. F. Barrett, J. Joseph, E. Bliss-Moreau, K. Lindquist,
and T. D. Wager, “Functional grouping and cortical-subcortical
interactions in emotion: A meta-analysis of neuroimaging
studies,” NeuroImage, vol. 42, no. 2, pp. 998–1031, 2008.



Research Article
A Bayesian Adaptive Design in Cancer Phase I Trials Using Dose
Combinations in the Presence of a Baseline Covariate

Márcio Augusto Diniz , Sungjin Kim, and Mourad Tighiouart

Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center 8700 Beverly Blvd, Los Angeles, CA 90048, USA

Correspondence should be addressed to Mourad Tighiouart; mourad.tighiouart@cshs.org

Received 3 May 2018; Revised 27 July 2018; Accepted 29 August 2018; Published 1 November 2018

Academic Editor: Ash Abebe
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A Bayesian adaptive design for dose finding of a combination of two drugs in cancer phase I clinical trials that takes into account
patients heterogeneity thought to be related to treatment susceptibility is described.The estimation of the maximum tolerated dose
(MTD) curve is a function of a baseline covariate using two cytotoxic agents. A logistic model is used to describe the relationship
between the doses, baseline covariate, and the probability of dose limiting toxicity (DLT). Trial design proceeds by treating cohorts
of two patients simultaneously using escalation with overdose control (EWOC), where at each stage of the trial, the next dose
combination corresponds to the 𝛼 quantile of the current posterior distribution of the MTD of one of two agents at the current
dose of the other agent and the next patient’s baseline covariate value.TheMTD curves are estimated as function of Bayes estimates
of the model parameters at the end of trial. Average DLT, pointwise average bias, and percent of dose recommendation at dose
combination neighborhoods around the true MTD are compared between the design that uses the covariate and the one that
ignores the baseline characteristic. We also examine the performance of the approach under model misspecifications for the true
dose-toxicity relationship. The methodology is further illustrated in the case of a prespecified discrete set of dose combinations.

1. Introduction

Despite the promise observed in preclinical experiments
and initial high response rates, a large number of targeted
drugs have not been successful in providing reproducible
improvements in survival in patients with cancer when
used as single agents. [1] In addition, targeted therapies do
not work for every patient since they rely on the presence
of the target. Therefore, chemotherapy and radiotherapy
approaches are still the backbone of cancer treatment for
tumors after surgical excision. These conventional cancer
therapies may be combined with targeted agents to enhance
treatment efficacy.

Statistical methodologies for designing phase I clinical
trials for drug combinations have been studied extensively
in the past decade [2–13]. These methods assume that the
patient population is homogeneous of treatment tolerance
and every patient should be treated at a dose combination
corresponding to a predefined target probability ofDLT (dose
limiting toxicity).Therefore, an additional layer of complexity

in specifying the dose-toxicity relationship given a baseline
covariate is needed for drug combinations.

Strategies of drug allocation that accommodate individ-
ual patient needs have been used in [14–18] for single agent
trials. Statistical designs allowing individualized maximum
tolerable dose (MTD) determination in single agent cancer
phase I trials have also been proposed and implemented in
real trials by a number of authors for two groupswith no prior
knowledge of ordering [19, 20], for two prior ordered groups
[21, 22] and two or more prior partially ordered groups [23,
24]. In general, ignoring the heterogeneity between groups
can lead to higher toxicities in the most severely impaired
group, statistical bias, and inefficiency of the MTD estimate
for both groups.

In this work, we extend the design described by
Tighiouart et al. [25] using escalation with overdose control
(EWOC) principle [26], by treating cohorts of two patients
simultaneously and accounting for patient baseline binary
covariate. We assume that we do not have prior knowledge
of the ordering between groups, but they will be ordered in
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the sense that the probability of toxicity for one group is
always a constant shift from the probability of toxicity for
the second group at the same dose. In this way, patients with
different covariate values will have parallel MTD curves. This
assumption ismathematically convenient and allows us to use
parsimoniousmodels due to the small sample size constraints
in cancer phase I trials.

This paper is organized as follows. Section 2 will describe
the dose-toxicity model and trial design for continuous dose
levels. In Section 3, we evaluate the performance of the
proposed method by assessing the safety of the trial design
and the efficiency of the estimate of the MTD curve. The
methodology is extended for discrete dose combinations in
Section 4. Discussions will be presented in Section 5.

2. Model

2.1. Dose-Toxicity Model. We propose a parametric model to
identify tolerable dose combinations of two synergistic drugs𝐴 and 𝐵 [10–12, 25, 27] given a patient with a binary baseline
covariate value of 𝑧:

Prob (𝛿 = 1 | 𝑥, 𝑦, 𝑧) = 𝐹 (𝜇 + 𝛽𝑥 + 𝛾𝑦 + 𝜆𝑧 + 𝜂𝑥𝑦) , (1)

where 𝛿 is the indicator of DLT, (𝑥, 𝑦) are the continuous
dose levels of agents 𝐴 and 𝐵, respectively, assuming values
in [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥]× [𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥], 𝑧 is a binary baseline covariate
value, and 𝐹 is a known cumulative distribution function.

We assume partial ordering of the probability of DLT,
i.e., it is a nondecreasing function of the dose of any one of
the agents when the other one is held constant for 𝑧 = 0, 1
and we also assume synergism between the two drugs. These
assumptions are translated into constrains in the parameter
space given by 𝛽, 𝛾 > 0, and 𝜂 ≥ 0, respectively. The MTD𝐶𝑧 for a patient with covariate value z is defined as the set of
combinations (𝑥∗, 𝑦∗) such that

Prob (𝛿 = 1 | 𝑥∗, 𝑦∗, 𝑧) = 𝜃. (2)

The target probability of DLT, 𝜃, is set relatively highwhen the
DLT is a reversible or nonfatal condition, and low when it is
life threatening. Using (1) and (2), the MTD 𝐶𝑧 is

𝐶𝑧 = {(𝑥∗, 𝑦∗) ∈ [0, 1]2 : 𝑦∗

= 𝐹−1 (𝜃) − 𝜇 − 𝛽𝑥∗ − 𝜆𝑧𝛾 + 𝜂𝑥∗ } .
(3)

We reparametrize model (1) to allow amoremeaningful prior
elicitation. Assuming that [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥] × [𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥] will be
standardized to be in [0, 1] × [0, 1], 𝜌000, the probability of
DLT at the minimum available doses of agents 𝐴 and 𝐵 for
a patient with covariate value 𝑧 = 0; 𝜌100, the probability of
DLT when the level of drug 𝐴 is 𝑋𝑚𝑎𝑥, the level of drug 𝐵 is𝑌𝑚𝑖𝑛 and 𝑧 = 0; 𝜌101, the probability of DLT when the level of
drug𝐴 is𝑋𝑚𝑎𝑥, the level of drug 𝐵 is 𝑌𝑚𝑖𝑛 and 𝑧 = 1; 𝜌010, the
probability of DLT when the level of drug𝐴 is𝑋𝑚𝑖𝑛, the level

of drug 𝐵 is 𝑌𝑚𝑎𝑥 and 𝑧 = 0; and the interaction parameter 𝜂.
It follows that

𝜇 = 𝐹−1 (𝜌000)
𝛽 = 𝐹−1 (𝜌100) − 𝐹−1 (𝜌000)
𝛾 = 𝐹−1 (𝜌010) − 𝐹−1 (𝜌000)
𝜆 = 𝐹−1 (𝜌101) − 𝐹−1 (𝜌100) .

