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A common objective in longitudinal studies is to characterize the relationship between a
longitudinal response process and a time to event. Considerable interest has been focused
on the so-called joint models, where models for the event time distribution and longitudinal
data are often specified through a common set of latent random effects. Joint models of
longitudinal data and/or survival data have received great attention in the literature over
the past two decades and are becoming increasingly active area of statistics research. The
importance of these models is well recognized, partly due to the fact that longitudinal data
and survival data arise frequently in practice. Despite the extensive literature on this topic,
these models continue to be a main research stream since they offer many advantages over
separate analysis of longitudinal data and/or survival data. To accelerate the development
of advanced tools and knowledge of joint models, a number of important issues remain to
be addressed such as computational issues, model diagnostics and selections, joint models
with skew distributions, and various choices of longitudinal models and survival models.
To stimulate the continuing efforts to understand various joint model development and
associated statistical inference methods with their applications in biomedical, biological,
engineering, and other studies, in this special issue, we have invited a few papers that address
some of those issues.

The paper by L. Wu et al., in this special issue, provides a brief overview of various
formulations of joint models for longitudinal and survival data. Commonly used methods
including the likelihood method and two-stage methods are discussed in detail, and other
joint modeling methods such as Bayesian approach are also briefly presented. Computational
issues are investigated. A real data analysis and a simulation study are provided to
compare the performance of various methods. The paper by M. Liu and W. Lu delivers
a semiparametric marginal inference approach for longitudinal outcomes in the presence
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of informative dropouts. The dependence between longitudinal outcome and informative
dropout time is characterized by a conditional mean model, and the longitudinal regression
coefficients are estimated by a class of conditional generalized estimating equations. The
proposed method is robust against a class of latent-variable models for longitudinal data
with informative dropouts and is computationally easy to implement. G. A. Dagne and
Y. Huang’s paper presents joint Tobit models for a left-censored response variable with
skewness and covariate variables with substantial measurement errors. The proposed joint
models are a skew-t nonlinear mixed-effects Tobit model for the response process and a skew-
t nonparametric mixed-effects model for covariate process under a Bayesian framework. A
real data example is used to illustrate the proposed methods. The paper by M. Murawska
et al. proposes a two-stage approach that summarizes the longitudinal information with
nonlinear mixed-effects model at the first stage, and includes empirical Bayes estimates of
the subject-specific parameters as predictors in the Cox model for time-to-event at the second
stage. To take into account the uncertainty of the estimated subject-specific parameters,
the authors use a Monte Carlo approach and sample from the posterior distribution of
the random effects given the observed data. The paper by S. Gurmu and G. A. Dagne,
in this special issue, develops zero-inflated bivariate-ordered probit model and carries out
estimation using Markov Chain Monte Carlo techniques in the context of Bayesian analysis
of a joint model of ordered outcomes. The authors analyze the socioeconomic determinants
of individual problem of smoking and chewing tobacco using household tobacco survey data
with substantial proportion of zeros. The example shows that the use of a model that ignores
zero-inflation masks differential effects of covariates on nonusers and users.

Yangxin Huang
Lang Wu

Grace Y. Yi
Wenbin Lu
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In transplantation studies, often longitudinal measurements are collected for important markers
prior to the actual transplantation. Using only the last available measurement as a baseline
covariate in a survival model for the time to graft failure discards the whole longitudinal evolution.
We propose a two-stage approach to handle this type of data sets using all available information.
At the first stage, we summarize the longitudinal information with nonlinear mixed-effects model,
and at the second stage, we include the Empirical Bayes estimates of the subject-specific parameters
as predictors in the Cox model for the time to allograft failure. To take into account that the
estimated subject-specific parameters are included in the model, we use a Monte Carlo approach
and sample from the posterior distribution of the random effects given the observed data. Our
proposal is exemplified on a study of the impact of renal resistance evolution on the graft survival.

1. Introduction

Many medical studies involve analyzing responses together with event history data collected
for each patient. A well-known and broadly studied example can be found in AIDS research,
where CD4 cell counts taken at different time points are related to the time to death. These
data need to be analyzed using a joint modeling approach in order to properly take into
account the association between the longitudinal data and the event times. The requirement
for a joint modeling approach is twofold. Namely, when focus is on the longitudinal outcome,
events cause nonrandom dropout that needs to be accounted for in order to obtain valid
inferences. When focus is on the event times, the longitudinal responses cannot be simply
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included in a relative risk model because they represent the output of an internal time-
dependent covariate [1].

In this paper, we focus on a setting that shares some similarities with the standard
joint modeling framework described above, but also has important differences. In particular,
we are interested in the association between longitudinal responses taken before the actual
followup for the time-to-event has been initiated. This setting is frequently encountered in
transplantation studies, where patients in the waiting list provide a series of longitudinal
outcomes that may be related to events occurring after transplantation. A standard analysis
in transplantation studies is to ignore the longitudinal information and use only the last
available measurement as a baseline covariate in a model for the allograft survival. It
is, however, evident that such an approach discards valuable information. An alternative
straightforward approach is to put all longitudinal measurements as covariates in the
survival model. Nevertheless, there are several disadvantages with this approach. First, it
would require spending many additional degrees of freedom, one for each of the longitudinal
measurements. Second, patients with at least one missing longitudinal response need to be
discarded, resulting in a great loss of efficiency. Finally, we may encounter multicollinearity
problems due to the possibly high correlation between the longitudinal measurements at
different time points.

Nowadays, when it comes to measuring the association between a longitudinal marker
and an event-time outcome, a standard approach is to use the joint model postulated by
Faucett and Thomas [2] and Wulfsohn and Tsiatis [3]. In this setting, the longitudinal
responses are considered realizations of an endogenous time-dependent covariate (Kabfleish
and Prentice [1]), which is measured with error and for which we do not have the complete
history of past values available. To account for these features we estimate in the joint
modeling framework the joint distribution of the survival and longitudinal processes. Unlike
in the multivariate approach, where we have to interpret the estimates for each longitudinal
measurement separately, the joint modeling approach allows to get more insight in the nature
of the relation between the two analyzed processes since it assumes some underlying process
for the longitudinal measures.

However, in contrast with the standard joint modeling setting, in our case (i.e.,
transplantation studies) the longitudinal responses do not constitute an endogenous time-
dependent variable measured at the same period as the time to event. In particular, since the
longitudinal measurements are collected prior to transplantation, occurrence of an event (i.e.,
graft failure after transplantation) does not cause nonrandom dropout in the longitudinal
outcome. Nevertheless, the problem of measurement error still remains. Ignoring the
measurement error affects not only the standard errors of the estimates of interest, but also
it can cause attenuation of the coefficients towards zero [4]. To overcome this, we propose
a two-stage modeling approach that appropriately summarizes the longitudinal information
before the start of followup by means of a mixed effects model and then uses this information
to model the time to event by including the Empirical Bayes estimates of the subject-specific
parameters as predictors in the Cox model. To account for the fact that we include the
estimates and not the true values of the parameters, we use a Monte Carlo approach and
sample from the posterior distribution of the random effects. The proposed method does not
require joint maximization neither fitting the random effects model for each event time as
in the two-stage approach of Tsiatis et al. [5]. We compare this approach with the “naive”
one when the uncertainty about the estimates from the first step is not taken into account,
as well as with the full Bayesian approach. Our approach shares similarities with the two-
stage approach of Albert and Shih [6]. They considered a model, in which a discrete event
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time distribution is modeled as a linear function of the random slope of the longitudinal
process estimated from the linear-mixed model. The bias from informative dropout was
reduced by using the conditional distribution of the longitudinal process given the dropout
time to construct the complete data set. To account for the measurement error in the mean of
the posterior distribution of the random effects, the variance, that incorporates the error in
estimating the fixed effects in the longitudinal model, was used. However, we use sampling
not to impute missing values and correct for nonrandom dropout but in order to account for
the variability in the predicted longitudinal covariates that are then used in survival model.
A method of adjusting for measurement error in covariates, which was used by Albert and
Shih, does not apply in our case since it requires the discrete time-to-event and linear model
for longitudinal data. The time-to-event could be discretized but still we have a nonlinear
model for longitudinal data.

