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Fuzzy logic has shown itself to be a powerful design and
analysis methodology in control theory, enabling the imple-
mentation of advanced knowledge-based control strategies
for complex dynamic systems such as those emerging appli-
cations for systems and synthetic biology. This special issue
on advanced fuzzy logic applications compiles seven exciting
manuscripts. Four of the manuscripts discuss the effective-
ness in applying fuzzy logic to solving control issues. The
other three papers discuss the fuzzy retractions, fuzzification,
and the fuzzy application in transportation systems.

S. Simani proposes the application of a data-driven fuzzy
control design to a wind turbine benchmark model. The
author discusses the fuzzy modeling and identification and
suggests a fuzzy control approach for the adjustment of both
the wind turbine blade pitch angle and the generator torque.
H. Benitez-Pérez, A. Benitez-Pérez, ]. Ortega-Arjona, and
O. Esquivel-Flores discuss a way to tackle multiple time
delays that are bounded and the dynamic response from
real-time scheduling approximation. D. Krokavec and A.
Filasova explore the new conditions suitable for design of a
stabilizing output controller for a class of continuous-time
Takagi-Sugeno nonlinear systems. N. V. Kolesov discusses
the fault diagnosis using fuzzy interacting observers. Three
different models of faults are considered, including struc-
tural changes, faults in the signal space, and faults in the
parameter space. A. Paz, P. Maheshwari, P. Kachroo, and S.
Ahmad discuss the estimation of performance indices for
the planning of sustainable transportation systems by fuzzy

logic. A. E. El-Ahmady and A. S. Al-Luhaybi study new
types of fuzzy retractions of fuzzy open flat Robertson-Walker
space. Finally, H. V. Kumbhojkar discusses the fuzzification of
prime ideals of hemirings. Minimum imperative for proper
fuzzification is suggested.

By compiling these articles, we hope to enrich our readers
and researchers with respect to these particularly relevant, yet
usually highly treatable, fuzzy logic applications.

Sendren Sheng-Dong Xu
Hao Ying

Pablo Carbonell
Ching-Hung Lee
Wei-Sheng Wu
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A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic
specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of
state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second
specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled
technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

1. Introduction

A dynamic system model is widely used to describe technical
systems in solving various problems of analysis and synthesis,
including diagnosis, as applied to these systems. Although the
literature on problems of diagnosis is abundant, the interest
to them still persists and the investigations are continuing.
The problems of how to increase accuracy, or diagnostic
depth, and how to take into account different uncertainties
that are inherent in the solution of diagnosis problems are
conventionally central to the studies of fault diagnosis. It is
to these problems that this paper is devoted, wherein the
technical states of the system are assumed uncertain.

In the literature, the diagnosis problem is considered in
different formulations, depending primarily on the models
used to describe a system: deterministic [1-8], stochastic
[9,10], fuzzy [11-13], and so forth. The choice of a formulation
is determined, as a rule, by the application and the problem
to be solved by the dynamic system, as well as a priori infor-
mation on the properties of the system and its possible faults
available to developers of diagnostic tools. Thus, if a developer
possesses statistical information on the system behavior and
faults, it makes sense to use the stochastic approach. If such
information is unavailable, the deterministic approach is
preferential because in this case, information on uncertainties

is minimal. The fuzzy approach complements the tools of the
deterministic approach with the rules of analysis and fault
decision making based on fuzzy logic. These rules formalize
the empirical knowledge of the developer about the nominal
and anomalous (in the case of faults) behavior of a system
and uncertainties inherent in this problem by introducing
fuzzy sets. Of course, there is a certain analogy between
the methods that belong to different approaches. It is a
consequence of mutual penetration and enrichment of the
existing approaches. In this sense, the material presented later
is not an exception.

Each of the afore mentioned approaches fits different lines
of investigations. Among the most efficient of them is the
one that relies on the models of the diagnosed system for
synthesis of diagnostic tools. This line is developed in the
framework of all approaches and is realized by application
of either single state observers [3-5] (stochastic approach—
Kalman and Wiener filters [9, 10]) or output observers [2, 3],
or their sets (banks) [7-13] as parts of diagnostic tools. If we
use banks, each of the observers O; (Figure 1) is adjusted to
one of the technical states of the system (serviceable S, — O,,
disabled S; with the first fault O, disabled S, with the second
fault O,, etc.). In the general case, vector residuals (difference
signals) vy, v, ..., vy between the real output of the dynamic
system and the output of each of the observers are formed,
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FIGURE 1: Structure of the diagnostic system.

which is followed by a decision making on the technical state
of the diagnosed system.

In this study, we propose a method for diagnosing
dynamic systems in the framework of a fuzzy approach.
The new method possesses two basic specific features which
distinguish it from the other known fuzzy methods based on
the application of fuzzy logic and a bank of state observers.
First, unlike the approaches in which observers are inde-
pendent of each other, in this method, we consider a bank
of interacting observers. The second specific feature of the
proposed method is an assumption that there is no strict
boundary between the serviceable and disabled technical
states of the system and its elements, which makes it possible
to specify a decision making rule for fault diagnosis.

2. Preliminary Definitions and Remarks

First of all, let us discuss the notion of a “fuzzy” technical state
and, as a consequence, “fuzzy” fault, which is understood
as a transition from the serviceable technical state to the
disabled one. The notion of a fuzzy technical state used
later seems to be quite adequate to describe the existing
engineering approach. Indeed, judging from the value of the
parameter which indicates the technical state of an object, an
engineer can conclude that the object is either serviceable or
disabled. Depending on a particular value of this parameter,
the engineer can conclude that the object is serviceable or,
correspondingly, disabled to a certain extent.

We define a fuzzy technical state of an object with respect
to parameter @ as a linguistic variable characterized, for
example, by two terms (fuzzy sets)—serviceable and disabled
technical states described by the corresponding membership
functions y and y!.

Figure 2 illustrates the notions of “crisp” (a) and “fuzzy”
(b) technical states of an object. In the first case, the
domains of values of the key parameter ® corresponding
to the serviceable and disabled technical states of an object
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(denoted by rectangles of different colors) are separated by a
strict boundary. In the second case, these domains intersect
(shaded area), and they are determined by the corresponding
membership functions with parameters a and b. As a result,
for any value of ® = @', the technical state of the object can
be related both with a fuzzy set of serviceable (y? =0.8)anda
fuzzy set of disabled (4| = 0.3) states. Note that in this paper,
we only consider trapezoidal membership functions:

1, 0<0,; <aq,
b- 0,
W= i a<®<b,
b-a
L0, otherwise,
, )
0, 0<0; <aq,
0, -a
[’lll = h l—, a S @1 S b,
b-a
L1, otherwise.

We should also make two more remarks concerning the
problems touched upon in this paper. First, for simplicity,
we assume that there are no perturbations in the considered
model of the system. Second, we do not discuss the already
known procedures of synthesis of stable observers [14].

3. Decision Making Rule on Fault Occurrence

The rule is based on the notion of the confidence coefficient
K; of the ith technical state introduced later. It requires
that the confidence coefficient K; should reach a specified
level Afor a technical state with the dominant value of this
coeflicient; that is, the following condition should be satisfied:

K* = max{K;} > A. 2)

Let us clarify the procedure of calculation of confidence
coeflicient. It is based on two groups of parameters that define
the technical state of a dynamic system: the residuals v;, i =
0, N obtained as a result of comparison of the system outputs
with the outputs of the observers and the estimates d;, A,
i = 0,N of the levels of the faults in the diagnosis in the
signal space and parameter space, respectively. It is assumed
that the residual v;, i = 0, N formed as a result of comparison
of the system outputs with the ith observer can be represented
by a linguistic variable, for example, with two terms, “small”
and “large,” for which the membership functions MS,- and Mi{’

i = 0,N are defined. The term “small’ corresponds to the
situation in which the model used in the observer synthesis
is adequate to the current technical state of the diagnosed
system. The occurrence of a small, as it is, but nonzero value of
this residual is due to the transient processes accompanying
the estimation, the lack of complete adequacy of the model
of the diagnosed system used for the observer synthesis,
and neglected perturbations of its dynamics and output. The
term “large” corresponds to the situation in which the model
used in the observer synthesis is essentially inadequate to
the current technical state of the diagnosed system. This is
the case when, for example, a diagnosed system is in the ith
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FIGURE 2: llustration of the ideas of “crisp” and “fuzzy” technical states.
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FIGURE 3: Structure of an attitude control system of a space launch vehicle (a) and an example of structural changes (b).

technical state, whereas the observer is adjusted for the jth
technical state. In this case, parameters {a;,b, | i = 0, N} of
the membership functions are determined by the equalities:
aizmiin{vilsj,thi}, bizmiax{vilsj,jzi}. (3)
As for the variables 8, A, i = 0,N simulating a
fault, we also assume that they are described by linguistic

variables with two terms, “serviceable” and “disabled,” with
the membership functions ptg’_ and ‘uéi, i =1,N,or ‘u%i and
y%i, i=1,N, respectively, specified for them.

In order to obtain the confidence coefficients {K; |
i = 0,N}, first, we determine the characteristics called
generalized membership degrees {fi; | i = 0,N} of the
technical state of the diagnosed system to each of the possible
fuzzy technical states. These characteristics generalize the
information on the technical state of the system with respect
to all observers and are formed based on the set of values
{v, |i= 0, N}. The value of the generalized membership
degree is formed in accordance with the following expression:

N
i = s [ o,
=0

jEi

(4)

The explanation of this expression is obvious. Indeed, the
observer adequate to the technical state of the system forms
a small residual, whereas the others form large residuals. This
being so, we may say that a fault does exist if §; is large. We

do not consider the situations including equivalent or poorly
distinguishable faults.

Then, the confidence coefficient K; for each technical state
S; is calculated in accordance with the rule of “weighting coef-
ficients” by determining the contribution of the generalized
membership degree fi; to the sum of these degrees for all
states. Consider

__H
i N -~
Zj=01uj

(5)

4. Diagnosis of Structural Changes

In this paper, we consider successively three different models
of fault: structural changes, faults in the signal space, and
faults in the parameter space. In so doing, we study various
structures of diagnostic tools different in the organization
of the banks of the state observers and decision making
rules. The proposed structures are compared with the known
variant of diagnostic tools, which uses a bank of independent
observers (Figure 1), and a decision is made as a result of
fuzzy analysis of residuals. First, consider the diagnosis of
structural changes. A structure of a system is very convenient
to describe such faults. An example of a system structure is
given in Figure 3(a). It is an attitude control system of a space
launch vehicle (LV). The angular position © is adjusted by
changing angle 8, which characterizes the inclination of the
engines relative to the LV’s axis. An example of structural
changes is a break of the velocity feedback (Figure 3(b)).
From here on, the diagnosed dynamical system is
described in the time domain (by differential or difference



equations); that is, for a linear system,

X (t) = Fx (t) + Gu(t), y(t) = Hx(t), (6)

while for a nonlinear system,

x(t) = (x(1),u(t),0), y()=Hx(t), (7)

where x is an n-dimensional state vector, u is an m-
dimensional input vector, y is a p-dimensional output vector,
F is an n X n matrix of dynamic, G is an input 7 X m matrix,
H is an output p X n matrix, ¢ is a function of dynamic, and
O is a parameter vector.

The problem of synthesis of tools for fault diagnosis
involves two main questions: formation of a rule for decision
making and synthesis of a bank of observers. Assuming that
the answer to the first question is given in the previous
section, we proceed to the discussion of the second question.

Let us next study some variants of fault diagnosis that
employ the banks of both independent and interacting
observers. By this we mean the method used to form the
system state vector estimate in each of the observers. If it is
formed independently, we have independent observers and
treat the obtained estimates as conditional with respect to a
certain technical state. If the formation of the estimate also
takes into account the estimates obtained in other observers,
we have interacting observers. This chapter is referring to the
independent observers.

Let us consider briefly the question of synthesis of a single
observer. Observers may be synthesized by different rules,
resulting from differences in the formulation of the problem.
The procedure for the synthesis of a state observer for the
linear system is known; however, for the sake of completeness,
we will recall its main issues. As previously stated, each ith
observer of the bank is adjusted to a technical state of the
system, in which it is characterized by matrices F;, G;, H;. The
matrices F, G/, H" of the corresponding observer will be
the same. The observer equations for diagnostics of the linear
system have the form [14]

5T =F'x” ) +Gu®)+L;(y-y"),
(8)
yi (1) =H;"x;” (t).

As a result, an ith fault that occurs in the diagnosed
system during operation leads to formation of an estimate
of the system state vector in the observer. In this case, the
behavior of the estimate error e;(t) = x;(t) — x/(t) is
determined by the equation ¢; = (F/ — L;H; )e;. It will
suffice to determine the feedback matrix L; to synthesize the
observer. It is determined depending on the desired behavior
of the estimation error. Undoubtedly, this error must tend
to zero. Therefore, matrix F;" — L;H, corresponding to each
of the observers must be stable; that is, the real parts of
its eigenvalues must take on negative values. For the case
when the original system is linear, stationary, and observable,
the selection algorithm of matrix L; is known, and it is
rather simple [14]. It uses the description of the diagnosed
dynamical system in identification canonical form such that
if the diagnosed system has one output, it is a single chain
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of integrators with feedback from the last integrator. Such
system representation allows to find matrix L; based on
desired eigenvalues for the matrix F;' —L;H;". If the diagnosed
system has many outputs, the procedure for determining the
feedback matrix is complicated [14], although the sequence
of steps is the same. In a similar way, first of all, we need to
present the diagnosed system in the identification canonical
form, which becomes more complicated. It contains not
a single chain of integrators with feedback from the last
integrator, but several—as many as there are outputs in the
system.

To summarize this section, we formulate the algorithm
for diagnosis of arbitrary faults in the formulation under
consideration.

Algorithm 1.

(1) Formation of a list of faults.

(2) Synthesis of the independent observer for each of the
faults.

(3) Assignment of membership functions for the consid-
ered fuzzy residuals based on the developer’s empiri-
cal knowledge of the system operability.

(4) Decision making about faults by forming a confidence
coefficient.

To illustrate the proposed algorithm, once again, we turn
to the example in Figure 3.

Example 2. Let us synthesize the diagnosis tools for break of
the velocity feedback. The nominal behavior of the system is
described by the equation

0 - KpKe; 0 + (Kp + Koy —Key) © = KpKey©,  (9)
but in the case of fault, it is described as follows:
O+ (Kp+Kc, —Key) O = KpKi, O, (10)

We analyzed an intermittent fault, when a device recovers
after the failure and then fails again, in the Simulink environ-
ment using a sinusoidal input signal. In practice, faults of this
type usually are a severe problem for diagnosis. Simulation
results of a problem of diagnosis are shown in Figure 4, which
presents time diagrams for the confidence coefhicients formed
with the use of a bank of two independent observers adjusted
for nominal and faulty states, respectively. It is easy to see that
the diagnosis tools show adequate results.

5. Diagnosis in Signal Space

In the case of diagnosis in the signal space, the fault is
simulated as an additional term ¢ in the dynamics equation;
that is, for an initial linear system, we have

X (t) = Fx(t) + Gu(t) + 9, y(t) = Hx (1), 11)
and for a nonlinear system,

X)) =@ (x(t),u(t),0)+4, y(t)=Hx(t), (12)
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FIGURE 4: Time diagrams for confidence coefficients of technical states of an attitude control system of a space launch vehicle for independent

observers.

where x is the n-dimensional state vector, u is the m-
dimensional output vector, y is the p-dimensional output
vector, F is the n x n dynamics matrix, G is the input
n X m matrix, H is the output p x n matrix, ¢ is the
dynamics function, and © is the parameter vector. In this
case, the number of types N of single faults is equal to the
dimension » of the state vector of the diagnosed system.
The first type is simulated by an additional term in the first
dynamics equation for the first component of vector x and
the second type in the second equation for the corresponding
component of vector x, and so forth. Faults within the same
type are distinguished by the level of term 6.

In this case of diagnosis in the signal space, the state
vector x; of the observer O, (i = 0, N) is formed by adding
to the state vector x of the diagnosed system of the variable
d; simulating fault; that is, x; = [x"8]]. Taking into account
the assumption that variable J; is constant, the equation for
this variable takes the form

8. =o. (13)

1

As a result, in the presence of the ith fault, the matrices of
the diagnosed system take the forms

0
FO
G
Fi= 1 > Gl:[O'?O]’
0---0 0 (14)
0
H;=| Hy -+ |,
0

where in the dynamics matrix, the unity in the last column is
in the ith row. If the ith fault occurs in the diagnosed system
in the course of its operation, the estimate of this compound
vector is formed in the observer, as well as the estimate ; of
the value of variable §;.

Let us discuss the proposed method for obtaining an
estimate of the state vector of the system in each of the
observers. Further, consider two diagnostic algorithms with
the application of a bank of interacting observers. In so doing,
we use the decision making rule on the fault occurrence
described in the previous section. It will be shown later that in
the general case, the efficiency of the considered algorithms
is higher than that in the case of independent observers.

An important specific feature of the first algorithm is
that on each successive step of the calculation, each of the
observers is based on the estimate of state X(t) obtained as
a result of averaging of partial estimates of all the observers
determined at the previous step rather than the indepen-
dently formed partial estimate X;(¢) of the state vector. Here,
the current values of the confidence coeflicients serve as
weighting coefficients, where

x(t) = Z K% (t). (15)

The result of it is a nonlinear state feedback. Indeed, the
residual (estimation error) formed by an adequate observer
tends to zero, and the corresponding confidence coefficient
increases with the decrease of confidence coeflicients for
other technical states. Thus, in expression (15), the relative
weight of the estimate formed in an adequate observer
increases.

The second algorithm, though being similar to the previ-
ous one, differs from it, first of all, in the fact that the observers
are matched not with technical states but with the transitions
between them. In this case, it is assumed that the observer is
matched with the transition S; — §; if it is based on the state
estimate obtained under condition S; and was synthesized
based on the model of the system in state S;. In this case,
transitions of §; — §; type, that is, the transitions that do
not change the technical state, are also taken into account
among the analyzed transitions. As a result, the confidence
coefficients (denoted by K,-j) calculated in this algorithm
according to the rule from the previous section correspond to
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FIGURE 5: Time diagrams for alternating fault and confidence coefficients of technical states of the control system for (a) independent and (b)

interacting observers.

the transitions §; — S; between technical states, rather than
technical states themselves. This being so, at any step for each
technical state S;, we should form the conditional estimate

X j(t) following tf’le rule
x; (1) = Z K% (t). (16)

In order to make a decision according to rule (2), we need

to determine the confidence coeflicients K;, (i = 0, N) for the
technical

K, =) K. 17)

It is evident that the analysis of the behavior of the
diagnosed system used in the second algorithm is more
detailed, which is why we can expect this method to be more
efficient. In the general case, this is proved by the simulation
results given later.

Let us illustrate the described algorithms by a particular
example.

Example 3. Let us consider the linear system characterized by
the matrices

-0,0061 0,5122 -0,0579 0,029 0,0377
-0,5122 -0,1868 0,6803 -0,1417 -0,2028
F=1]-0,0579 -0,6803 -0,7645 0,7531 0,8508 |,

-0,29 -0,1417 -0,7531 -0,3258 -0,5974
-0,0377 -0,2028 -0,8508 -0,5974 -1,242

0,0452
0,2335
G=10,2779 |,
0,09742
0,1329

H = [0,0452 —0,2334 0,2779 -0,09743 -0,1329].
(18)

This system is a reduced model of an aircraft control loop
at an altitude obtained by linearization of the aircraft motion
equations in the neighborhood of the nominal trajectory. This
description covers the controlled object, the rudder control
servo drive, the altitude sensor, and the controller. For this
example, the problem of diagnosis in the signal space was
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FIGURE 6: Time diagrams for alternating fault and confidence coefficients of technical states of a torpedo for (a) independent and (b)

interacting observers.

simulated in Simulink. An intermittent fault 0 in the form of
a meander was simulated at the first integrator (first diagram
in Figures 5(a) and 5(b)). A sinusoidal signal with amplitude
of 0.5 was fed to the input of the system. Figure 5 shows
the time diagrams of the obtained confidence coefficients
for the cases of independent and interacting observers. It is
clear that in the case of independent observers (Figure 5(a)),
the diagnostic tools do not form the expected result, since
before the fault occurs, coefficient K, should take a stable
value close to unity, and coefficient K, a value close to zero.
After the fault, the coefficient K; tends to the value close
to unity, and K, to a value close to zero. When we use
interacting observers (Figure 5(b)) matched with technical
states, the time diagrams demonstrate an adequate operation
of the diagnostic tools. Thus, on the time interval before a
fault occurs, the confidence coefficient K|, for a serviceable
technical state after the transient process connected with the
initial estimation takes a value equal to unity. After the fault,
the corresponding confidence coefficient takes a stable value
close to unity.

6. Diagnosis in Parameter Space

In the case of diagnosis in the parameter space, the fault
is simulated as the deviation of the value of some system
parameter from the nominal value. Thus, for example, for the
linear system, it is simulated as the deviation of elements of
the system matrices from the nominal, where

X(t)=F(©+A0)x(t) +G(®+AO) u(t),
y(t)= H(©+A®)x (1), )
and for the nonlinear system,
X()=@x(t),u(t),0+A0),  y(t)=Hx(). (20)

In this case, the number of types N of single faults is equal
to the number of system parameters.

Let us use the algorithms considered in the previous
section in the diagnosis in the parameter space. Assume that
the parameter © is a diagnosed parameter. Let us divide



the interval of the parameter values into [ subintervals {®; +
©,,, | i = 1,1}. Let us match the observer based on the system
model for {®, | i = 1,1} with each of the subintervals. We
take into account that in this case, observers do not form
the estimate of the fault value directly; however, it can be

obtained according to the expression A = ®;. — @, , where

i* = arg minv;, O, is the nominal value of the parameter
1

O.

Let us analyze the efficiency of the diagnostic algorithms
using the following example.

nom

Example 4. Let us consider the model of a water torpedo
described by the nonlinear equation

J§+Ci¢p = -CyCssign (9), Y= (21)
where ] is the moment of inertia of the torpedo and ¢ is its
angle of rotation. For this example, the problem of diagnosis
of a single fault in the parameter space was simulated in
Simulink using two algorithms, for independent observers
and interacting observers matched with technical states. The
intermittent fault in the form of the sequence of deviations of
the parameter C, from the nominal value and returns to this
value (first diagrams in Figures 6(a) and 6(b)) was simulated.
The sinusoidal signal with an amplitude of 0.5 was fed to
the input of the system. The second algorithm demonstrated
the highest efficiency. Figure 6(b) shows the corresponding
results of simulation (the confidence coefficients K, and
K, for the serviceable and faulty technical states) of the
diagnostic problem. It can be seen that, unlike the case
of independent observers (Figure 6(a)), the diagnostic tools
form the values of the confidence coefficients adequate to
the real technical states. In order to quantitatively estimate
the degree of adequacy of the results in both cases, the
obtained realizations were used to calculate the probabilities
of erroneous diagnosis. In this case, time intervals on which
the system was faulty were analyzed. For these intervals, the
total duration of subintervals on which erroneous signal on
the serviceable state was formed (the confidence coefficient
for the serviceable state reached the defined threshold value
A = 0.9) was calculated. The resulting probability was
determined as the ratio of this quantity and the total duration
of the considered faulty intervals. Thus, for the method with
independent observers, we obtained P = 0.91, and for the
method with interacting observers, P = 0.2.

7. Conclusions

In this paper, we proposed the method of diagnosis of
dynamic systems based on the application of the bank of
fuzzy interacting state observers. We considered successively
three different models of fault: structural changes, faults in
the signal space, and faults in the parameter space. For these
models of fault, we considered various structures of diagnos-
tic tools different in the organization of the bank of the state
observers and decision making rules. The proposed method
was compared with the known method with independent
observers by simulation in Simulink. As a result, it was
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demonstrated that the proposed method makes it possible to
achieve higher quality of diagnosis.
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In the context of sustainable transportation systems, previous studies have either focused only on the transportation system or have
not used a methodology that enables the treatment of incomplete, vague, and qualitative information associated with the available
data. This study proposes a system of systems (SOS) and a fuzzy logic modeling approach. The SOS includes the Transportation,
Activity, and Environment systems. The fuzzy logic modeling approach enables the treatment of the vagueness associated with
some of the relevant data. Performance Indices (PIs) are computed for each system using a number of performance measures. The
PIs illustrate the aggregated performance of each system as well as the interactions among them. The proposed methodology also
enables the estimation of a Composite Sustainability Index to summarize the aggregated performance of the overall SOS. Existing
data was used to analyze sustainability in the entire United States. The results showed that the Transportation and Activity systems
follow a positive trend, with similar periods of growth and contractions; in contrast, the environmental system follows a reverse
pattern. The results are intuitive and are associated with a series of historic events, such as depressions in the economy as well as

policy changes and regulations.

1. Introduction

LI Background. With the rapid increase in economic devel-
opment throughout the world, there is stress on the resources
used to support global economy, including petroleum, coal,
silver, and water. Currently, the world is consuming energy at
an unprecedented rate never seen before. Based on data from
2005, about 30.6 billion barrels of petroleum are used annu-
ally worldwide [1]. The estimates indicate that the availability
of total world reserves is in the vicinity of 1.3 trillion barrels
and will be depleted by 2047 [2]. The finite nature of such
nonrenewable natural resources as petroleum and coal puts
pressure on the environmental system and ultimately reduces
the availability of resources for future generations. Hence, it
is critical to develop planning and operational strategies that
seek to achieve a sustainable use of existing natural resources.