(4)

Notice that 𝛽, 𝛾 > 0 implies that 𝜌000 < min(𝜌100, 𝜌010). The
MTD set given in (3) can be presented as

𝐶𝑧 = {(𝑥∗, 𝑦∗) ∈ [0, 1]2 : 𝑦∗

= 𝐺 (𝜃, 𝜌000) − (𝐺 (𝜌100, 𝜌000)) 𝑥∗ − (𝐺 (𝜌101, 𝜌100)) 𝑧𝐺 (𝜌010, 𝜌000) + 𝜂𝑥∗ } ,
(5)

where 𝐺(𝑎, 𝑏) = 𝐹−1(𝑎) − 𝐹−1(𝑏).
Let 𝐷𝑛 = {(𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝛿𝑖), 𝑖 = 1, . . . , 𝑛} be the data after

enrolling 𝑛 patients in the trial.The likelihood function under
the reparametrization is

𝐿 (𝜌000, 𝜌100, 𝜌101, 𝜌010, 𝜂 | 𝐷𝑛)
= 𝑛∏
𝑖=1

(𝐻 (𝜌000, 𝜌100, 𝜌101, 𝜌010, 𝜂; 𝑥𝑖, 𝑦𝑖, 𝑧𝑖))𝛿𝑖

× (1 − 𝐻(𝜌000, 𝜌100, 𝜌101, 𝜌010, 𝜂; 𝑥𝑖, 𝑦𝑖, 𝑧𝑖))1−𝛿𝑖
(6)

where

𝐻(𝜌000, 𝜌100, 𝜌101, 𝜌010, 𝜂; 𝑥𝑖, 𝑦𝑖, 𝑧𝑖) = 𝐹 (𝐹−1 (𝜌000)
+ (𝐹−1 (𝜌100) − 𝐹−1 (𝜌000)) 𝑥𝑖
+ (𝐹−1 (𝜌010) − 𝐹−1 (𝜌000)) 𝑦𝑖
+ (𝐹−1 (𝜌101) − 𝐹−1 (𝜌100)) 𝑧𝑖 + 𝜂𝑥𝑖𝑦𝑖) .

(7)

2.2. Prior and Posterior Distributions. We consider the pri-
ors 𝜌100 ∼ 𝐵𝑒𝑡𝑎(𝑎1, 𝑏1), 𝜌010 ∼ 𝐵𝑒𝑡𝑎(𝑎3, 𝑏3), 𝜌101 ∼𝐵𝑒𝑡𝑎(𝑎2, 𝑏2), and conditional on 𝜌100, 𝜌010, 𝜌000/𝑚𝑖𝑛(𝜌100,𝜌010) ∼ 𝐵𝑒𝑡𝑎(𝑎0, 𝑏0), and 𝜂 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) with mean 𝐸(𝜂) =𝑎/𝑏 and variance var(𝜂) = 𝑎/𝑏2. As described in [25], vague𝐵𝑒𝑡𝑎 priors are achieved by taking 𝑎𝑗 = 𝑏𝑗 = 1, 𝑗 = 0, 1, 2, 3
while a vague Gamma prior is chosen with mean of 21 and
variance of 540. The posterior distribution is given by,

𝜋 (𝜌000, 𝜌100, 𝜌101, 𝜌010, 𝜂 | 𝐷𝑛)
∝ 𝑛∏
𝑖=1

(𝐻 (𝜌000, 𝜌100, 𝜌101, 𝜌010, 𝜂; 𝑥𝑖, 𝑦𝑖, 𝑧𝑖))𝛿𝑖

× (1 − 𝐻 (𝜌000, 𝜌100, 𝜌101, 𝜌010, 𝜂; 𝑥𝑖, 𝑦𝑖, 𝑧𝑖))1−𝛿𝑖
× 𝜋 (𝜌000 | 𝜌100, 𝜌010) 𝜋 (𝜌100) 𝜋 (𝜌101) 𝜋 (𝜌010) 𝜋 (𝜂) .

(8)

We used JAGS [28] to sample from the posterior distribution.
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2.3. Trial Design. The algorithm for dose escalation/deesca-
lation is similar to one discussed in [11, 25] with the additional
binary covariate information. It uses the EWOC principle
[26] where at each stage of the trial, we seek a dose of one
agent using the current posterior distribution of the MTD
of the agent given the current dose of the other agent and
the next patient’s baseline covariate value. For instance, if
agent 𝐴 is held constant at level 𝑥, the dose of agent 𝐵 is 𝑦
such that the posterior probability that 𝑦 exceeds the MTD
of agent 𝐵 given the dose of agent 𝐴 = 𝑥 and covariate value𝑍 = 𝑧 is bounded by a feasibility bound 𝛼. Cohorts of two
patients are enrolled simultaneously receiving different dose
combinations. Specifically, the design proceeds as follows.

(1) Let 𝐷2 = {(𝑥1, 𝑦1, 𝑧1, 𝛿1), (𝑥2, 𝑦2, 𝑧2, 𝛿2)} be the data
from the first cohort of two patients such that each
patient receives the same dose combination (𝑥𝑖, 𝑦𝑖) =(𝑋𝑚𝑖𝑛,𝐴, 𝑌𝑚𝑖𝑛,𝐵) = (0, 0) for 𝑖 = 1, 2.

(2) In the second cohort of two patients, patient 3 receives
dose (𝑥1, 𝑦3) and patient 4 receives dose (𝑥4, 𝑦2). If𝑧3 = 𝑧1 or 𝑧3 = 𝑧2, 𝑦3 is the 𝛼th percentile of𝜋(Γ𝐵|𝐴=𝑥1,𝑍=𝑧3 | 𝐷2). Otherwise, patient 3 receives the
minimum dose combination (𝑋𝑚𝑖𝑛,𝐴, 𝑌𝑚𝑖𝑛,𝐵) = (0, 0).
If 𝑧4 = 𝑧1 or 𝑧4 = 𝑧2, 𝑥4 is the 𝛼th percentile of𝜋(Γ𝐴|𝐵=𝑦2,𝑍=𝑧4 | 𝐷2). Otherwise, patient 4 receives
the minimum dose combination (𝑋𝑚𝑖𝑛,𝐴, 𝑌𝑚𝑖𝑛,𝐵) =(0, 0). In general, the first time a patient is assigned
to a given group defined by the binary covariate𝑧 always receives the minimum dose combination(𝑋𝑚𝑖𝑛,𝐴, 𝑌𝑚𝑖𝑛,𝐵) no matter how many patients have
been treated in the other group, as described in [20].
Here, 𝜋(Γ𝐵|𝐴=𝑥1,𝑍=𝑧3 | 𝐷2) is the posterior distribution
of the MTD of agent 𝐵 given that the level of agent 𝐴
is 𝑥1 and the baseline covariate value of patient 3 is𝑧3, given the data 𝐷2. 𝜋(Γ𝐴|𝐵=𝑦2 ,𝑍=𝑧4 | 𝐷2) is defined
similarly. Γ𝐵|𝐴=𝑥 and Γ𝐴|𝐵=𝑦 can be expressed in terms
of 𝜌000, 𝜌100, 𝜌101, and 𝜌010.

(3) In the 𝑖-th cohort of two patients,

(a) If 𝑖 is even, patient (2𝑖 − 1) receives dose(𝑥2𝑖−3, 𝑦2𝑖−1) and patient 2𝑖 receives dose(𝑥2𝑖, 𝑦2𝑖−2), where y2𝑖−1 = Π−1Γ𝐵|𝐴=𝑥2𝑖−3 ,𝑍=𝑧2𝑖−1 (𝛼 |
𝐷2𝑖−2) and 𝑥2𝑖 = Π−1Γ𝐴|𝐵=𝑦2𝑖−2 ,𝑍=𝑧2𝑖 (𝛼 | 𝐷2𝑖−2).
Here, Π−1Γ𝐴|𝐵=𝑦,𝑍=𝑧 (𝛼 | 𝐷) is the inverse
cumulative distribution function of the
posterior distribution, 𝜋(Γ𝐴|𝐵=𝑦,𝑍=𝑧 | 𝐷).

(b) Similarly, if 𝑖 is odd, patient (2𝑖 − 1) receives
dose (𝑥2𝑖−1, 𝑦2𝑖−3) and patient 2𝑖 receives dose(𝑥2𝑖−2, 𝑦2𝑖), where 𝑥2𝑖−1 = Π−1Γ𝐴|𝐵=𝑦2𝑖−3,𝑍=𝑧2𝑖−1 (𝛼 |
𝐷2𝑖−2) and 𝑦2𝑖 = Π−1Γ𝐵|𝐴=𝑥2𝑖−2 ,𝑍=𝑧2𝑖 (𝛼 | 𝐷2𝑖−2).

(4) Repeat step (3), until 𝑛 patients are enrolled in the trial
subject to the following stopping rule.

If the 𝛼th percentile of 𝜋(Γ𝐴|𝐵=𝑦,𝑍=𝑧 | 𝐷) or 𝜋(Γ𝐵|𝐴=𝑥,𝑍=𝑧 | 𝐷)
is less than 0 or greater than 1, the recommended dose for the
next patient is 0 or 1, respectively. In steps (2) and (3) above,

a dose escalation is further restricted to be no more than a
prespecified fraction of the dose range of the corresponding
agent.