Our research is motivated by data from an international prospective trial on kidney-
transplant patients. The study has two arms, where in the first arm donors’ kidneys were
administered to cold storage and in the second arm they were administered to machine
perfusion (MP). The advantage of machine perfusion is the possibility of measuring different
kidney’s parameters reflecting the state of the organ. One of the parameters of interest is renal
resistance level (RR), which has been measured at 10 minutes, 30 minutes, 1 hour, 2 hours, 4
hours, and just before transplantation. Our aim here is to study the association of the renal
resistance evolution profile with the risk of graft failure. The time of last measurement was
different for different patients and often unknown exactly. However, based on the medical
consult and visual inspection of the individual profiles, the last measurement was chosen to
be taken at 6 hours for each patient.

The rest of the paper is organized as follows. Section 2 provides the general modeling
framework with the definition of the two submodels for the longitudinal and survival
data, respectively. Section 3 describes the estimation methods for the full likelihood and the
proposed two-stage approach. In Section 4, we apply the two-stage approach to the renal
data. Section 5 contains the setup and the results for the simulation study. Finally, in Section 6
we discuss the proposed methodology.

2. Joint Modeling Framework

Let Yi(u) denote the longitudinal profiles for individual i, i = 1, 2, . . . ,N. We assume that
Yi(u) are collected for the ith individual prior to the specified time ti, u ∈ (0, ti). Let t = 0
denote the time of the first longitudinal measurement and ti the time of the last collected
measurement. ti can be different for different individuals, and we denote by mi the number
of longitudinal measurements for subject i collected until time ti and by uij the time of jth
measurement. Denote by T ∗

i ≥ ti the true survival time for individual i. Since the survival
time is right censored, we observe only Ti = min(T ∗

i , Ci), where Ci ≥ ti is the censoring time
with the failure indicator Δi, which equals to 1 if the failure is observed and 0 otherwise, that
is, Δi = I(Ti ≤ Ci) with I(·) denoting the indicator function. We will assume that censoring
is independent of all other survival and covariate information. In addition, we assume that
the observed longitudinal responses Yi(u) are measured with error (i.e., biological variation)
around the true longitudinal profile Wi(u), that is,

Yi(u) =Wi(u) + εi(u), with εi(u) ∼N
(

0, σ2
)
,

cov
(
εi(u), εi

(
u′
))

= 0, u′ /=u.
(2.1)



4 Journal of Probability and Statistics

We will consider the longitudinal response that exhibits nonlinear profiles in time. Therefore,
we approximate Wi(u) by means of a nonlinear mixed effects model:

Wi(u) = f
(
u;φi

)
, with φi = Xiβ + Ziαi, (2.2)

where f(·) is a nonlinear function, parameterized by the vector φi. The parameters φi control
the shape of the nonlinear function, and subscript i denotes that each subject may have
its own nonlinear evolution in time in the family f(·;φ). For the subject-specific parameter
φi, we assume a standard mixed model structure with Xi denoting the fixed effects design
matrix with corresponding regression coefficients β, Zi the random effects design matrix, and
αi the random effects. The random effects αi are assumed to be independent and normally
distributed with mean zero and variance-covariance matrix D.

For the event process, we postulate the standard relative risk model of the form:

λi(t) = λ0(t) exp
(
γTφi

)
, (2.3)

where λi(t) is the hazard function and λ0(t) is the baseline hazard, which can be modeled
parametrically or left completely unspecified. The subject-specific parameters φi summarize
the longitudinal evolutions of the response for each subject, and therefore coefficients γ
measure the strength of the association between the different characteristics of the underlying
subject-specific nonlinear evolution of the longitudinal profiles and the risk for an event.
Within the formulation of the two submodels (2.2) and (2.3), the same random effects now
account for both the association between the longitudinal and event outcomes, and the
correlation between the repeated measurements in the longitudinal process.

In the particular transplantation setting that will be analyzed in the following study,
Yi(u) are the renal resistance level measurements collected for the ith donor prior to the
transplantation time ti and the same index i is used to denote the allograft transplanted to
the ith patient. Time t = 0 represents the time that the kidney is removed from the donor and
put in cold storage or in a perfusion machine.

3. Estimation

3.1. Full Likelihood Framework: Bayesian Approach

In the standard joint modeling framework, the estimation is typically based on maximum
likelihood or Bayesian methods (MCMC). This proceeds under the following set of
conditional independence assumptions:

p(Ti,Δi,Yi | αi;θ) = p(Ti,Δi | αi;θt)p
(
Yi | αi;θy

)
,

p
(
Yi | αi;θy

)
=

mi∏
j=1

p
(
Yi
(
uij
) | α

i
;θy
)
.

(3.1)

In particular, we assume that given the random effects the longitudinal process is independ-
ent from the event times, and moreover, the longitudinal measurements are independent
from each other.
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Maximum likelihood methods use the joint likelihood and maximize the log-
likelihood function li(θ) =

∑
i log p(Ti,Δi,Yi;θ). This requires numerical integration and

optimization, which makes the fit difficult, especially in high-dimensional random effects
settings. Standard options for numerical integration are Gaussian quadrature, Laplace
approximation, or Monte Carlo sampling [7, 8]. Maximization of the approximated log-
likelihood is based on an EM algorithm [3, 5, 9–11]. Several authors proposed a Bayesian
approach (MCMC) [2, 12, 13]. Bayesian estimation, that generalizes a joint model for the
case with multivariate longitudinal data, has been discussed by Ibrahim et al. [14]. Brown
and Ibrahim [15] considered semiparametric model relaxing the distributional assumption
for the random effects. In most papers, the longitudinal submodel is a linear mixed-
effects model. Joint models with nonlinear mixed-effects submodels have been less studied
in the literature [16]. Nonlinear mixed models are more common in pharmacokinetics
and pharmacodynamics, where they are jointly modeled with nonrandom dropout using
NONMEM software. Several authors considered a Bayesian approach with a nonlinear mixed
model and informative missingness [17, 18].

Here we will proceed under the Bayesian paradigm to estimate the model parameter.
Under the conditional independence assumption (3.1), the posterior distribution of the
parameters and the latent terms, conditional on the observed data, are derived as

p(θ,αi | Ti;Δi;Yi) ∝
N∏
i=1

mi∏
j=1

{
p
(
Yi
(
uij
) | αi;θy

)}
p(Ti,Δi | αi;θt)p(αi;θα)p

(
θy,θt,θα

)
, (3.2)

where θT = (θTy,θ
T
t ,θ

T
α) is a vector of parameters from the longitudinal and survival

models and the vector of the random effects, respectively, and p(·) denotes the appropriate
probability density function. The likelihood contribution for the ith subject conditionally on
the random terms is given by

p(Yi, Ti,Δi | αi;θ) = p
(
Yi | αi;θy

)
p(Ti,Δi | αi;θt)

=
[
λ0(Ti) exp{γTφi(αi)}

]Δi

exp

[
−
∫Ti

0
λ0(t) exp

{
γTφi(αi)

}
dt

]

× 1

(2πσ2)mi/2
exp

⎡
⎣−

mi∑
j=1

{
Wi

(
uij ,αi

) − Yi
(
uij
)}2

2σ2

⎤
⎦.

(3.3)

The baseline hazard can be assumed of a specific parametric form, for example, the Weibull
hazard. For the priors of the model parameters, we make standard assumptions following
Ibrahim et al. [14]. In particular, for the regression coefficients β of the longitudinal submodel
and for the coefficients γ of survival submodel, we used multivariate normal priors. For
variance-covariance matrices, we assumed an inverse Wishart distribution and for the
variance-covariance parameters we took as a prior an inverse gamma. For all parameters,
the vague priors have been chosen.