The development of a sustainable system and its corre-
sponding planning strategies requires an adequate definition

of sustainability as well as mechanisms to quantify, qualify,
and assess sustainability. The quantification of sustainability
poses considerable challenges, ranging from data availability
to adequate methods to process information. Numerous
studies have established different measures to quantify sus-
tainability [3]. According to Bell and Morse [4], sustainability
primarily is measured by means of three components: (i) time
scale, (ii) spatial scale, and (iii) system quality. The time and
spatial scale corresponds to the analysis period and the geo-
graphical region of interest, respectively. On the other hand,
system quality corresponds to the quantification of the overall
system performance or state. In order to quantify system
quality, Sustainability Indicators (SIs) have been developed
in a diverse range of fields, including biology and the life
sciences, hydrology, and transportation. Harger and Meyer
[5] argued that SIs should be simple, diverse, sensitive, timely,
quantifiable, and accessible. Bossel [6] proposed a system-
based approach for developing 21 SIs for environmental



characteristics. The approach suggested that a system cannot
exist independently, and several external factors can intrude
on its boundaries. Some studies argue about the various
dimensions associated with sustainability considerations [7,
8].

It is clear that a truly sustainable state for a system
requires all the relevant interdependent subsystems/sectors
and components, at levels so that the consumption of and the
impact on the natural and economic resources do not deplete
or destroy those resources. Hence, the assessment of a system
state requires a holistic analysis in order to consider all the rel-
evant sectors and impacts. However, existing approaches used
to study the sustainability of a transportation system are not
comprehensive enough to include key interactions with other
systems such as the environment, the economy, and society in
general. For example, the current planning of transportation
systems is limited in terms of the number, accuracy, length,
and approaches used to consider simultaneously important
characteristics, including energy consumption, emissions,
accidents, congestion, reliability, economic growth, and such
social impacts as human health. That is, the existing practices
only consider some effects, the estimations are approximate
[9], and the analysis period is relatively short, in the order of
30 years [10]. In addition, these effects are synthetized only on
the basis of approximated monetary considerations that are
unlikely to capture the full extent of the effects, for instance,
the financial cost of emissions or greenhouse gases [11,12]. For
example, Zheng et al. [3] described various system indicators
by primarily considering economic aspects. Although the
study provided valuable insights about the quantification of
the economic domain of transportation sustainability, it is
primarily focused on the transportation sector.

Among several studies that focused on different sectors,
impacts, and aspects of sustainability, the following key
characteristics have emerged as fundamental for a sustainable
system:

(i) continuity through time [13, 14];

(ii) development of the needs of current generations
without compromising the needs of future genera-
tions [15];

(iii) utilization of resources without compromising their
health and productivity [16];

(iv) development that improves quality of life [17]; and

(v) assimilation of economic, ecological, social, and bio-
physical components of resource ecosystems [18, 19].

In terms of the methodologies available to estimate
SIs, numerous studies have proposed different approaches.
For example, Multi-criteria Decision Making (MCDM) and
Analytical Hierarchy Process (AHP) techniques have been
proposed to consider multiple criteria and estimate relevant
SIs [20-26]. The MCDM approach selects or ranks different
predetermined alternatives and is based on making discrete
decisions [23]. Traditional MCDM techniques assume that
the criteria are well-defined, certain (deterministic rather
than stochastic), and independent. In reality, the criteria
usually involve stochasticity and interdependence. In addi-
tion, some aspects in MCDM models are subjective in
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nature. The weights used in MCDM always include some
uncertainty. The basic idea behind the AHP is to convert
subjective assessments of relative importance to a set of
overall weights or scores. The scale suggested by Saaty [27]
is used to compute the weights, using linear algebra. These
weights are the elements in the eigenvector associated with
the maximum value of the matrix. The eigenvalue-based
method has been criticized by researchers on the grounds of
lack of prioritization and consistency [28]. In addition, there
isanissue of rank reversal possibly arising when a new criteria
is added. Due to the above reasons, the theoretical foundation
of a rigid scale used in the methods is also questionable
[29]. There have been attempts to address some of these
limitations. The computation of the weights in MCDM and
AHP requires significant amounts of data and a priori or
expert knowledge of the system under study. Furthermore,
different regions may require different weights to capture
local conditions.

Given the complexities, interdependencies, nonlineari-
ties, vagueness, and incomplete information associated with
the various factors that are generally involved when consider-
ing the sustainability of a system, some studies have adopted
concepts from fuzzy set theory for the development of Sls
[30-32]. Awasthi et al. [33] applied a fuzzy Technique for
Order Preference by Similarity to Ideal Situation approach,
to evaluate the sustainability of transportation systems using
partial or incomplete information. Opricovic and Tzeng [34]
used a fuzzy multi-criteria model to evaluate post-earthquake
land use planning. The modeling approach was developed
to deal with qualitative or incomplete information. Mendoza
and Prabhu [35] applied fuzzy logic for assessing criteria and
indicators for sustainable forest management. In addition,
linear aggregation techniques were used to combine multiple
indicators. Liu [36] tried to integrate MCDM and fuzzy
logic techniques to evaluate environmental sustainability. The
environmental sustainability of 146 countries was calculated,
ranked, and clustered. The study was extensive in dealing
with multiple variables and indicators. However, only the
environment aspects of sustainability were evaluated without
considering any other SIs related to the transportation or
activity system. Similarly, Prato [37] discussed a fuzzy logic
approach for evaluating ecosystem sustainability. Data needs
as well as the lack of technical expertise were important issues
in this study. Marks et al. [38] used fuzzy logic techniques
to develop a theoretical framework for the evaluation of
sustainable agriculture. The study argued about the advan-
tages of fuzzy logic over conventional MCDM techniques. An
important characteristic in these studies is their limited scope
in terms of the system(s) considered in the analysis.

1.2. Motivation. Itis clear that sustainability analysis of trans-
portation systems requires a broad perspective including
various systems, such as the economic, and the political,
social, and environmental systems. This perspective enables
the consideration of such relevant aspects as biodiversity,
human health, quality of life, and life expectancy. Such anal-
ysis requires significant amounts of data as well as methods
to develop adequate SIs. Although not all data that one may
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want to use is available, there is a vast amount of relevant
information that can be obtained from such organizations as
The World Bank, the United Nations, the Bureau of Trans-
portation Statistics, and the U. S. Environmental Protection
Agency.

Although fuzzy logic has been used in the context of
sustainability to handle key characteristics of the relevant
data, its use has not been coupled with a broad perspective
considering multiple systems. To consider, explicitly, impor-
tant broad effects and the characteristics of the associated
data, this study proposes a system of systems (SOS) [39]
and a fuzzy logic modeling approach. The SOS includes
the Transportation, Activity, and Environment systems. The
fuzzy logic modeling approach enables the treatment of
the vagueness associated with some of the relevant data.
Performance Indices (PIs) are computed for each system
using a number of performance measures. The PIs illustrate
the aggregated performance of each system as well as the
interactions among them. The proposed methodology also
enables the estimation of a Composite Sustainability Index to
summarize the aggregated performance of the overall SOS.

The Pls are calculated with an emphasis on transportation
systems, while explicitly considering and calculating the PIs
for the other two relevant and affected systems. The Pls are
calculated based on multiple performance measures with var-
ious degrees of resolution and units. These multi-resolution,
multi-unit characteristics are intrinsic to the systems under
consideration.

The paper is organized as follows. Section 2 describes
three interdependent systems: the Transportation, Activity,
and Environmental systems. Section 3 summarizes the fuzzy
logic methodology used in this study. Section 4 provides
information about the study region and data. Results and
analysis are presented in Section 5. Some policy perspectives
are illustrated in Section 6. Section 7 provides conclusions
and recommendations for future work.

2. Interdependent Systems

In the context of sustainability, it is difficult to isolate systems
or narrow the analysis to a particular region. Different
systems such as Transportation have interdependencies with
other systems including the economy and the environment.
For example, energy resources, which are part of the environ-
mental system, are required by both the transportation sector
and the economy. Hence, any policy or strategy affecting the
consumption or production of energy has effects at least on
the transportation, the economy, and the environment. This
research explicitly considers and defines three major inter-
dependent systems, the transportation system, the activity
system, and the environmental system.

2.1. The Transportation System. The transportation system
includes all the infrastructure facilities, vehicles, operators,
and control strategies used to provide transportation ser-
vices to people and to move products. Thus, the overall
transportation system includes all modes of transportation,
including highways, transit, and fluvial and air modes.

Existing literature uses a number of measures to describe
or assess transportation system performance. Lomax et al.
[40] identified several measures of congestion, such as travel
time, total segment delay, corridor mobility index, delay ratio,
and relative delay rate. The Roadway Congestion Index uses
volume and capacity to provide a measure of congestion
[41]. A Roadway Congestion Index exceeding 1.0 denotes
an average congestion level that is undesirable during the
peak period. Black [42] uses principal component analysis
to examine the relationships among multiple performance
measures, including Vehicle Miles Traveled (VMT), travel
time, mobility, crashes, fuel consumption, and emissions.
The results indicate that VMT is the single most important
factor in the context of sustainability. High VMT values do
not necessarily mean high congestion; therefore, similar to
the Roadway Congestion Index, VMT needs to be used in
conjunction with the corresponding capacity. Thus, VMT per
lane mile is a desirable performance measure. In addition,
transit passenger miles and the number of intersections per
capita can be important performance measures depending
on the geographic location. Thus, both the demand and
supply side should be taken into account for the selection of
performance measure.

The Transportation Service Index (TSI) is a performance
measure that seeks to quantify the movement of passenger
and freight by the for-hire transportation sector [43]. This
index, which is reported every month, can be used in
conjunction with economic indicators to analyze the relation-
ships between the economy and the transportation sector.
Another interesting performance measure is the amount of
personal money spent on transportation; this includes motor
vehicles and parts, gasoline, and such transportation services
as transit. The public investment on infrastructure is another
important performance measure. Depending on the available
data, some or all of the above performance measures can
be used to develop the Transportation System PI (TSPI).
The proposed modeling framework is modular and very
flexible to enable the seamlessly incorporation of additional
performance measures.

2.2. The Activity System. Previous studies have described
the activity system as the combination of social, economic,
political, and other transactions taking place over time and
space [44, 45]. These transactions create and determine
the demand for transportation. For example, changes in
such economic policies as gas taxes or VMT fees create
changes in the demand for transportation. In this research,
the activity system consists of the social, cultural, health-
related, and economic/financial aspects. A commonly used
indicator for the socio-economic development of any country
is its Gross Domestic Product. However, the United Nations
Development Program (UNDP) [46] recommends using the
Human Development Index because it incorporates all the
basic and necessary dimensions for economic prosperity. This
index measures the average achievements in a country by
considering (i) a long and healthy life, or life expectancy;
(ii) access to knowledge, or the education index; and (iii)
a generous standard of living, measured by gross national



income per capita. Life expectancy is the average number of
years a child is expected to live, assuming that the mortality
rate will remain constant [46]. The Education index includes
the average number of years of education received in a
lifetime and the expected number of years a child will
attend school, assuming constant enrollment rates. The gross
national income combines the gross domestic product of a
country with its income received from other countries, less
similar payments made to other countries. Some of these
indices or indicators are used in this study to develop the
Activity System PI (ASPI).

2.3. The Environmental System. The environmental system
includes the air, water, soil, and all other natural resources as
well as all living organisms that are affected and/or used by
the transportation and activity systems. In the United States,
data from the Federal Highway Administration and the
Environmental Protection Agency suggests that emissions
from the transportation system has been reduced drastically
over the last 30 years, despite substantial gains in VMT, gross
domestic product, population, and employment [47]. This
has been attributed to the introduction of the Clean Air Act
in 1973 and the emergence of fuel-efficient vehicles. However,
such other sectors as industrial and chemical have generated
increased carbon dioxide emissions over the years, thereby
affecting climate change.

The Environmental Sustainability Index (ESI) was created
by the end of the 1990s by Yale and Columbia Univer-
sities [48]. This index, which is a single indicator that
provides insight into human health and the environment,
was promoted by the World Economic Forum. This index
currently is considered the most powerful tool available
to measure environmental sustainability. The ESI uses 76
variables, including air pollution, emissions related to human
health, environmental factors, water pollution, and resource
minimization. In addition, it incorporates response factors
relating to international agreements, such as the preservation
of extinct species, limitations to the use of natural resources,
limitations to the release of pollutants, and biodiversity
conservation.

In 2006, the ESI became the Environmental Performance
Index (EPI). Since then, the EPI has been published every
two years. The primary constituents of the EPI are environ-
mental health and ecosystem vitality. Policy weights used
to calculate the EPI are approximate percentages that can
be summarized as follows: environmental burden of disease,
25%; climate change, 25%; air pollution, 17%; water pollution,
17%; biodiversity and habitat, 4%; forestry, 4%; fisheries, 4%;
and agriculture, 4%.

3. Methodology

This section provides a detailed framework of the modeling
approach used in this study.

The concept of Fuzzy Logic was introduced by Lotfi
Zadeh in 1965. It is a way of processing data by allowing
partial set membership rather than crisp set membership or
non-membership [49, 50]. Fuzzy logic provides a simple and
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efficient way to arrive at a definite conclusion based upon
vague, ambiguous, imprecise, noisy, or missing input infor-
mation. In the current study, multiple performance measures
are combined and corresponding PIs are computed using
fuzzy logic for the Transportation, Activity, and Environmen-
tal Systems. The PIs are calculated independently for each of
the three systems. Their interdependencies are inherent in
the data and are illustrated later in the results and discussion
section. Considering a vector of performance measures X for
system J as the inputs, the following three steps are used to
calculate the corresponding PI: (1) an inference step (2), an
aggregation step, and (3) a defuzzification step.

3.1. Inference Step. The inference step uses “if-then” rules
and associated membership functions to develop and capture
logical relationships between the different performance mea-
sures (inputs) and the PI (output).

3.1.1. If-then Rules. “If-then” rules are logical statements
developed based on observation and expert knowledge of the
system. The “if” part, left-hand side (LHS) or antecedent, is
used with the inputs. The “then” part, the right-hand side
(RHS) or consequent, is related to the output. An example of
an “If-then” rule is as follows.

If [the VMT per lane mile is High and the TSI is Medium
and the personal spending on transportation is Low], then
[the TSPI is High].

As illustrated in this rule, in order to build the logical
relationships between inputs and output, both the LHS and
RHS are related to three fuzzy sets, High (H), Medium
(M), and Low (L). Table1 shows the set of “if-then” rules
used in this study to calculate the TSPL. Here, three per-
formance measures are used, namely. (i) the VMT per lane
mile (v), (ii) the TSI and (iii) the personal spending on
transportation (ps) per year. If required, and if the relevant
data is available, additional performance measures can be
used; the corresponding rules are added to the table. Similar
rules have been developed for each of the PIs in order to
cover all possible relationships between the chosen system
performance measures and the corresponding PI. Thus, the
Transportation and Activity Systems each have three inputs
and 27 rules while the environmental system has four inputs
and 81 rules.

3.1.2. Membership Functions. The quantitative estimation of a
PI requires knowledge about the interdependencies between
the system performance measures and the corresponding PI.
Considering the complexity of the Transportation, Activity,
and Environmental Systems, this required knowledge is
limited, vague, and sometimes ambiguous. Fuzzy logic pro-
vides a mathematical construct to combine all the available
knowledge and develop meaningful PI estimates. The “if-
then” rules are used in conjunction with sets of membership
functions to relate the performance measures to the PIs, based
on the available knowledge and data. Membership functions
are used to define the grade or degree associated with every
input and output. In this study, three membership functions
are associated with each input and output, as illustrated in
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Figure 1. Triangular membership functions are used in this
study because they are easy to define; only three parameters
are required: a modal point, the upper width, and the lower
width. In addition, due to their conceptual and computation
simplicity, triangular fuzzy numbers are commonly used
in practical applications [30, 51, 52]. The domain for the
membership functions corresponding to the LHS is defined
based on the absolute value of the associated performance
measures; the domains for the PIs corresponding to the
RHS are normalized so as to use a simple [0,1] range.
Figure 1shows the membership functions for the calculation
of the TSPI. Similar functions are defined for the other two
PIs.

Once the “if-then” rules and the membership functions
are defined, the Mamdani max-min composition operator
and the Mamdani min implication operator are used for the
fuzzy inference step [50]. For example, the three inputs for
the calculation of TSPL, v, TSI, and ps are matched against
the membership functions by using the “if-then” rules to
determine the degree of activation. The degree at which each
rule « is activated (8%) is obtained by using v, TSI, and ps as
well as the max-min operator, as shown by (1)

8% = max min (Mu“ (2), prsr” (Z),[/lps“ (Z)), 6))

where Z represents the universe of domains of the fuzzy sets
v, TSI, and ps; and p is a membership function. Equation (2)
represents the membership functions of the fuzzy outcomes
for the TSPI obtained, using the min implication operator

Hrgpret = Min (8% phrgpre) . (2)

3.2. Aggregation Step. The Aggregation Step represents the
aggregation of all the fuzzy output sets obtained after match-
ing all the inputs to the membership functions by using all the
“if-then” rules. A total of R rules for the calculation of TSPI
are defined. The aggregation step is given by (3):

R
Ursprs = Z Hpgpre - 3)
a=1

3.3. Defuzzification Step. The output from the Aggregation
Step combines all the available information by using all the
defined rules. However, this output needs to be defuzzified to
obtain a single crisp value for the corresponding PI, in this
case, TSPI. The Center of Gravity method [50], illustrated in
(4), is used for the Defuzzification Step:

Z§=1 0" -s (“TSPI‘** )
25:1 S (P‘TSPI“* )

TSPI = , (4)

where 8" is the centroid of the fuzzy set for the TSPI, given
by the RHS of rule «; and S(-) calculates the area of the
membership function for a fuzzy set.

4. Study Region and Data

Sustainability considerations make it difficult to isolate sys-
tems and narrow the analysis to a particular transportation
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system or region. It is clear that impacts on the Environmental
System, the Activity System, and even the Transportation
System extend across regions and boundaries. In addition, the
level of resolution of the available data may limit localized
analyses. Hence, to illustrate the proposed method, without
loss of generality, the United States is used as the study
area. Similar analyses can be conducted for other regions
and, ideally, the entire globe. In this case, the analysis was
conducted for a period of 20 years between 1990 and 2010.

The three performance measures used in the examples
in Section 3 for the estimation of the TSPI in this study
were obtained from the Bureau of Transportation Statistics
[43]. The ASPI includes the following performance measures
provided by the United Nations [46]:

(i) Gross national income (gni);
(ii) The Education Index (ei);
(iii) Life expectancy (le).

The Environmental System Performance Index (ESPI) is
based on the following performance measures:

(i) Carbon dioxide emissions (ce) [53];
(ii) Air pollutants (ap) [54];
(iii) Water pollutants (wp) [55];
(iv) Energy consumption (ec) [56].

5. Results and Discussion

Figure 2 shows the normalized performance measures and
performance index for the Transportation System. The his-
toric trend for the VMT per lane mile (in thousands) covers
a period from 1990 to 2008. It is clear that the trend is
increasing except between 1990 and 1991. This could be
attributed to the recession during each of those time periods
[57, 58]. During 2005-2006, the VMT started decreasing
probably as a consequence of the rising oil prices [59]. The
trend for the TSI covers from 1990 to 2010. The base year
for TSI = 100 is taken as the year 2000. The figure shows
the decrease in TSI between the years 2000 and 2002, when
the terrorist attack on September 11 occurred. In 2001, there
was less freight and passenger travel. Between years 2008
and 2010, the financial crisis resulted in a severe recession
with consequences on TSI, as illustrated in Figure 2. Personal
spending on transportation is included during 1995-2010. It is
evident that spending increases from 1995-2005 as a result of
economic development. However, in 2006, spending started
decreasing as a result of a rise in gas prices, which hit $4 a
gallon. Later, the financial crisis during 2007-2010 resulted in
decreased spending for transportation-related activities.
Figure 2 also shows the historic trend of the Transporta-
tion System performance index from 1990 to 2009. The crisp
value in the y-axis is obtained by using the fuzzy approach
discussed in earlier sections. Here, the closer the TSPI to 1,
the better the performance of the Transportation System; if
its value is close to 0, then performance is poor. The crisp
values can only be used as a relative measure to compare
between alternatives and scenarios. It cannot be used to assess
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FIGURE 1: Membership functions for the calculation of the Transportation System Performance Index.

the absolute value of the sustainability of the system. It is
evident that TSPI has the best value between years 2005 and
2006, when the economy was booming, and the least value
between years 1990 and 1991. The curve for the TSPI follows
a pattern consistent with VMT/lane mile and TSI. That is, the
TSPI increases with the increase in VMT/lane mile and TSI.
According to Genier [59], rising oil prices during 2005-2006
has led to reduced VMT and promoted alternate modes of
transportation, such as transit and car-pooling, as well as the
use of more efficient vehicles.

Figure 3 shows the normalized performance measures
and performance index for the Activity System. The trend
of the average annual income in Gross National Income per
capita is provided from 1990 to 2010. The trend increased,
with a high growth rate until 1999. The rate started decreasing
in 2000 following the technology bust, also known as the Dot-
Com Bubble, and later in 2006, following the housing crisis.

It is noted that the rate of growth in income is less in the past
decade as compared to earlier decades.

The trend of the average annual education index is
provided from 1990 to 2010. This index started increasing
from 1990 to 2000, the primary reason being the invention
of new technologies and innovations that kept the United
States in the forefront of education. In addition, a new wave
of technological revolution was seen in the form of startups.
Also, science, engineering, and medical disciplines saw a new
era of growth and development. The reason for a slight decline
in the education index between 2000 and 2004 is not clear yet.
The trend of the average annual life expectancy is provided
from 1990 to 2010. The average life expectancy has increased
from 74 years in 1990 to 80 years in 2010. This increase can
be attributed to the technological advancement in medical
facilities and billions of dollars spent on research and the
development of new and effective drugs.
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Figure 3 also shows the trend for the Activity System’s
performance index from 1990 to 2010. This index started
increasing from year 1990 until the year 2000 as a result of
economic development. Starting with the technology bust
in 2000 and terrorist attacks in 2001, the economic activity
started to decrease and did not recover until the end of
the year in 2003. Since 2003, the Activity System started an
upward trend before hitting a peak in 2007. The financial
crisis from 2007 to 2009 resulted in a dramatic decrease
in economic activity, often compared as equivalent to the
Great Depression of 1930s. The year 2009 marks the period
of “official recovery” from the recession.

Figure 4 shows the normalized performance measures
and performance index for the Environmental System. The
trend of carbon dioxide emissions is provided from years 1990
to 2008. This is an increasing trend except during 1990-1991,
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a time of global political unrest and high inflation; 2000-
2002, due to the technology bust and September 11 attacks;
2005-2006, due to high gas prices; and 2007-2008, with the
financial crisis. The trend of air pollutants is provided from
1990 to 2008. With the introduction of the Clean Air Act in
1973, there has been a dramatic reduction in air pollution. In
addition, the introduction of innovative technologies, such as
hybrid and battery powered vehicles, have led to reduced air
pollution over the years.

The trend for water pollutants is provided from 1997 to
2005. This trend decreases with time as a result of innovative
and efficient waste management techniques. The trend for
the average annual energy consumption in quadrillion British
Thermal Units is provided from 1990 to 2008. This trend
indicates that energy consumption decreased during the
financial crisis of 1990-1991. After 1991, energy consumption
started an upward trend and finally peaked in 2007. However,
there were short periods of decline in energy consumption
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both in 2001, attributed to the September 11 terrorist attacks,
and 2006, due to high oil prices. The terrorist attack resulted
in decreased travel and less economic activity, while the
exorbitant high oil prices promoted the use of new battery-
powered and hybrid vehicle technologies.

Figure 4 also shows the trend of the Environmental
System’s performance index from 1990 to 2008. If the value for
ESPI is close to 1, then the environmental system is excellent;
if its value is close to 0, then the system quality is very poor.
The best value for ESPI occurred during 1990-1995, when
economic development was slow as a result of global political
unrest and the first gulf war. Since 2000, the quality started
to improve, probably as a consequence of multiple periods
of economic contractions. Again, the year 2007 marked the
beginning of a slight uptrend in the index as a result of a
global financial crisis. In general, the environment improves
during periods when economic activity is down and/or oil
prices are high. In addition, the curve for the ESPI follows a
pattern consistent with carbon-dioxide emissions and energy
consumption. That is, the ESPI decreases with the increase in
carbon-dioxide emissions and energy consumption.

Figure 5 shows the three performance indices from 1990
t0 2009. In this figure the Transportation and Activity Systems
follow an increasing trend over the years, with similar periods
of growth and contractions; on the other hand, the Environ-
mental System follows a reverse pattern. These trends seem
intuitive, as growth in the economy and the transportation
sectors are expected to happen simultaneously; this growth
requires resources from the environment, thereby increasing
emissions and energy consumption.

Figure 5 also illustrates a Composite Sustainability Index
(CSI), an index used to access the overall sustainability of the
SOS used this research. It is calculated using the proposed
fuzzy logic approach and the performance index for the
Transportation, Activity, and Environmental Systems. The
CSI shows an overall increasing trend from year 1990 to
1995. However, considering the overall negative slope and
corresponding decrease on the ESPI, the CSI does not con-
tinue increasing after 1995 presenting some negative periods
and increases only when there is a significant improvement

on the ESPI. Based on these observations and the chosen
performance measures, negative impacts to the environment
seem to be associated with negative consequences on the
overall sustainability of the SOS. In general, under the
proposed framework, a system is sustainable if the slope of
the corresponding PI curve presents a nonnegative slope.
Similarly, the overall SOS is sustainable if the slope of the
CSI is nonnegative. The axioms presented in this paper
are an attempt to summarize our observations based on
chosen performance measures. There is a vast literature with
similar observations. For example, Young et al. [60] as well
as Lahiri and Yao [61] have observed that the transportation
and activity system follows a lead-lag phase pattern and
environment system is inversely related to the other two. The
following axioms can be postulated to assess the sustainability
or the unsustainability of our SOS.