Stopping Rule. It is sufficient to evaluate a stopping rule for
safety at the minimum dose combination because of the
partial ordering assumption. The probability of DLT of all
doses for both agents will be higher than 𝜃 if the probability
at the minimum dose is higher than 𝜃.We stop enrollment to
the trial if 𝑃(𝑃(DLT | (𝑥, 𝑦) = (0, 0), 𝑧) ≥ 𝜃 + 𝛿1 | data) > 𝛿2,
i.e., if the posterior probability that the probability of DLT at
the minimum available dose combination in the trial exceeds
the target probability of DLT is high for 𝑧 = 0, 1. The design
parameters 𝛿1 and 𝛿2 are chosen to achieve desirable model
operating characteristics. At the completion of the trial, an
estimate of the MTD curve for 𝑧 = 0, 1 is obtained using (5)
as

𝐶𝑧 = {(𝑥∗, 𝑦∗) ∈ [0, 1]2 : 𝑦∗

= 𝐺 (𝜃, 𝜌000) − (𝐺 (𝜌100, 𝜌000)) 𝑥∗ − (𝐺 (𝜌101, 𝜌100)) 𝑧𝐺 (𝜌010, 𝜌000) + 𝛽4𝑥∗ } .
(9)

where 𝐺(𝑎, 𝑏) = 𝐹−1(𝑎) − 𝐹−1(𝑏), 𝜌000, 𝜌100, 𝜌101, 𝜌010, and 𝜂
are the posterior medians given the data 𝐷𝑛.
3. Simulation Studies

3.1. Simulation Set-Up and Scenarios. Wepresent four scenar-
ios for the true MTD curves as shown in Figure 1. The first
scenario (a) is a case where the two true MTD curves for two
groups are parallel and close to the minimum doses with 𝜌010
and 𝜌100 equal to each other and slightly higher than 𝜃; the
second scenario (b) is a case where the two true MTD curves
for two groups are parallel but very close to each other; the
third scenario (c) is a case where two true MTD curves for
two groups are not parallel, and the last scenario (d) is a case
where the two true MTD curves are parallel but lie far apart
from each other and close to the maximum doses with 𝜌010
and 𝜌100 equal and largely lower than 𝜃.

In addition, toxicity responses are generated assuming
four link functions allowing us to evaluate misspecification:
(i) logistic, 𝐹(𝑢) = (1+ 𝑒−𝑢)−1, (ii) probit, 𝐹(u) = Φ(𝑢), whereΦ(⋅) is the c.d.f. of the standard normal distribution, (iii)
normal, 𝐹(𝑢) = Φ(𝑢/𝜎) with 𝜎 = 2, and (iv) complementary
log-log, 𝐹(𝑢) = 1 − 𝑒−𝑒𝑢 , where the parameter values of 𝜇, 𝛽,𝛾, 𝜆, and 𝜂 were selected in such a way that they all have the
same true MTD curve.

For each scenario, 1000 trials were simulated with the
logistic link function as the working model, the target proba-
bility of DLT is fixed at 𝜃 = 0.33, the trial sample size is 𝑛 = 40
patients with 20 patients in each group, 𝛿1 = 0.05 and 𝛿2 =0.8. Vague priors for the parameters (𝜌000, 𝜌100, 𝜌101, 𝜌010, 𝜂)
were chosen. A variable feasibility bound 𝛼 was started from
0.25 and increased by 0.05 each time when we compute the
dose for the next patient until 𝛼 was reached 0.5 [29]. A dose
escalation is restricted to be no more than 20% of the dose
range of the corresponding agent.
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3.2. Design Operating Characteristics. In order to assess the
performance of this method when designing a prospective
trial, we evaluate its operating characteristics by comparing
the following three designs.

(i) Design using a covariate (WC): patients are accrued to
the trial sequentially and the dose combinations given
to the next cohort of patients are calculated assuming
model (1).

(ii) Design ignoring the covariate (IC): patients are
accrued to the trial sequentially and the dose com-
binations given to the next cohort of patients are
calculated assuming model (1) without the covariate,
i.e., as in [25].

(iii) Design using parallel trials (PT): in each group,
patients are accrued to the trial sequentially and

model (1) without the covariate is implemented in
each group.

We assume that we have balanced groups given a fixed
sample size in which it is possible to carry out two separate
studies.

3.2.1. Safety and Efficiency. We evaluate operating character-
istics introduced by Tighiouart et al. (2014, 2017) [11, 25].
Safety is assessed through the average percent of DLTs across
all trials and the percent of trials that have a DLT rate
exceeding 𝜃 + 0.1.

Efficiency is assessed using an overall MTD estimate,
pointwise average bias, and percentage of selection. The
overall MTD estimate is based on all trials:

𝐶𝑧 = {(𝑥∗, 𝑦∗) ∈ [0, 1]2 : 𝑦∗ = 𝐹−1 (𝜃) − 𝐹−1 (𝜌000) − (𝐹−1 (𝜌100) − 𝐹−1 (𝜌000)) 𝑥∗ − (𝐹−1 (𝜌101) − 𝐹−1 (𝜌100)) 𝑧𝐹−1 (𝜌010) − 𝐹−1 (𝜌000) + 𝜂𝑥∗ } . (10)

where 𝑧 = 0, 1, 𝐹(⋅) is the logistic function and𝜌000, 𝜌100, 𝜌101 , 𝜌010, and 𝜂 are the average posterior medians
of the parameters 𝜌000, 𝜌100, 𝜌101, 𝜌010, and 𝜂 from all 1000
trials, respectively.

The pointwise average relative minimum distance from
the true MTD curve 𝐶𝑧,𝑡𝑟𝑢𝑒 to the estimated MTD curve for𝑧 = 0, 1 is defined as

𝑑𝑧(𝑥,𝑦) = 𝑚−1 𝑚∑
𝑖=1

𝑑(𝑖)𝑧(𝑥,𝑦) (11)

wherein

𝑑(𝑖)𝑧(𝑥,𝑦) = sign (𝑦󸀠 − 𝑦)
× min
{(𝑥∗,𝑦∗):(𝑥∗,𝑦∗)∈𝐶𝑧,𝑖}

√(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2 (12)

for every point (𝑥, 𝑦) ∈ 𝐶𝑧,𝑡𝑟𝑢𝑒, 𝑦󸀠 is such that (𝑥, 𝑦󸀠) ∈ 𝐶𝑧,𝑖
for all (𝑥, 𝑦) ∈ 𝐶𝑧,𝑡r𝑢𝑒, and 𝐶𝑧,𝑖 is the estimated MTD curve
with binary covariate 𝑧 for trial 𝑖.

The percentage of selection for 𝑧 = 0, 1 uses the
differences defined in (12):

𝑃𝑧(𝑥,𝑦) = 𝑚−1 𝑚∑
𝑖=1

𝐼 (󵄨󵄨󵄨󵄨󵄨𝑑(𝑖)𝑧(𝑥,𝑦)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑝Δ 𝑧 (𝑥, 𝑦)) (13)

where Δ 𝑧(𝑥, 𝑦) is the Euclidean distance between the mini-
mum dose combination (0, 0) and the point (𝑥, 𝑦) on the true
MTD curve for 𝑧 = 0, 1 and 0 < 𝑝 < 1.

3.3. Results

3.3.1. Trial Safety. Table 1 shows that the overall average
percent of DLTs is always less than 𝜃 = 0.33 varying between
16.84% and 30.42% for theWCdesign, and 21.55% and 30.10%
for the IC design across four scenarios. In the group with𝑍 = 0, the average percent of DLTs varies between 5.63% and
21.68% for WC design, 2.89% and 19.07% for IC design, and
6.43% and 21.95% for PT design. Safety becomes a concern
when 𝑍 = 1 for IC design because high values of average
percent of DLT are observed (varying between 32.37% and
46.15%). On the other hand, the average percent of DLT
for all scenarios goes between 28.04% and 39.17% for WC
design, and 14.54% and 29.55% for PT design. These rates
are similar when using the true and misspecified models. In
addition, the highest value of the percent of trials with an
excessive rate of DLT as defined by a DLT rate exceeding𝜃 + 0.1 is 0.1% for WC design, 0.4% for IC design, and 0.0%
for PT design in the group with 𝑍 = 0 while this value
is higher for 𝑍 = 1 is 31.5% for WC design, 65.8% for IC
design, and 1.8% for PT design. Thus, we conclude that the
methodology is safe for WC and PT designs, but not for IC
design. The other three misspecified models are shown in
Table S1.