The implementation of the Cox and piecewise constant hazard models is typically
based on the counting process notation introduced by Andersen and Gill [19] and formulated
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by Clayton [20]. In particular, we treat the counting process increments dNi(t) in the time
interval [t, t + Δt] as independent Poisson random variables with means Λi(t)dt:

Λi(t)dt = ωi(t) exp
(
γTφi

)
dΛ0(t), (3.4)

where ωi(t) is an observed process taking the value 1 if subject i is observed at time t and 0
otherwise and dΛ0(t) is the increment in the integrated baseline hazard function occurring
during the time interval [t, t + Δt]. Since the conjugate prior for the Poisson mean is the
gamma distribution, we assume the conjugate-independent increments prior suggested by
Kalbfleisch [21], namely,

dΛ0(t) ∼ Gamma
(
c ∗ dΛ∗

0(t), c
)
, (3.5)

where dΛ∗
0(t) is a prior mean hazard with c being a scaling parameter representing

the “strength” of our prior beliefs. The gamma prior was also chosen for the baseline
risk parameter of the Weibull distribution in parametric survival model. Alternatively to
implement the Cox model in a fully Bayesian approach, one may use the “multinomial-
Poisson trick” described in the OpenBUGS manual that is equivalent to assuming
independent increments in the cumulative hazard function. The increments are treated as
failure times, and noninformative priors are given for their logarithms. Analogically to
the Cox model, a piecewise constant hazard model was implemented. We have modeled
baseline hazard using a step function with 3 quantiles t1, t2, and t3 as changing points
assuring the same number of events in between. Let t0 denote the start of the followup, t4
the maximum censoring time, and dΛ0k(t) the increment in the integrated baseline hazard
function occurring during the time interval [tk, tk+1], k = 0, 1, 2, 3. Then for different intervals,
we specify a separate prior hazard mean dΛ∗

0(t) and

dΛ0k(t) ∼ Gamma
(
c ∗ dΛ∗

0k(t), c
)
. (3.6)

Similarly as for the Cox model, the results were not sensitive with respect to the choice of the
hyperparameters as long as the priors were sufficiently diffuse. The above nonparametric
approach can be criticized as having the independent priors for the hazard distribution.
However, as suggested by Kalbfleisch [21] a mixture of gamma priors can be considered as
an alternative. Moreover, in a piecewise constant model one can also include change points
as unknown parameters in the model as proposed in a Bayesian context by Patra and Dey
[22] and applied by Casellas [23].

In order to assess convergence for the full Bayesian model, standard MCMC diagnostic
plots were used. The burn-in size was set to 10000 iterations, which was chosen based on the
visual inspection of the trace plots and confirmed by the the Raftery and Lewis diagnostics.
The same number of iterations were used for constructing the summary statistics. Based on
the autocorrelation plots, we have chosen every 30th iteration. Therefore, in total to obtain
10000 iterations for the final inferenc 300000 iterations were required after the burn-in part.
Additionally, we run a second parallel chain and used Gelman and Rubin diagnostic plots to
assess the convergence.
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3.2. Two-Stage Approach

As mentioned in Section 1, the longitudinal measurements in our setting do not constitute
an internal time-dependent covariate, since the events took place after the last longitudinal
measurement was collected. In particular, since events do not cause nonrandom dropout, the
event process does not carry any information for the longitudinal outcome. Mathematically,
this means that information for the random effects αi is actually only coming from the
longitudinal responses, that is,

p
(
αi | Yi

(
uij
)
; Ti;Δi;θy

)
= p
(
αi | Yi

(
uij
)
;θy
)
. (3.7)

Thus, we can avoid the computational complexity of the full likelihood framework presented
in Section 3.1 by employing a two-stage approach. More specifically, at Stage I, we obtain θ̂y
by maximizing the log-likelihood:

ly
(
θy
)
=

N∑
i=1

∫
p
(
Yi | αi;θy

)
p
(
αi;θy

)
dαi. (3.8)

This requires numerical integration, and we use a Gaussian quadrature for that purpose. Then
we obtain the corresponding empirical Bayes estimates:

α̂i = arg max
α

[
log p

(
Yi | α; θ̂y

)
+ log p

(
α; θ̂y

)]
(3.9)

and compute the predictions:

φ̂i = Xβ̂ + Ziα̂i. (3.10)

At Stage II, we fit the relative risk model:

λi(t) = λ0(t) exp
(
γT φ̂i

)
. (3.11)

However, a potential problem in the above is that φ̂i is not the true subject-specific parameters
but rather an estimate with a standard error. If we ignore this measurement error, the
regression coefficients γ i will be possibly attenuated. To overcome this problem, we propose
here a sampling approach to account for the variability in φ̂i, very close in spirit to the
Bayesian approach of Section 3.1. In particular, we use the following sampling scheme.

Step 1. simulate θ(m)
y ∼N(θ̂y, v̂ar(θ̂y)).

Step 2. simulate α(m)
i ∼ [αi | Yi,θ

(m)
y ].

Step 3. calculate φ(m)
i = Xβ(m) +Ziα

(m)
i and fit the relative risk model λi(t) = λ0(t) exp{γTφ(m)

i }
from which θ̂

(m)
t = γ̂ (m) and v̂ar(θ̂

(m)
t ) are kept.

Steps 1–3 are repeated m = 1, . . . ,M times.

Step 1 takes into account the variability of the MLEs, and Step 2 the variability
of αi. Moreover, because the distribution in Step 2 is not of a standard form, we use
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a independent Metropolis-Hastings algorithm to sample from it with multivariate t-proposal
density centered at an Empirical Bayes estimates α̂i, covariance matrix v̂ar(α̂i), and df = 4.
The low number of degrees of freedom was chosen to ensure that the proposal density has
heavy tails to provide sufficient coverage of the target density [αi | Yi,θy]. The variance-
covariance matrix estimated from the nonlinear mixed model was additionally scaled by
some parameter Scale. The tuning parameter allows to control the acceptance rate through
the range of the proposed distribution. If the range is too narrow, the proposed values will
be close to the current ones leading to low rejection rate. On the contrary, if the range is
too large, the proposed values are far away from the current ones leading to high rejection
rate. We chose the acceptance rate to be 0.5 following Carlin and Louis [24] that suggests
a desirable acceptance rates of Metropolis-Hastings algorithms to be around 1/4 for the
dependence (random walk) M-H version and 1/2 for the independent M-H. Roberts et al.
[25] recommended to use the acceptance rate close to 1/4 for high dimensions and 1/2 for the
models with dimensions 1 or 2. They discussed this issue in the context of the random walk
proposal density. The authors showed that if the target and proposal densities are normal,
then the scale of the latter should be tuned so that the acceptance rate is approximately
0.45 in one-dimensional problems and approximately 0.23 as the number of dimensions
approaches infinity, with the optimal acceptance rate being around 0.25 in as low as six
dimensions. In our case, an independent version of Metropolis-Hastings algorithm is applied.
The proposal density in the algorithm does not depend on the current point as in the random-
walk Metropolis algorithm. Therefore, for this sampler to work well, we want to have a
proposal density that mimics the target distribution and have the acceptance rate be as high as
possible. In order to obtain a desirable acceptance rate one needs to run a sampling algorithm
for a number of iterations for a given data set and compute an acceptance rate and then repeat
the procedure changing the tuning parameter until the chosen acceptance rate, is obtained.
Usually a small number of iterations (100–500) is sufficient for the purpose of calibration.
More details about the Metropolis-Hastings acceptance-rejection procedure can be found in
the supplementary material (available online at doi:10.1155/2012/194194). A final estimate
of θt is obtained using the mean of the estimates from all M iterations:

θ̂t =
∑M

m=1 θ̂
m

t

M
. (3.12)

To obtain the SE of θ̂t, we use the variance-covariance matrix V:

V̂ = Ŵ +
(M + 1)B̂

M
, (3.13)

where Ŵ is the average within-iteration variance and B̂ is the between-iteration variance, that
is,

Ŵ =
∑M

m=1 Û
m

M
,

B̂ =
1

M − 1

M∑
m=1

(
θ̂
m

t − θ̂t

)(
θ̂
m

t − θ̂t

)T
.

(3.14)

Ûm represents a variance-covariance matrix estimated in iteration m for γ̂m.
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Figure 1: Individual profiles of renal resistance level for 50 sampled donors.