(1) The SOS is sustainable when the overall slopes for the
TSPI, ASPL, and ESPI have a positive trend. This is an
ideal scenario with positive growth in all systems, and
implies that there is no need of nonrenewable natural
resources to sustain growth in the transportation and
the economy.

(2) The SOS is unsustainable when the slopes of TSPI and
ASPI have a positive trend but the slope of ESPI has
a negative trend. This is the scenario that we have
been observing in the USA. In general, the SOS is
unsustainable when the overall trend of at least one
of the three slopes is negative.

(3) The SOS is sustainable when the overall slopes for
the TSPI, ASPI, and ESPI have a nonnegative trend.
This scenario is sustainable because all the trans-
portation and other social activities can continue in
perpetuity without degradation of the environmental
system. Although this is a scenario preferred over an
unsustainable situation, it may represent an unstable
equilibrium that can easily become unsustainable.
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6. Policy Perspectives

This section discusses some policy options for the sustain-
ability of the SOS studied in this research. Some of these
options have been implemented in the past revealing some of
their effects. Other options are currently under consideration
by multiple stakeholders. Figure 6 illustrates five policy
options that can be used to improve performance and
support the sustainability of the SOS considered here. The
dashed boxes correspond to the three major systems, the
grey boxes represent the performance measures within
each system, and the suggested policies are depicted by
rectangular boxes. These policies have direct and indirect
effects on some performance measures and systems. Only
the direct effects of the proposed policies are shown through
the arrows in Figure 6. Conclusion regarding indirect effects
will be immature at this point; hence are not discussed here.
Each policy is described as follows.

Use of Nonmotorized and Alternate Modes of Transportation.
This policy consists of the promotion of non-motorized
modes of transportation, such as bicycles, and the use of
alternatives for driving alone, such as transit and carpooling.
The success of this policy depends on multiple factors,
including land use. It may require the establishment of
commuter-friendly and transit-friendly development near
the central business district. In addition, changes in travel
and demand patterns depend on the users’ preferences and
attitudes as well as convenience. Expected consequences of
implementing this policy, among others, include reductions
on (i) VMT [62, 63], (ii) air pollution, (iii) carbon dioxide
emissions, (iv) energy consumption, (v) health issues, and
(vi) out-of-pocket cost. The money and resources saved can
be used to improve such sectors as education and research
with further impacts on the gross domestic product.

Usage Based Pricing. Currently, the implementation of a
VMT fee is being considered as a viable alternative to replace
the current fuel tax for collecting the required resources for
highway maintenance [64]. This policy also can promote
the reduction of VMT, along with all the other associated
consequences. However, this policy faces a number of
deployment as well as acceptance issues.

Technology Adaptation. 'The rapid industrialization and
technological revolution has resulted in reduced emissions
over the years. For example, the use of efficient boilers in
coal-fired plants will help reduce carbon dioxide emissions,
pollution, and energy consumption [65, 66]. Health related
issues will be reduced as a consequence of less pollution.

Use of Alternative Fuels Such As Compressed Natural Gas
(CNG). The use of alternative fuels in the form of CNG will
reduce carbon-dioxide emissions and pollution [67, 68].
This will lead to a green and cleaner environment [69]
with all the associated benefits to health, the economy,
and the quality of life. In the United States, the reserves of
natural gas are larger than those of petroleum [70]. Hence,
this policy seems plausible from an environmental and
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economic perspective. The only drawbacks are the time and
cost associated with retrofitting vehicles and the supply chain.

Innovative Vehicle Technologies. Replacement of conven-
tionally powered vehicles with hybrid and electric vehicles
will reduce carbon-dioxide emissions and nonrenewable fuel
consumption [71]. Automakers are particularly interested
in this policy [72]. In addition, the federal government
provides tax incentives to develop and manufacture lithium
ion batteries in the United States.

Ideally, each of these policies is evaluated before deploy-
ment and adoption. Some of them are currently under
analysis by multiple agencies and sectors. The proposed
framework in this study is descriptive rather than normative.
Hence, it can only be used to appreciate the effectiveness and
benefits of past policies. Currently, the proposed framework
is been extended to enable a normative analysis in order to
evaluate potential policy alternatives such as those described
earlier.

7. Conclusions

Previous studies about sustainable transportation have either
focused only on the transportation system, or have not used a
methodology that enables the treatment of incomplete, vague,
and qualitative information present in the problem context.
This study adopted a holistic approach to compute Perfor-
mance Indices for a SOS including the Transportation, Activ-
ity, and Environmental systems. The Performance Indices are
synthetized to calculate a Composite Sustainability Index to
evaluate the sustainability of the overall SOS. Considering the
complexity, vagueness, nonlinearity, qualitative, and incom-
plete information characterizing the quantification of the
Performance and Composite Sustainability Indices, a fuzzy
logic approach was used to calculate these indices. Historic
events and policy changes indicated that fuzzy logic provided
an adequate approach to estimate both the Performance
Indices and the Composite Sustainability Index.

Results of the analysis for the US showed that the
Transportation and Activity Systems both follow a positive
trend over the years, with similar periods of growth and
contractions. In contrast, the environmental system follows a
reverse pattern. This seems intuitive, as periods of economic
and transportation growth is expected to have a negative
effect on the environment, leading to increased emissions
and energy consumption. In general, the performance of the
environmental system has decreased significantly over time.
Policies adopted to protect the system have shown positive
effects. However, the current performance of the Environ-
mental System is questionable, and long-term policies need
to be developed.

The conclusions provided here are based on the results
obtained using a limited number of performance measures.
Adding or removing performance measures are expected
to change the results and conclusions. In general, following
a holistic approach, it is expected that the more relevant
performance measures are used, the more comprehensive
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and accurate the analysis is. Planning and operational poli-
cies for the sustainability of the Transportation, Activity,
and Environmental systems can be developed using the
proposed approach. Considering the current practice of
making planning decisions at the regional and jurisdictional
level, the framework used in this study is currently been
extended to enable the analysis of regional systems including
large metropolitan areas. A simulation-based approach has
been developed to estimate multiple performance measures
required to calculate adequate performance indices.
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Our aim in the present paper is to introduce and study new types of fuzzy retractions of fuzzy open flat Robertson-Walker W*
model. New types of the fuzzy deformation retracts of W* model are obtained. The relations between the fuzzy foldings and the
fuzzy deformation retracts of W* model are deduced. Types of fuzzy minimal retractions are also presented. New types of homotopy
maps are deduced. New types of conditional fuzzy folding are presented. Some commutative diagrams are obtained.

1. Introduction and Background

Robertson-Walker space represents one of the most intrigu-
ing and emblematic discoveries in the history of geometry.
Although if it were introduced for a purely geometrical pur-
pose, they came into prominence in many branches of math-
ematics and physics. This association with applied science
and geometry generated synergistic effect: applied science
gave relevance to Robertson-Walker space and Robertson-
Walker space allowed formalizing practical problems [1-6].
As is well known, the theory of retractions is always one
of interesting topics in Euclidian and Non-Euclidian spaces
and it has been investigated from the various viewpoints by
many branches of topology and differential geometry [7-11].
There are many diverse applications of certain phenomena
for which it is impossible to get relevant data. It may not be
possible to measure essential parameters of a process such
as the temperature inside molten glass or the homogeneity
of a mixture inside some tanks. The required measurement
scale may not exist at all, such as in the case of evaluation
of offensive smells, evaluating the taste of foods or medical
diagnoses by touching [7, 8, 12-18]. The aim of the present
paper is to describe the above phenomena geometrically,
specifically concerned with the study of the new types of fuzzy
retractions, fuzzy deformation retracts, and fuzzy folding
of fuzzy open flat Robertson-Walker W* model. A fuzzy
manifold is manifold which has a physical character. This

character is represented by the density function y, where
p€10,1][7, 8,12].

A fuzzy subset (A, u) of a fuzzy manifold (M, y) is called
a fuzzy retraction of (M, y) if there exist a continuous map 7 :
(M, u) — (A, p)suchthat? (a, u(a)) = (a, u(a)), forall ae
A, pel0,1]17,8,12].

A fuzzy subset (M, i) of a fuzzy manifold (M, p) is
called a fuzzy deformation retract if there exists a fuzzy
retraction 7 : (M, ) — (M, i) and a fuzzy homotopy F :
(M, u)x1 — (M,p) [7,13, 14] such that

F((ep).0) = (n0),
F((xu)1)=7(xp), ~ <M @

ﬁ((a,y), t) = (a,y), forall (a,u) € ﬂ, t eI, uel01]
where 7(x, p) is the retraction mentioned above.

Topological folding of fuzzy open flat Robertson-Walker
space W* model [7, 8]. A map % : W* > W is said to be
an isometric folding of W* model into itself if and only if for
any piecewise fuzzy geodesm pathy : J — W* the induced
path F oy : ] — W*isa piecewise fuzzy geodesic and of
the same length as y, where J = [0, 1]. If § does not preserve
lengths, then & is a topological folding of fuzzy Robertson-
Walker space W* model [12-14].

The fuzzy folding of | J M; < W* model is a folding f :
U M, — |J M, such that f(M) = M and any M, belong to



M ¢,

aj

FIGURE 1

the upper hypermanifolds 3 M j down M such that y; = U
for every corresponding points, that is, u(a;) = p(a;) [15]. See
Figure 1.

2. Main Results

Theorem 1. The fuzzy retractions of W* model are the fuzzy
unit hyperboloid, fuzzy hyperbolic, fuzzy hypersphere, fuzzy
circle, and fuzzy minimal manifolds.

Proof. Consider the W* model with metric

ds” () = dy* (u) + sinh’x ()

X (d92 (1) + sin®6 () do* (y)) , pelo1].

)
The coordinate of W* model is
%, = sinh y (1) sin 0 (4) cos 0 (1)
%, = sinh x (¢) sin 6 () sin 0 (u) , o

X3 = sinh x () cos 6 (u) ,
X, = cosh x (1),
where the ranges are 0 < y(¢) < 00,0 < 0(u) < m, and

0 <0(u) < 2m.
Now, we use Lagrangian equations:

d( or oT
d _ =0, i=1,234 (4
ds <aq/(y)i ) oy (u);

To find a fuzzy geodesic which is a fuzzy subset of W* model,
since

T == {§* () +sinh®y () (6% () + sin’6 () * () )},

©)

N =
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then the Lagrangian equations for W* model are

9 () - (sinh x (1) coshy ()

x (92 (1) + sin®6 (u) 0° (y))) =0,

p \ (6)
— (sinh (1) 0 (1))
— (sinh®x () sin 6 () cos 6 (u) 0 () = 0,
% (sin’x (g) sin”6 () 0 () = 0, )
= (X (u)) + (sinh x () cosh x (u) 67 ()
+sinh’x () 0 (1))

+ (sinh x (1) cosh y () sin®0 () 0* (1)  (8)
+ sinh®y (1) sin 0 () cos 0 () 0° (1)

+sinh’y (i) sin®6 () 0 (y)) =0.

From (7) we obtain sinh? X(y)sinzﬂ(y)ﬁ(y) = constant, say f3;,
if 8, =0, we obtain the following cases.

If initially 0 equal 77/6 or 1/4 and /3 hence we obtain the
following fuzzy geodesics of fuzzy unit hyperboloid H;, H;,
and ﬁ; , respectively. Also, if @ = /2, hence we obtain the
following coordinates of W* model given by

%, = sinh y (@) cos 0 (p),

X, = sinh x (¢) sin 0 (), o)

% =0,
X, = cosh x (1),

which is a fuzzy hyperbolic 7, %5 + %, + %5 + 56% = -1, which
is a fuzzy geodesic retraction. Now, If § = /6 ormr/4and /3
hence we get the fuzzy unit hyperboloid retractions H,, F z
and, H, in W* model, respectively. Also, in a special case
if @ = /2 or 7 and 371/2 hence we get the fuzzy hyperbolic
geodesics H, Hz, and H; in W* model, respectively. In a
special case if y = 7/2, hence we get the coordinates of W*
model represented by

X, =sin0 (u)cos0 (),
X, = sinf (u) sin 0 (u),
(10)
X; = cos 0 (u)

X, =0,

P R =2, =2 =2, =2 :
which is a fuzzy sphere Sj, —X; + X] + X; + X5 = —1, which
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is a fuzzy geodesic retraction. Also, If @ = 90, and y = 90
we obtain the fuzzy retraction, S' = (0, sin 0(u), cos O(w), 0),
which is a fuzzy circle S'. Again, If y = 7, we get the
following minimal fuzzy geodesic W° (0,0,0, 1) in W* model.

In what follows, we present some cases of fuzzy deforma-
tion retracts of W* model. The fuzzy deformation retract of
W*modelisn: W*xI — W*, where I is the closed interval
[0, 1], present as

7« fsinh y (1) sin (1) cos 0 (1)
sinh y (¢) sin 0 (p) sin 0 (p),
sinh x () <00 () cosh x (s)} x 1
o finhy (@) sin0 (@) cos0 (),
sinh y () sin 0 () sin 0 (),
sinh x (1) cos 0 (). cosh x (1)}
The fuzzy deformation retract of W* model into the fuzzy
minimal geodesic W is
7 (m,h) = (1 + h) {sinh y () sin O () cos @ (1),
sinh y (¢) sin 0 (¢) sin 0 (p),

sinh y (u) cos @ (u) , cosh x (u)} (12)

h
+tanﬂ7{0,0,0,1},

where

77 (m,0) = {sinh x (¢) sin 0 () cos 0 (u),
sinh y (@) sin 0 (@) sin @ () , sinh y () cos 6 (1),

cosh x ()},

7(m,1) = {0,0,0,1}.
(13)

The fuzzy deformation retract of W* model into the fuzzy
hyperboloid H; is

. mh .

7 (m, h) = cos > {sinh y () sin @ (u) cos 0 () ,

sinh y (@) sin 0 () sin 0 (),
sinh y (p) cos O (u),coshy ()} (14)

+sin %h {sinh y (4) cos @ (), sinh x (1)

xsin@ (u),0,cosh y (u)}.

Now, we are going to discuss the fuzzy folding & of W*
model. Let § : W* — W*, where

g(fp’zz”?p@) = (’71”?2>|373|r’?4)- (15)

An isometric fuzzy folding of W* model into itself may be
defined by

& : {sinh y () sin 0 (1) cos @ (), sinh x (1) sin O ()
xsin@ (u), sinh y (4) cos 0 () , cosh x ()}
— {sinh y (¢) sin 0 (p) cos 0 () , sinh y () sin 6 (1)

xsin @ (u) , |sinh y () cos 0 (u)], cosh y (u)} .
(16)

The fuzzy deformation retract of the fuzzy folded F(W*)
model into the fuzzy folded geodesic F(W?) is

g + {sinh y (¢) sin© (1) cos 0 () , sinh y (p) sin 6 ()
sin@ (), [sinh x () cos 0 ()|, cosh y ()} x I
— {sinh x () sin 6 () cos 0 () , sinh x () (17)
x sin 6 () sin 0 (), [sinh y (p) cos 6 ()|,
cosh x ()}

with
T (m,h) = (1 + h) {sinh x (¢) sin 6 (1) cos 0 (1) ,
sinh x () sin 0 () sin 0 () ,

[sinh y (4) cosB ()], cosh x ()}

h
+ tan HT {0,0,0,1}.
(18)

The fuzzy deformation retract of the fuzzy folded 5(6\74)
model into the fuzzy folded geodesic &(H7) is

fi (m, h) = cos %h {sinh y () sin @ (u) cos 0 () ,

sinh y (u) sin @ (p) sin 0 (p),

|sinh y (¢£) cos 6 ()], cosh x ()}
+ sin %h {sinh x () cos® (u),

sinh x (¢) sin@ (), 0, cosh x (u)}.
(19)

Then, the following theorem has been proved. O



Theorem 2. Under the defined fuzzy folding and any fuzzy
folding homeomorphic to this type of fuzzy folding, the fuzzy

deformation retract of the fuzzy folded F(W*) model into the
fuzzy folded geodesics is the same as the fuzzy deformation
retract of W* model into the fuzzy geodesics.

Proof. Now, let the fuzzy folding be defined by F* : W* —
W*, where

g* (%1, %, %3, X,) = (|551| EAESENP (20)
The isometric fuzzy folded %" (W*) model is
R = {Jsinh y () sin (1) cos 0 (u)],
sinh x () sin 0 () sin 0 () , (21)
sinh x () cos 6 (), cosh x (p)} .

The fuzzy deformation retract of the fuzzy folded &*(W*)
model into the fuzzy folded geodesic F*(S?) is

e (m,h) = (1 - h)
x {[sinh y (1) sin @ (1) cos 0 ()],

sinh y (4) sinf () sin0 (u),
sl (1) cos (1) cosh y (1)

+tan %h {|sin@ () cos 0 (u)|,

sin 6 () sin 0 (u), cos 0 (u) , 0}
(22)

The fuzzy deformation retract of the fuzzy folded &F*(W*)
model into the fuzzy folded geodesic &*(Hz) is

— h . .
fig- (m, h) = cos ﬂ? {|sinh y (@) sin 6 (i) cos @ (u)],

sinh y (p) sin 0 (u) sin @ (),
sinh x (¢) cos 0 (¢), cosh x (1)}

+sin %h {|sinh x () sin 6 (1], 0,

sinh y (¢) cos @ (i), cosh x (u)} .
(23)

Then, the following theorem has been proved. O

Theorem 3. Under the defined fuzzy folding and any fuzzy
folding homeomorphic to this type of fuzzy folding, the fuzzy

deformation retract of the fuzzy folded F* (W*) model into the
fuzzy folded geodesics is different from the fuzzy deformation

retract of W* model into the fuzzy geodesics.
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Theorem 4. Let H> ¢ W* be a fuzzy hyperboloid in W* model
which is homeomorphic to {D*~B} ¢ R?, and?, : H — H’a
fuzzy retraction. Then, there is an induced fuzzy retraction 7, :
{D* - B} — D' such that the following diagram is commutat-
ive:

~

e~ Py o
H> cw! D2y c R
~ 7
n (24)
P, N
~ ~ 1 3
HZ c W4 D' CR

Proof. Under the condition 6 = 7/2, then 7,: H> — H” is
defined as 7, {sinh y(y) sin0(y) cos O(y), sinh y(¢) sin O(y)

sin @(p), sinh y(¢) cosO(u), cosh y(p)}={sinh y(u) cos (u),
sinh x(u) sin @(u), 0, cosh x(u)} also under the condition 6 =

7/2, then 7, : (D> - Bl - D' is defined as 7, {{sin O(u)
cos O(p), sin O(p) sin @(u), cosO(u),0} — E} = {cos@(y),
sin @(u), 0,0}. Under the homeomorphism map P, : H®> ¢
W* - (D*-B} cR*and B, : H> c W* — D' c R’ This
proves that the diagram is commutative.

Also, the corresponding relations are described as that is,

Bebi=pefi (29
=

Theorem 5. Let H> ¢ W* be a fuzzy hyperboloid which is
homeomorphic to {D* - B} ¢ R®, andlim,, _, ., 7, : H® — H*
a limit fuzzy retraction. Then, there is an induced limit fuzzy
retraction lim,, _, . ,7,,, : {D° — B} — D" such that the
following diagram is commutative:

~

Py
3 c Wi (D*-pyck
limy, — o ?n limy+1—o0Prt1
2 c P2 bl cR
(26)
Proof. Sincelim, , ., 7,: H — H”andlim,,, ., 7., :

{D*-pB} — D', under thehomeomorphism map P, : H°
c W' - (D’-fB} ¢ RRandB,:H* ¢ W* — D' ¢
R®. This proves that the diagram is commutative. Also, the
corresponding relations are presented as

lim r,.,0p, = p,o lim r
i Tppr© P = Ppo M T,

(27)

lim oDy =pye lim 7,
n+1—>oor”Jrl h=p i 'n =
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Theorem 6. If the fuzzy deformation retract of the fuzzy
hyperboloid H> ¢ W*is D : H>xI — H?, the fuzzy retraction
of H* c W*is7: H — H?, and the limit of the fuzzy folding
of H is lim,, _,  f, : H — H? Then there are induced
fuzzy deformation retract, fuzzy retraction, and the limit of the
fuzzy foldings such that the following diagram is commutative.

Proof. Let the fuzzy deformation retractof H> ¢ W*beD, :
H> xI — Hthe fuzzy retraction of H? x Iis defined
byr: (H*x I) — H*xIlim, _ f,: D,H xI) —
H?, the fuzzy deformation retract of 7,(H> x 1) is D,
7(H?> x I) — H? the fuzzy retraction of lim,, _, ., f,, -
(D (H® x 1)) is glven by 75 limméoofm(ﬁ (H® x 1) —
H', and lim,,,; _, o fos1 : D(F(H> xI)) — H', H'isa
1-dimensional space. Hence, the following diagram is com-
mutative,

(F3 % 1) a2 x1 i
ﬁl J/ J/limmﬂ—oo]?mﬂ
o e —~ H2 — )agl
limy— oo fm n (28)
thatis, lim,,,,; e ey © Dy o 7, (> X I) = 7 o lim,,, , oo fi ©

D, 0

Theorem 7. Let H> ¢ W* be the fuzzy hyperboloid, then the
relation between the fuzzy folding f : H> — H° and the limit

of the fuzzy retractions lim,, _, . ,7,, : H — His discussed
from the following commutative dzagram.

Proof. Let the fuzzy foldingis f, : H® — H?, the limit of
the fuzzy retractions of H> and f,(H>) are lim,,HOO L H
— H? and limerl e 2 HHY) — H% and f, :

(lim,, _, 7,,(H)) — H. Then, the following diagram is
commutative:

H3 fl
B3
lirm— oo o LMy 1— oo Pt 1
H? "2
f2 (29)

that is, lim,,,; _ ooFmss © fL(H’) = fp o lim,, o 7,,(H?), and
the corresponding relations between the two chains of fuzzy
folding and the limit of fuzzy retraction are given by

5
lim r,,, f1 f2 ° hm T
m+1— 00
o (30)
erllm_}oo miof1=f °m1£noo”m- 0
Theorem 8. Let the fuzzy retraction of H> is ¥ : H® —

H?, H* c H, and the fuzzy folding of H® isf : H — H°,
then

(i) fooF(H) = 7, f(H)

(ii) 5n+1~ ° (limiaoo(fz;‘ ° in—l)g"'(ﬁ; ° 73(~JF2 °
71(H3))) ) = (lim; _, (7 © fzgl)("'(ﬂ ° f3(72 °
AE))) ) 6.

Proof. (i) Let the fuzzy retraction of the fuzzy hyperboloid in
H® ¢ W*modelbe7, : H — H% f, : H — H,
the fuzzy retraction of f,(H?) is folding of 7,(H") is f, :
71(ﬁ3) - 7, :fl(ﬁ3) — H?, and the fuzzyﬁz. 'Ihenf2 °
) =70 fL(H). B

(ii) Let fy; o Ty and 7; o f,;_, are the compositions
between the fuzzy retractions and the fuzzy foldings of H’
into itself. Also, 67 are the homeomorphisms. Then

Z o7 T lim(leo?z;l)
~ or ~ 1 i i
H3 f2 ! Hvl3 f40r3 H; HS! ] =5 FNIZ

I

BN e i)

}irg(rZiOfZi—l)
O

Theorem 9. Given the fuzzy deformation retract of H> ¢ W*
model is D : H> x I — H?; the limit of the fuzzy folding of
H? x ILislim,, o f,,: H xI — H* x L. Then, the following
diagram is commutative.

Proof. Let the limit of the fuzzy folding of (H® x I) is
lim,, , o fm : H>xI — H?xI, the fuzzy deformation retract
of H® ¢ W* onto H? is 51(H3 x I) = H?, the limit of the
fuzzy folding of D, (H>xI)islim,,,; _, o foues : D (H>XI) —

H', and the fuzzy deformation retract of lim,,, _, o, f,,,(H> x I)
onto H' is D,(lim,, _, ., f,,(H> x I)) = H'. Hence
limy -z fn -
B x1 o) H?x1I
ﬁl ﬁZ
A2 jag!
limy41-c0 fm+1
(32)
that is, Dyo lim,, _, o frs (H> X I) = lim,,,, | _, o finss © Dy (H> X
I) O



Theorem 10. The composition of fuzzy deformation retracts of
fuzzy hyperboloid H® ¢ W* model is a minimal retraction.