3.3.2. Trial Efficiency. Figure 1 shows the true and estimated
MTD curves for each group of patients under the four
scenarios (a)-(d) when using the three studied designs. The
estimated MTD curves were obtained using (10) and DLT
responses were simulated using the logistic link function.
The estimated MTD curves are fairly close to the true MTD
curves when accounting for a significant baseline covariate
(scenarios a, c, d) using the WC and PT designs. When
ignoring the covariate, the estimated MTD curve tends to
be in between the true MTD curves. This shows that when
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Figure 1: True and estimated MTD curves from𝑚 = 1000 simulated trials with designs using a covariate (WC), ignoring the covariate (IC),
and parallel trials (PT) under four scenarios (a)-(d).
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Table 1: Operating characteristics summarizing trial safety for designs using a covariate (WC), ignoring the covariate (IC), and parallel trials
(PT) considering continuous dose combinations, 𝜃 = 0.33.
Scenario Design

Average % DLTs
(% Trials: DLT rate < 𝜃 − 0.1; % Trials: DLT rate > 𝜃 + 0.1)

Overall Z = 0 Z = 1

(a)
WC 30.42 (7.1; 0.5) 21.68 (56.6; 0.0) 39.17 (0.4; 31.5)
IC 30.10 (8.6; 0.4) 14.05 (86.7; 0.1) 46.15 (0.0; 65.8)
PT - 21.95 (56.6; 0.0) 29.55 (10.9; 1.8)

(b)
WC 24.34 (45.4; 0.0) 19.47 (73.8; 0.1) 29.21 (13.4; 1.8)
IC 25.72 (34.6; 0.0) 19.07 (68.1; 0.4) 32.37 (10.2; 11.7)
PT - 16.87 (88.3; 0.0) 19.04 (78.0; 0.0)

(c)
WC 24.15 (47.7; 0.0) 13.98 (93.6; 0.0) 34.32 (2.7; 11.0)
IC 24.90 (41.6; 0.0) 8.60 (97.3; 0.0) 41.21 (0.8; 42.6)
PT - 14.78 (96.5; 0.0) 22.21 (55.2; 0.1)

(d)
WC 16.84 (98.0; 0.0) 5.63 (100.0; 0.0) 28.04 (15.4; 0.0)
IC 21.55 (73.3; 0.0) 2.89 (100.0; 0.0) 40.22 (1.0; 36.8)
PT - 6.43 (100.0; 0.0) 14.54 (97.6; 0.0)

Scenario (𝜌000, 𝜌100, 𝜌101, 𝜌010, 𝜂): (a) (0.01, 0.4, 0.8, 0.4, 10), (b) (0.005, 0.1, 0.2, 0.1, 10), (c) (0.005, 0.2, 0.7, 0.01, 10), and (d) (10−4, 10−3, 0.05, 10−3, 10).

the two MTD curves are well separated, not accounting
for a baseline covariate results in suboptimal MTD curve
estimation for the group of patients with high tolerance
and a too toxic MTD curve recommendation for the other
group.

Figure 2 displays the pointwise average relative minimum
distance from the true MTD curve to the estimated MTD
curve as defined by (11) under the four scenarios (a)-(d)when
the DLT responses are simulated from the true and the other
three misspecified models, respectively. This is a measure of
pointwise bias for the MTD estimate. In the first scenario
(a), the maximum absolute pointwise bias is 0.101 for 𝑍 = 0
and 0.099 for 𝑍 = 1. For WC design, the pointwise bias
is negligible for low dose combinations and increases as we
move away from theminimumdose combinationwith higher
values when 𝑍 = 0 then 𝑍 = 1. For PT design, the pointwise
bias is almost constant when 𝑍 = 0, such that it is lower
than for WC design at the edges of the MTD curve and
presents U-shape when 𝑍 = 1 with higher values than for
WC design at the minimum dose combination and the edges
of the MTD curve. In scenario (b), the maximum absolute
pointwise bias is 0.069 for𝑍 = 0 and 0.066 for𝑍 = 1.WC and
PT designs show U-shape pointwise bias with higher values
for WC design than for PT design as we increase the dose
combinations in any direction when 𝑍 = 0, 1. In scenario
(c), the maximum absolute pointwise bias is 0.181 for 𝑍 = 0
and 0.155 for 𝑍 = 1. For WC design, the pointwise bias is
negative for low dose combinations and approximates to zero
as we increase the dose combination in any direction; For PT
design, the bias is negative for low dose combinations and
becomes positive until reaching the same initial magnitude
when 𝑍 = 1 and a plateau lower than the initial magnitude
when 𝑍 = 0 as we increase dose combinations in any
direction. In scenario (d), the maximum absolute pointwise
bias is 0.21 for 𝑍 = 0 and 0.139 for𝑍 = 1. WC and PT designs
are similar to each other, with WC showing higher pointwise
bias for doses at the edge of MTD curve when 𝑍 = 1. IC

design presents higher pointwise bias than for WC and PT
designs in all scenarios. The other three misspecified models
are shown in Figure S1.

Figure 3 shows the pointwise percent of trials for which
the minimum distance from the true MTD curve to the
estimated MTD curve is no more than (100 × 𝑝)% of the
true MTD for 𝑝 = 0.2 as defined by (13). This can be
interpreted as the percent of MTD recommendation for a
given tolerance 𝑝. Under the first scenario (a), the percent of
trials with correct MTD recommendation within 20% of the
true value of theMTD varies between 62.6% and 99.9%using
WC and PT designs, while it varies more widely between28.6% and 100% for the IC design when the toxicities are
generated from the true and misspecified models. The WC
and PT design presents similar results to each other, withWC
design showing slightly lower values than for PT design at the
minimum dose combination. Under the second scenario (b),
the percent of recommendation is similar between all designs
varying between 84.9% and 97.6% for the WC design, 89.8%
and 99.3% for the IC design, and 79% and 100% for the PT
design. TheWC design presents somewhat lower values than
for IC design when𝑍 = 1 at the minimum dose combination
and at central part of the MTD curve when 𝑍 = 0. Under
the scenario (c), the percent of recommendation is between69.0% and 95.1% for theWC design, 67.1% and 95.3% for the
PT design, while it is between 15.6% and 98.5% for IC design.
The IC design is notably worse than WC and PT designs,
except at the minimum dose combination when 𝑍 = 1; The
percent of recommendation is always lower for PT design
than for WC design when 𝑍 = 0 and at the edges of the
MTD curve when 𝑍 = 1. In scenario (d), the percent of
recommendation varies between 68.7% and 95.5% for WC
design, 88.2% and 98.0% for the PT design, 50.7% and 89.2%
for the IC design. As it was observed in the other scenarios,
IC design performs worse than WC and PT designs. The
PT design presents higher values than for WC design at the
minimum dose combination when 𝑍 = 0 and at the edges of
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Figure 2: Pointwise average relative minimum distance from the trueMTD curve to the estimatedMTD curve with designs using a covariate
(WC), ignoring the covariate (IC), and parallel trials (PT) under scenarios (a)-(d).
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Table 2: A selected dose limiting toxicity scenario with 𝜃 = 0.33 for𝑍 = 0, 1 considering discrete dose combinations. True MTDs are
shown in bold.

Dose level Z = 0 Z = 1
1 2 3 4 5 1 2 3 4 5

5 0.25 0.33 0.40 0.48 0.70 0.45 0.53 0.60 0.68 0.90
4 0.20 0.26 0.33 0.43 0.55 0.40 0.46 0.53 0.63 0.75
3 0.13 0.16 0.24 0.33 0.39 0.33 0.36 0.44 0.53 0.59
2 0.05 0.13 0.18 0.28 0.33 0.25 0.33 0.38 0.48 0.53
1 0.001 0.05 0.13 0.20 0.27 0.201 0.25 0.33 0.40 0.47

the MTD curve when 𝑍 = 0, 1. The other three misspecified
models are shown in Figure S2.

4. Discrete Dose Combinations

In this section, we show how the proposed methodology can
be applied to a prespecified discrete set of dose combinations.

4.1. Approach. Let (𝑥1, . . . , 𝑥𝑟) and (𝑦1, . . . , 𝑦𝑠) be the doses
of agents 𝐴 and 𝐵, respectively. Following the notation of
Section 2.1, 𝑋𝑚𝑖𝑛,𝐴 = 𝑥1, 𝑌𝑚𝑖𝑛,𝐵 = 𝑦1, 𝑋𝑚𝑎𝑥,𝐴 = 𝑥𝑟, 𝑌𝑚𝑎𝑥,𝐵 =𝑦𝑠, the doses are standardized to be in the interval [0, 1], and𝑧 is a binary baseline covariate. Trial design proceeds using
the algorithm described in Section 2.3 where the continuous
doses recommended in steps (2) and (3) are rounded to the
nearest discrete dose levels. At the end of the trial, a discrete
set Γ of dose combinations satisfying (i) and (ii) below is
selected as MTDs. Let 𝐶𝑧,𝑖 be the estimated MTD curve for𝑧 = 0, 1 at the end of the trial and denote by 𝑑𝑧((𝑥𝑗, 𝑦𝑘), 𝐶𝑧,𝑖)
the Euclidean distance between the dose combination (𝑥𝑗 , 𝑦𝑘)
and 𝐶𝑧,𝑖 for 𝑧 = 0, 1 as in (12).