4. Analysis of the RR Data

4.1. Models’ Specification

We apply the proposed two-stage procedure and a fully Bayesian approach to the
transplantation study introduced in Section 1. The data was taken from an international
prospective trial on 337 kidney pairs, which aimed to compare two different types of storage,
namely, cold storage and machine perfusion (MP). Here we focus on the second arm. Our
main outcome of interest is graft survival time censored after 1 year. At the end of the study,
only 26 graft failures were observed. The renal resistance level (RR) was expected to be an
important risk factor for graft failure. It was measured using the perfusion machine at the
moment of taking the organ out from a donor (t = 0), and thereafter at 10 minutes, 30 minutes,
1 hour, 2 hours, 4 hours, and just before transplantation. As mentioned in the Section 1,
the time of last measurement was different for different patients and sometimes unknown.
However, there was a clear asymptote visible from the individual profiles that was reached
after about 5 hours by each patient. Based on that behavior and after the medical consult, we
chose the last measurement to be taken at 6 hours for each patient. Other variables of interest
include the age of the donor, donor’s region (3 countries considered), and donor’s type (heart
beating or non-heart-beating).

The individual profiles of 50 randomly selected kidney donors are presented in
Figure 1. This plot confirms the biological expectation that allografts exhibit their highest
renal resistance levels just after being extracted from the donor. Thereafter, they show a
smooth decrease in RR until they reach an asymptote above zero indication that there is no
“perfect flow” through the kidney. Furthermore, we observe that the initial RR level, the rate
of decrease, and the final RR level differ from donor to donor. Additional descriptive plots
for our data are presented in the supplementary material.
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In the first step of our analysis, we aim to describe the evolution of the renal resistance
level in time. Motivated by both biological expectation and Figure 1, we postulate the
following nonlinear function:

f(t) = φ1 + φ2e
−φ3t, (4.1)

where φ1 is a lower asymptote, φ1 + φ2 is an initial value for t = 0, and φ3 is the rate of
decrease from φ2 to φ1 (see also Figure 2 in supplementary material).

To accommodate for the shapes of RR evolutions observed in Figure 1, we need to
constraint φ1, φ2, and φ3 to be positive. Moreover, in order to allow for individual donor
effects, we use the following formulation:

Yi(t) =Wi(t) + ε(t), with Wi(t) = fi(t) = exp
(
φ1i
)
+ exp

(
φ2i
)
e− exp(φ3i)t, (4.2)

where

φ1 = β10 + β11 Donor Age + β12 Donor Type + β13 Donor Reg1 + β14 Donor Reg2 + α1,

φ2 = β20 + β21 Donor Age + β22 Donor Type + β23 Donor Reg1 + β24 Donor Reg2 + α2,

φ3 = β30 + β31 Donor Age + β32 Donor Type + β33 Donor Reg1 + β34 Donor Reg2 + α3,

(4.3)

and αi ∼ N(0, D), ε(t) ∼ N(0, σ2) with α = (α1, α2, α3) and cov(αi, ε(t)) = 0. In the second
step, the predicted parameters (φ1, φ2, φ3) summarizing the RR evolution of the nonlinear
mixed model are included in the graft survival model. The final model for graft survival was
of the form:

λi(u) = λ0(u) exp
(
γ1φ̂1i + γ2φ̂2i + γ3φ̂3i

)
. (4.4)

To investigate the impact of ignoring that the covariate φ̂i is measured with error, we
compared the naive approach in which we ignored this measurement error and our proposal
that accounts for the uncertainty in φ̂i via Monte Carlo sampling. We used Metropolis-
Hastings algorithm with independent t-proposal and acceptance rate around 50% for the
reason given in Section 3.2. We simulated M = 10000 samples with additional initial step of
the scaling parameter calibration in order to achieve the desirable acceptance rate. The final
estimates (and SE) of the parameters associated with RR covariates were calculated using
the formulas described in Section 3.2. We compared the results from the two-stage procedure
with the estimates obtained from the fully Bayesian joint model fitted for the data using the
priors specified in Section 3.1.

The analysis was performed using R Statistical Software. Packages survival and nlme
were used for the two submodels fit, and a separate code was written by the first author
for the sampling part. The fully Bayesian model was fitted using OpenBUGS software with
the priors specified in Section 3.1. In particular, for the p × p variance-covariance matrices of
multivariate normal priors, we used inverse Wishart distribution with p degrees of freedom.
For the variance-covariance parameter of the normal longitudinal response, we took as a prior
an inverse-Gamma (10−3, 10−3). For the baseline risk parameter of the Weibull distribution in



Journal of Probability and Statistics 11

survival submodel, a Gamma(10−3, 10−3) prior was used. To analyze the data using the fully
Bayesian Cox model described in Section 3.1, we chose the scaling parameter c in a gamma
prior for the independent increments to be equal 0.001 and a prior mean dΛ∗

0(t) = 0.1. We did
not observe any substantial difference for the different values of parameter c as long as c was
small enough to keep the prior noninformative. We do not recommend too small values of
the scaling parameter c as they can lead to the computation problems. Analogically we have
chosen gamma priors for the piecewise constant hazard model. The code for the Bayesian full
joint model, as well the R codes for the sampling two-stage procedure, is available from the
authors on request.

4.2. Results

The results for the nonlinear-mixed model are presented in Table 1, for the two-stage
approach and in supplementary material, for the full Bayesian approach with Weibull
survival model. The results for the longitudinal part for the full Bayesian approach with
Cox and piecewise constant hazard models were similar (not presented). It can be observed,
based on two-stage model results, that only Donor Age had a significant impact on the RR
asymptote. Donor Type and Region had a significant impact on the steepness parameter.
However, we keep all the covariates in the model for the purpose of prediction for the second
stage. The mean RR profiles for Heart-Beating and Non-Heart-Beating donors from different
regions together with fitted values based on the obtained nonlinear mixed model are given
in the supplementary material.

In the second step of the analysis, we applied at first the naive approach and used the
estimates φ̂1, φ̂2, and φ̂3 from the nonlinear mixed model as fixed covariates in the final Cox
models for graft survival. Table 2 presents the results for the survival submodel for the all
approaches, namely, the plug-in method, two-stage approach, and the fully Bayesian model.
For the fully Bayesian approach, the results for the parametric Weibull model together with
Cox and piecewise constant hazard models are listed. The results from Table 2 indicate that
only the RR asymptote could have a significant impact on graft survival.

We observe that the estimates are close or almost identical as in plug-in model. SE of
the Cox regression coefficients for the model with sampling are greater than SE from the plug-
in model in Table 2(a), especially for the parameter φ3. The increase in SE is somewhat the
expected and is caused by the additional variability in covariates captured by the sampling
approach. The fully Bayesian model produces similar results to our semi-Bayesian sampling
model with somewhat lower SE. We do not observe substantial difference between fully
parametric and nonparametric models in a fully Bayesian approach. Since in the analyzed
real data the number of events is small, the fully Bayesian Cox and piecewise constant hazard
Bayesian models were expected to produce similar results. We did not observe any substantial
difference for the different values of hyperparameters.

Even though it is hard to compare exactly the computational time for the two
approaches, the rough estimation of the total computational time needed to estimate and
assess the convergence (2 chains) of the full Bayesian model was about 21.6 hours and
depended on the implemented survival model. A similar computational time was needed
for the full Bayesian model with the Cox survival model and piecewise constant hazard
model with a slightly more time needed for the parametric Weibull model. For the two-stage
approach, the total computational time was about 10 hours using the Intel(R) Core(TM)2
Duo T9300 2.5 GHz and 3.5 GB RAM.



12 Journal of Probability and Statistics

Table 1: Parameter estimates, standard errors, and 95% confidence intervals from the nonlinear mixed
model for RR.