Proof. Now consider the following fuzzy continuous map 7 :
H® x [0,1] — H®, such that 7(%,5) = f(%, (5/(1 - 5))), then
it is easy to see that

7 (%,0) = B(%,0) =

-5

s —
7(x1)= hm[3<x, ) =Sic i, (33)
. (- S S
7(7:5) = ﬁ(y, 1—_5) =§ s
The fuzzy deformation retract of the fuzzy circle S' ¢ S

onto minimal fuzzy retraction ((0, 1), ) is given in polar
coordinates by

a(r(we)

. n
7ol (1= ()6 |0( )| > 34)
= 70— (-0} g <Ou)<n
. rr
el 0w+t 0} 7 < 9 (4) < -5
that is, 7 o 7] is a fuzzy minimal retraction. O

Theorem 11. Let I ¢ W bea fuzzy hyperboloid in W*
model which is homeomorphic to {D* — B} ¢ R, P:H —
{D* - B}, the fuzzy retraction 7, : H — H?, and the limit
fuzzy folding of D* islim,,_, ., f, : {D*—p} — D'. Then
there are induced fuzzy retraction, limit fuzzy folding, and
homeomorphism map such that the following diagram is
commutative:

1 2
Hcwt————

B, J
{1’32 _ E} limy— fn ~
_—

Bl R limy41- oo fN-nH ~
C —_—>

3 DO

(35)

Proof. Let the homeomorphism map, P, : H> — {D* -}
and7, : H® — H?%also,lim,  , f,: {D*-fB} — D',
the fuzzy retraction of 7, (H’) be 7, : H> — H'; the
limit fuzzy foldmg of lim, ., f,({D* — B}) is given by
lim,,, o fu :D" — D%andP,: 77 (H?) — D
This proves that the diagram is commutative. O

Theorem 12. If the limit fuzzy folding of the fuzzy hyperboloid
H c Whislim,_, f, : H — H> the fuzzy retraction of

H c Whis7, : H — H? and the homeomorphism map of
H* c W*isP, : H* — D'. Then there are induced limit fuzzy

Advances in Fuzzy Systems

retractions, limit fuzzy folding, and homeomorphism map such
that the following diagram is commutative:

Ny e 71 N limy— 0 7
H3CW“%H2CW4 mmeHICW4

limy— ﬁ,J/ JPZ

~

N P
H? ' ol

limrﬁ-laoo fn+1 50
R AN

(36)

Proof. Consider the limit fuzzy folding of the fuzzy hyper-
boloid H® ¢ W'is lim, | f, : H® — H? the fuzzy
retraction of H> ¢ W' is 7, : H® — H? and the
homeomorphism map of H> ¢ W*is P, : ﬁz — D', the
limit fuzzy retraction of 7,(H>) is lim cH* - H H'
the limit fuzzy folding of P,(H?) is lim,,,, _, o foe1 -
D% and P, : lim,, , 7, (7,(H’)) — D°. This proves that the
diagram is commutative. O

m — 00 m

Theorem13. LetD-R: H>xI — H’and7, : H’xI —
H? be a fuzzy retraction, and also f : H> x I — H® x
I a fuzzy folding. Then, there is induced limit fuzzy folding

im,_,f, : H — H?* such that the following diagram is

commutative
D-R
B <1 i
f limy,— ]7,, (37)
B x1 " Jag

Proof. Let D-R : H> x I — H°, and the fuzzy folding f :
H’xI — H’xI,also7, : H xI — H?, and the limit fuzzy
foldinglim, _, f, : H> — H?. This proves that the diagram
is commutative. O

Theorem 14. If the fuzzy retraction of the fuzzy hyperboloid
H cW'is7: H xI — H*x1I, thefuzzy deformation
retract of H> x I ¢ W*is D, : H> x I — H?, and the fuzzy
deformation retract of H* is D, : H> x I — H?”. Then there
are induced end limit fuzzy retractions and fuzzy folding such
that the following diagram is commutative.

Proof. Let?, : H> xI — H* xIandD,: H> xI —
Halso, D, : 7,(H’ x I) — H?; the end limits fuzzy retrac-
tions of D, (H> xI) areend lim 7, : D,(H> x I) — 0;the
end limits fuzzy retractions of 52(H2 x I) are end limr, :



Advances in Fuzzy Systems

Dy(H*x 1)) - 0,and f :end lim 7(D,(H* xI) — 0,
then the following diagram is commutative,

@ xn P g endlimf

# f (38)

~ ~. endlim7;
B2 x1 2 j2g 20

thatis, f o(end lim 7,0D,(H>xI)) = end lim 7,0(D,o7)).
Also, the corresponding relation is described by the two
induced chains, that is,

?o( end lim 7, oD, (ﬁ3 X I))=endlim?20(52 o?l),
I

o(end lim 7, oD, (IA:I3 ><I)) =endlim72<>(52 071).
(39)
O

Theorem 15. Let H> ¢ W* be the fuzzy hyperboloid, then
the relations between the fuzzy deformation retract and the
limit fuzzy folding is discussed from the following commutative
diagram.

Proof. Let the fuzzy deformation retract D, : H> x I —
H; the limit fuzzy folding of H® and D,(H’ x 1) is
limm_,oof:n . H®> xI — H? xIandlim f,
D,(H’ xI') — H%andD,: (lim,,_, . f.,
H?. Then, we have the following diagram,

m+1 —>oofm+1

(H*x 1) —

D .
Bx] ———

limyp— o fm limyp 41— o0 j?mﬂ
(40)
H2 <1 N—)PNIZ
D,
thatis, lim, ., _, o finey © D1 (H>xI) = D, o lim,,_, . f,,(H>x

I).
Also, the corresponding relations are described by the two
induced chains, that is,

lim fm+1 c’Dd_lzpDv_Zo HHT—}.m’

m+1 — oo m— 00
(41)
T oD =Dy i f

3. Conclusion

In the present paper, we obtain and study new types of fuzzy
retractions of W* model. Also, we deduced new types of fuzzy

deformation retract of W* model. The relations between
the fuzzy folding and the fuzzy deformation retracts of W*
model is obtained. New types of minimal fuzzy retraction
of W* model is also presented. New types of homotopy
maps are described. The isometric and topological fuzzy
folding in each case and the relation between the fuzzy
deformation retract after and before fuzzy folding have been
obtained. Types of conditional fuzzy folding of W* model are
described.
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The paper presents new conditions suitable in design of a stabilizing output controller for a class of continuous-time nonlinear
systems, represented by Takagi-Sugeno models. Taking into account the affine properties of the TS model structure and applying
the fuzzy control scheme relating to the parallel distributed output compensators, the sufficient design conditions are outlined in
terms of linear matrix inequalities. The proposed procedure decouples the Lyapunov matrix and the system parameter matrices
in the LMIs and guarantees global stability of the system. Simulation result illustrates the design procedure and demonstrates the

performances of the proposed design method.

1. Introduction

Contrarily to the linear framework, nonlinear systems are
too complex to be represented by unified mathematical
resources, and so a generic method has not been developed
yet to design a controller valid for all types of nonlinear
systems. An alternative to nonlinear system models is Takagi-
Sugeno (TS) fuzzy approach [1], which benefits from the
advantages of suitable linear approximation. Using the TS
fuzzy model, each rule utilizes the local system dynamics by
a linear model and the nonlinear system is represented by
a collection of fuzzy rules. Recently, TS model based fuzzy
control approaches are being fast and successfully used in
nonlinear control frameworks. As a result, a range of stability
analysis conditions [2-5], as well as control design methods
[6-11], have been developed for TS fuzzy systems, relying
mostly on the feasibility of an associated set of linear matrix
inequalities (LMI) [12]. An important fact is that the design
problem is a standard feasibility problem with several LMIs,
potentially reformulated such that the feedback gains can
be solved numerically. In consequence, the state feedback
control based on fuzzy TS systems model is mostly realized
in such structures which can be designed using a technique
based on LMIs.

The TS fuzzy model-based state control is based on
an implicit assumption that all states are available for
measurement. If it is impossible, TS fuzzy observers are

used to estimate the unmeasurable states variables, and the
state controller exploits the system state variable estimate
values [13-15]. The nonlinear output feedback design is so
formulated as the two LMI set problems, and treated by the
two-stage procedure, that is, dealing with a set of LMIs for
the observer parameters at first and then solving another set
of LMIs for the controller parameters [16]. Since the fuzzy
control design problem is preferred to be formulated as a one
LMI set problem, such formulation for the output feedback
control design is proposed in [17, 18].

The main contribution of the paper is the presentation
of the original design condition of the fuzzy output feedback
control for the continuous-time nonlinear MIMO systems
approximated by a TS model. The central idea of the TS
fuzzy model-based control design, that is, to derive control
rules so as to compensate each rule of a fuzzy system and
construct the control strategy based on the parallel dis-
tributed compensators, is reflected in the approach of output
control, taking into account the fact that the desired output
variables are measurable. Motivated by the above-mentioned
observations, the proposed design method combines the
principles given in [15, 17], respecting the results presented
in [19], and is constructed on an enhanced form of quadratic
Lyapunov function [20]. Comparing with the approaches
based on a quadratic Lyapunov matrix [15, 17, 21], which
are particularly in the case of a large number of rules very
conservative as a common symmetric positive definite matrix



is used to verify all Lyapunov inequalities, presented principle
naturally extends the affine TS model properties using slack
matrix variables to decouple Lyapunov matrix and the system
matrices in LMIs, does not use iterative algorithms based on
LMIs or matrix norm bounds, and gives substantial reducing
of conservativeness. Potentially, extra constraints can be
imposed to the slack matrices, but such additive constraints
can potentially increase the conservativeness of the proposed
design conditions.

The remainder of this paper is organized as follows. In
Section 2 the structure of TS model for considered class of
nonlinear systems is briefly described, and some of its proper-
ties are outlined. The output feedback control design problem
for systems with measurable premise variables is given in
Section 3, where the design conditions that guarantee global
quadratic stability are formulated and proven. The method
is reformulated in Section 4 in a newly defined enhanced
criterion for fuzzy output feedback control design. Section
5 gives the numerical example to illustrate the effectiveness
of the proposed approach and to confirm the validity of the
control scheme. The last section draws conclusions and some
future directions.

Throughout the paper, the following notations are used:

x", X" denote the transpose of the vector x and matrix X,

respectively, diag[-] denotes a block diagonal matrix, for a
square matrix X = X' > 0 (resp., X = X' < 0) means that
X is a symmetric positive definite matrix (resp., negative
definite matrix), the symbol I, represents the nth order unit
matrix, R denotes the set of real numbers, and R™" denotes
the set of all n x r real matrices.

2. Takagi-Sugeno Fuzzy Models

The systems under consideration are from one class of
multiinput and multioutput nonlinear (MIMO) dynamic
systems, represented in state-space form as

q() =a(q@®)+b(q®)u(), (1
y () =Cq(t), )

where q(t) € R", u(t) € R’, and y(t) € R™ are vectors of
the state, input, and output variables, C € R™" is a real finite
values matrix, and m < n, r < n, respectively.

Considering that the number of the nonlinear terms in
a(q(t)) is p, there exists a set of nonlinear sector functions as
follows:

m;(0,)), j=12..k1=12..,p,

k (3)
myy (8;(0) =1~ m;(6;(n),
=2
where k is the number of sectors, and
0(t)=[0:(1) 0,(t) - 6,(t)] (4)

is the vector of premise variables. It is assumed that the
premise variable is a system state variable, or a measurable
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external variable, and none of the premise variables does not
depend on the inputs u(t).

Using a TS model, the conclusion part of a single rule
consists no longer of a fuzzy set [3], but determines a function
with state variables as arguments, and the corresponding
function is a local function for the fuzzy region that is
described by the premise part of the rule. Thus, using linear
functions, a system state is described locally (in fuzzy regions)
by linear models, and at the boundaries between regions
an interpolation is used between the corresponding local
models.

Thus, constructing the set of membership functions

{wi0(1) = TTieym ;6;(1)), i = 1,2,...5, s = 2} from all
combinations of sector functions, the final states of the
systems are inferred as follows:

q(t) = Y 1 (0(1) (A (1) + Bu (1)) (5)
i=1

with the output given by the relation
y () =Cq(t), (6)

where

w; (0 (1))

BOW = “ow)

7)

is the average weight for the ith rule, representing the
normalized grade of membership (membership function). By
definition, the membership functions satisfy the following
convex sum properties:

0<h (0(t) <1, ihi(e(t)):l Vie(l,...,s). (8)

i=1

Assuming that a(q(t)) and b(q(¢)) are bounded in sectors,
thatis, in the fuzzy regions within the system will operate, and
a(q(t)) takes the value a(0) = 0, the fuzzy approximation of
(1) leads to (6). Thus, A; € R™" is the matrix of a(p(t)), B; €
R™" is the matrix of b(p(t)), respectively, both for p(t) = p;,
where p; is the ith combination of the bounds of the sector
functions with respect to the center of the ith fuzzy region,
dedicated by (3). It is evident that a general fuzzy model is
achieved by fuzzy amalgamation of the linear systems models.

Note, the model (5) and (6) is mostly considered for
analysis, control, and state estimation of nonlinear systems.

Assumption 1. Each triplet (A;, B;, C) is locally controllable
and observable, the matrix C is the same for all local models,
and the number of input variables is equal to the number of
output variables.

It is supposed in the following considerations that the
aforementioned model does not include parameter uncer-
tainties or external disturbances, and the premise variables
are measured.
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3. Fuzzy Output Control Design

In the next, the fuzzy output controller is designed using
the concept of parallel distributed compensation, in which
the fuzzy controller shares the same sets of normalized
membership functions like the TS fuzzy system model.

Definition 1. Considering (5) and (6), and using the same
set of normalized membership function (8), the fuzzy static
output controller is defined as

u(t)=-Yh; @)Ky () =-)h;0®)K,Cq(t). (9)
j=1 j=1

Note that the fuzzy controller (9) is in general nonlinear.

Theorem 2. The equilibrium of the fuzzy system (5) and (6),
controlled by the fuzzy controller (9), is global asymptotically
stable if there exist a positive definite symmetric matrix W €
R™ and matrices N, Y,; € R™" such that

Yll Y12 Yls

Y'12 Y_22 Y_25

w=wT> 0, >0, (10)

Yls YZS Yss

AW+ WA/ -BN;C-C'N{B/ +Y,;<0 (11)

for h(8(®)h;(B(£) #0, i, j = 1,2,...s.
If the above conditions hold, the set of control law gain
matrices is given as

K. =NM,

¥ j j=12,...,s, (12)

where

-1

M=Ccwc®, ¢ =c’(cc’) . (13)
C®' is Moore-Penrose pseudo-inverse of C.
Proof . Considering the model (6) and (2) and the control law
(9), then it yields
a®) =Y Yh©m)h;©®) (A -BK,C)q(t). (14)
i=1 j=1

In order to analyze the convergence of the system state,
the quadratic positive Lyapunov function is considered as
follows:

v(q(t) =q" (t)Pq () >0, (15)

where P € R is a positive definite symmetric matrix. Then,
the time derivative of v(q(t)) along the system trajectory is

0(q() =q" ()Pq(t) +q" (©)Pq(t) <0.  (16)

Substituting (14) in (16), and introducing the term as follows:

v, @) =q" OZO®)q(), (17)

where

ZO®) =) YhOM®)h O®)X;>0  (18)
i=1 j=1

J

and {X;; = X; e R™, i,j=1,2,...,s}is the set of matrices.
In the sense of Krasovskii theorem (see, e.g., [22]) it can be
set up as follows:

v(q(t)

=q" (1) YR O®)h;(B(1)P (A ~BK,C)q(1)

i=1 j=1

+q () Yh(O®)h;O)

i=1 j=1

x (A; - BK,C) Pq(t)
<=q" (®) ). Y h (0®)h; (0 () X;q(t)
i=1 j=1
=—q" () Z©O®)q () <0,
(19)
0(q(®)) =) Y h(0®) h; O 1) q" ()P,q(t) <0, (20)
i=1 j=1
respectively, which implies
P, =P(A,-BK,C)+(A-BK,C) P+X;<0. (1

It is evident that P;; has to be negative definite.
Since r = m, it is possible to set

BK,C=BKMM 'C=BN,CP, (22)
where
KM=N, M 'C=CP (23)

and M € R™" is a regular square matrix. Substituting (22)
into (21) results in

P(A,-BN,CP)+ (A, -BN,CP) P+X, <0. (24)

Premultiplying the left side and the right side of (24) by P
leads to

AP -BN,C+P'A] -C'N/B/ +P'X, P <0
(25)
and using the notations
W=P", Y, = WX;;W (26)
then (25) implies (11). Since (25) also implies

P, =AW+WA/ -BN,C-C'N/B/ +Y; <0. (27)



Using the membership functions property (8) and defining
q°(t) = W 'q(t), it can be written as follows:

v, (q (1))

D 2 @)k (O(1)q" ()W WX, WW g (1)

j=1

Mm

I
—
~.

> Yh @)k ©O®)a" (1)Y,a" 0)
j=1

Mm

I
—

=qT(OWZ (1) Wq' () > 0.

(28)
Writing Z(0(t)) as follows:
hy (6 (t))‘l: (t) ! Y Y, o Yy
Z(0()) = h, (6 (t:))q (t) Y:21 Y:22 Y:Zs
hs (9 (t))q(> (t) Ysl YsZ Yss
(29)
hy (0 ()
h, (0 (t:))q ® 1.,
h (6 (1))q’ (t)
then (29) implies (10). In addition, (23) gives
MC = CP' = CW. (30)
Premultiplying the right side of (30) by C” gives
cwc’ = mcc” (1)
and so it is
M = cwcT(ccT) " = cwe, (32)

Thus, (23) and (32) imply (12)-(13), respectively. This con-
cludes the proof. O

Note, the derived results are linked to some existing find-
ing when the design problem involves additive performance
requirements and the relaxed quadratic stability conditions
of fuzzy control systems (see, e.g., [13, 23]) are equivalently
steered.

Trying to minimize the number of LMIs owing to the
limitation of solvers, Theorem 2 can be presented in the
equivalent structure in which the number of stabilization
conditions, used in fuzzy controller design, is equal to N =
(s*+5)/2+1. Evidently, the number of stabilization conditions
is substantially reduced if s is large.

Theorem 3. The equilibrium of the fuzzy system (5) and (6),
controlled by the fuzzy controller (9), is global asymptotically
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stable if there exist a positive definite symmetric matrix W €
R™" and matrices N;, Y,;; € R™" such that

Yll Y12 Yls

w=wW">o, Yfl Y:ZZ . Y}S >0 (33)
Ysl YsZ Yss
H,+H. +Y, <0,
34)
H.+H. H-+HL Y. +Y. (
ij ]1+ ij ]1+ ij ji <0

2 2 2

foralli € (1,2,...,s),i < j < s, 4,j € (L,2,...,s),
respectively, and hi(O(t))hj(G(t)) #0. Here it is

Hij = AIW - BINJC (35)

and if the above conditions hold, the set of control law gain
matrices is given as in (12) and (13).

Proof. Now (28) can be written as
v(g(®) =Y Y h(O®)h;Ot)q" (®)
i=1 j=1 (36)
x (H; +Hj+Y;;)q(®),
where H;; is given in (35). Permuting the subscripts i and j in
(36) glves
0(q) =) Y h (O®)h; (O®) " (¢)
i=1 j=1 (37)
X (Hj,» + H; + Yﬁ) q(t)
and adding (36) and (37) results in
20(q (1))
=Y YhOm)h; (01" (1)

i=1 j=1

X (Hij + Hj,. + (Hij + Hﬁ)T + (Yij + Yﬁ)) q(t).

(38)

Rearranging the computation, (38) takes the following form:

0(q(t) = Y1 ©®)q" () (H,+H - Y,)q(t)
i=1

s—1 s
+2Y Y B0 h; (04" (t)

i=1 j=i+1
H,+H, H.+H., Y, +Y;
% J Jt + J Jt + 1] Jt q(t)
2 2 2
(39)

and, evidently, (39) implies (34). This concludes the proof.
O
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4. Enhanced Criterion for Qutput
Control Design

Theorem 4. The equilibrium of the fuzzy system (5) and (6),
controlled by the fuzzy controller (9) is global asymptotically
stable if there exist positive definite symmetric matrices U,V €
R™, a matrix T € R™", and matrices N;,Y;; € R”" such
that

u=U">o, v=vliso,
Y11 Y12 Yls
40
Vi Ya o Val g 4
Yls YZs Yss
T TanTrT
Pt - AV+VA; -BN,C-C N;B; +Y;; = <0
Y T-U+AV- B,-NjC -2U
(41)

Jor hi(0(t))h;(6(1)) #0, 1, j = 1,2,...,s.
If the above conditions hold, the set of control law gain
matrices is given as

K.=NM,

;=N J=1,2,...,s (42)

where

-1

M=cvc”, ¢ =c'(cch), (43)

ol . )
C~" is Moore-Penrose pseudo-inverse of C.

Here, and hereafter, * denotes the symmetric item in a
symmetric matrix.

Proof . Writing (14) in the following form:

S

Q) =) YO ®)h;(01) (A -BK;C)q () =0

i=1 j=1
(44)

then with arbitrary symmetric regular matrices S;,S, € R™"
it yields

-(d" S, +4" 1S,)

><<q -3

N N
=1 j=1

hi (0(£) h; (6 (1) (A-BK;C)q (t)) =0.

(45)

Thus, adding (45) as well as the transposition of (45) to (19),
it yields

o(q®) =q" (OPq(t)+q" (t)Pq(t)

~(q" ®S,+4" ©)S,)

x (q =Y Y h(O®)h;(OF)

i=1 j=1

x(A;-BK;C)q () >

s s (46)
- <qT ®)-q" ©)) Y h(0®)h;O)

i=1 j=1

x (A; - B,-KjC)T> (S,q (1) + 8,4 (1))

<=q () Y h(O®)h;01)Xq ()

i=1 j=1

=—q" () Z(6(t)q(t) <0.

Using the notation

" ®=[qd"® 4 0] (47)

the inequality (46) can be set and written as

0(q®) =Y Yh (O ®)h 00" OPq (1) <0,

i=1j=1
(48)

where

T
Y P-S,+S,(A,-BKC) -28,
<0
(49)
Z° (0(t)) = diag[Z (6 (t)) 0] > 0. (50)
Since r = m, it is now possible to set

BK,C=BKMM 'C=BN,CS, (51)

where
KM=N;, M'C=CS, (52)

and M € R™" is a regular square matrix. Substituting (51)
into (49) results in

(Dij

%
Pii=p- S, +8, (A, -BN,CS,) -28,]

(53)



where
@, =X,;+S, (A, -BN,CS,) + (A, -BN,CS,)'S,.
(54)
Defining the congruence transform matrix T, as follows:
T, =[s;" 87']. (55)
Premultiplying the left and the right side of (53) and (50) by
T, gives
v : 0 (56
S;'PS;' - 8;' + (AS;' -BN,C) -28;' | © (56)
diag [ST'Z (0(1))S" 0] 20, (57)
where

Hij = Sflq’ijsfl = SIIXz‘jSII

-1 -1 T (58)
+(AST -BN;C) + (AS;' -BN,C) .
Thus, using the notations
v=s' U=S), T=UPV, Y;=VX,V
(59)

then (56), (58) implies (41).

Since now, VZ(0(t))V in (57) and WZ(0(t))W in (28),
both have the same structure if V = W, (57) implies (40).

In addition, (52) gives

MC = CS;' = CV (60)
and since (60) and (30) both have the same structure if V =
W, then (60) implies (42). This concludes the proof. O

This principle naturally exploits the affine TS model prop-
erties. Introducing the slack matrix variables U, V into the
LMIs, the system matrices are decoupled from the equivalent
Lyapunov matrix T. Note, the above-presented inequalities
are linear matrix inequalities, but the equivalent Lyapunov
matrix T is not a symmetric matrix. Introducing a scalar
design parameter & > 0, 8 € R, Theorem 4 can be modified
in the next form.

Corollary 5. If, instead of the notations (56), there are used in
(59) the next substitutions

U =4V, T=38VPV, §>0, §eR (61)
It is evident that (53) and (54) with (61) imply

T=T'>0, V=V'>o,
Yll Y12 Yls
62
Vi Yoo e Yo | )
Yls Y2$ Yss
AV+VA/ -BN,C-C'N/B/ +Y;; = <o
T-06V+AV-BN,C 20V |7
(63)

for h(8(E)h;(B(1) #0,4,j = 1,2,....s
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Thus, the equilibrium of the fuzzy system (5) and (6),
controlled by the fuzzy controller (9), is global asymptotically
stable if for given positive scalar & > 0, § € R there exist
positive definite symmetric matrices T,V € R™", and matrices
N,Y;; € R™" such that (62)-(63) hold. Subsequently, the set

0 control law gain matrices is given by (42)-(43).

Note, (63) represents the set of LMIs only if § is a pre-
scribed constant (8 can be considered as a tuning parameter).
Considering & as a LMI variable, (63) represents the set of
bilinear matrix inequalities (BMI).

Theorem 6. The equilibrium of the fuzzy system (5) and (6),
controlled by the fuzzy controller (9) is global asymptotically
stable if there exist positive definite symmetric matrices U,V €
R™, a matrix T € R™", and matrices N;,Y;; € R™" such

that
U=U">0, Vv=V'>o,
Yll Y12 Yls
64
Y:12 Y;22 Y:2s S0, (64)
Y'ls Y.Zs Y.ss
H,+H,+Y, =«
[ T-U+H, -2u)<® (65)
T
H;+H; (H;+H;) LYY
2 2 0 (66
%—Iij+H <0 (66)
T-U+ -2U

forallie(1,2,...s),i< j<s, i,j€(L,2,...
and hi(G(t))hj(G(t)) #0. Here it is

s), respectively,

H;; =AV-BN,C (67)
and if the above conditions hold, the set of control law gain
matrices is given as in (42)-(43).

Proof. Considering (41) and (67), (48) can be written as

0(q()) =) ) h(0) h;(6(1)
i=1 j=1

<q” () T,"TPT.T, q (1)

I
AMV’
MV.

Il
—

.