(i) Let Γ𝑧,𝐴 = ⋃𝑟𝑡=1{(𝑥𝑡, 𝑦) : 𝑦 =
argmin𝑦𝑗𝑑((𝑥𝑡, 𝑦𝑗), 𝐶𝑧,𝑖) }, Γ𝑧,𝐵 = ⋃𝑠𝑡=1{(𝑥, 𝑦𝑡) :𝑥 = argmin𝑥𝑗𝑑((𝑥𝑗, 𝑦𝑡), 𝐶𝑧,𝑖)}, and Γ𝑧,0 = Γ𝑧,𝐴 ∩ Γ𝑧,𝐵.

(ii) Let Γ𝑧 = Γ𝑧,0\{(𝑥∗, 𝑦∗) : 𝑃(|𝑃(𝐷𝐿𝑇|(𝑥∗, 𝑦∗), 𝑧) − 𝜃| >𝛿1|𝐷𝑛) > 𝛿2}.
In (i), dose combinations closest to the MTD are selected by
firstminimizing the distances across the levels of drugA, then
across the levels of drug B. In (ii), we exclude MTDs from
(i) that either likely to be too toxic or too low. The design
parameter 𝛿1 is selected after consultationwith a clinician and
the parameter 𝛿2 is selected after exploring a large number of
scenarios for a given prospective trial. Following Tighiouart
(2017) [25], 𝛿1 = 0.1, 𝛿2 = 0.7.
4.2. Operating Characteristics. The performance of the
method is evaluated by calculating the percent of MTDs
selection introduced in Tighiouart (2017) [25] estimating the
probability that for a given scenario, a prospective trial will
recommend a set of dose combinations that are all MTDs:

PS𝑧 = 100 × 1𝑚
𝑚∑
𝑖=1

I (Γ𝑧,𝑖 ⊂ Γ𝑧,𝛿) , (14)

for 𝑧 = 0, 1, where Γ𝑧,𝛿 = {(𝑥𝑖, 𝑦𝑗) : |𝑃(𝐷𝐿𝑇|(𝑥𝑖, 𝑦𝑗), 𝑧) − 𝜃| <𝛿} is the set of trueMTDs such that the threshold parameter 𝛿
is fixed by a clinician. In the sameway, the percent of selection
at least 𝐾 dose combinations that are MTDs is

PS𝑧 − K = 100 × 1𝑚
𝑚∑
𝑖=1

I (󵄨󵄨󵄨󵄨Γ𝑧,𝑖 ∩ Γ𝑧,𝛿󵄨󵄨󵄨󵄨 ≥ 𝐾) , (15)

for 𝑧 = 0, 1. In addition, the weighted average proportion of
the recommended set of dose combinations which are MTDs
discussed in [30] is given by

SΓ𝛿 = ∑𝑚𝑖=1 󵄨󵄨󵄨󵄨Γ𝑧,𝑖 ∩ Γ𝑧,𝛿󵄨󵄨󵄨󵄨∑𝑚𝑖=1 󵄨󵄨󵄨󵄨Γ𝑧,𝑖󵄨󵄨󵄨󵄨 , (16)

for 𝑧 = 0, 1.
4.3. Illustration. We present one scenario as shown in Table 2
with 𝑟 = 𝑠 = 5 and the target probability of DLT is 𝜃 = 0.33.
We simulated 𝑚 = 1000 trials using the sample size of 𝑛 =40 patients with 20 patients per group, and the same vague
priors for 𝜌000, 𝜌100, 𝜌101, 𝜌010 and 𝜂 fromSection 3 to compare
the three designs with a covariate, ignoring the covariate, and
parallel trials.

Table 3 shows that the overall average DLT is 25.1% for
theWCdesign and 24.5% for the IC design. In the group with𝑍 = 0, it is always far lower than 𝜃 and close to 𝜃 for the group
with 𝑍 = 1. The percent of trials with an excessive DLT rate
is not noticeable for all designs where the highest values are
observed when using the IC design.

Table 4 shows that the design using parallel trials has
highest values for the percent of MTDs selection (PS),
percent of selection of at least 3 dose combinations (S-3),
2 dose combinations (S-2), and 1 dose combination (S-1),
and weighted average percent of the recommended set of
dose combinations (SΓ𝛿 ) statistics in the group with 𝑍 =0, 1. The IC design shows the lowest values for all operating
characteristics in both groups; PT design presents smaller
values than for WC design when 𝑍 = 0, while shows higher
values than for WC design when 𝑍 = 1, except for PS𝑧 − 3.
5. Conclusion

We described Bayesian adaptive designs for cancer phase I
clinical trials using two drugs with continuous dose levels
in the presence of a binary baseline covariate. The goal is to
estimate the MTD curve in the two-dimensional Cartesian
plane for a patient’s specific baseline covariate value. The
methodology extends the single agent trial design with a
baseline covariate and two agents design without a covariate.
In each case, vague priors were used to quantify the toxicity
profile of each agent a priori. We used an algorithm for
dose escalation where cohorts of two patients are enrolled
simultaneously and the patients receive different dose com-
binations. We studied design operating characteristics of the
method under four practical scenarios by comparing this
method with the design that ignores the baseline covariate
and design using parallel trials. In all simulations, we used a
sample size of 𝑛 = 40 patients, 20 patients in each group. We
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Table 3: Operating characteristics summarizing trial safety for designs using a covariate (WC), ignoring the covariate (IC), and parallel trials
(PT) considering discrete dose combinations.

Design Average % DLTs (% Trials: DLT rate < 𝜃 − 0.1; % Trials: DLT rate > 𝜃 + 0.1)
Overall Z = 0 Z = 1

WC 25.9 (31.9; 2.0) 17.3 (78.5; 3.0) 34.5 (7.2; 17.4)
IC 24.4 (48.0; 0.0) 14.2 (85.6; 0.0) 34.6 (7.7; 17.5)
PT - 15.0 (91.1; 0.0) 28.1 (24.0; 5.0)

Table 4: Operating characteristics summarizing trial efficiency for𝑍 = 0, 1with designs using covariate (WC), ignoring covariate (IC),
and parallel trials (PT) considering discrete dose combinations.

Covariate Design PS PS𝑧 − 3 PS𝑧 − 2 PS𝑧 − 1 SΓ𝛿

Z = 0
WC 47.3 35.3 51.3 80.1 66.3
IC 19.6 14.9 23.0 51.6 37.9
PT 46.2 9.9 33.6 58.3 56.4

Z = 1
WC 55.3 25.7 72.5 85.5 71.6
IC 47.6 17.9 59.5 79.6 62.7
PT 81.6 16.2 71.4 88.0 88.9

found that in general, the methodology is safe in terms of the
probability that a prospective trial will result in an excessively
high number of DLTs when accounting for a significant
covariate. We used several measures to assess the efficiency
of the estimate of the MTD. In the presence of a practically
significant baseline covariate, the design with a covariate had
a smaller pointwise average bias and a higher percent of
MTD recommendation relative to a design which ignores
the covariate and similar performance to parallel trials when
the groups were balanced. When the two true MTD curves
are very close, including a baseline covariate in the model
results in a slightly higher but still negligible bias and a small
reduction in percent of MTD recommendation relative to
the design that ignores this covariate. Therefore, we stand to
lose little if we include a practically not important covariate
in the model. We further showed how this methodology
is adapted to the discrete dose combinations and proposed
statistics estimating the probability that a prospective trial
will recommend a set of dose combinations that are all MTDs
for a given scenario. The statistics are used in evaluating
the performance of the proposed design with a covariate as
compared to other designs ignoring the covariate and using
parallel trials.
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Mixed effects models are widely used for modelling clustered data when there are large variations between clusters, since mixed
effects models allow for cluster-specific inference. In some longitudinal studies such as HIV/AIDS studies, it is common that some
time-varying covariatesmay be left or right censored due to detection limits,may bemissing at times of interest, ormay bemeasured
with errors. To address these “incomplete data“ problems, a common approach is to model the time-varying covariates based on
observed covariate data and then use the fittedmodel to “predict” the censored ormissing ormismeasured covariates. In this article,
we provide a review of the common approaches for censored covariates in longitudinal and survival response models and advocate
nonlinear mechanistic covariate models if such models are available.