Effect Parameter Estimate SE (95% CI)

Fixed effects
φ1

Constant β10 2.838 0.094 (2.654; 3.022)
Donor Age β11 0.005 0.002 (0.001; 0.009)
Donor Type (HB versus NHB) β12 −0.102 0.068 (−0.235; 0.031)
Donor Region 1 versus 3 β13 −0.078 0.065 (−0.205; 0.049)
Donor Region 2 versus 3 β14 −0.072 0.072 (−0.213; 0.069)

φ2

Constant β20 3.510 0.211 (3.096; 3.924)
Donor Age β21 0.004 0.004 (−0.004; 0.012)
Donor Type (HB versus NHB) β22 −0.064 0.154 (−0.365; 0.238)
Donor Region 1 versus 3 β23 −0.107 0.147 (−0.395; 0.181)
Donor Region 2 versus 3 β24 0.033 0.163 (−0.286; 0.352)

φ3

Constant β30 1.010 0.186 (0.645; 1.375)
Donor Age β31 0.003 0.003 (−0.003; 0.009)
Donor Type (HB versus NHB) β32 0.402 0.130 (0.147; 0.657)
Donor Region 1 versus 3 β33 −0.284 0.125 (−0.529; −0.039)
Donor Region 2 versus 3 β34 −0.032 0.138 (−0.302; 0.238)

Random effects
se(α1) d11 0.396
se(α2) d22 0.955
se(α3) d33 0.572
cov(α1, α2) d12 0.257
cov(α1, α3) d13 −0.053
cov(α2, α3) d23 0.023
se(εij) σ 7.507

5. Simulations

5.1. Design

We have conducted a number of simulations to investigate the performance of our proposed
two-stage method. In particular, we compared the plug-in method that uses the Empirical
Bayes estimates φ̂i from the nonlinear mixed model and ignores the measurement error, the
two-stage Monte Carlo sampling approach that accounts for the variability in φ̂i, and the fully
Bayesian approach. In the fully Bayesian approach, only the parametric Weibull model was
considered.

For the longitudinal part, the data were simulated for 500 patients from model
(5.1) with φ1i = β10 + α1i, φ2i = β20 + α2i and φ3i = β30 + α3i, αi ∼ N(0,D), Y ∼
N(f(t), σ2). The variance-covariance matrix D of the random effects was chosen to be
D = vech(0.6, 0.01,−0.01, 0.6, 0.01, 0.3). We kept 7 measurement points as in the original
analyzed data set as well as the nonequal distances between them. The variance of the
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Table 2: Parameter estimates, SE, and 95% confidence/credibility intervals from proportional hazards Cox
model for graft survival for plug-in method (a), sampled covariates (b), and fully Bayesian approach (c,
d, e).

(a) Graft survival, plug-in

Effect Parameter log(HR) SE (95% CI)
exp(φ1) γ1 0.052 0.022 (0.009; 0.095)
exp(φ2) γ2 −0.005 0.005 (−0.015; 0.005)
exp(φ3) γ3 0.053 0.158 (−0.257; 0.363)

(b) Graft survival, sampling two-stage

Effect Parameter log(HR) SE (95% CI)
exp(φ1) γ1 0.053 0.024 (0.006; 0.100)
exp(φ2) γ2 −0.006 0.008 (−0.022; 0.010)
exp(φ3) γ3 0.055 0.185 (−0.308; 0.418)

(c) Graft survival, fully Bayesian, Weibull

Effect Parameter log(HR) SE (95% HPD)
exp(φ1) γ1 0.058 0.023 (0.013; 0.103)
exp(φ2) γ2 −0.005 0.008 (−0.020; 0.011)
exp(φ3) γ3 0.056 0.180 (−0.299; 0.411)

(d) Graft survival, fully Bayesian, Cox

Effect Parameter log(HR) SE (95% HPD)
exp(φ1) γ1 0.056 0.023 (0.010; 0.101)
exp(φ2) γ2 −0.006 0.008 (−0.022; 0.010)
exp(φ3) γ3 0.055 0.171 (−0.280; 0.390)

(e) Graft survival, fully Bayesian, piecewise constant hazard

Effect Parameter log(HR) SE (95% HPD)
exp(φ1) γ1 0.054 0.024 (0.007; 0.102)
exp(φ2) γ2 −0.005 0.009 (−0.022; 0.012)
exp(φ3) γ3 0.054 0.179 (−0.297; 0.405)

measurement error σ2 was chosen to be 0.25, 1, and 25. Survival times were simulated for
each patient using the exponential model with the rate parameter equal exp(λ), where

λ = γ1 exp
(
φ1
)
+ γ2 exp

(
φ2
)
+ γ3 exp

(
φ3
)
. (5.1)

We considered scenarios with fixed coefficients γ1 = 0.5, γ2 = 0.5, and γ3 = −0.2.
The censoring mechanism was simulated independently using an exponential distribution
Exp(λC). Parameter λC was changed in order to control proportion of censored observations.
Different scenarios with 40% and 20% of censoring were examined. For each simulated
data set we fitted four survival models, namely, the gold standard model that uses the true
simulated values φi, the plug-in model, the sampling model, and fully Bayesian joint model.
Neither nonparametric Cox nor piecewise constant hazard model were considered in a fully
Bayesian approach since we have simulated the data from the parametric exponential model
and wanted to compare the proposed two-stage approach with the “best” fully Bayesian
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model. All the prior settings, size of burn-in, number of iterations, and so forth, for the fully
Bayesian model were the same as for the real data analysis.

5.2. Results

In Table 3, we present the average results for 200 simulations of different scenarios are
presented. The results from our sampling model were very close to the results obtained for the
fully Bayesian model with slightly smaller bias and RMSE for the fully Bayesian approach.
That was due to the better estimation of random effects variability in fully Bayesian approach.
The plug-in method produced the biggest bias that sometimes with combination with the
small variability of the estimates around the biased mean resulted in larger RMSE than in
sampling approach. As the measurement error or the percentage of censored observations
increased, the estimates of survival submodel were more biased with larger RMSE for all
approaches. The increase in bias was more severe when the measurement error variance
was increased rather than when the percentage of to censoring was higher. This bias was,
however, decreased when the number of repeated measures per individual was increased.
This has to do with the amount of information that is available in the data for the estimation
of φ̂i. As it is known from the standard mixed models literature [26], the degree of shrinkage
in the subject-specific predicted values is proportional to σ and inversely proportional to
ni and σα. To compare the relation between variance of the random effects and variance of
the measurement error, one can use intraclass correlation (ICC) defined as the proportion of
the total variability that is explained by the clustering with a given random effect. ICC was
similar for the simulated and the real data for the biggest σ and increased in a simulation
data as σ decreased.

Since the calculations for the simulation study were highly computationally intensive,
we have used the cluster with about 20 nodes with AMD Quad-Core Opteron 835X, 4 ×
2 GHz, and 16 GB RAM per node. The analysis for the the 200 simulated data sets for a single
scenario took about 65.5 hours using the Bayesian approach and 31.2 hours using the two-
stage approach.

6. Discussion

We have proposed a two-stage method that can be used in a joint analysis of longitudinal
and time to event data when the longitudinal data are collected before the start of followup
for survival, and the interest is in estimation of the impact of longitudinal profiles on
survival. The modeling strategy is based on specification of two separate submodels for
the longitudinal and time to event data. First, the longitudinal outcome is modeled using
a random effects model. Then the survival outcome is modeled using the Empirical Bayes
estimates of the subject-specific effects from the first stage. The variability of the estimates
from the first stage is properly taken into account using a Monte Carlo approach by sampling
from the posterior distribution of the random effects given the data.

As it was demonstrated, ignoring the additional variability of the subject-specific
estimates when modeling survival leads to some bias, and in particular, attenuates the
regression coefficients towards zero [4]. That was also confirmed by our simulation study.
In comparison with the fully Bayesian approach, the proposed partially Bayesian method
produced similar results with substantially less number of iterations required. This is due
to the fact that sampling was conducted already around the EB estimates, and there is no
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Table 3: Bias and residual mean squared error (RMSE) for the method with true φi (GS), Empirical Bayes
estimates φ̂i (Plug-in), sampled φi, and fully Bayesian approach.