Il
—

hi (0 h; (0(0) g™ (OHP]q" (1) <0,
(68)
where with T, defined in (55), it is

q" (1) =T.'q (1),

(69)
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Permuting the subscripts i and j in (68) gives
0 (q(t)) = Zl Zlh ©@®)h; 04" P (1) (70)
i=1 j=
and adding (68) and (70) results in
20(q (1)) 'lelh ©@®)h; (0M)q" OP;q" (1), (71)
i=1 j=
where

P - H;; + H); +H +H +Y;+Y; =

i = 2T-2U+H, +H, v | <0
(72)
Rearranging the computation, (71) takes the form
l— o
0(q () = th ©®)a" 1) Pia” ()
s=1 s T
+2)° Y h (O h;(0t)q (t) Piq” (1),
i=1j=i+1
(73)
where
l=s [H.+H;+Y, =
P [ T-U+H, —2U] <0 (74)
T
L Hy+H; (H; +H;) LYY
EPij = 2 %'I,'j N Hj,' 2 <0
T-U+ — -2U
(75)
and, evidently, (74), (75) imply (65),(66) respectively. This
concludes the proof. O
5. Illustrative Example

The nonlinear dynamics of the hydrostatic transmission was
taken from [24] and this model was used in control design
and simulation.

The hydrostatic transmission dynamics is represented by
a nonlinear fourth-order state-space model as follows.

q, (1) =
q, (1) =
q; (t) = az1q, (t) p(t) — az3q; (£) — asg, () q, (1),

—ayq, (t) +bju (1),

—ayq, (t) + byu, (),

4y (1) = agq, () g5 () — agq, (1),

where g, (t) is the normalized hydraulic pump angle, g, (t) is
the normalized hydraulic motor angle, g,(t) is the pressure
difference (bar), q,(t) is the hydraulic motor speed (rad/s),
p(t) is the speed of hydraulic pump (rad/s), u,(t) is the

normalized control signal of the hydraulic pump, and u,(t)
is the normalized control signal of the hydraulic motor. It is
supposed that the external variable p(t), as well as the second
state variable g, (f) are measurable. In given working point the
parameters are

a;, =7.6923 a,, = 45455 ay, = 7.6054.10"
az = 07877 ay, =0.9235 by, =1.8590.10°,and (77)

a; = 121967 a,, = 04143 b,, = 1.2879.10°.

Since the variables p(t) € (105,300) and g,(t) € (0.0001, 1)
are bounded on the prescribed sectors then vector of the
premise variables can be chosen as follows:

0(t) =160, 6,®] =[q,®) p®)]. (78)
Thus, the set of nonlinear sector functions as follows.

b, —qg,(t
Wy (% ) = lbl—qZ()

~b,
t
i, 0) = B 1w g, ),
b, =0,b, =1,
(79)
t
wzl(P(t))_ ‘ P(z)
t
wn (p(0) = Z2 < 1y (p0),

¢, =105, ¢, = 300

implies the next set of normalized membership functions as
follows:

hy (g, (®), p (1)) = wy, (g, (1) wy, (P (1)),

hy (4, (), p (1) = wi, (q, (1) wy, (P (D)),
hy(q, (1), p (1) = wyy (g, () wy (P (1)),
hy (g, (), p (1)) = w, (g, (1) wy, (P (1))

The transformation of nonlinear differential equation systems
into a TS fuzzy system in standard form gives

[—a;; O 0 0 a, 0
_ 0 _azz 0 0 _ 0 b22
Ai= ayce 0 —ay —aypb |’ B=1yo 0|
0 0 aub -ay 0 0
r0 0
T _ |10
¢ = 01
LO 0
(81)

with the associations

i=le—(I=1k=1) i=2«—(1=2,k=1)
(82)

i=3—(=1,k=2) i=4——(=2,k=2).
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FIGURE 1: System output response.

Thus, solving (62), (63) with respect to the LMI matrix
variables T, V, Nj,j = 1,2,3,4, and with § = 9 then,
using Self-Dual-Minimization (SeDuMi) package for Matlab
[25,26], the feedback gain matrix design problem was feasible
with the results

[ 0.0017 0.0000 -0.0223 0.0006 T
0.0000 0.9258 0.0000 0.0000
—-0.0223 0.0000 0.5679 -0.1464

L 0.0006 0.0000 -0.1464 1.7684 |
[ 0.0001 0.0000 —-0.0017 -0.0001 17 (83)
V= 0.0000 0.0481 0.0000 -0.0000 50
~ | -0.0017 0.0000 0.0410 -0.0253

| -0.0001 0.0000 -0.0253 0.2027 ]

K. =

1

0.0000 0.0002 .

[0.0047 0.0000]’ £=12534
which rise up a stable set of closed-loop subsystems. It can
be seen that with an enough precision the used design con-
ditions imply the approximately equal control gain matrices.
Comparing with design methods proposed in [17], the fuzzy
control is so less conservative.

The conditions in simulations were specified for the
system in the forced regime, where

u(®) = Y h; (0() (-K;Cq (1) + WW (1)),

j=1
w — [0:0000 0.0002 w = [03 (84)
= 10.0073 0.0000] = lo3]’

q0)=0,  p(t)=105.

Figure 1 shows the simulation result for the system with zero
initial state.
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6. Concluding Remarks

New approach for output feedback control design, taking into
account the output matrix of the system model and the affine
properties of the TS model structure, is presented in this
paper. Applying the fuzzy output control scheme relating to
the parallel distributed output compensators and introducing
the slack matrices into an enhanced Lyapunov inequality, the
method significantly reduces the conservativeness in the con-
trol design conditions. By the proposed procedure, strictly
decoupling a Lyapunov matrix and the system parameter
matrices in the LMIs, the control problem is parameterized
in such LMI structure which admit more freedom in guaran-
teeing the output feedback control performances.

Sufficient conditions of the controller existence, manip-
ulating the global stability of the system, imply the control
structure which stabilizes the nonlinear system in the sense
of Lyapunov, and the design of controller parameters directly
from these conditions is a solved numerical problem. An
additional benefit of the method is that controllers use min-
imum feedback information with respect to desired system
output and the approach is flexible enough to allow the inclu-
sion of additional design conditions such as fuzzy Lyapunov
functions. The validity and applicability of the approach is
demonstrated through a numerical design example.
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Nowadays network control systems present a common approximation when connectivity is the issue to be solved based on time
delays coupling from external factors. However, this approach tends to be complex in terms of time delays. Therefore, it is necessary
to study the behavior of the delays as well as the integration into differential equations of these bounded delays. The related
time delays needs to be known a priory but from a dynamic real-time behavior. To do so, the use of priority dynamic Priority
exchange scheduling is performed. The objective of this paper is to show a way to tackle multiple time delays that are bounded
and the dynamic response from real-time scheduling approximation. The related control law is designed considering fuzzy logic
approximation for nonlinear time delays coupling, where the main advantage is the integration of this behavior through extended
state space representation keeping certain linear and bounded behavior and leading to a stable situation during events presentation

by guaranteeing stability through Lyapunov.

1. Introduction

Nowadays real-time restrictions are the most certain defini-
tions in terms of time delays where general considerations
tend to be periodic and repeatable.

The control design and stability analysis of network-
based control systems (NCSs) have been studied in recent
years, based upon codesign strategy [1]. The main advan-
tages of this kind of systems are their low cost, small
volume of wiring, distributed processing, simple installation,
maintenance, and reliability.

In a NCS, one of the key issues is the effect of network-
induced delay in the system performance. The delay can be
constant, time varying, or even random; this depends on
the scheduler, network type, architecture, operating systems,
and so forth. One strategy to be followed is the codesign
since it takes both desired procedures to be followed. Nilsson
analyzes several important facets of NCSs. Nilsson [2]

introduces models for the delays in NCS, first as a fixed delay,
afterward as an independently random, and finally like a
Markov process. The author introduces optimal stochastic
control theorems for NCSs based upon the independently
random and Markovian delay models. In [3], Walsh et
al. introduces static and dynamic scheduling policies for
transmission of sensor data in a continuous-time LTT system.
They introduce the notion of the maximum allowable transfer
interval (MATI), which is the longest time after which a
sensor should transmit a data. Walsh et al. [3] derived
bounds of the MATT such that the NCS is stable. This MATI
ensures that the Lyapunov function of the system under
consideration is strictly decreasing at all times. In [4], Zhang
et al. extend the work of Walsh, they developed a theorem
which ensures the decrease of a Lyapunov function for a
discrete-time LTT system at each sampling instant, using two
different bounds. These results are less conservative than
those of Walsh, because they do not require the system



Lyapunov function to be strictly decreasing at all time.
Nevertheless, a number of different linear matrix inequality
(LMI) tools for analyzing and designing optimal switched
NCSs are introduced.

Alternatively Zhu [5] takes into consideration both the
network-induced delay and the time delay in the plant a
controller design method is proposed by using the delay-
dependent approach. An appropriate Lyapunov functional
candidate is utilized to obtain a memoryless feedback
controller; this is derived by solving a set of Linear Matrix
Inequalities (LMIs). In [6], Wang and Sun, model the
network-induced delays of the NCSs as interval variables
governed by a Markov chain. Using the upper and lower
bounds of the delays, a discrete-time Markovian jump system
with norm-bounded uncertainties is presented to model
the NCSs. Based on this model, the Hoo state feedback
controller can be constructed via a set of LMIs. Recently
Fridman and Shaked [7] introduce a new (descriptor) model
transformation for delay-dependent stability for systems
with time-varying delays in terms of LMIs, and they also
refine recent results on delay-dependent Heo control and
extend them to the case of time-varying delays. Based upon
this review, this paper defines a model that integrates the
time delays for a class of nonlinear system, therefore, this
paper presents Fuzzy Control for NCSs [4, 8] considering
time delay induced by the computer network as result of
online reconfiguration the stability analysis is revised as well.

Since NCS is modified according to time delays, reconfig-
uration is a transition that modifies the structure of a system
so it changes its representation of states. Here, it is used as a
feasible approach for time delay modification.

In control systems, several modeling strategies for man-
aging time delay within control laws have been studied by
different research groups. Nilsson [2] proposes the use of
a time delay scheme integrated to a reconfigurable control
strategy, based on a stochastic methodology. Jiang and Zhao
[9] describe how time delays are used as uncertainties,
which modify pole placement of a robust control law.
Izadi-Zamanabadi and Blanke [10] present an interesting
case of fault tolerant control approach related to time
delay coupling. Blanke et al. [11] study reconfigurable
control from the point of view of structural modification,
establishing a logical relation between dynamic variables and
the respective faults. Finally, Thompson [12] and Benitez-
Pérez and Garcia-Nocetti [13] consider that reconfigurable
control strategies perform a combined modification of
system structure and dynamic response, and, thus, this
approach has the advantage of bounded modifications over
system response.

Normally, when a fault occurs during the operation of
a system, a respective fault tolerance strategy is applied.
However, applying such a fault tolerance strategy is not
enough to maintain the performance of the system, since
dynamic conditions are modified. Therefore, it is seems
necessary to take into account current conditions in order to
keep system performance, even degraded. Thus, this paper
proposes a novel technique based on Fuzzy control and
considering bounded variable time delays.
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TABLE 1: First example for Priority Exchange.

Name Consumption (in units) Period (in units)
Task 1 2 9
Task 2 1 9
Task 3 2 10
Server 1 6

The objective of this paper is to present a reconfiguration
control strategy developed from the time delay knowledge,
following scheduling approximation where time delays are
known and bounded according to used scheduling algo-
rithm. The novelty of this approximation is to guarantee
schedulability as well as stability in the presence of bounded
time delays. This is feasible since time delays are bounded
according to scheduler response.

2. Scheduling Approximation

Classical Earliest Deadline First plus Priority exchange (PE)
algorithms are used to decompose time lines and the
respective time delays when present. For instance, time delays
are supervised as follows, for a number of tasks:

a — Ty — Ty, (1)

where priority is given as the well known Earliest Deadline
First [14] algorithm which established as the process with the
closest deadline has the most important priority. However,
when a nonperiodic tasks appear it is necessary to deploy
other algorithms to cope with concurrent conditions. To do
so, Priority Exchange algorithm is pursuit in order to manage
spare time from EDF algorithm. Priority exchange [15] algo-
rithm uses a virtual server that deploys a periodic task with
the highest priority in order to provide enough computing
resources for aperiodic tasks. This simple procedure gives a
proximity, deterministic, and dynamic behaviour within the
group of included processes. In this case, time delays can be
deterministic, and bounded. As an example, consider a group
of tasks as shown in Table 1. In this case consumption time,
as well as period, is given in terms of units that are entered.
Remember that server task is the time given for an aperiodic
task to take place on the system.

The result of the ordering based upon PE is presented in
Figure 1.

Based upon this dynamic scheduling algorithm, time
delays are given as current calculus in terms of task ordering.
In this case, every time that scheduling algorithm takes
place global time delays are modified in the short and long
term. This behavior allows time delays to be known and
bounded for different periods of time since current and
future responses are established. On the other hand, if any
aperiodic event would take place, this will be considered
in terms of the server to be attended in a global periodic
manner with the related time delay cost. For instance, follow
next example where four tasks are settled and two aperiodic
tasks take place at different times, giving different events with
different time delays (see Table 2).
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Task 1
||||||||I I T I |
Task 2
T e E SRR R Y M e IR R RO
Task 3
[ ||||T| [
Server
| I I | DllllTlllll

1 2 3 45/@7 8§ 9 10 11 12 13 14 15 16 17

Aperiodic task happening at 6.3 units
It has a duration of lunit

FIGURE 1: Related organization for PE with respect to Table 1.

TaBLE 2: Second example of PE.

Name Consumption (in units) Period (in units)
Task 1 2 9

Task 2 1 9

Task 3 2 10

Server 1 6
Aperiodic task 1 (ap1) 0.9 It occurs at 9
Aperiodic task (ap2) 1.0 It occurs at 13

The following task ordering is shown in Figure 2, using
PE algorithm where clearly time delays appear.

Now from this resulting ordering different tiny time
delays are given for two scenarios as shown in Figure 3.

These two scenarios present two different local time
delays that need to be taken into account beforehand in order
to settle the related delays according to scheduling approach
and control design. These time delays can be expressed in
terms of local relations amongst dynamical systems. These
relations are the actual and possible delays bounded as
marked limit of possible and current scenarios. Then, delays
may be expressed as local summations with a high degree
of certainty for each specific scenario. In this case, if any
new event takes place its response would be delayed until
the server would place sometime for its requirements, giving
the system a guarantee in terms of time delays and current
response.

Now, in terms of this last example, during second
scenario total delay is given as follows:

Total delay = consumption time delay aperiodic taskl
+ consumption time delay taskl + tsc2
+ consumption time delay task2
+ consumption time delay aperiodic task2
+ consumption time delay task3.

(2

From this example /, is equal to 2 and [, is equal to 3. [,
and [, are the total number of local delays within one scenario

3
Task 1
|I||||||Tl_|| |||||T_|||
Task 2
N e T N R R T M R A e BT ||T|l_!|
Task 3
| IIIITIII | IITI:I
Server
|||||T|||:I|Tl_||||T|| [l
123456%’9101 213141516 17 18 19 20 22

Aperiodic task Aperiodic task

happening at 9 units happening at 13 units
It has a duration of 0.9 unit It has a duration of lunit

FiGure 2: Task organization considering second example for PE.

from sensor to control and from control to actuator respec-
tively. Moreover, consumption_time_delay_taskl, consump-
tion_time_delay_task2, and consumption_time_delay_task3
are related to the actual time delays from Figure 3 when
one particular scenario is presented. The same situation
is presented with consumption_time_delay_aperiodic_task2.
This simple example shows how total time delays play a
key role in the dynamical system; however, these are no
monolithic since are composed through different local and
dynamic delays.

Since aperiodic as well as sporadic events are capable
to be attended in terms of a virtual server per node
involved on the network giving a bounded response, the
resulting behaviour is only dependant on inherent bounded
and systematic time delays that can be aggregated in laps.
Now, the computer network is only dependant on the
synchronization of the network, which is a topic that is out
of the scope of this paper and to be reviewed in future work.

The important issue to be determined in this section
is that communicating time delays are to be known and
bounded even in sporadic situations. Since this modelling
is possible, what is left is how to incorporate the aggregate
delays (either local or global) onto the dynamic modelling
of the system. This strategy is proposed thorough Fuzzy
Control since this technique provides the necessary elements
to guarantee current global stability even in conditions of
sporadic time delays since these are bounded according to
the use of virtual server.

3. Fuzzy Control Design Considering
Time Delays

Having defined time delays as result of scheduling approxi-
mation, several scenarios are potentially presented following
this time delay behavior since this is bounded. In fact,
the number of scenarios is finite since the combinatorial
formation is bounded. Therefore, any strategy, in order
to design a control law, needs to take into account gain
scheduling approximation. To do so, Fuzzy Control strategy
is based upon Takagi-Sugeno. Therefore based upon Fuzzy
Control systems [16] stays as

l<i<m, 1<j<m, pj((t), (3)
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FIGURE 3: Related time delays are depicted according to both scenarios.
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where x are the states, m is the number of inputs, and p is the
related membership function. One has 0 : : : :
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g = [ Huslxo1}, (4) Time
=1 FIGURE 5: Systems response to those different time delay scenarios.
i
hji=<=m—> 5
! z;nzl 8i )
m
x(k+1) = Z [ {Afx(k) 4 Bfu(k)}], 6) where Aj and Bj are the controller representation per

scenario, x,(k + 1) and u,(k + 1) are state vector and input
vector of the plant, and x.(k+1) and u.(k+ 1) are state vector
where x(k) and u(k) are the state and input vectors, and Af and input vector of the controller.
From [17] remember that time delay representation in

and Bf are the plant representation per scenario according to ! X 1
terms of discrete observe the following equations:

current time delays following Figure 4.
Now, considering current time delays as t.,; which is
current time delay from controller to actuator and t,; which

is current time delay from sensor to controller. In here, b b T tin At
current time delays are local aggregations of current behavior Bj = ‘ [ . Bje™ dt]’
from scheduling strategy in any condition regardless of s (8)
the event as long as this is prevented onto virtual server LT ot
processes. One has B; = [J Bf eAﬁtdt],
i=1 L7

xplk+1) = Z[ AT xp (k) + By (k = teaj) } ],

= (7 Remember that [, and . are the total number of local
time delays that appears per scenario. These are defined in

[ f{ijc(k) + Bju, (k - tscj) }], last section as local time delays that can be aggregated as in

1 (1) or they maybe presented as shown in (8). In any case final

Ms

x:(k+1) =

.
Il
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result is shown in (10) and (11). One has

Vi = Cpxp(k),
, 9)
Ve = cixc(k),

where [, and . are the number of local time delays; ¢ and
cp, are the gains related to observable states; the outputs are
gathering as

Yp = Zl[hj{céxp(k)}]’ (10)
p=

Ye = i[hj{cé'xc(m}], (11)
j=1

Up (k - tcaj) — Y= chc(k)a (12)

ue(k = tej) — yp = cpxp(k), (13)

xp(k+1) = i [ni{alx, () + Blu(k - o)}, (18)
j=1

Mz

Il
—

[hj{Afo(k) +BfCCxC(k - tcaj)}]. (15)
j

. . C
From last equation, the related dynamics are expressed A;

as Bjc and C! where j is the index with respect to each
scenario. These scenarios are the related events presented in
last section and are the result of local time delays and possible
use of virtual server. In any case, (16) shows the holistic
representation of the plant in conditions of potential time
delays as well as the current dynamic modifications result
from each scenario. One has

xp(k+1) = i [hj{Afxp(k) +Bf{§hj (chxe(k = teai)) }
j=1 i=1
(16)

from state of the controller

m

xc(k + 1) = Z[hz{Afxc(k) + Bf”c(k - tsci)}];

i=1

x(k+1)= i [h,«|Afxc(k)
i=1

+Bs(ihj[c;;xp<k—tw>])}]

j=1
(17)

and in terms of the plant x,,

k1) = 3 [hj {Afxp(k) + ih,—Bﬁ (clxclk = teai)) H

j=1 i=1

xplk+1) = ﬁ [ i BE (cixelk = teai)) | + hiAS 2, (K) .
i=1

(18)

I[Ms

J

5
For x.,
x(k+1)= ﬁ (h]«[A;xc(k)
j=1
+h;BE (Zh,- (chxp (k- tsc,-))) })
j=1
wk+D) =SS [hjh,- [Bf (chc(k) ¥ imsrﬂ
j=li=1 i=1
X (le’l] (c;xp (k — tscj)) ):|,
i-
xc(k + 1) = z Z I:h]hlBj(C;,xp(k - tsci)) + h]ijc(h)],
j=li=1
(19)

where the f,; is current time delay from controller to
actuator and fy; is current time delay from sensor to
controller. Moreover, Aj is the related dynamic Matrix of
Control law. Now, the second main point presented in this
work is the following: since the delays are bounded and can
be known it is possible to develop a dynamic representation
by using augmented states in terms of current control law
and the related state space representation.

x(k+1)
xp(k+1)

M=
NgHE

[ B (e — ) | + A2, 8

-
Il

—_
Il

—_

Mz 1
=T

[ (RjhiBS (Cixp (k — tie)) + BjASxc(K)) |-

(20)

1

-
Il

—
Il

Now, the delays (t.i,tsi) are independent based upon
the time obtained from scheduling approximation. This
condition is very important for two reasons; firstly time
delays are strictly local and may be aggregated differently per
scenario or event and secondly these are bounded to inherent
sampling time of dynamic benchmarking. Therefore, any
aggregation must be bounded as presented.

feal +tsel <tear +lse2 < v v <tegm + tsem < T. (21)

Now, in terms of the stability which is necessary to guarantee
system response in several conditions, it is pursued the use of
classical Lyapunov candidate since one the main conditions



is system bounded response as linear inherent behavior.
Therefore, the derivative of a candidate Lyapunov function
is expressed as

Au(k) = V(k+1) = V(k), (22)
and the related Lyapunov function is proposed as
V(k) = X(k)"PX(k). (23)

Now in terms of the augmented states and the related fuzzy

rules
T
Vk) = [jp] p[zp] (24)

where each of the fuzzy rules is given as an expression of local
delays (which are the results of local time delays that can
be aggregate per event) from current condition from plant
towards controller and vice verse. One has

[ xc(k) i
xc(k - tcal)
xc(k - tcaz)
xc(k _ team)

[ﬂ - xp (k) (25)

’ xp(k - tscl)
xp(k — ts2)
xp(k - tsc3)

sk~ tem) |

Now for each rule, it exists a delay related to a particular
condition (which is expressed as event in terms of Section 2)
involving the plant and controller. This delay is unique on
every specific time. In this case, these are associated to a
particular relationship of last equation.

x(k+ D" [x(k+1)
xpk+1) | Plxpk+1)

[x] p[ =0
50k | 0 ]

Vk+1)-V(k) = [

V(k+1) - V(k)

m m T
23 (i (B] (el = ey ) ) ) + Ty ()

_ ];ll i:/ll P
Zl 21 (1 (B3 (choep (k = £;) ) ) + By (k)
j=li=

S (B2 (e (k= ) + By AL, )

M=
1=
—
=
~
=
—~
o)
-0
—
o
<
—
=
I
P
<.
~—
~—
~
+
=
<D
=
—~. 0
&8
—~
>
~
~

(26)
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Remember h; and h; are defined following (5). Therefore
xe(k+ )] [xe(k+1)
xp(k+1) xp(k+1)

o ox
xc(k - tcul)
Xc(k = teaz)

Vik+1) - V(k) = [

xc(k = team)
- xp(k)

xp(k — tse1)
xp(k - tch)
xp(k - tscS)

(27)

xp(k _ tsem)

I xc(k) i
Xe(k = tear)
xc(k - tmz)

xc(k - tcam)
x P xp (k)

xp(k - tscl)
xp(k — ts2)
xp(k - tsc3)

xp(k - tscm)

Now considering the fuzzy system representation in terms of
local time delays as well as local plants and control laws,

V(k+1)-V(k)
m m T

2. 3 (i (B] (cixe (k = teas) ) ) + i, k) )

J

1

Il
—_
Il
—_

M=
M=
—
=
=

i (BS (chxp (K = tej) ) ) + hiAxc (k) )

-
I
1l

M=
M=

(jhi(B? (cixe(k = teaj) ) ) + midPx,(K))

X

S
i
=

M=
e

(i (B (chxp (k = tej) ) ) + midixe(k))

-
I

—_
Il

—_

T -~

I xc(k) i xe (k) |
xc(k - tcul) xc(k - tcal)
xc(k - th) xc(k - tcaZ)
xc(k _ team) xc(k _ team)

— xp(k) p xp(k)
xp(k - tscl) xp(k - tscl)
xp(k — ls2) xp(k — t2)
xp(k - tsc3) xp(k - tsc?r)

L xp(k 7 tscm) _ L xp(k 7 tscm) _

(28)
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Now if only one of the time delays is considered. This
condition is possible since time delays are bounded and
strictly less than sampling time of dynamic system. Therefore
at any case following inequality is always kept true. One has

e+ D" [x(k+1)
0> [xp(k+l)] P[xp(kﬁ-l)}

xk) 7" xe(k) (29)
Xc (k — tcaj) Xc (k - tcaj

%K) (k)
Xp (k - tscj) Xp (k — tsj

Therefore this may be expressed as follows:

0 hihi(BY (ci)) hAP 0 0
0 0 hihi(B5(c})) hiAS
Xc (k - tcaj) !
%K)
Xp k— Lscj
xc(k)
% P ]’l]h,(Bf(Clc)) h,‘Af 0 0
0 0 hjhi(B(ch)) hiS
[ Xc<k - tcaj) i
xp(k)
| (k- 1))
xe(k) ]
_xc(k_tcaj) 1 xc(k_tcaj)
_ xp(k) xp(k)
xp<k— tscj) xp(k— tscj)
xc(k) xc (k)

(30)

and based upon this particular case, state representation may
given as

Xc(k—tmj) :
xp (k)
1 k- 1)
xc(k)
hihi(B (ci)) hAP 0 0 !
) 0 0 mi(Bi(ch)) mas
o hihi(B? (ci)) AP 0 0 )
0 0 hihi(BS(ch)) hiAS
xc(k*tmj)
xp (k)
| (k- 1)
xc(k)
(31)

Because only one specific delay is possible on current time,
only one state condition is available and is expressed as before

following LMI conditions matrix; Gj.

i h]h,(BP(Cé)) ]’llAf) 00
K [ 0 0 mn(5(s)) } o

The core of current representation is expressed as

0 hihi(B? (ci)) mAP 0 0 !
0 0 hihi(B5(c})) hiAS
<P hjh,(Bf(Cé)) ]’liA{J 0 0 _p|
0 0 hihi(B(ch)) hiAS
(33)
0>G' PG, - P. (34)

Remember that in terms of LMI this consideration should be
globally stable in terms of index performance.