1. Introduction

Mixed effects models are widely used in the analysis of
clustered data, especially analysis of longitudinal data or
survival data. In a longitudinal study, some variables are
measured repeatedly over time, and these variables may be
used either as responses or covariates, depending on study
objectives. A common problem is that data on some of these
variablesmay be left or right censored due to detection limits,
may be missing at times of interest, or may be measured
with errors. For example, in HIV/AIDS studies, viral load
values may be left censored due to lower detection limits
and may be missing or measured with substantial errors.
In statistical analysis, these “incomplete data” issues must
be addressed for correct statistical inference. In this article,
we consider the case when these incompletely observed and
time-varying variables are used as important covariates in
mixed effects models for longitudinal response data or for
time-to-event response data. To simplify the discussion, we
focus on time-dependent covariates with left censoring, since
similar methods/models may be used for right censoring or
missing data or measurement errors in the covariates.

Longitudinal data with left censoring have received
increasing attention in the literature in recent years (e.g., [1–
8]). A common approach is to assume an empirical model for
the covariate of interest based on the observed data, such as a
linear mixed effects model.Then, the empirical model is used
to “predict” the true covariate values when these values are
censored, assuming the fittedmodel continues to hold for the
unobserved censored values. A potential problem with this
approach is that the assumed empirical covariatemodel based
on the observed data may not hold for the censored covariate
values, due to possibly different data-generation mechanisms
for these “too small to observe” values. For example, in
AIDS studies, censored viral loads below the detection limit
may behave very differently from those above detection limit
(observed values), due to a possibly different disease status for
suppressed viral loads [6]. Moreover, the assumedmodel and
distribution for the censored values cannot be verified based
on observed data.

Recently, Kong and Nan [4] proposed an interesting
approach based on ideas similar to that for right censored
survival data, i.e., they used ideas similar to Cox models for
right censored survival data for longitudinal data with left
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censoring. Yu et al. [6] proposed an approach which treats
censored values as point mass. While these two approaches
make no distributional assumptions for the censored values,
the methods may not be efficient if censored values indeed
follow a parametric distribution similar to that for the
observed values.

In some applications such as HIV viral dynamics and
pharmacokineticmodelling, mechanistic or scientificmodels
can be derived based on the underlying data-generation
mechanisms. These models are often nonlinear and are
derived based on a set of differential equations which approx-
imately describe the true data-generation mechanisms, so
thesemodels are justified biologically or scientifically (e.g., [9,
10]).Moreover, thesemechanisticmodels have been shown to
fit observed data quite well based on many data analyses [11].
Since these mechanistic models are based on underlying true
data-generation mechanisms, they should hold for censored
values, even though these values are not observed. Therefore,
these models can be used to better “predict” the unobserved
censored values than empirical models. In this article, we
will provide a review of such approaches. The approaches are
illustrated by an HIV/AIDS dataset.

2. Mixed Effects Models with
Censored Covariates

In this section, we focus on generalized linear mixed effects
models for longitudinal responses and survival models
for time-to-event responses, with left censored and time-
dependent covariates. The methods can be extended to other
types of regression models in a conceptually straightforward
way.

2.1. Generalized Linear Mixed Models with Censored Covari-
ates. We first consider generalized linear mixed models
(GLMMs) with a left censored and time-dependent covariate
in a longitudinal study, following Zhang et al. [7]. Let 𝑦𝑖𝑗
be the response of interest measured for individual 𝑖 at time
𝑡𝑖𝑗, 𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑛𝑖. Let 𝑥𝑖𝑗 be an important
time-dependent covariate which is subject to left censoring,
measurement errors, and missing data (assuming missing at
random). We denote the unobserved true value of 𝑥𝑖𝑗 by 𝑥∗𝑖𝑗
in the presence of censoring or missing data or measurement
errors. Let 𝑑 be a known detection limit for 𝑥𝑖𝑗 such that
𝑥-values cannot be observed (detected) if 𝑥𝑖𝑗 < 𝑑 (i.e., left
censoring), and let 𝑐𝑖𝑗 be the censoring indicator such that
𝑐𝑖𝑗 = 1 if 𝑥𝑖𝑗 < 𝑑 and 𝑐𝑖𝑗 = 0 otherwise. Let z𝑖𝑗 be a vector
of other covariates.

Consider the following GLMM:

𝑔 (𝐸 (𝑦𝑖𝑗)) = 𝑥∗𝑖𝑗𝛽1 + z𝑇𝑖𝑗𝛽2 + w𝑇𝑖𝑗a𝑖,
a𝑖 ∼ 𝑁 (0, 𝐴) , 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑛𝑖,

(1)

where 𝑔(⋅) is a known link function, 𝛽𝑗’s are unknown
parameters, w𝑖𝑗 is a subset of (𝑥𝑖𝑗, z𝑖𝑗), a𝑖 contains random
effects, and 𝐴 is a unknown covariance matrix. We assume
that the response 𝑦𝑖𝑗 follows a distribution in the exponential
family such as a normal or Poisson or Binomial distribution.

When the covariate𝑥𝑖𝑗 is left censored ormissing ormeasured
with error, we may assume an empirical model for 𝑥𝑖𝑗 based
on the observed 𝑥-data, such as a linear mixed effects (LME)
model. Then we assume that the LME model continues to
hold for censored or unobserved values and proceed for
likelihood inference. However, as noted in Section 1, such an
approach may be problematic since censored values may not
follow the same model obtained based on the observed data.

When a mechanistic or scientific model is available for
covariate 𝑥𝑖𝑗, such as in HIV viral dynamics, the scientific
model should hold not only for observed data but also
for unobserved data (e.g., censored or mismeasured or
missing data), so that the model can be used to provide
better “predictions” for the unobserved true covariate values.
Such a scientific model is often nonlinear. For longitudinal
data with large between-individual variations, by introduc-
ing random effects in the nonlinear model to account for
between-individual variations and within-individual correla-
tions among repeated measurements, we obtain a nonlinear
mixed effects (NLME) model. Thus, we assume that the
covariate 𝑥𝑖𝑗 follows the following NLME model:

𝑥𝑖𝑗 = ℎ (𝑡𝑖𝑗, b𝑖, 𝛼) + 𝑒𝑖𝑗 (≡ 𝑥∗𝑖𝑗 + 𝑒𝑖𝑗) ,
b𝑖 ∼ 𝑁 (0, 𝐵) , 𝑒𝑖𝑗 i.i.d. ∼ 𝑁 (0, 𝜎2) ,

(2)

where ℎ(⋅) is a known nonlinear function, vector b𝑖 contains
random effects, vector 𝛼 contains fixed parameters, 𝑥∗𝑖𝑗 is the
true covariate value at time 𝑡𝑖𝑗, 𝐵 is an unknown covariance
matrix, and 𝑒𝑖𝑗’s are random errors (measurement errors).

Note that when ℎ(⋅) is a linear function (so model (2)
is an LME model), the covariate model (2) is an empirical
model which is chosen based on the observed covariate data.
In a more general sense, the empirical models also include
semiparametric or nonparametricmixed effectsmodels. Such
an empirical model is commonly used to address censoring,
missing data, and measurement errors in the literature (e.g.,
[1, 2, 11]). When covariate 𝑥𝑖𝑗 is not normal, such as binary or
count, generalized linear mixedmodels may be considered to
fit observed covariate data, which are still empirical models.
These empirical models may provide poor “predictions” to
the unobserved data such as censored data.