7 time points
% censoring 20 40

σ 0.5

γ1 γ2 γ3 γ1 γ2 γ3

GS 0.00 (0.04) −0.02 (0.03) 0.01 (0.03) −0.01 (0.04) 0.02 (0.04) −0.02 (0.04)
plug-in −0.05 (0.06) −0.04 (0.05) 0.06 (0.07) −0.08 (0.09) −0.04 (0.05) 0.12 (0.12)
sampling −0.04 (0.05) 0.03 (0.08) 0.02 (0.07) −0.05 (0.11) −0.02 (0.06) 0.03 (0.10)
Bayesian −0.03 (0.04) −0.02 (0.04) 0.01 (0.02) −0.01 (0.04) −0.02 (0.04) 0.02 (0.07)

σ 1

GS 0.04 (0.05) 0.04 (0.07) −0.03 (0.07) −0.05 (0.09) −0.04 (0.06) −0.03 (0.05)
plug-in −0.07 (0.08) −0.08 (0.09) 0.07 (0.09) −0.10 (0.12) −0.08 (0.09) 0.08 (0.11)
sampling −0.07 (0.09) −0.06 (0.10) −0.02 (0.11) −0.05 (0.12) 0.05 (0.11) −0.03 (0.12)
Bayesian 0.01 (0.03) 0.05 (0.06) −0.03 (0.07) 0.05 (0.06) 0.04 (0.06) −0.04 (0.07)

σ 5

GS 0.04 (0.06) 0.05 (0.06) 0.04 (0.08) 0.05 (0.10) 0.01 (0.05) −0.02 (0.06)
plug-in −0.09 (0.10) −0.10 (0.11) 0.08 (0.11) −0.20 (0.22) −0.21 (0.22) 0.14 (0.18)
sampling 0.08 (0.13) 0.06 (0.12) −0.05 (0.12) 0.07 (0.14) −0.05 (0.13) −0.11 (0.18)
Bayesian 0.09 (0.10) 0.05 (0.09) −0.09 (0.10) −0.09 (0.10) 0.08 (0.12) −0.12 (0.18)

14 time points
% censoring 20 40

σ 0.5

γ1 γ2 γ3 γ1 γ2 γ3

GS −0.03 (0.03) 0.00 (0.02) −0.02 (0.03) 0.02 (0.03) −0.03 (0.04) 0.02 (0.04)
plug-in −0.02 (0.03) −0.03 (0.04) 0.05 (0.07) −0.02 (0.04) −0.03 (0.04) 0.05 (0.06)
sampling 0.03 (0.04) 0.02 (0.06) 0.02 (0.07) 0.02 (0.04) 0.04 (0.05) 0.02 (0.08)
Bayesian −0.03 (0.04) −0.02 (0.04) −0.02 (0.04) 0.02 (0.04) 0.03 (0.04) −0.05 (0.06)

σ 1

GS −0.03 (0.04) −0.03 (0.04) −0.01 (0.03) 0.00 (0.03) −0.02 (0.04) 0.05 (0.06)
plug-in −0.09 (0.06) −0.05 (0.06) 0.06 (0.07) −0.02 (0.04) −0.04 (0.05) 0.11 (0.11)
sampling 0.04 (0.08) 0.02 (0.08) −0.02 (0.07) −0.02 (0.04) −0.02 (0.08) 0.04 (0.09)
Bayesian −0.03 (0.04) 0.04 (0.05) −0.03 (0.05) 0.02 (0.04) 0.03 (0.05) 0.06 (0.07)

σ 5

GS −0.03 (0.04) −0.03 (0.04) 0.01 (0.04) −0.01 (0.04) −0.02 (0.04) 0.05 (0.06)
plug-in −0.05 (0.06) −0.10 (0.11) 0.07 (0.09) −0.10 (0.11) −0.09 (0.10) 0.11 (0.12)
sampling 0.04 (0.09) 0.04 (0.11) −0.05 (0.11) 0.07 (0.12) 0.05 (0.11) −0.06 (0.16)
Bayesian 0.03 (0.05) 0.03 (0.08) −0.05 (0.10) 0.02 (0.04) 0.06 (0.10) −0.09 (0.14)

needed for a burn-in part as in a standard fully Bayesian approach. We used 10000 iterations
per subject, which was about the size of burn-in needed in the fully Bayesian models. No
thinning was used in our approach, based on the visual inspection of the trace plots. Though
it is hard to compare the fully Bayesian approach and the two-stage approach with respect
to the computational time precisely, the rough approximation of the total computational time
required for the two-stage approach was about half in comparison with the fully Bayesian
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approach. The fully Bayesian approach provided similar results with the two-stage approach
for the special setting we have considered here. However, fitting a fully Bayesian model was
a bit of “overdone” in the sense that by design the longitudinal data could not be affected
by the survival. Since in many transplantation studies, the longitudinal data are collected
before the start of followup for survival; therefore, using our method in that cases seems
to be more appropriate than using a fully Bayesian approach. We recommend the proposed
approach not only for the particular transplantation studies but in any setting that shares
the similarity of the separated followup periods for the two analyzed endpoints. That is, for
example, when the event process does not carry any information for the longitudinal outcome
and the condition (3.7) from Section 3.2 holds. The simulation results indicate that even if the
data come from the real joint setting in which (3.7) may not hold, the proposed two-stage
procedure can be comparable to the fully Bayesian approach.

Since the sampling in the proposed method relies strongly on the results of the first
part, the accurate estimation of all parameters of nonlinear mixed model is a key feature and
should be performed carefully. This can be problematic when the deviation from normality of
the random effects, is suspected. However, it was shown that even for the nonnormal random
effects one can still use a standard software such as nlmixed in SAS with just a small change
in a standard program code. In such cases, the probability integral transformation (PIT)
proposed by Nelson et al. [27] can be used or the reformulation of the likelihood proposed by
Liu and Yu [28]. An alternative is fitting a Bayesian model only to estimate the longitudinal
submodel in the first stage, instead of the likelihood methods. Fitting nonlinear mixed models
using Bayesian standard software can be, however, problematic due to the high nonlinearity
in random effects that is caused both by the nonlinear function of the longitudinal profiles
and by the possible restrictions on parameters [29].

In comparison with the two-stage approach proposed by Tsiatis et al. [5], our
method is less computationally intensive since it does not require fitting as many mixed
models as there are event times in the data. An alternative, that is somewhat simpler to
implement and does not require any assumption about the distribution on the underlying
random effects, is the conditional score approach proposed by Tsiatis and Davidian [11].
However, this method is less efficient than the methods based on likelihood. The focus
in the discussed approaches is on the association between the longitudinal and event
time processes. However, in transplantation studies when the two followup periods for
longitudinal and survival outcomes are often separated, the interest is rather in making an
inference on the marginal event-time distribution. This is similar to the Bayesian approach
proposed by Xu and Zeger [12], that uses the longitudinal data as auxiliary information or
surrogate for time-to-event data. Our approach is particularly useful in this setting. Since
each of the two submodels is fitted separately, a standard software can be used to implement
our method with just a small part of additional programming for Monte Carlo sampling.

Another advantage of the proposed two-stage method is that it can be easily
generalized from survival to other types of models as it was applied for the binary Delayed
Graft Failure (DGF) indicator (results not shown) in the analysis of the renal data. For that
purpose in the second step of the two-stage procedure, the survival model was replaced by
the logistic regression model for the DGF indicator. The first stage of the proposed approach
could be also modified allowing for other types of longitudinal response and other types of
mixed models. Therefore, instead of using a nonlinear mixed model a linear mixed model or
generalized linear mixed model (GLMMs) can be considered depending on the type and the
shape of the longitudinal response. In the presented real data example, we have chosen the
three parameters that described the evolution of the longitudinal response. However, for the
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particular question of interest, one can easily choose the most convenient parametrization
for the longitudinal model and use the selected parameters to analyze the nonlongitudinal
response in the second stage.
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This paper presents a Bayesian analysis of bivariate ordered probit regression model with excess
of zeros. Specifically, in the context of joint modeling of two ordered outcomes, we develop zero-
inflated bivariate ordered probit model and carry out estimation using Markov Chain Monte Carlo
techniques. Using household tobacco survey data with substantial proportion of zeros, we analyze
the socioeconomic determinants of individual problem of smoking and chewing tobacco. In our
illustration, we find strong evidence that accounting for excess zeros provides good fit to the data.
The example shows that the use of a model that ignores zero-inflation masks differential effects of
covariates on nonusers and users.

1. Introduction

This paper is concerned with joint modeling of two ordered data outcomes allowing for
excess zeros. Economic, biological, and social science studies often yield data on two ordered
categorical variables that are jointly dependent. Examples include the relationship between
desired and excess fertility [1, 2], helmet use and motorcycle injuries [3], ownership of dogs
and televisions [4], severity of diabetic retinopathy of the left and right eyes [5], and self-
assessed health status and wealth [6]. The underlying response variables could be measured
on an ordinal scale. It is also common in the literature to generate a categorical or grouped
variable from an underlying quantitative variable and then use ordinal response regression
model (e.g., [4, 5, 7]). The ensuing model is usually analyzed using the bivariate ordered
probit model.
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Many ordered discrete data sets are characterized by excess of zeros, both in terms of
the proportion of nonusers and relative to the basic ordered probit or logit model. The zeros
may be attributed to either corner solution to consumer optimization problem or errors in
recording. In the case of individual smoking behavior, for example, the zeros may be recorded
for individuals who never smoke cigarettes or for those who either used tobacco in the past
or are potential smokers. In the context of individual patents applied for by scientists during
a period of five years, zero patents may be recorded for scientists who either never made
patent applications or for those who do but not during the reporting period [8]. Ignoring the
two types of zeros for nonusers or nonparticipants leads to model misspecification.