4. Experimental Setup

The following is a setup to demonstrate how achievable
this combination to make a suitable approximation for time
delays managements is. The number of periodic tasks is equal
to 5 and the number of aperiodic tasks is 7. Following table
presents tasks conditions.

Now based upon plant dynamics this is given as

-03 0 3
A=| -4 -201],
0.1 03 —1

0.1
B=103], (35)
0.2
X = Ax + Bu,
y = cu.

Time delays are determined per scenario with each local
delay considered. The number of scenarios is 13 (as shown in
Figure 6), where each columns is one scenario and the related
time delays are amongst each sensor following (8). The given
control design following (34) is expressed as follows, where
time delays tend to be constant per scenario:
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Time delays =[0.001 0.0000 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0012 0.0001 0.0003 0.00075 0.0001 0.000101 0.00009 0.00002 0.00002 0.000012 0.00003 0.00001 0.000109
0.003 0.0002 0.001 0.0009 0.00018 0.0001601 0.000109 0.000102 0.0000222 0.0000212 0.000063 0.000061 0.000209
0.004 0.0012 0.00232 0.00101 0.00021 0.0020101 0.000209 0.000302 0.000062 0.0000412 0.000073 0.000101 0.000309
0.005 0.002 0.004 0.0013 0.00031 0.0030101 0.000609 0.000602 0.000082 0.0000712 0.000303 0.000201 0.000609
0.00611 0.00302 0.0055 0.00244 0.00041 0.0040101 0.000809 0.001002 0.000102 0.0000812 0.000503 0.001001 0.001009
0.007 0.006 0.0065 0.0033 0.00101 0.0050101 0.001009 0.003002 0.0001202 0.0005012 0.000703 0.002001 0.003009
0.00811 0.0072 0.0085 0.0044 0.00201 0.0060101 0.003009 0.004002 0.000402 0.0008012 0.000903 0.003001 0.004009
0.0095 0.008 0.0095 0.0066 0.00401 0.0070101 0.0039009 0.006002 0.000602 0.0020012 0.002003 0.005001 0.005009
0.0099 0.009 0.0099 0.008 0.00501 0.0080101 0.006009 0.007002 0.004002 0.0050012 0.005003 0.007001 0.009009

0.010 0.01 0.01000 0.01 0.00701 0.008990101 0.007009 0.030002 0.040002 0.0070012 0.010003 0.070001 0.090009 ]

FIGURE 6

0.1 0.11 0.001 0.01 0.1
k=|-02 -0.11 01 -11 -0.2
-1.2 -1.1 -1.1 -0.2 -0.13

Fuzzy variables as well as the number of rules are determined
following Méndez-Monroy and Benitez-Pérez [16]; here final
approximation is determined by similar error following time
delay approach and the related system response. Now the
response of system according to First output is shown in
Figure 5.

5. Conclusions

Current time delays can be modeled using real-time dynamic
scheduling algorithms; however the resulting delays are
time varying and stationary, therefore related local control
laws need to be designed according to this characteristic
and time integration is the key global issue to be taken
into consideration. Global stability is reached by the use
of Takagi-Sugeno Fuzzy Control Design where nonlinear
combination is followed by current situation of the states
which are partially delayed due to communication behavior.

The main contribution on this paper is the capability
to determine local time delays that can be aggregated per
event since a scheduling algorithm contributes to bound
time response. Therefore Fuzzy Control may be attractive to
guarantee global stability since any condition is bounded to
be less than sampling period at the worst case scenario with
no loose of generality.

The use of dynamic scheduling approximation allows
the system to be predictable and bounded; therefore, time
delays can be modeled in these terms. Moreover, the resulting
dynamic representation tackles the inherent switching per
scenario. This approximation has the main drawback that
context switch may be invoked every time a periodic task
takes place and it is possible to be executed; in this case
inherent time delays to this action are taken into account to
be processed as uncertainties.

0.01 -0.001 -0.01 0.0 -0.0 -22

-05 -1.1 -09 01 -0.01 -0.1 (36)

-21 -09 -21 -1.01 -11 -0.2
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In general, the modelling of wind turbines is a challenging task, since they are complex dynamic systems, whose aerodynamics
are nonlinear and unsteady. Accurate models should contain many degrees of freedom, and their control algorithm design must
account for these complexities. However, these algorithms must capture the most important turbine dynamics without being
too complex and unwieldy, mainly when they have to be implemented in real-time applications. The first contribution of this
work consists of providing an application example of the design and testing through simulations, of a data-driven fuzzy wind
turbine control. In particular, the strategy is based on fuzzy modelling and identification approaches to model-based control
design. Fuzzy modelling and identification can represent an alternative for developing experimental models of complex systems,
directly derived directly from measured input-output data without detailed system assumptions. Regarding the controller design,
this paper suggests again a fuzzy control approach for the adjustment of both the wind turbine blade pitch angle and the generator
torque. The effectiveness of the proposed strategies is assessed on the data sequences acquired from the considered wind turbine
benchmark. Several experiments provide the evidence of the advantages of the proposed regulator with respect to different control

methods.

1. Introduction

Wind turbines are complex nonlinear dynamic systems
forced by gravity and stochastic wind disturbance, which are
affected by gravitational, centrifugal, and gyroscopic loads.
Their aerodynamics are nonlinear and unsteady, whilst their
rotors are subject to complicated turbulent wind inflow fields
driving fatigue loading. Therefore, wind turbine modelling
and control represent complex and challenging tasks [1, 2].

Accurate models have to contain many degrees of
freedom in order to capture the most important dynamic
effects. It is clear that the design of control algorithms for
wind turbines has to take into account these complexities.
On the other hand, control algorithms must capture the most
important turbine dynamics, without being too complex and
unwieldy [1, 3].

Today’s wind turbines employ different control actu-
ation and strategies to achieve the required goals and
performances. Some turbines perform the control action
through passive methods, such as in fixed-pitch, stall control

machines. In these machines, the blades are designed so that
the power is limited above rated wind speed through the
blade stall. Thus, no pitch mechanism is needed [1]. On the
other hand, below rated wind speed, the generator speed
is fixed [4]. Rotors with adjustable pitch are often used in
constant-speed machines to provide turbine power control
better than the one achievable with blade stall [5]. Therefore,
blade pitching can be regulated to provide constant power
above rated wind speed. The pitch mechanisms have to be
quite fast, in order to provide good power regulation in the
presence of gusts and turbulence. In order to maximise the
power output below the wind speed, the rotational speed of
the turbine must vary with wind speed.

The control strategies for such machines are typically
designed using simple classical control design techniques
such as (Proportional Integral Derivative) PID control
for blade pitch regulation, as shown for example, in [6].
Advanced controls can be used to improve the energy
capture, for example through the generator torque control,
as shown for example, in [7]. In the same situation,



Johnson et al. [8] proposed an adaptive control approach.
Advanced multivariable control design methods, such as
those based on state-space models, can be used to meet con-
trol objectives and use all the available actuators and sensors
in a reduced number of control loops. In [9], a multivariable
approach was used to design both an independent pitch
controller to mitigate the effects of asymmetric wind distur-
bances. Even though two separate control loops were used for
example, in [9], the multivariable control design approach
can require fewer control loops compared to classical control
design methods, as shown for example, in [10]. Therefore,
the trade-off between wind turbine control algorithms’ accu-
racy and their limited computational complexity represents
the challenging point that motivates this study.

The first contribution of this work consists of providing
an application example of the design, and testing through
simulations, of a data-driven fuzzy wind turbine control.
In particular, the strategy is based on fuzzy modelling and
identification approaches to model-based control design. As
stated above, since a mathematical model is a description
of system behaviour, accurate modelling for a complex
nonlinear system can be very difficult to achieve in practice.
Thus, fuzzy modelling and identification can represent an
alternative for developing experimental models of complex
systems, such as wind turbine systems considered in this
work. In contrast to pure nonlinear identification methods,
fuzzy systems are capable of deriving nonlinear models
directly from measured input-output data without detailed
system assumptions [11]. Thus, it is suggested to describe
the plant under investigation by a collection of local affine
systems of the type of Takagi-Sugeno (TS) fuzzy prototypes
[12], whose parameters are obtained by identification proce-
dures. The proposed identification approach is motivated by
previous works by the same author [13, 14].

Regarding the controller design, this paper suggests a
fuzzy control approach for the adjustment of both the wind
turbine blade pitch angle and the generator torque, with
application to a wind turbine benchmark. This design is
performed according to the following steps. Firstly, a PI
regulator is devised using the classic Ziegler-Nichols method
[15]. Then, the corresponding fuzzy (Proportional Integral)
PI controller is built, by means of a suitable choice of
the gains. The membership functions (MFs) and rules are
derived directly from the identified TS fuzzy models. The
effectiveness of the proposed fuzzy modelling and control
strategy are assessed on the data sequences acquired from
the considered benchmark. Several simulation experiments
provide the evidence of the advantages of the proposed fuzzy
PI regulator with respect to the switching control strategy
developed in [16].

The capabilities of the proposed control strategy are
compared with respect to the control strategy developed in
[16], and with reference to different control methods based
for example, on sliding mode or neural controllers [17, 18].

The next feature of the work is related with the impact
evaluation of the modelling uncertainties, disturbance, and
measurement errors on the designed control scheme. In
particular, the paper proposes the use of extensive Monte-
Carlo simulations for the analysis and the assessment of the
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design, the robustness, the stability, and its final performance
evaluation. In fact, as in this case the wind turbine cannot
be described by any analytical dynamic model, the Monte-
Carlo tool represents the only method for evaluating the
performances of the developed control scheme when applied
to the monitored process.

The last key point of the paper concerns the assessment
of the developed control algorithms through a hardware in
the loop (HIL) facility, which has been developed to qualify
the proposed approaches in the presence of experimental
limitations closer to real situations.

Finally, the paper has the following structure. Section 2
provides an overview of the wind turbine system considered
in this work. Section 3 recalls the fuzzy modelling and
identification strategy exploited for the design of the fuzzy
controller. This proposed fuzzy controller design, followed
by a simple tuning strategy, are presented in Section 3.2.
The achieved results and comparisons with different control
strategies are summarised in Section 4, where the stability,
the robustness analysis, and the capabilities of the developed
control method with respect to measurement and modelling
errors are investigated in simulation. Realistic simulations
and comparisons with different control schemes relying
on sliding mode and neural controller are also reported.
Section 5 ends the paper by highlighting the main achieve-
ments of the work, providing some suggestions for possible
further research topics.

2. Wind Turbine Benchmark Description

The three-blade horizontal axis turbine considered in this
paper works according to the principle that the wind is
acting on the blades, and thereby moving the rotor shaft.
In order to up-scale the rotational speed to the needed one
at the generator, a gear box is introduced. A more accurate
description of the benchmark model can be found in [16,
19]. The diagram of the wind turbine model is sketched in
Figure 1.

The rotational speed, and consequently the generated
power, is regulated by means of two controlled inputs: the
converter torque 7,(t) and the pitch angle B,(t) of the
turbine blades. From the wind turbine system, a number
of measurements can be acquired. w, () is the rotor speed,
wg(t) is the generator speed, and 7,(t) is the torque of the
generator controlled by the converter, which is provided
with the torque reference, 7,(t). The estimated aerodynamic
torque is defined as Taero(t). This estimate clearly depends
on the wind speed, which unfortunately is very difficult to
measure correctly. A very uncertain measurement can be
available as described in [16].

2.1. Model Description. This section recalls briefly the wind
turbine model description in the continuous-time domain.
It is subsequently approximated via identified discrete-time
prototypes, as shown in Section 3.

The aerodynamic model is defined as in

PAC, (B-(),A(1))v* (1)

20, (1) ’ )

Taero ( t) =
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Wind
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RN wWg (1)
wr (1) Gear box Generator
convertor [*
RN T 0 7 ()
—

FiGurek 1: Logic diagram of the wind turbine, where only two of the
three blades are shown.

where p is the density of the air, A is the area covered by
the turbine blades in its rotation, f3,(¢) is the pitch angle of
the blades, v(¢) is the wind speed, whilst A(#) is the tip-speed
ratio of the blade, defined as

w,(t)R

AMt) = )

2

with R the rotor radius. C, represents the power coefficient,
here described by means of a two-dimensional map (look up
table) [16]. Equation (1) is used to estimate T,er0(t) based on
an assumed estimated v(f), and measured f3,(f) and w,(t).
Due to the uncertainty of the wind speed, the estimate of
Taero(t) is considered affected by an unknown measurement
error, which motivates the approaches described in Section 3.

A simple one-body model is used to represent the drive
train, as described in [19]. The generator torque 74(t) and
the reference 7,(t) are in this context transformed to the
low speed side of the drive train (rotor side), whilst pgen is
the generator power coefficient. With these assumptions, the
complete continuous-time description of the system under
diagnosis has the form of

xc(t) = fc(xc(t)> M(t)),
y(t) = x:(t),

3)

where wu(t) = [ﬂ,(t),‘rg(t)]T and y(t) = =x(t) =
[Pg(t),wg(t)]T are the control inputs and the monitored
output measurements, respectively. f.(-) represents the
continuous-time nonlinear function that will be approxi-
mated via discrete-time prototypes from N sampled data
u(k) and y(k), with k = 1,2,..., N, presented in Section 3.

Regarding the input and output signals, wg(t) is the
generator speed measurement, P,(t) is the generator power
measurement, f3,(t) is the pitch measurement, and 74 (¢) is
generator torque measurement. Finally, the model parame-
ters and the map C,(f3,A) are chosen in order to represent a
realistic turbine, which is used as benchmark system in this
study [16].

2.2. Wind Turbine Benchmark Control System. The controller
for a wind turbine operates in principle in two main zones.
Zone 1 is the power optimisation, whilst zone 2 corresponds
to constant power production. The optimal power in zone 1
is obtained if the blade pitch angle S, is equal 0 degrees, and
if the tip speed ratio is constant at its optimal value Aop;. The
tip speed ratio, A, as already described by (2), can be written

as in (4), where R is the radius of the blades, v is the wind
speed, and w, is the angular rotor speed:
A= 9R @)

v

The optimal value of A, which is denoted with Aqp, is
determined as the maximal value point in the power
coefficient mapping of the wind turbine. This optimal value
is achieved by setting the reference torque to the converter,
7y = T The reference torque 7, in this power optimisation
zone can be written as

Tgr = Kopt w; (5)
with:
1 C
K = ~pA R3 Pmax 6
opt 2 P /\gpt ( )

with p being the air density, A the area swept by the
turbine blades, C,.. the maximal value of C, (i.e., the power
coefficient map), related to the Aop, that is, the optimal tip-
speed ratio.

When the power reference is achieved, the controller
can be switched to control zone 2. In this zone the control
objective consists of following the power reference, P,, which
is obtained by controlling f,, such that the C, is decreased.
In a traditional industrial control scheme, usually a PI
controller is used to keep w, at the prescribed value by
changing B,. The second control input is 7, whose value is
computed by using (5).

The wind turbine benchmark controller considered in
this study was implemented with a sample frequency at
100 Hz, that is, Ts = 0.01s. The controller starts in zone 1.
Therefore, the control mode should switch from zone 1 to
zone 2 if the following conditions hold [16]:

Pg(k) > P,(k), wg(k) = Wnom> (7)

where k indicates the acquired discrete-time measurements
from the corresponding continuous-time signals, whilst
Wnom 18 the nominal turbine speed. On the other hand, the
control switches from zone 2 to zone 1 if

wg(k) < Wnom — WA, (8)

where wp is a number that introduces hysteresis to ensure a
minimum time between transitions. On the other hand, for
the control zone 2:

Br(k) = Br(k — 1) + kpe(k) + (kiTs — ky )e(k — 1),

€(k) = wg(k) — Wnom

with k = 1,2,...,N. The parameters for this PI speed
controller are k; = 0.5 and k, = 3, with sampling time
T, = 0.01s., as described in [19].

Finally, regarding the control of the input 7, a second PI
regulator is implemented, as the one of (9):

7(k) = 7, (k = 1) + kpe(k) + (kiTs — kp ) e(k — 1),

)

(10)
e(k) = Py(k) - P,.

The parameters for this second PI power controller are k; =
0.014 and k, = 447 x 107, according to [19].



3. Fuzzy Identification and Control Design

This section describes the comprehensive approach exploited
for obtaining the fuzzy description of the wind turbine
system and the control strategy used for the regulation of its
input variables. In particular, the fuzzy modelling and iden-
tification scheme, which is recalled in Section 3.1, enhances
the design procedure of the proposed fuzzy controller, as
shown in Section 3.2.

3.1. Fuzzy Identification and Data Clustering. In order to
generate fuzzy models automatically from measurements,
a comprehensive methodology is used. This employs fuzzy
clustering techniques to partition the available data into
subsets characterised by a linear behaviour. The relationships
between the presented identification method and linear
regression are exploited, allowing for the combination of
fuzzy logic techniques with system identification tools. In
addition, the implementation in the Matlab toolbox of the
Fuzzy Modelling and Identification (FMID) techniques pre-
sented in the following is available [20]. Fuzzy identification
usually refers to methods and algorithms for constructing
fuzzy models from data.

A large part of fuzzy modelling and identification
algorithms (see, e.g., [11] and references therein) share a
common two-step procedure, in which at first, the operating
regions are determined using heuristics or data clustering
techniques. Then, in the second stage, the identification
of the parameters of each submodel is achieved using the
identification algorithm in particular proposed by the author
[13, 14], which can be seen as a generalisation of classical
least-squares. From this perspective, fuzzy identification can
be regarded as a search for a decomposition of a nonlinear
system, which gives a desired balance between the complexity
and the accuracy of the model, effectively exploring the
fact that the complexity of systems is usually not uniform.
A suitable class of fuzzy clustering algorithms can be thus
used for this decomposition purpose, and in particular,
the well-known Gustafson-Kessel (GK) fuzzy clustering [11]
is exploited in this work, since already implemented and
available in [20].

The fuzzy rule-based model suitable for the approxima-
tion of a large class of nonlinear systems was introduced by
Takagi and Sugeno (TS) in [12]. In the TS fuzzy model, the
rule consequents are crisp functions of the model inputs:

Ri . IF X(k) is Ai THEN Yi= ﬁ(X(k)), (11)

where i = 1,2,..., M, x(k) € R? is the input (antecedent)
variable and y; € R is the output (consequent) variable. R;
denotes the ith rule, and M is the number of rules in the rule
base. A; is the antecedent fuzzy set of the ith rule, defined
by a (multivariate) membership function. The consequent
functions f; are typically chosen as instances of a suitable
parameterised function, whose structure remains equal in
all the rules and only the parameters vary. A simple and
practically useful parameterisation of the function f; is the
affine form:

yi = ax +b;, (12)
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where a; is the parameter vector (regressand), and b; is the
scalar offset. x = x(k) represents the regressor vector, which
can contain delayed samples of u(k) and y(k). This model is
referred to as affine TS model, and it can be written as [12]

M
5= 2im1 Hi(X)yi (13)

SH i)

The antecedent fuzzy sets y; are extracted from the fuzzy
partition matrix [11, 20]. The consequent parameters a;
and b; are estimated from the data using the method
developed by the author [13, 14] and recalled below. This
identification scheme exploited for the estimation of the
TS model parameters has been integrated into the FMID
toolbox for Matlab by the author. This approach developed
by the author is usually preferred when the TS model
should serve as predictor, as it computes the consequent
parameters by the so-called Frisch scheme [13, 14]. Therefore,
after the clustering of the data has been obtained via the
GK algorithm, the data subsets are processed according the
Frisch scheme identification procedure [13, 14], in order to
estimate the TS parameters for each affine submodels.

3.2. Fuzzy Controller Design. The proposed fuzzy logic
controller is fed by the error signal e(k), that is, the tracking
error defined as the difference between the considered set-
point r(k) and the plant controlled output y(k) at the sample
k:

e(k) = r(k) — y(k). (14)

The fuzzy PI controller uses a second input signal, defined as
the sum of the system errors, which is computed using

k
Se(k) = e(i). (15)
i=1

It is known from the Digital Control Theory that the
most frequently used digital PI control algorithm can be
described as follows:

u(k) = kpe(k) + k;ide(k), (16)

where k; = k,(Ty/T;), Ts is the sampling time, T; is the
integral time constant of the conventional controller, k, is
the proportional gain, and u(k) is the output control action.

The structure of the control system with the proposed
fuzzy controllers are based on Sugeno’s fuzzy technique. The
Sugeno’s fuzzy rules into the fuzzy PI controller are in the
generalised form of “IF-THEN” composition with a premise
and an antecedent part to describe the control policy. The
rule base comprises a collection of M rules, where the index
j represents the rule number:

R; : TF x(k) is A; THEN

k) = K elk) + K Se(k) + b, j=1,2,..., M,
(17)
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where e(k) and de(k) are the input variables, with k =
1,...,N. In this expression, a similarity between the expres-
sion of the conventional digital PI controller of (16) and the
Sugeno’s output function of (17) can be found. In this case,
the fuzzy PI controller is considered as a collection of several
local PI controllers, which are represented by the Sugeno’s
functions into the different fuzzy rules.

For a discrete universe with M quantisation levels in the
fuzzy output, the control action u = up is expressed as a
weighted average of the Sugeno’s output functions f,, and
their membership degrees y; of the quantisation levels, with
i = 1,...,M. Also in this case, before the output can be
inferred, the degree of fulfilment of the antecedent denoted
by ui(x) must be computed. Thus, the degree of fulfilment
is simply equal to the membership degree of the given input
x, that is, g = pa,(x). By recalling the identified TS model,
the inference is reduced to a simple expression, similar to the
fuzzy-mean defuzzification formula [11]:

M )
up = 2L O (18)
2o 4i(x)
or by substituting the expression of the fuzzy PI terms:
il = S s (x(k)) (K ek + K7 Se(k) + b))
S ui(x(k)) ’
(19)

where the time dependence at the instant k has been
highlighted.

It is worth noting that the PI controller parameters KI(;J )

and KI(J ) (with j = 1,...,M) are settled according to the
Ziegler-Nichols rules applied to the identified local linear
TS submodels. Then, in order to obtain a quick reaction to
set-point variations, gain scheduling of the fuzzy regulator
parameters is performed depending on the error, as shown
by (19).

In more detail, if for example the TS consequents
are represented by second order discrete-time local linear
dynamic models (n = 2) described in (12) by their
identified parameters a; = [ocgi), ocgi), y%i) R yg)], and regressor
xI(k) = [-y(k = 1),—y(k — 2),u(k - Dyu(k = 2)], (i =
1,...,M), the so-called critical gain K and critical period
of oscillations T5” required by the Ziegler-Nichols method
can be computed for example, as follows [15]:

GG
K _ o~y —1
(] i ; b
ps) =
@), (i) (i), (i) (20)
= 2T e = N G
° arccos 6@’ 2),&1‘)

which holds if || < 1. Alternative formulas can also be
used [15]. Equation (21) is thus used for calculating the

parameters Kl(f) and Kl(i) of the (local) ith PI controller of
(17):

. ) T
Ky :0.6K,§'><1— (§>>,
To
, (21)
0 _ I.ZKO(I)
N <

where T; is the sampling time. As shown for example, in [15],
TS consequents of orders n greater than 2 can be considered.

Once the fuzzy PI controller parameters have been
computed, the second step consists of building the fuzzy
controller of (19). The input MFs y1;(x) can coincide with the
ones of the identified TS model, as described for example, in
[11]. The number of the input MFs determines the number
of rules and output MFs. In this work, the optimal number
of rules M is equal to the minimal number of clusters used
to identify the nonlinear system, as described at the end
of Section 3.1. Finally, the adopted fuzzy operators are the
product as AND operator, the bounded sum as OR operator,
MIN as implication method, and the Centre of Gravity
(COGQG) as defuzzification method.

Section4 will show the achieved results regarding
the fuzzy PI controller parameter tuning using the data
sequences from the wind turbine benchmark.

4. Simulation Results

This section describes the simulation results achieved with
the method relying on both the fuzzy modelling techniques
oriented to the design of the fuzzy controller.

Regarding the proposed control method, the GK cluster-
ing algorithm discussed in Section 3.1 with M = 3 clusters
and a number of shifts n = 2 were applied to the estimation
and validation sampled data sets {P,(k), wg(k), B;(k)}, with
k = 1,2,...,N and N = 440 x 10°. On the other hand,
a number of clusters M = 3 and n = 2 were considered
for achieving a suitable clustering of the sampled data
sets {Py(k),wy(k), 74(k)}. After clustering, the TS model
parameters for each output were estimated. Therefore, the
ith output y(t) of the wind turbine (i = 1,...,m and m = 2)
continuous-time model of (3) is approximated by a TS fuzzy
prototype (13). The relative mean square errors of the output
estimations are 0.0254 for the first output and 0.0125 for the
second one.