2.2. Survival Models with Censored Time-Dependent Covari-
ates. For survival models with time-dependent covariates,
the covariates may also be left censored. Moreover, param-
eter estimation and inference for Cox models require that
covariate values are available at event times [11]. However,
this is usually not the case, since covariate values are unlikely
to be available at all event times. Thus, this leads to missing
covariate problems. The covariates may also be measured
with errors, i.e., the observed covariate values may not be the
true values but values with errors. In all cases, a common
approach is to model the covariate process based on the
observed covariate data and then use the fitted covariate
model to “predict” the censored or missing covariate values.
As noted in the previous section, a mechanistic or scientific
covariate model may make better “predictions” than empiri-
cal covariate models, as shown in Zhang and Wu [8].
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Here we consider a Cox model for the survival data with
possible right censoring of the event times. For individual 𝑖,
we define 𝑇𝑖 to be the minimum of the observed event time
𝑇∗𝑖 and the right censoring time 𝐶𝑖 and define Δ 𝑖 to be the
censoring indicator such that Δ 𝑖 = 1 if the event time is right
censored and Δ 𝑖 = 0 otherwise, 𝑖 = 1, 2, . . . , 𝑛. Let 𝜆𝑖(𝑡) be
the hazard function for individual 𝑖 at time 𝑡. The Cox model
with time-dependent covariates can be written as

𝜆𝑖 (𝑡) = 𝜆0 (𝑡) exp (𝛽1𝑥∗𝑖 (𝑡) + 𝛽𝑇2 z𝑖) , 𝑖 = 1, 2, . . . , 𝑛, (3)

where 𝛽 = (𝛽𝑇1 , 𝛽2)𝑇 is a vector of regression coefficients and
𝜆0(𝑡) is the (unspecified) baseline hazard function.

When the time-dependent covariate 𝑥𝑖(𝑡) is left censored
or missing or measured with errors, inference for the Cox
model can be challenging. Similar to the GLMM in the
previous section, a common approach is to model the time-
dependent covariate 𝑥𝑖(𝑡) based on observed covariate data,
assuming the fitted covariate model holds for the censored
covariate values. Again, such an empirical approach can
be problematic if censored covariate values behave quite
differently than observed values.The problem can be fixed if a
mechanistic covariate model is available. We may again con-
sider the mechanistic NLME model (2) to address censoring
in the covariates.

3. Statistical Inference

For parameter estimation and inference, two methods are
commonly used: the two-step method and the joint likeli-
hood method. We briefly review the two methods below.

3.1. Two-Step Methods. To estimate the parameters in the
models, a simple approach would be the so-called two-step
method: in the first step we fit the covariate model based on
the observed covariate data, and then in the second step we fit
the response model separately, with the censored or missing
covariate values substituted by their predicted values from the
first step.

Specifically, consider the GLMM response model (1) and
the covariate model (2). In the first step, we fit the NLME
covariate model (2) to the observed covariate data and
obtain estimates of the parameters 𝛼̂ and the empirical Bayes

estimates of the random effects b̂𝑖. The predicted value of the
covariate at time 𝑡 is given by

𝑥𝑖 (𝑡) = ℎ (𝑡, b̂𝑖, 𝛼̂) . (4)

Then, in the second step, we fit the following GLMM to the
response data using the standard complete-data method for
fitting GLMM

𝑔 (𝐸 (𝑦𝑖𝑗)) = 𝑥𝑖𝑗𝛽1 + z𝑇𝑖𝑗𝛽2 + w𝑇𝑖𝑗a𝑖. (5)

If the covariate𝑥 value is censored ormissing ormismeasured
at time 𝑡𝑖𝑗, its value is imputed by the predicted value 𝑥𝑖(𝑡𝑖𝑗) =𝑥𝑖𝑗.

An obvious issue with the above simple two-step method
is that the estimation uncertainty in the first step is ignored in
the second step.The standard error of the parameter estimate
𝛽1 may be underestimated, leading to misleading inference
for the parameter 𝛽1. To fix this problem, we may use the
bootstrap method to obtain more reliable standard errors
of the parameters in the response model [11]. A parametric
bootstrap method, which generates samples from the above
fitted models, may be used to produce more reliable standard
errors of the estimates. Still, the two-step method may not
be efficient because covariate data and response data are not
used simultaneously.

If the response data are survival data, the issues men-
tioned above for the two-step method remain. Moreover, in
this case, the longitudinal covariate data may be truncated by
the events such as death or dropouts. In this case, the two-step
method may lead to biased estimation.

3.2. Joint Likelihood Method. A more desirable and formal
method than the two-step method is to use the likelihood
method based on the “joint likelihood” for both the response
and covariates. Maximum likelihood estimates (MLEs) of
all the unknown parameters in the two models may then
be obtained simultaneously based on the joint likelihood for
all observed data. If all assumed models and distributions
hold, the MLEs are the most efficient estimates. Let 𝜃 be
the collection of all unknown parameters in the response
and covariate models, and let 𝑓(⋅) denote a generic density
function. The joint log-likelihood for the observed data is
given by

𝑙𝑜𝑏𝑠 (𝜃) =
𝑛

∑
𝑖=1

log∫
𝑛𝑖

∏
𝑗=1

𝑓𝑦 (𝑦𝑖𝑗 | 𝑥𝑖𝑗, a𝑖; 𝛽) 𝑓𝑥 (𝑥𝑖𝑗 | b𝑖, 𝛼)1−𝑐𝑖𝑗 𝐹𝑥 (𝑑 | b𝑖, 𝛼)𝑐𝑖𝑗 𝑓 (a𝑖, b𝑖) 𝑑a𝑖𝑑b𝑖 (6)

where 𝑓𝑦(𝑦𝑖𝑗 | 𝑥𝑖𝑗, a𝑖; 𝛽) is a density function from the
exponential family, 𝐹𝑥(𝑑 | b𝑖, 𝛼) = 𝑃(𝑥𝑖𝑗 < 𝑑 | b𝑖, 𝛼), and𝑐𝑖𝑗 is the censoring indicator for the covariates.

Evaluation of the intractable integration in the log-
likelihood 𝑙𝑜𝑏𝑠(𝜃) can be computationally challenging, espe-
cially when the dimension of the random effects (a𝑖, b𝑖) is
higher. By treating the random effects (a𝑖, b𝑖) as “missing

data,” we may use the EM algorithm to find the MLEs. Let
x𝑖,𝑐𝑒𝑛 be the censoring components of the covariate vector
x𝑖. By treating (a𝑖, b𝑖, x𝑖,𝑐𝑒𝑛) as “missing data”, Zhang et al.
[7] proposed a Monte Carlo EM algorithm in which the E-
step is implemented with a Gibbs sampler combined with
rejection sampling methods.TheMonte Carlo EM algorithm
is still computationally intensive but is feasible. Alternatively,
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we may use computationally more efficient Laplace approx-
imations or linearization methods to 𝑙𝑜𝑏𝑠(𝜃) for approximate
inference [11].

For the survival response models, the joint log-likelihood
is given by

𝑙∗𝑜𝑏𝑠 (𝜃) =
𝑛

∑
𝑖=1

log∫
∞

−∞
∫
𝑑

−∞
[𝑓 (𝑇𝑖, Δ 𝑖 | a𝑖;𝛼,𝜆0,𝛽) × 𝑓𝑥 (𝑥𝑖𝑗 | b𝑖, 𝛼)1−𝑐𝑖𝑗 𝐹𝑥 (𝑑 | b𝑖, 𝛼)𝑐𝑖𝑗 × 𝑓 (a𝑖;A)] 𝑑a𝑖, (7)

where

𝑓 (𝑇𝑖, Δ 𝑖 | a𝑖;𝛼,𝜆0,𝛽)
= (𝜆𝑖 (𝑇𝑖 | 𝑋∗𝑖 (𝑇𝑖) ;𝛼,𝜆0,𝛽))Δ 𝑖 × 𝑆 (𝑇𝑖 | 𝑋∗𝑖 (𝑇𝑖)) ,

(8)

with 𝑆(𝑡) the survival function defined as 𝑆(𝑡) =
exp(− ∫𝑡

0
𝜆(𝑠)𝑑𝑠). Statistical inference can again be based on

a Monte Carlo EM algorithm, although the computation can
be more tedious due to the nonparametric baseline hazard in
the Cox model.

4. Examples

In the following, we show two examples from an HIV/AIDS
study. In the first example, we consider a Poisson generalized
linear mixed model with censored covariates. In the second
example, we consider a Cox survival model with censored
covariates. In both examples, the time-dependent covariate
is subject to left censoring and is modelled by a NLME
model to address the censoring as well as missing data and
measurement errors. The methods were implemented by
Monte Carlo EM algorithms in R. R code is available upon
request.