The univariate as well as bivariate zero-inflated count data models are well established
in the literature for example, Lambert [9], Gurmu and Trivedi [10], Mullahy [11], and Gurmu
and Elder [12]. The recent literature presents a Bayesian treatment of zero-inflated Poisson
models in both cross-sectional and panel data settings (see [13, 14], and references there in).
By contrast, little attention has been given to the problem of excess zeros in the ordered
discrete choice models. Recently, an important paper by Harris and Zhao [15] developed
a zero-inflated univariate ordered probit model. However, the problem of excess zeros in
ordered probit models has not been analyzed in the Bayesian framework. Despite recent
applications and advances in estimation of bivariate ordered probit models [1–6], we know
of no studies that model excess zeros in bivariate ordered probit models.

This paper presents a Bayesian analysis of bivariate ordered probit model with excess
of zeros. Specifically, we develop a zero-inflated ordered probit model and carry out the
analysis using the Bayesian approach. The Bayesian analysis is carried out using Markov
Chain Monte Carlo (MCMC) techniques to approximate the posterior distribution of the
parameters. Bayesian analysis of the univariate zero-inflated ordered probit will be treated
as a special case of the zero-inflated bivariate order probit model. The proposed models
are illustrated by analyzing the socioeconomic determinants of individual choice problem
of bivariate ordered outcomes on smoking and chewing tobacco. We use household tobacco
prevalence survey data from Bangladesh. The observed proportion of zeros (those identifying
themselves as nonusers of tobacco) is about 76% for smoking and 87% for chewing tobacco.

The proposed approach is useful for the analysis of ordinal data with natural zeros.
The empirical analysis clearly shows the importance of accounting for excess zeros in
ordinal qualitative response models. Accounting for excess zeros provides good fit to the
data. In terms of both the signs and magnitudes of marginal effects, various covariates
have differential impacts on the probabilities associated with the two types of zeros,
nonparticipants and zero-consumption. The usual analysis that ignores excess of zeros masks
these differential effects, by just focusing on observed zeros. The empirical results also show
the importance of taking into account the uncertainty in the parameter estimates. Another
advantage of the Bayesian approach to modeling excess zeros is the flexibility, particularly
computational, of generalizing to multivariate ordered response models.

The rest of the paper is organized as follows. Section 2 describes the proposed zero-
inflated bivariate probit model. Section 3 presents the MCMC algorithm and model selection
procedure for the model. An illustrative application using household tobacco consumption
data is given in Section 4. Section 5 concludes the paper.

2. Zero-Inflated Bivariate Ordered Probit Model

2.1. The Basic Model

We consider the basic Bayesian approach to a bivariate latent variable regression model with
excess of zeros. To develop notation, let ỹ∗

1i and ỹ∗
2i denote the bivariate latent variables. We
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consider two observed ordered response variables ỹ1i and ỹ2i taking on values 0, 1, . . . , Jr ,
for r = 1, 2. Define two sets of cut-off parameters αr = (αr2, αr3, . . . , αrJr), r = 1, 2, where the
restrictions αr0 = −∞, αrJr+1 = ∞, and αr1 = 0 have been imposed. We assume that (ỹ∗

1i, ỹ
∗
2i)

′ ≡
ỹ∗i follows a bivariate regression model

ỹ∗
ri = x′riβr + εri, r = 1, 2, (2.1)

where xri is a Kr-variate of regressors for the ith individual (i = 1, . . . ,N) and εri are the error
terms. For subsequent analysis, let β = (β′

1,β
′
2)

′, εi = (ε1i, ε2i)
′, and

Xi =

(
x′1i 0′

0′ x′2i

)
. (2.2)

Analogous to the univariate case, the observed bivariate-dependent variables are defined as

ỹri =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if ỹ∗
ri ≤ 0,

1 if 0 < ỹ∗
ri ≤ αr2,

j if αrj < ỹ∗
ri ≤ αrj+1, j = 2, 3, . . . , Jr − 1,

Jr if ỹ∗
i ≤ αrJr ,

(2.3)

where r = 1, 2. Let ỹi = (ỹ1i, ỹ2i)
′.

We introduce inflation at the point (ỹ1i = 0, ỹ2i = 0), called the zero-zero state. As in
the univariate case, define the participation model:

s∗i = z′iγ + μi,

si = I
(
s∗i > 0

)
.

(2.4)

In the context of the zero-inflation model, the observed response random vector yi = (y1i, y2i)
′

takes the form

yi = siỹi. (2.5)

We observe yi = 0 when either the individual is a non-participant (si = 0) or the individual
is a zero-consumption participant (si = 1 and ỹi = 0). Likewise, we observe positive outcome
(consumption) when the individual is a positive consumption participant for at least one
good (si = 1 and ỹi /= 0).

Let Φ(a) and φ(a) denote the respective cumulative distribution and probability
density functions of standardized normal evaluated at a. Assuming normality and that μi is
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uncorrelated with (ε1i, ε2i), but corr(ε1i, ε2i) = ρ12 /= 0, and each component with unit variance,
the zero-inflated bivariate ordered probit (ZIBOP) distribution is

fb
(
y∗i ,yi, s

∗
i , si | Xi, zi,Ψ

)

=

⎧
⎨
⎩

Pr(si = 0)+(1 − Pr(si = 0))Pr
(
ỹ1i = 0, ỹ2i = 0

)
, for

(
ỹ1i, ỹ2i

)
= (0, 0)

(1 − Pr(si = 0))Pr
(
ỹ1i = j, ỹ2i = l

)
, for

(
ỹ1i, ỹ2i

)
/= (0, 0),

(2.6)

where j = 0, 1, . . . , J1, l = 0, 1, . . . , J2, Pr(si = 0) = Φ(−z′iγ), Pr(si = 1) = Φ(−z′iγ). Further, for
(ỹ1i, ỹ2i) = (0, 0) in (2.6), we have αr0 = −∞, αr1 = 0 for r = 1, 2 so that

Pr
(
ỹ1i = 0, ỹ2i = 0

)
= Φ2

(−x′1iβ1,−x′2iβ2, ρ12
)
, (2.7)

where Φ2(·) is the cdf for the standardized bivariate normal. Likewise, Pr(ỹ1i = j, ỹ2i = l) in
(2.6) are given by

Pr
(
ỹ1i = j, ỹ2i = l

)
= Φ2

(
α1j+1 − x′1iβ1, α2l+1 − x′2iβ2; ρ12

)

−Φ2
(
α1j − x′1iβ1, α2l − x′2iβ2, ρ12

)
for j = 1, . . . , J1 − 1; l = 1, . . . , J2 − 1;

Pr
(
ỹ1i = J1, ỹ2i = J2

)
= 1 −Φ2

(
α1J1 − x′1iβ1, α2J2 − x′2iβ2, ρ12

)
.

(2.8)

The ensuing likelihood contribution for N-independent observations is

Lb(y∗,y, s∗, s | X, z,Ψb) =
N∏
i=1

∏
(j,l)=(0,0)

[
Pr(si = 0) + (1 − Pr(si = 0))Pr

(
ỹ1i = 0, ỹ2i = 0

)]dijl

×
N∏
i=1

∏
(j,l)/= (0,0)

[
(1 − Pr(si = 0))Pr

(
ỹ1i = j, ỹ2i = l

)]dijl ,

(2.9)

where dijl = 1 if ỹ1i = j and ỹ2i = l, and dijl = 0 otherwise. Here, the vector Ψb consists of
β, γ , α1, α2, and the parameters associated with the trivariate distribution of (ε, μ).