The fitting capabilities of the estimated fuzzy models
can be expressed also in terms of the so-called Variance
Accounted For (VAF) index [11]. In particular, the VAF value
for first output was bigger than 90%, whilst bigger than 99%
for the second one. Hence, the fuzzy multiple models seem to
approximate the process under investigation quite accurately.
As an example, Figure 2 represents simulated output values
wg and P, of the TS fuzzy model from the training of the
wind turbine benchmark model by using FMID.

Using these identified TS fuzzy prototypes, the model-
based approach for determining the fuzzy controller was
exploited and applied to the considered wind turbine
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FIGURE 2: TS fuzzy model estimated outputs (red) compared with the measured ones (blue).

benchmark. According to Section 3.2, the parameters of the
fuzzy PI controllers were computed.

In the following, the suggested fuzzy PI controllers and
the original switching strategy described in Section 2 were
implemented in the Matlab and Simulink environments.

The experimental setup employs 2 (Multiple-Input
Single-Output) MISO fuzzy PI regulators used for the
control of the blade pitch angles and the generator control
torque, respectively. As an example, by using the previous
(21), the following tuned parameter sets have been computed
for the pitch angle control:

K, k) = (23,3.1,3.2,
(22)
1KY, LK = 10.2,04,05),

In order to compare the advantages of the proposed fuzzy
PI strategy, the obtained results were also compared with the
ones achieved by using the original switching wind turbine
benchmark regulator recalled in Section 2.

The controller capabilities were assessed in simulation by
considering different data sequences. In Tables 1 and 2, the
per cent Normalised Sum of Squared tracking Error (NSSE)
values defined as

Sy (r(k) = y(k)®
SN r2(k)

NSSE% = 100J (23)

are computed for the designed controllers.

It is worth noting that in partial load operation (zone 1),
the performance is represented by the comparison between
the power produced by the generator, P,, with respect to
the theoretical maximum power output, P,, given the instant
wind speed. On the other hand, in full load operation (zone
2), the performance depends on the generator speed, w,, with
respect to the nominal one, wyom-

TasLE 1: Controllers in partial load operation: NSSE% values.

Data set Benchmark controller Fuzzy PI
Estimation data 39.34% 21.36%
Validation data 42.19% 22.17%

TasLE 2: Controllers in full load operation: NSSE% values.

Data set Benchmark controller Fuzzy PI
Estimation data 19.53% 11.57%
Validation data 21.01% 12.85%

According to these simulation results, the properties
of the suggested fuzzy controllers appear better than the
original switching regulator described in Section 2.2.

4.1. Robustness and Attraction Domain Evaluation. In this
section, further experimental results were reported. They
regard the performance evaluation of the developed control
scheme with respect to modelling errors and measurement
uncertainty. In particular, the simulation of different data
sequences was performed by exploiting the wind turbine
benchmark simulator and a Matlab Monte-Carlo analysis
[21]. In fact, the Monte-Carlo tool is useful at this stage
as the control strategy performances depend on the error
magnitude due to the model approximation and uncertainty,
as well as on input-output measurement errors [22].

In particular, the nonlinear wind turbine simulator
originally developed in the Simulink environment [19] was
modified by the author in order to vary the statistical
properties of the signals used for modelling possible process
parameter uncertainty and measurement errors. Therefore,
in this case, the Monte-Carlo analysis represents a viable
method for analysing some properties of the developed fuzzy
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TaBLE 3: Simulated wind turbine parameter uncertainties.

Variable Nominal value Min. error Max. error
p 1.225kg/m? +0.1% +20%
A 6647.6 m? +0.1% +20%
J 7.794 x 10° kg/m? +0.1% +30%
Pgen 985! +0.1% +20%
N, 95 +0.1% +20%
C, Cpo +0.1% +50%
u Up +0.1% +20%
y o +0.1% +20%

TABLE 4: Monte-Carlo analysis for the fuzzy controller: NSSE%
values.

Test case Partial load Full load
Best case 19.37% 9.57%

Average case 21.19% 11.94%
Worst case 23.19% 13.94%

control scheme, when applied to the considered process.
Under this assumption, Table 3 reports the nominal values of
the considered wind turbine model parameters with respect
to their simulated uncertainty.

The Monte-Carlo analysis was performed by describing
these variables as Gaussian stochastic processes, with zero-
mean and standard deviations corresponding to minimal
and maximal error values in Table 3.

Moreover, it is assumed that the input-output signals u
and y and the power coefficient map C, entries were affected
by errors, expressed as per cent standard deviations of the
corresponding nominal values uo, yo, and Cp also reported
in Table 3. These values can be motivated by the work from
the same author [23], which suggests to provide a polynomial
approximation of the map C, via an identification procedure
from the input-output u and y affected by measurement
errors.

Therefore, for performance evaluation, reliability and
robustness analysis of the fuzzy control scheme, the best,
average, and worst values of the NSSE% index were com-
puted, and experimentally evaluated with 500 Monte-Carlo
runs [22]. The value of NSSE% is computed for several
possible combinations of the parameter values reported
in Table 3. Table4 summarises the results obtained by
considering the fuzzy control scheme in Section 3.

In particular, Table 4 summarises the values of the con-
sidered performance indices according to the best, worst, and
average cases, with reference to the possible combinations
of the parameters described in Table 3. Table 4 shows that
the proposed fuzzy control scheme allows to maintain good
control performances even in the presence of considerable
error and uncertainty effects.

The robustness of the controller designs could be
evaluated also on the basis of the Domain Of Attraction
(DOA) analysis [24]. In fact, the stability of equilibrium
points plays a fundamental role in dynamical systems. For

nonlinear dynamical systems an investigation of the stability
and robustness properties requires the characterisation of
the DOA of an equilibrium point, that is, the set of initial
conditions from which the trajectory of the controlled system
converges to such a point. In this case, it is clear that
estimating or controlling the DOA are very difficult problems
because of the complex relationship of this set with the
model of the wind turbine. Moreover, as shown in Section 2,
the wind turbine system cannot be described as an analytic
model. Therefore, the DOA analysis can be performed only
in simulation using again the Monte-Carlo tool, which is
used for providing random variations of wind turbine initial
conditions, in a similar way of Table 3.

Figures 3 and 4 show an example of the results from
a Monte-Carlo run, where the wind turbine monitored
outputs, that is, the generator power P, and the generator
angular rate w, (red) are compared with their reference
values (blue), thus assessing the equilibrium point stability,
for a perturbed arbitrary initial condition.

In particular, Figure 3 shown that for an arbitrary initial
condition randomly changed by the Monte-Carlo tool, the
proposed fuzzy TS is able to maintain the stability of
the wind turbine. However, the monitor process becomes
unstable when controller by the benchmark PI regulator, as
highlighted in Figure 4. The simulation results highlight that
the benchmark regulator scheme stabilises the wind turbine
up to 10% level of variation in its nominal initial conditions,
whilst the proposed fuzzy TS control strategy tolerates ranges
within 30% of the nominal initial values.

Finally, the results demonstrate that Monte-Carlo sim-
ulation is an effective tool for experimentally testing the
design robustness, stability, and reliability of the proposed
control method with respect to modelling uncertainty and
disturbance.

4.2. Comparative Studies. This section provides some
comparative results with respect to alternative control
approaches, in particular relying on the sliding mode and
neural network controllers.

In general, the sliding mode control can be designed
on the basis of a linear or a nonlinear model [17]. In
both cases, the design procedure is based on the selection
of an appropriate switching manifold, and then on the
determination of a control law, including a discontinuous
term, that ensures the sliding motion in this manifold.
However, sliding mode control design for the nonlinear case
is generally applied to systems in the so-called regular form,
which consists of two blocks: one depending on the control,
with the same dimension of the control vector, and the other
independent. Such regular form may be obtained by means
of a nonlinear coordinate transformation. On the other
hand, if a linear model is used, the transformation into the
regular form and the design of the sliding mode dynamics are
simpler, since known results from linear control techniques
(i.e., pole placement, eigenstructure assignment, and optimal
quadratic) are applicable. This design procedure can be
therefore tolerant with respect to uncertainty and modelling
errors, since these disturbances are decoupled from the
sliding motion.
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FIGURE 4: P, and w, outputs with the PI benchmark regulator.

The second control scheme exploited for comparison
purposes was developed by using the strategy relying on
the Neural Network (NN) tool [18]. The NN controller
was on a 2-inputs 2-outputs time-delayed three-layer Multi-
Layer Perceptron (MLP) NN with 5 neurons in the input
layer, 10 neurons in the hidden layer and 2 neurons in the
output layer. The NN has been trained in order to provide
the optimal reference tracking on the basis of the training
patterns and target sequences [18].

In order to provide a brief but clear insight into the
above-mentioned control technique, the comparison was
performed in the same previous working conditions and
based on the NSSE% index suggested at the beginning of
Section 4.

It is worth noting that the schemes implemented via
the sliding mode or neural controllers do not exploit any
adaptation mechanism. In fact, the sliding mode control
strategy is able to decouple the uncertainty via the sliding
motion, whilst neural networks were designed to passively
tolerate disturbance and modelling errors.

Tables 5 and 6 summarise the results obtained by
comparing the sliding mode and NN techniques analysed
in this subsection. It can be seen how the different schemes
are able to tolerate uncertainty and errors, thus achieving
graceful control performance degradation.

The comparison between Tables 5 and 6 shows that the
scheme using the sliding mode controller allows to achieve
better performances in terms of tracking error. However,
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FiGure 5: Simulations of the wind turbine benchmark working at
partial load.

TaBLE 5: Monte-Carlo analysis with the sliding mode controller.

Test case Partial load Full load
Best case 27.71% 26.55%
Average case 28.52% 27.72%
Worst case 29.19% 28.44%

TaBLE 6: Monte-Carlo analysis with the NN controller.

Test case Partial load Full load
Best case 36.45% 35.57%
Average case 37.49% 37.94%
Worst case 41.19% 39.94%

the control input energy required by the sliding mode
controller is bigger than the other cases. Moreover, the
sliding mode controller can increase the computational time
considerably with respect to the other solution.

Few further comments can be drawn here. When the
modelling of the dynamic system can be perfectly obtained,
in general model-based control strategies are preferred. On
the other hand, when modelling errors and uncertainty are
present, alternative control schemes relying on fuzzy control
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FiGure 6: Simulations of the wind turbine benchmark operating at
full load.

method can show interesting robustness properties in the
presence of unmodeled disturbance, modelling mismatch,
and measurement errors. With reference to the neural
controller, in the case of a controlled system with modelling
errors, the offline learning can lead to quite good results.
Other explicit disturbance decoupling techniques can take
advantage of their robustness capabilities, but with quite
complicated and not straightforward design procedures. The
NN-based scheme relies on the learning accumulated from
offline simulations, but the training stage can be compu-
tationally heavy. Regarding the proposed method using the
fuzzy tools, it seems rather simple and straightforward, even
if optimisation stages can be required.

4.3. Stability Tests. The stability properties of the overall
control strategy were checked again by means of a Monte-
Carlo campaign based on the wind turbine benchmark
simulator when controlled by means of the proposed
regulators. In fact, as pointed out in Section 2, the wind
turbine system contains the power coefficients map C, that
cannot be described by any analytical model obtained via
first principles. Thus, the Monte-Carlo analysis represents
the only method for estimating the stability of the developed
fuzzy control scheme when applied to the monitored process.

Initial conditions were changed randomly and distur-
bance affecting the system was simulated during the transient
related to the stability analysis.
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All simulations were performed by considering noise
signals modelled as band limited white processes, according
to the standard deviations reported in Table 3.

As an example of a single Monte-Carlo run, Figure 5
highlighted that the main wind turbine model variables, such
as the generator torque 7, the tip-speed-ratio A, and the
generator power P, remain bounded around the reference
values, proving the overall system stability in simulation,
even in the presence of disturbance and uncertainty. These
results refer to the case of partial load operation with the
fuzzy controller, when the wind speed v(t) is below 12 m/s.

Figure 5 highlights also that in the first part of the
simulation the output power P, becomes larger than the
theoretical one Py max, as the kinetic energy from the rotor
shaft is converted into electrical energy produced by the
generator. On the other hand, Pym.x can be above the
generated power, since the inertia of the rotor is accelerated
before Pg max can be matched.

As further example of the Monte-Carlo run, the results
achieved with the fuzzy controller above rated wind speed
are reported in Figure 6.

Figure 6 depicts also the generator speed w, and the
control input f3,. Also in this situation, the main wind turbine
variables remain bounded around the reference values, thus
assessing the overall system stability in simulation, even in
the presence of modelling errors and noise signals.

It is worth noting that the fuzzy control design followed
by the analysis procedures shown in Sections 4.1, 4.2, and
4.3 were developed using the Matlab and Simulink software
tools, in order to automate the overall simulation process.
These feasibility and reliability studies are of paramount
importance for real application of control strategies once
implemented to future wind turbine installations.

To this aim, Section 4.4 illustrates how the designed
control algorithms are assessed through the hardware in the
loop (HIL) test-bed to evaluate their capabilities in a more
realistic experimental situation.

4.4. Hardware in the Loop Tests. In order to evaluate the
potential of utilising the proposed control algorithms in
real applications and investigate their capability to on-
board implementation, this section presents the results of
the hardware in the loop (HIL) tests. These experimental
results serve to validate definitely the desired requirements
attributed to the designed algorithms considering almost
real conditions that the wind turbine may experiment with
during its working situations. For this purpose, HIL test-
bed is developed according to Figure 7, which provides the
capabilities to validate the developed control algorithms in
an almost real-time condition.

This laboratory facility includes the following three
elements:

(i) Computer simulator: this simulator, which has been
created in the Labview software from the Matlab
and Simulink environments, provides the modelling
of the wind turbine dynamics considering the fac-
tors such as uncertainty, disturbance, measurement
errors, and wind turbine component models, as
described in Section 2. This software tool allows
to monitor the parameters related to the control
algorithms and analyse their performance.

(ii) On-board electronics: the control algorithms have
been implemented in this element. The electronic
device utilised in this module is the AWC 500 system,
which in addition satisfies standard wind turbine
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TasLE 7: HIL results with the fuzzy controller: NSSE% values.

Full load
12.83%

Partial load
22.81%

technical specifications. This element also provides
the flexibility to implement and evaluate the different
control algorithms. As it can be seen from Figure 7,
the on-board electronics receives the wind turbine
power and generator angular rate as its inputs,
and after the algorithm processing, generates the
generator torque and pitch command output signals
transmitted to the computer simulator. The gener-
ator torque and the pitch commands are generated
by the proposed control algorithms and are applied
to the wind turbine model simulator to guarantee its
stability and the required specifications.

(iii) Interface circuits: they consist of the appropriately
selected input-output cards, which receive the output
signals from the computer simulator and transmit the
output signals generated by the control algorithms.

The results achieved from one test are summarised in Table 7
for the proposed fuzzy controller.

Table 7 illustrates that there are some deviations between
the achieved results, but consistent with the ones of Table 4
from the Monte-Carlo analysis. In fact, the performances
in the simulation case are somehow better than the HIL
experimental case, which is reasonable due to the issues
detailed below.

(1) Accuracy of the float calculations in the on-board
electronics processor is more restrictive than the CPU
of the computer simulator.

(2) The major deviation between the results originates
from the analog to digital and digital to analog
conversions.

Since the data must be transferred between the on-
board electronics and the computer simulator, a 16 bit
conversion is inevitable, so this conversion error may lead
to the deterioration of the experimental results. Note that,
since the real situations do not need to transfer data between
the on-board electronics and the computer, this error is not
a problem and is consistent with the results already achieved
via the Monte-Carlo tool. Moreover, although there are some
deviations between the simulation and the experimental
results, but due to the reasons stated above, these deviations
are not critical, and the results obtained are accurate enough
for real wind turbine applications.

5. Conclusion

The paper is focused on the control design problem for wind
turbines, since they are complex nonlinear dynamic systems.
Moreover, their aerodynamics are nonlinear, unsteady, and
complex, and their modelling is thus challenging. Therefore,
the design of control algorithms for wind turbines must
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account for these complexities. This paper showed how a
fuzzy control design method can be suggested to improve
classic control limitations, such as PI standard regulators.
Therefore, the application example of a viable, simple,
and straightforward control design was provided, through
extensive simulations of a wind turbine prototype. Tests
on the considered benchmark process and Monte-Carlo
analysis represented the tools for assessing experimentally
the properties of the proposed fuzzy control scheme, in
the presence of modelling and measurement errors. The
developed control method was also compared with other
different approaches. To highlight the potential of the
proposed control algorithms in real applications, hardware
in the loop test facility was planned to study the digital
implementation of the designed strategies. The test results
showed again that the developed schemes maintained their
desired performances, which validated their feasibility also
in real-time implementations. Future works aim to perform
sustainable and dependability analyses that are of paramount
importance for real wind turbine applications.
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Prime fuzzy ideals, prime fuzzy k-ideals, and prime fuzzy h-ideals are roped in one condition. It is shown that this way better
fuzzification is achieved. Other major results of the paper are: every fuzzy ideal (resp., k-ideal, h-ideal) is contained in a prime
fuzzy ideal (resp., k-ideal, h-ideal). Prime radicals and nil radicals of a fuzzy ideal are defined; their relationship is established. The
nil radical of a fuzzy k-ideal (resp., an h-ideal) is proved to be a fuzzy k-ideal (resp., h-ideal). The correspondence theorems for
different types of fuzzy ideals of hemirings are established. The concept of primary fuzzy ideal is introduced. Minimum imperative
for proper fuzzification is suggested and it is shown that the fuzzifications introduced in this paper are proper fuzzifications.

1. Introduction

This paper is, in some sense, an extended version of
the article “On Fuzzification of Prime Ideals with Special
Reference to Semirings” in SciTopics and something more.
Several attempts have been made to fuzzify the concepts
of prime ideals/k-ideals/h-ideals of a semiring [1-7], prime
ideals of a ring [8-15], and prime ideals of a semigroup
[16-18]. We have discussed elsewhere [6], in detail, the
deficiencies in the definition of a prime fuzzy h-ideal
proposed in [7]. The definition suffers from three major
drawbacks. First, it is very restrictive in the sense that the
fuzzy h-ideals, which are prime according to the definition,
are 2-valued function. Secondly, since one of the two values
is always 1 (the greatest element of the lattice), the function
is determined by only one value, thus, severely curtailing
its fuzziness. Third, when the zero element of the valuation
lattice is not a prime element (and this happens in many
important lattices), even the characteristic function of a
prime ideal fails to be a prime fuzzy ideal. The technique
adopted for the fuzzification by Zhan and Dudek in [7]
and by others in [1-3, 5] is identical. Therefore, their prime
fuzzy ideals inherit the same drawbacks. In [6] we have
redefined prime fuzzy left h-ideal so that these deficiencies
are completely removed. (It should be thankfully mentioned
that one of the referees of the present paper has pointed out
that in [4] two similar definitions of prime fuzzy ideal are
stated. However, while proving major results of the paper,

only 2-valued prime fuzzy ideals are used.) In this paper,
we show that the problem of fuzzification of left ideal,
left k-ideal, and left h-ideal need not be tackled separately.
One single condition governs all the three. We also “refine”
our definitions so that they look more compact, elegant,
and easy for application. We prove that every proper fuzzy
ideal (resp., k-ideal, h-ideal) is contained in a prime fuzzy
ideal (resp., k-ideal, h-ideal). We introduce the concepts of
fuzzy prime radical (or to be more precise, prime radical
of a fuzzy ideal) and fuzzy nil radical (or nil radical of a
fuzzy ideal), and fuzzy primary ideal. The prime and the nil
radicals of a fuzzy k-ideal coincide when the valuation lattice
is linearly ordered (e.g., when it is [0,1]). An analogous
result holds for fuzzy h-ideals. We establish a correspondence
between fuzzy ideals (resp., k-ideals, h-ideals) of a hemiring
and those of its homomorphic image. The correspondence
preserves prime, semiprime, and primary fuzzy ideals/k-
ideals/h-ideals. Fuzzifications introduced in this paper can be
labeled as “proper fuzzifications”.

2. Preliminaries

2.1. Ideals of a Semiring. In the following discussion, (S, +, -)
stands for a semiring. That is, (S,+) is a commutative
monoid having identity element 0 and (S, -) is a semigroup
satistying the following identities: a(b + ¢) = ab + ac, (a +
b)e = ac+bc,and 0 - x = 0 = x - 0. A commutative
semiring with unity is a semiring (S, +, -) such that (S, -) is



a commutative monoid. We denote the identity element of
(S, -) by 1. With abuse of notation, we denote (S, +, -) by S.
A left ideal A of S is a nonempty set A which is closed under
the addition of S and is such that, forallx € Sanda € A
we have xa € A. A left ideal A of S is called a left k-ideal,
ifforallx € S, x+a € A,anda € A = x € A. Itis
called a left h-ideal, if forall x,z € S, x+a+z = b + z,
and a,b € A = x € A. A right ideal (resp., k-ideal, h-ideal)
is similarly defined. Whenever a statement is made about left
ideals, it is to be understood that the analogous statement
is made about right ideals. An ideal is one, which is both
right and left ideal. A left ideal P is called prime left ideal,
if it satisfies the following conditions:

(i) P# Sand
(ii) for all left ideals A & B of S, we have

AB < P = either AcPorBcP (T)

It is natural to call P a k-prime (resp., h-prime) left ideal, if
the condition (I) holds for left k-ideals (resp., h-ideals) A and
B.

Clearly, every prime left ideal is k-prime and every k-
prime left ideal is h-prime. However, as will be seen in
Example 1, the reverse implications, in general, are not true.

Example 1. (a) If S = {0, a, 5,1} is the Boolean lattice of four
elements, then 0 is not a k-prime ideal, as the condition (I)
fails for k-ideals A = {0, a} and B = {0, 3}. However, S being
the only h-ideal of S, 0 is h-prime. Clearly, 0 is neither prime
nor an h-ideal.

(b) Consider the semiring S = {0,1,2,3}, where the
binary operations @ and ® are defined as follows: a ® b =
Min{a + b,3} and a ® b = Min{ab, 3}. One can easily see
that S has only three proper ideals, namely, 0, A = {0,2,3},
and B = {0, 3}. Since we have AA < B and A¢B, B is not
a prime ideal. However, 0 and S being the only k-ideals of
S, one can see that B is a k-prime ideal. Again, B is neither
prime nor a k-ideal.

We shall soon see that the concepts of primeness and k-
primeness (resp., h-primeness) coincide for k-ideals (resp.,
h-ideals).

Proposition 2 (see [5, 7]). If S is a semiring and A and B
are left ideals of S, then k(AB) = k(k(A)k(B)) and h(AB) =
h(h(A)h(B)), where k(A) and h(A), respectively, denote k-
closure and h-closure of A.

Using Proposition 2 we get the following.
Theorem 3. Let P be a proper left k-ideal (resp., h-ideal) of a
semiring S. The following statements are equivalent.

(a) P is prime.

(b) P is k-prime (resp., h-prime).

(c) Foralla,b €S, aSb < P impliesa € P or b € P.
Proof. We prove the statement: “(b) implies (c)”, for h-ideals.

Suppose P is a proper h-prime left h-ideal such that
aSb < P for a,b € S. Clearly, we have SaSb < P. Our
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first claim is that for A = h(Sa) and B = h(Sb), where
h(I) stands for the h-closure of a left ideal I of S, we have
AB < P. Suppose we have x € A and y € B. Then for
some s, t,u,v,2,2, in S, we have x + sa + z = ta + z
and y + ub + z7 = vb + Z’ and, therefore, the equalities:
ay +aub + az’ = avb + az’,and xy + say + zy = tay + zy.
As aub and avb are elements of P and P is an h-ideal, ay
is in P. Therefore, say, tay and consequently, xy are in P.
It, then, follows that AB < P and, P being h-prime, we
have either A = P or B < P. Suppose A < P. If (a) is
the left ideal generated by a, then we have (a){(a) < Sa
and hence, h({a))h({a)) = h(h({a))h({a))) = h({a){a)) <
h(Sa) = A < P. Since P is h-prime, we have h({a)) < P and
consequently, a € P. O

Using Zorn’s Lemma one can prove the following.

Theorem 4. Every proper ideal (resp., k-ideal, h-ideal) of a
commutative hemiring S with unity is contained in a prime
ideal (resp., k-ideal, h-ideal) of S.

Theorem 5. If T is a multiplicatively closed set in a commuta-
tive hemiring S with unity, disjoint from an ideal (resp., k-ideal,
h-ideal) I of S, then there exists a prime ideal (resp., k-ideal, h-
ideal) P of S such that] S Pand PNT = @.

2.2. Prime Ideals of N. In the hemiring N of nonnegative
integers, obviously, an ideal I is a k-ideal if and only if it is
an h-ideal. Moreover, I is a k-ideal if and only if I = nN for
some # € N. The prime k-ideals of N are either pN where p
is a prime number in N or the zero ideal. For each prime p
the ideal pN is a maximal k-ideal [19]. Clearly, pN is not a
maximal ideal of N.

Proposition 6. Let p be a prime integer in N and P = N ~
{1}. There is no prime ideal I of N such that pN C I C P.