4.1. Generalized Linear Mixed Models with Censored Covari-
ates. We consider an AIDS longitudinal dataset and study
how viral load (VL) may relate to CD4 counts over time
during an anti-HIV treatment. Viral loads usually have a
lower detection limit so that viral load values below the limit
cannot be observed, i.e., viral load may be left censored.
Moreover, viral loads may be missing or measured with
errors. As an illustration, we view CD4 count (𝑦𝑖𝑗) as the
response and VL as a time-dependent covariate (𝑥𝑖𝑗), and we
model the longitudinal CD4 counts as a Poisson GLMM:

log (𝐸 (𝐶𝐷4𝑖𝑗)) = 𝛽0𝑖 + 𝛽1𝑖𝑡𝑖𝑗 + 𝛽2𝑖𝑉𝐿∗𝑖𝑗 + 𝛽3𝑇𝑅𝑖
+ 𝛽4𝑡𝑖𝑗 × 𝑇𝑅𝑖

(9)

where 𝛽𝑘𝑖 = 𝛽𝑘 + 𝑎𝑘𝑖, 𝑘 = 0, 1, 2, 𝑎𝑘𝑖’s are random effects,
and TR denotes a treatment indicator. Since VL may be left
censored and may be measured with errors, we consider
the following mechanistic NLME model which is justified
biologically [9, 10]:

𝑉𝐿 𝑖𝑗 = log10 (𝛼1𝑖𝑒−𝛼2𝑖𝑡𝑖𝑗 + 𝛼3𝑖𝑒−𝛼4𝑖𝑡𝑖𝑗) + 𝑒𝑖𝑗 ≡ 𝑉𝐿∗𝑖𝑗 + 𝑒𝑖𝑗, (10)

where 𝛼𝑘𝑖 = 𝛼𝑘 + 𝑏𝑘𝑖, 𝑘 = 1, 2, 3, 4, 𝑏𝑘𝑖’s are random effects,
and viral load values𝑉𝐿 𝑖𝑗 are log10-transformed.The random

effects are assumed to follow multivariate normal distribu-
tions with mean 0 and unstructured covariance matrices.
As a comparison, we also fit observed VL data based on an
empirical LME model (ELM):

𝑉𝐿 𝑖𝑗 = 𝛼1𝑖 + 𝛼2𝑖𝑡𝑖𝑗 + 𝛼3𝑖𝑡2𝑖𝑗 + 𝛼4𝑖𝑡3𝑖𝑗 + 𝑒𝑖𝑗. (11)

The unknown parameters (𝛼𝑘, 𝛽𝑘) are estimated using a
Monte Carlo EM algorithm as described in Zhang et al. [7].

Figure 1 shows the NLME and ELM models fit to the
observed viral loads of two randomly selected subjects,
where the times are rescaled to be in [0, 1]. It suggests
different fitted curves from the two covariate models. In
particular, the predicted lines based on the NLME model fit
the uncensored viral loads quite well; and for the censored
portion, the lines follow the mechanistic model and preserve
an overall nonlinear trend. On the other hand, the empirical
LME model renders noticeable deviation of the fitted lines
from the uncensored viral loads and imposes a linear or
quadratic curve for the censored viral loads. Such discrepan-
cies between the covariate model fitting, particularly in the
censored portion, induce different parameter estimates in the
response model. Table 1 summarizes the parameter estimates
of the response CD4model, with the covariate VL being fitted
based on theNLME and ELMmodels, respectively. As we can
see, the results of the parameter estimates are different. For
example, the estimate of 𝛽2, which measures the association
between CD4 and VL, is significant at 5% level based on
the NLME covariate model but is not significant based on
the ELM covariate model. The results based on the NLME
model should be more reliable since it provides more reliable
predictions for the censored viral loads, since the NLME
model may make better predictions for the unobserved
censored values than the ELMmethod as the NLMEmodel is
based on the underlying data-generationmechanismwhich is
the same for both observed and unobserved covariate values.
The higher the percentage of censored/missing values is, the
better the NLME model performs. This is confirmed by the
simulation study in Zhang et al. [7].

4.2. Survival Models with Censored Covariates. As another
example, we consider the foregoing dataset again, but nowwe
focus on the occurrences of the first CD4:CD8 decline. The
objective here is to determine if and how the time to the first
CD4:CD8 decline may be related to treatment and viral load.
We consider the following Cox survival model for the time to
first CD4:CD8 decline:

𝜆𝑖 (𝑡) = 𝜆0 (𝑡) exp (𝛽1𝑇𝑅𝑖 + 𝛽2𝑉𝐿∗𝑖 (𝑡)) . (12)
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Figure 1: Fitted viral load curves for two randomly selected subjects. The open circles are the observed viral loads (the censored values are
replaced by half the detection limit in log10 scale for simplicity).The solid line is the fitted curve based on the NLMEmodel, while the dashed
line is fitted curve based on the ELMmodel.

Table 1: Parameter estimates of the CD4 response model, based on the NLME and ELM covariate models respectively.

Response model parameter NLME covariate model ELM covariate model
Estimate SE p-value Estimate SE p-value

𝛽0 5.98 0.16 0.00 6.15 0.23 0.00
𝛽1 −0.07 0.14 0.49 0.02 0.13 0.57
𝛽2 −0.19 0.06 0.01 −0.06 0.04 0.09
𝛽3 −0.71 0.59 0.19 −0.84 0.71 0.61
𝛽4 0.56 0.33 0.16 0.39 0.26 0.17

For this dataset, the Weibull distribution seems to provide a
reasonable fit to the observed event times, so we consider the
parametric Weibull distribution for the event times. For viral
load, we use the same NLME and ELM models described in
the first example.

Figure 2 shows, for two randomly selected subjects, the
fitted lines to the observed viral loads based on the joint Cox
survival model with the mechanistic NLME covariate model
and empirical LMEmodel (ELM), respectively, together with
the corresponding estimated hazard functions and survival
probability functions. We see that the mechanistic NLME
model and the empirical LME model lead to different hazard
and survival estimates. The NLME based joint model pre-
dicts monotonically increasing hazards, indicating the ever
increasing risk of the event. On the other hand, the LME
based model predicts more curved risk functions. Table 2
shows the results of the parameter estimates for the survival
model. Here the differences seem relatively small, but as dis-
cussed, the predicted hazards and survival probabilities can
be substantial. Since the NLME covariate model is derived
based on reasonably biological justifications, they provide
better “predictions” for censored (unobserved) viral loads

and more reliable prediction for each individual’s hazard and
survival probability than the ELM covariate model, based on
similar reasons as that for Table 1, which is also confirmed by
simulations in Zhang and Wu [8].

5. Discussion

The nonlinear mechanistic covariate models are very appeal-
ing to address censoring and missing data in covariates,
since the “predicted values” based on such models are more
reliable than the commonly used empirical covariate models.
These nonlinear mechanistic models are widely used in
modelling HIV viral dynamics, pharmacokinetics, growth
or decay, and some other areas [12, 13]. However, in many
cases, such mechanistic models may not be available. In
this case, an alternative approach is to treat the censored
values as “point mass” to avoid unverifiable distributional
assumptions for the censored values. The advantages of the
nonlinear mechanistic covariate models are more obvious
when the percentage of the censored values is higher, as
confirmed in Zhang et al. [7].The limitations of the nonlinear
mechanistic covariate models are as follows: (i) in many
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Figure 2: Plot of two individuals' (first row and 2nd row) fitted (predicted) viral load values and the corresponding hazard, survival functions
based on the joint Cox and NLMEmodel and empirical LMEmodel (ELM), respectively. The open circles represent the observed viral loads.
Left censored viral loads are replaced by one-half of the detection limit (in log10-scale).

Table 2: Parameter estimates in the Cox model based on the NLME and ELM covariate models respectively.

Cox model parameter NLME covariate model ELM covariate model
Estimate SE p-value Estimate SE p-value

log (𝜆) 1.60 1.05 0.10 1.44 1.13 0.60
log (𝛾) 0.22 0.22 0.66 0.18 0.41 0.87
𝛽1 0.10 0.41 0.92 0.13 0.42 0.80
𝛽2 −0.40 0.54 0.39 −0.34 0.66 0.41

applications such mechanistic models may not be available
and (ii) computation can be challenging, as discussed below.

Since the mechanistic covariate models are often nonlin-
ear, computation is a main challenge in likelihood inference.
Although Monte Carlo EM algorithms can almost always
be used, they may offer potential problems such as very
slow convergence or even nonconvergence. Moreover, the
Monte Carlo EM algorithms usually need to be combined
with Markov Chain Monte Carlo (MCMC) methods which
are used to generate Monte Carlo samples in the E-step
of the EM algorithms, making the computation even more
challenging. When the dimensions of the random effects are
high, we recommend approximate methods such as Laplace
approximations and linearization methods as reviewed in
Wu [11]. These approximate methods can be computationally

much more efficient and provide reasonable approxima-
tions.
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