Proof. We first prove that the proposition holds for p = 2.
Assuming the contrary, let I be a prime ideal such that 2N C
I C P. Let x be the smallest element of I ~ 2N. Then x = 2n+
1 for some positive integer n. Let ] = {z € N | z = 2n} U {0}.
Since 2,2n and 2n + 1 are in I and I is closed under addition,
we have J C L. Clearly, if n = 1, then J = P. Therefore, we
have n# 1 and x = 5. Consider y = 3. For sufficiently large
value of s, we have »* is in J and hence, in I. Since I is a prime
ideal, we have y € I. This contradicts the assumption that x
is the smallest element of I ~ 2N. Therefore, I is not a prime
ideal.

Consider a prime integer p > 3 and a prime ideal I such
that pN C I C P. Let x be the smallest element of I ~ pN.
Then, x = pn+rforsomen € Nandr = 1,2,...,p — 1.
Consider x = pn + 1. Clearly, n # 0 and thus, we have x > 4.
LetJ={zeN|z= (p—1)pn} U {0}. Observe that for all
r=1,2,...,p—1lwehave (p—l)pn+r=(p—(r+1))pn+
r(pn+ 1). Therefore (p — 1)pn +r € I. However, I contains
PN and therefore, J. Now set y = 2. Since we assume I to be
a prime ideal, we get y € I ~ pN. This contradicts the choice
of x as the smallest element in I ~ pN. Therefore, x # pn+ 1.
Consider x = pn+rfor 1 <r < p — 1. Then, clearly, we have
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x > 2. We claim that x # 2. If x = 2, then 2N < I. Obviously,
we have 2N¢I. On the other hand, if 2N = I, then, we get
the absurd result that pN < 2N for p # 2. Now set, as before,
y = 2 to get the contradiction to the assumption that x is the
smallest element of I ~ pN and complete the proof. O

Theorem 7. P = N ~ {1} is the only prime ideal of N which
is not a k- ideal (resp., an h-ideal).

Proof. One easily observes that P is a prime ideal and is not
a k-deal. Let I be any other ideal of N, which is not a k-
ideal. Clearly, then, we have 0 C I C P. Therefore, there exist
x € I'such that 0 £x # 1. Let x = p{,..., p%" be the prime
factorization of x. If I is prime, there is at least one prime
integer p in I. Therefore, we have pN = I C P. AsIis not a k-
ideal we have pN # I. On the other hand, by Proposition 6 we
cannot have a prime ideal I such that pN c I € P. Therefore,
I is not a prime ideal. O

2.3. Fuzzy Ideals of a Semiring. Throughout this paper L
stands for a complete Heyting algebra, that is, a complete
lattice such that for all subsets T of Landallb € L, v{aAb |
aeT=(V{alaeT})Aband AMfavb|aeT} =
(AM{a | a € T}) v b. An L-fuzzy subset (or simply an L-
fuzzy set) A of a set X is a function A : X — L; a fuzzy
set is an L-fuzzy set when L is the unit interval [0,1]. If
a € L, then the set {x € X | A(x) > «} is called a-level
cut or in short a-cut of A and is denoted by A,. The strict
a-level cut of A is the set Agy = {x € X | A(x) > a}. An
L-fuzzy left ideal J of S is an L-fuzzy set ] : S — L such
that for all g, b € S the following conditions are satisfied: (i)
J(a+b) = J(a) AJ(b), (i1)](ab) = J(b). An L-fuzzy left ideal ]
of Sis called an L-fuzzy left k-ideal, if the following condition
is satisfied: x +a = b = J(x) = J(a) A J(b) for all x,a,b, € S.
It is an L-fuzzy left h-ideal, if x +a+z = b+z = J(x) =
J(a) A J(b) for all x,a,b,z € S. An L-fuzzy right ideal (resp.,
k-ideal, h-ideal) is similarly defined. Whenever a statement is
made about L-fuzzy left ideals, it is to be understood that the
analogous statement is made about an L-fuzzy right ideals.
An L-fuzzy ideal is one, which is both L-fuzzy right and L-
fuzzy left ideal.

3. Prime Fuzzy Ideals

We defined L-fuzzy prime h-ideal in [6]. We extend the
definition to L-fuzzy ideals and k-ideals.

Definition 8. An L-fuzzy left ideal (resp., k-ideal, h-ideal) P of
Sis called a prime L-fuzzy left ideal (resp., k-ideal, h-ideal), if
itis nonconstant and, foralla, b € Sand a € L, the following
condition is satisfied:

P(asb) 2 a, VseS= P(a) = aor P(b) >« (1)

Proposition 9. A nonconstant L-fuzzy left ideal (resp., k-ideal,
h-ideal) P of S is prime if and only if its every nonempty level
cut of P is either a prime left ideal (resp., k-ideal, h-ideal) of S
or S itself.

Corollary 10. A left ideal (resp., k-ideal, h-ideal) P of S is
prime if and only if its characteristic function xp is an L-
fuzzy prime left ideal (resp., k-ideal, h-ideal) for every complete
Heyting algebra L.

Proposition 9 is proved for L-fuzzy left h-ideal in [6].

Let P be an L-fuzzy prime (two sided) ideal of S. Then
P(asb) = P(a) v P(b) for all s € Sand, therefore, A{P(asb) |
s € S} = P(a) v P(b). On the other hand, for A{P(asb) | s €
S} = «, we have:

Plasb) = a, VseS= Pla)=aorP(b) =«

(2)
= P(a) vV P(b) =z a = A{P(asb) | s € S}.

Therefore, A{P(asb) | s € S} = P(a) v P(b).

Let, further, P(a) > a. Then, P(a) > « = A{P(asb) | s €
S} = {P(a) v P(b)} = P(b).

Thus, P(S) is totally ordered.

Conversely, let P(S) be totally ordered and A{P(asb) |
s€ S} = P(a) v P(b). Then,

P(asb) 2 a, VseS= P(a)Vv P(b) = A{P(asb) | s € S}

>a = P(a) > aor P(b) > a.

(3)

Therefore, P is a prime L-fuzzy ideal.
This leads to the following elegant characterizations of
prime fuzzy ideals.

Proposition 11. Let P be a nonconstant L-fuzzy ideal (resp.,
k- ideal, h- ideal) of S, and a,b € S.

(1) P is prime if and only if A{P(asb) | s € S} = P(a) v
P(b) and P(S) is totally ordered.

(2) Let S be commutative hemiring with unity. P is prime
if and only if P(ab) = P(a) v P(b) and P(S) is totally
ordered.

(3) A nonconstant fuzzy ideal (resp., k- ideal, h- ideal)
P is prime if and only if Inf{P(asb) | s € S} =
Max{P(a),P(b)}.

(4) Let S be commutative hemiring with unity. A noncon-
stant fuzzy ideal (resp., k- ideal, h- ideal) P is prime if
and only if P(ab) = Max{P(a), P(b)}.

The following example shows that the condition that
P(S) is totally ordered is necessary for P to be prime.

Example 12. Let L = {0,a, 3,1} be the Boolean algebra of
four elements. Consider the L-fuzzy ideal ] : N — L defined
as follows:

J(x) =1 if x € 6N,

=a ifx e 2N ~ 6N,

_ (4)
= ifx €3N ~ 6N,
=0 everywhere else.

Clearly, the L-fuzzy h-ideal ] is not prime, though P(ab) =
P(a) v P(b) holds for all a,b € N.



Remark 13. While fuzzifying the condition (I) of “prime-
ness” stated in §2.1 three types of products of fuzzy left
ideals A and B of S, are used in the literature: namely,
AoB, AokB, and AoyB [1-3, 5, 7]. They are defined as
follows:

AoB(x) = Sup{Min{A(a),B(b)} | x = ab, a,b € S},
AorB(x) = Sup{Min{A(a), B(b),A(a’),B(b')} | x+ ab
=a'b';ab,a,b €S}
AopB(x) = Sup{Min{A(a),B(b),A(a’),B(b")} | x+ab+z
Vx €S
(5)

This was needed, because the problem of fuzzification of
left ideals, left k-ideals, and left h-ideals were treated as
three separate problems. Theorem 3 allows us to rope all the
three in one and leads us to a compact characterization of
primeness given in Proposition 11.

A semiprime fuzzy ideal, now defines itself.

=ab +zab,a,b,zeS}

Definition 14. An L-fuzzy left h-ideal ] of S is called
semiprime, if J is nonconstant and, for alla € Sand « € L,
the following condition is satisfied:

J(asa) 2 a, VseS= J(a) = a. (6)

It follows that a nonconstant L-fuzzy ideal (resp., k-ideal, h-
ideal) I of S is semiprime if and only if A{I(asa) | s € S} =
I(a) for all s € S. In case S is commutative hemiring with
unity, the above equation is further simplified to I(a?) =
I(a). Analogues of Proposition 9 and Corollary 10 can easily
be proved.

Theorem 15. Every nonconstant fuzzy ideal (resp., k-ideal,
h-ideal) of a commutative ring with unity is contained in a
minimal prime fuzzy ideal (resp., k-ideal, h-ideal).

Proof. As usual we prove the result for fuzzy h-ideals. Let ]
be a nonconstant fuzzy h-ideal of a commutative ring S with
unityand J = {x € S| J(x) > J(1)}. Let P be a prime h-ideal
containing J. Define a fuzzy ideal P: S — [0, 1] by

P(x)=1 ifxeP

=J(1)

Clearly, P is a prime fuzzy h-ideal containing J and, thus,
the class C of all prime fuzzy h-ideals containing J is non-
empty. We partially order C by reverse containment, that is,
we define P < P’ ifand only if P’ < P forall P, P’ € C, and
consider a totally ordered subset {P* | A € A} of C. Then, the
set {Pﬁ | A € A} of the a-level cuts of P} is a totally ordered
set consisting of prime h-ideals (and possibly of S) for each
a € [0, 1]. Therefore, ﬂ{Pﬁ | A € A} is either a prime h-ideal
of S or § itself. By Proposition 9, N{P* | A € A} is a prime
fuzzy h-ideal containing J. Since N (P |} € A} isan upper
bound of the family {P* | A € L}, C has a maximal element
which, clearly, is a minimal prime fuzzy h-ideal containing
]. O

, (7)
if x & P.
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Remark 16. Example 12 will testify that Theorem 15 is not
valid when L # [0, 1], in general.

4. Prime Radicals of a Fuzzy Ideal

In this section, we assume S to be a commutative hemiring
with unity.

Definition 17. If J is an L-fuzzy ideal of S, then the
intersection of all prime L-fuzzy ideals (resp., k-ideals, h-
ideals) of S containing J is called the prime (resp., k-prime,
h-prime) radical of ]. We denote it by r(J) (resp., rx(J), rn(J)).
If the set of prime L-fuzzy ideals (resp., k-ideals, h-ideals) of
S containing J is empty, we define r(J) (resp., r¢(J), ra(J)) to
be xs.

Note that 7(J), (resp., rx(J), ru(J)) is a semiprime fuzzy
ideal (resp., k-ideal, h-ideal) containing J. Clearly r(J) <
rn(J) < r(J). However, the following examples show that
strict containment holds.

Example 18. Let p be a prime integer. Consider a, 3 € [0, 1]
and f < a. Define a fuzzy set P: N — [0, 1] by

P(x)=1 ifx=0,
=a ifx€ pN ~ {0}, (8)
=p ifx ¢ pN.

By Proposition 9, P is a prime fuzzy ideal (also k-ideal and
h-ideal), for all 0 < 8 < a < 1. We will call the fuzzy ideal
P a prime fuzzy k-ideal induced by the prime number p and

denote it by (pN)*.

Example 19. Suppose o, 8,y € [0,1] and y < § < a. Define a
fuzzy set Q: N — [0,1] by

Qx)=1 ifx=0,

=a ifxe pN~ {0},

_ )
=B ifxeN~ (pNuU{l}),

=y ifx=1

By Proposition 9, Q is a prime fuzzy ideal which is neither a
fuzzy k-ideal nor a fuzzy h-ideal, forall0 < y < f < & < 1.
We will call the fuzzy ideal Q a prime fuzzy ideal induced by
the prime integer p and denote it by (pN)*”. Note that, in
the light of Theorem 7, these are the only prime fuzzy ideals
of N which are not fuzzy k-ideals.

Example 20. Consider a fuzzy ideal definedbyJ: N — [0, 1]:

Jx)=1 ifx=0,
=05 ifx=>3, (10)
=0 ifx=1or2.



Advances in Fuzzy Systems

Let 0 < a < 1 and O% be the fuzzy k-ideal defined by O“ :
N - [0,1]:
O%x)=1 ifx=0,

(11)
=a ifx#0.

Let X = {0 | 05 < a < 1} U {(pN)* | p is prime,
05 <f<a<1landY = {(PN)* | 0 <y <05 <
B < a <1, pisprime}. Clearly, X is the set of all prime fuzzy
k-ideals of N containing J and Y is the set of all those prime
fuzzy ideals containing J, which are not fuzzy k-ideals. Since
m(J)=n(J)=n{P|PeX}andr(J) = n{P|Pe XUY},
it is mundane to verify that r,(J) = rx(J) = 0% and r(J) is
the fuzzy ideal defined by r(J) : N — [0,1]:

r(NNx)=1 ifx=0,
r(J)(x) = 0.5 forx=>2, (12)
r(Nx)=0 ifx=1.

Clearly, 7(J) C r(J) = ru(J).

Example 21. Let S = {0,a,f,1} be the Boolean algebra of
four elements. Consider the prime fuzzy ideal defined by J :
S - [0,11J(0) = 1 = J(a) and J() = J(1) = 0.5. Then,
] being a prime fuzzy k-ideal r¢(J) = J. Since all the fuzzy
ideals of S are fuzzy k-ideals, we have r(J) = r¢(J). Since the
set of fuzzy h-ideals of S is empty, r,(J) = xs.

Clearly, r(J) = re(J) C ru(]).

5. Nil Radicals of a Fuzzy Ideal

In this section, we assume S to be a commutative hemiring
with unity.

Recall that if I is an ideal of S, then its radical (also called
nil radical) is defined as /I = {x € S | x" € I, for some
integer n > 0}.

We define the fuzzy analogue of nil radical as follows.

Definition 22. 1f ] is an L-fuzzy ideal of S, then the L-fuzzy
set /J : S — Ldefined by \/J(x) = V{J(x") | n >0} is called
the L-fuzzy (nil) radical of .

Through series of propositions we prove that, when L is
totally ordered and J is a fuzzy k-ideal (resp., h-ideal) of S, so
is \/J.

The following results are the direct consequences of
Definition 22.

Proposition 23. If I is an ideal of S, then /(x1) = x-/L,
where x; and y~/I are the characteristic functions of I and /I,
respectively.

Proposition 24. If P is a prime L-fuzzy ideal, then /P = P.

Proposition 25. If ] and K are L-fuzzy ideals of a hemiring,
then, the following statements hold.

(@) V() = VI.
(b) If ] € K, then JJJ < VK.

(c) VU NnK) =In VK.

Proposition 26. Let ] be an L- fuzzy ideals of S and 0 < a < 1.
Then, the following statements hold.

(1) VUa) € (Vg
(ii) If L is a totally-ordered set, then (\/])gr = ~/Uat)
where Jor and (\/]) . are strict level cuts.

Proof. We prove only (ii):
x € (Var = VI(x) > a
= Vv{x")|n>0}>a«a
< J(x") >a for somen >0 (13)

< x" €J,y forsomen>0

= x € /(Jus)
]

The following example shows that the set inclusion in
Proposition 26(i) can be strict.

Example 27. Let N be the hemiring of non-negative integers,
L =[0,1], and p € N a prime number. Let (p") denote the
ideal of N generated by p”.

Define a fuzzy ideal as follows:

J:N— L

J(x) =0, ifx¢ (p),
(14)

_L : ny _ n+l —
](x)—n+ ifxe (p") ~ (p™"), n=1,2,...

1)
J(0) = 1.

Since \/J(p) = sup{n/(n+1) |n=1,...} =1, wehave p €
(+/])1. On the other hand, for each n, J(p") = (n/(n+1)) < 1
and thus, p" € ], for any n. Consequently, we have p & /.

Theorem 28. If L is totally ordered and ] an L-fuzzy k-ideal
(resp., h-ideal) of S, then /] coincides with r(]J) (resp., rn(J)).

Proof. As usual we restrict our discussion to h-ideals. If
P is an L-fuzzy prime h-ideal containing J, then, by
Proposition 26, we have (1/])ay = /Uat) = th(Jas), where
71 (Jat) 1s the h-prime radical of the (scrisp) ideal J,+. On the
other hand, for any x € Sand n > 0, we have J (x") < P(x") =
P(x) and therefore, we have /] < r,(]).

Suppose /] # ry(J). Then, there exists a € S, such that
(VI(a) < m(J)(a). Let (\/])(a) = a. Since a & r1(Jat ), there
exists a prime h-ideal say P such that J,, < Panda ¢ P.

Consider the following prime L-fuzzy h-ideal:

P:S— L
P(x)=1, ifxeP, (15)
=a, Iifxé&P.



Clearly, if x € P, then we have J(x) < P(x). On the other
hand, if x ¢ P, then we have x & J,; and J(x) < a = P(x).
Thus, we get ] < P and consequently, r,(J) < P.

However, this leads to the following contradiction,
VI(a) <r(J)(a) < P(a) = a = /] (a).

Hence, we have /] = r,(]). O

Corollary 29. Let L be a totally ordered set. If ] is an L-fuzzy
k-ideal (resp., h-ideal) of S, then, so is \/].

6. Correspondence Theorems

In this section, f : § — §’ is a homomorphism of hemirings,
J is an L-fuzzy left ideal of S, and J’ is an L-fuzzy left ideal of
S'.

In [20, Proposition 3.11], Zhan claims that if J is an L-
fuzzy h-ideal with sup property, then f(J) is an L-fuzzy h-
ideal of f(S). The following example does not substantiate
the claim.

Example 30. Let S be the hemiring given in Example 1 (b), N

be the hemiring of non-negative integers, and f : N — Sbe

the epimorphism given by f(x) = min{x, 3} for all x € N.
Define a mapping J : N — [0,1] by

Jx)=1 ifx=0,

% if x = 2120, (16)
=0 ifx=2n+1, VmneN.

Since f(x) = xforallx < 3and f(x) = 3 forall x = 3, it can
be verified thatf(J)(0) = 1, f(J)(2) = f(J)(3) = 1/2, and
FOM) =o.

One can readily see that ] is an L-fuzzy h-ideal with sup
property; but f(J) is not an L-fuzzy h-ideal. For, we have 1 @
2@3=083and f()(2) A (N0 £ FU)D).

Example 30 raises a natural question: What are the
sufficient conditions for a homomorphic image of an h-ideal
(resp., k-ideal) to be an h-ideal (resp., k-ideal)? In order to
answer this question, we introduce the following definition.

Definition 31. Let f : § — § be a homomorphism of
hemirings. An L-fuzzy left ideal J of S is called f-compatible
if, for all x,a,b,z € S, f(x+a+z) = f(b+z) = J(x) =
J(a) A J(b).

Recall that J is f-invariant, if f(a) = f(b) implies J(a) =
J(b). We leave it to the reader to prove that an f-compatible
fuzzy left ideal is f-invariant.

Proposition 32. Let f : S — S be a homomorphism
of hemirings and ] and ] L-fuzzy left ideals of S and S,
respectively. Then, the following statements hold.

(1) f=Y(J') is an f-invariant L-fuzzy left ideal of S.

(2) IfJ is an L-fuzzy left k-ideal, then so is f ~1(J").

(3) If I is an L-fuzzy left h-ideal, then f~1(J') is an f-
compatible L-fuzzy left h-ideal of S.
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(4) If ] is f-invariant (in particular if ] is f-compatible),
thenf (]) f (x) = J(x) and therefore, f~1(f(J)) = J.

(5) If f is an epimorphism, f(f~'(J')) =J'.

Proof. We prove (4) and (5). If J is f-invariant and x €
S, then it is obvious that f(J)f(x) = V{J(z) | f(z) =
f(x)} = J(x). This proves (4). Moreover, if x' = f(x),
then F(F1NE) = 0N = J'(F(x) = (). I,
then, follows that if f is an epimorphism, then f(f~!(J")) =
J. O

This leads to the following correspondence theorem for
L-fuzzy left k-ideals and h-ideals.

Theorem 33. Let f : S — S be an epimorphism of hemirings.

(1) There is one-to-one correspondence between the set of
L-fuzzy left ideals (resp., k-ideals) of S" and that of f-
invariant L-fuzzy left ideals (resp., k-ideals) of S.

(2) There is one-to-one correspondence between the set of
L-fuzzy left h-ideals of 8" and that of f-compatible L-
fuzzy left h-ideals of S.

The above correspondence preserves prime and semiprime L-
fuzzy left ideals (resp., k-ideals, h-ideals).

Proof. Suppose Jand ]’ are L-fuzzy left ideals of S and S'. By
Proposition 32, the correspondence is given by J —~ f(J) and
J' < f71(J'). We only need to verify that, when J is an L-
fuzzy left ideal (resp., k-ideals, h-ideal), then so is f(J), under
the conditions specified for J. A reader may easily prove
that, when ] is f-invariant, f(J) is an L-fuzzy left ideal. Let,
moreover, | be an L-fuzzy k-ideal, x" + a’ = b', f(x) = x,
f(a) = a’, and f(b) = b'. Then f(x +a) = f(b) and
therefore, we have J(x + a) = J(b). Let « = J(a) A J(b)
and consider J,. Clearly, a,b € J,. Since J(x + a) = J(b),
we have x + a € ], and ], being a k-ideal x € J,. Therefore,
J(x) = J(a) A J(b). But, by Proposition 32 (4), this inequality
is equivalent to f(J)(x") = f(J)(a") A f(J)(b"). Thus, f(J) is
an L-fuzzy left k-ideal.

On similar lines, one can prove that, when J is an f-
compatible L-fuzzy left h-ideal of S, f(J) is an L-fuzzy left
h-ideal of §'. O

7. Primary Fuzzy Ideals

In this section, we assume that S is a commutative hemiring
with unity.

Recall that an ideal Q of a hemiring S is primary, if (i)
Q#Sand (ii) xy € Q > x € Qor y" € Q for some positive
integer n.

We define primary fuzzy ideal as follows.

Definition 34. A nonconstant L-fuzzy ideal/k-ideal/h-ideal Q
of S is primary, if Q(xy) = Q(x) or Q(xy) < Q(y") for some
positive integer #.

The following propositions are immediate consequences
of Definition 34.
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Proposition 35. A nonconstant L-fuzzy ideal of S is a primary
L-fuzzy ideal (resp., k-ideal, h-ideal) if and only if each of its
nonempty level cuts is either a primary ideal (resp., k-ideal, h-
ideal) of S or S itself.

Proposition 36. Let Q be an ideal of S. The characteristic
function xq is a primary L-fuzzy ideal (resp., k-ideal, h-ideal)
of S if and only if Q is primary ideal (resp., k-ideal, h-ideal), for
every complete Heyting algebra L.

Proposition 37. Every prime L- fuzzy ideal (resp., k-ideal, h-
ideal) is a primary L-fuzzy ideal (resp., k- ideal, h-ideal).

The fuzzy ideal ] in Example 27 is primary but not prime,
as every nonempty, proper level-cut of the fuzzy ideal is primary
but not prime.

The proof of the following proposition is straightforward.

Proposition 38. Let f : S — S be a homomorphism of
hemirings and Q and Q' L-fuzzy ideals of S and §', respectively.

(a) If Q' is primary, then f~1(Q") is primary f-invariant.

(b) Let f be an epimorphism and Q be f-invariant. If Q is
a primary, then f(Q) is primary.

(¢) If f is an epimorphism and Q is an f-compatible
primary fuzzy h-ideal, then f(Q) is a primary L-fuzzy
h-ideal.

Thus, the correspondence theorems in the previous section
preserve primary fuzzy ideals as well.

8. Minimum Imperative for Fuzzification

In this paper, we fuzzified the concepts of prime ideal,
semiprime ideal, and primary ideal of a hemiring. Some of
these concepts have been fuzzified earlier in different ways.
Therefore, it is pertinent to ask: What constitutes “proper
fuzzification” of a concept? Our answer is the following:
Suppose I is a (crisp) ideal with property p of a hemiring
Sand I is its fuzzification which inherits property 5. If it is the
best fuzzification, it should satisfy the following properties.

(1) For every Heyting algebras L, the characteristic
function of I satisfies the property p if and only if
has property p.

(2) T satisfies the property p, whenever every nonempty

levelcut of I different from S satisfies the property p
and conversely.

(3) The set T (S) has more than two elements.
Let f: S — S be ahomomorphism of hemirings.

(4) If an L-fuzzy ideal J' of S’ has property p, then
f71(J'), as an L-fuzzy ideal of S, has property p.

(5) If L-fuzzy ideal J of S has property p, then f(J) is an
L-fuzzy ideal of f(S) with property p, under some
preassigned condition(s). The condition(s) is (are)
suggested by the corresponding crisp situation.

The last sentence needs some elaboration. If I is a (crisp)
ideal of S, f(I) is an ideal of f(S) provided that it satisfies

the condition: f(x) = f(y) and y € I implies x € L
The f-invariance of ] stated above is a “fuzzification” of the
condition on the crisp ideal I. If I is an h-ideal, then f(I)
is an h-ideal of f(S) provided that it satisfies the condition:
flx+a+z) = f(b+z)and a,b € I implies x € L The f-
compatibility is a “fuzzification” of the condition on the ideal
I.

As proved earlier, the different types of prime,
semiprime, and primary L-fuzzy ideals defined in this
paper fulfill the above five conditions and, therefore, they are
the best fuzzifications of the concepts.
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