Regarding identification of the parameters in the model defined by (2.1) through
(2.5) with normality assumption, we note that the mean parameter (joint choice probability
associate with the observed response vector yi) depends nonlinearly on the probability
of zero inflation (Φ(−z′iγ)) and choice probability (Pr(ỹ1i = j, ỹ2i = l)) coming from the
BOP submodel. Since the likelihood function for ZIBOP depends separately on the two
regression components, the parameters of ZIBOP model with covariates are identified as
long as the model is estimated by full maximum likelihood method. The same or different
sets of covariates can affect the two components via zi and xri. When using quasi-likelihood
estimation or generalized estimating equations methods rather than full ML, the class of
identifiable zero-inflated count and ordered data models is generally more restricted; see, for
example, Hall and Shen [16] and references there in. Although the parameters in the ZIBOP
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model above are identified through a nonlinear functional form estimated by ML, for more
robust identification we can use traditional exclusion restrictions by including instrumental
variables in the inflation equation, but excluding them from the ordered choice submodel.
We follow this strategy in the empirical section.

About 2/3 of the observations in our tobacco application below have a double-zero-
state, (y1 = 0, y2 = 0). Consequently, we focused on a mixture constructed from a point mass
at (0, 0) and a bivariate ordered probit. In addition to allowing for inflation in the double-
zero-state, our approach can be extended to allow for zero-inflation in each component.

2.2. Marginal Effects

It is common to use marginal or partial effects to interpret covariate effects in nonlinear
models; see, for example, Liu et al. [17]. Due to the nonlinearity in zero-inflated ordered
response models and in addition to estimation of regression parameters, it is essential to
obtain the marginal effects of changes in covariates on various probabilities of interest.
These include the effects of covariates on probability of nonparticipation (zero-inflation),
probability of participation, and joint and/or marginal probabilities of choice associated with
different levels of consumption.

From a practical point of view, we are less interested in the marginal effects of
explanatory variables on the joint probabilities of choice from ZIBOP. Instead, we focus on
the marginal effects associated with the marginal distributions of yri for r = 1, 2. Define a
generic (scalar) covariate wi that can be a binary or approximately continuous variable. We
obtain the marginal effects of a generic covariatewi on various probabilities assuming that the
regression results are based on ZIBOP. Ifwi is a binary regressor, then the marginal effect ofwi

on probability, say P , is the difference in the probability evaluated at 1 and 0, conditional on
observable values of covariates: P(wi = 1)−P(wi = 0). For continuous explanatory variables,
the marginal effect is given by the partial derivative of the probability of interest with respect
to wi, ∂P(·)/∂wi.

Regressor wi can be a common covariate in vectors of regressors xri and zi or appears
in either xri or zi. Focusing on the continuous regressor case, the marginal effects of wi in
each of the three cases are presented below. First, consider the case of common covariate in
participation and main parts of the model, that is, wi in both xri and zi. The marginal effect
on the probability of participation is given by

Mi(si = 1) =
∂Pr(si = 1)

∂wi
= φ
(
z′iγ
)
γwi , (2.10)

where again φ(·) is the probability density function (pdf) of the standard normal distribution
and γwi is the coefficient in the inflation part associated with variable wi. In terms of the zeros
category, the effect on the probability of nonparticipation (zero inflation) is

Mi(si = 0) =
∂Pr(si = 0)

∂wi
= −φ(−z′iγ

)
γwi , (2.11)
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while

Mi

(
s = 1, ỹri = 0

)
=
∂Pr(si = 1)Pr

(
ỹri = 0

)

∂wi

= Φ
(−x′riβr

)
φ
(
z′iγ
)
γwi −Φ

(
z′iγ
)
φ
(−x′riβr

)
βrwi , r = 1, 2,

(2.12)

represents the marginal effect on the probability of zero-consumption. Here the scalar βrwi is
the coefficient in the main part of the model associated with wi.

Continuing with the case of common covariate, the marginal effects of wi on the
probabilities of choice are given as follows. First, the total marginal effect on the probability of
observing zero-consumption is obtained as a sum of the marginal effects in (2.11) and (2.12);
that is,

Mi

(
yri = 0

)
=
[
Φ
(−x′riβr

) − 1
]
φ
(
z′iγ
)
γwi −Φ

(
z′iγ
)
φ
(−x′riβr

)
βrwi . (2.13)

The effects for the remaining choices for outcomes r = 1, 2 are as follows:

Mi

(
yri = 1

)
=
[
Φ
(
αr2 − x′riβr

) −Φ
(−x′riβr

)]
φ
(
z′iγ
)
γwi

−Φ
(
z′iγ
)[
φ
(
αr2 − x′riβr

) − φ(−x′riβr
)]
βrwi ;

Mi

(
yri = j

)
=
[
Φ
(
αr,j+1 − x′riβr

) −Φ
(
αrj − x′riβr

)]
φ
(
z′iγ
)
γwi

−Φ
(
z′iγ
)[
φ
(
αr,j+1 − x′riβr

) − φ(αrj − x′riβr
)]
βrwi , for j = 2, . . . , Jr − 1;

Mi

(
yri = Jr

)
=
[
1 −Φ

(
αr,Jr − x′riβr

)]
φ
(
z′iγ
)
γwi + Φ

(
z′iγ
)
φ
(
αr,Jr − x′riβr

)
βrwi .

(2.14)

Now consider case 2, where a generic independent variable wi is included only in xri,
the main part of the model. In this case, covariate wi has obviously no direct effect on the
inflation part. The marginal effects of wi on various choice probabilities can be presented as
follows:

Mi

(
yri = j

)
=
∂Pr
(
yri = j

)

∂wi

= −Φ(z′iγ
)[
φ
(
αr,j+1 − x′riβr

) − φ(αrj − x′riβr
)]
βrwi , for j = 0, 1, . . . , Jr ,

(2.15)

with αr0 = −∞, αr1 = 0, and αr,Jr+1 = ∞. The marginal effects in (2.15) can be obtained by
simply setting γwi = 0 in (2.13) and (2.14).

For case 3, where wi appears only in zi, its marginal effects on participation
components given in (2.10) and (2.11) will not change. Since βrwi = 0 in case 3, the partial
effects of wi on various choice probabilities take the form:

Mi

(
yri = j

)
=
[
Φ
(
αr,j+1 − x′riβr

) −Φ
(
αrj − x′riβr

)]
φ
(
z′iγ
)
γwi for j = 0, 1, . . . , Jr . (2.16)

Again, we impose the restrictions αr0 = −∞, αr1 = 0 and αr,Jr+1 = ∞.
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As noted by a referee, it is important to understand the sources of covariate effects and
the relationship between the marginal effects and the coefficient estimates. Since

Pr
(
yri = j

)
=
[
Pr(si = 1)Pr

(
ỹri = j

)]
(2.17)

for j = 0, 1, . . . , Jr , the total effect of a generic covariate wi on probability of consumption at
level j comes from two (weighted) sources: the participation part (Pr(si = 1)) and the main
ordered probit part (Pr(ỹri = j)) such that

∂Pr(si = 1)
∂wi

= φ
(
z′iγ
)
γwi ; (2.18)

∂Pr
(
ỹri = j

)

∂wi
= −[φ(αr,j+1 − x′riβr

) − φ(αrj − x′riβr
)]
βrwi

(2.19)

with αr0 = −∞, αr1 = 0, s and αr,Jr+1 = ∞. This shows that sign(γwi) is the same as sign(∂Pr(si =
1)/∂wi)—the participation effect in (2.18)—but sign(βrwi) is not necessarily the same as the
sign of (∂Pr(ỹri = j)/∂wi). The latter is particularly true in the left tail of the distribution,
where the coefficient (βrwi) and the main (unweighted) effect in (2.19) have opposite signs
because

{−[φ(αr,j+1 − x′riβr
) − φ(αrj − x′riβr

)]} ≡ 
 (2.20)

is negative. In this case, a positive effect coming from the main part requires βrwi to be
negative. By contrast, 
 is positive in the right tail, but can be positive or negative when the
terms (αr,j −x′riβr) and (αr,j+1−x′riβr) are on the opposite sides of the mode of the distribution.
This shows that a given covariate can have opposite effects in the participation and main
models. Since the total effect of an explanatory variable on probability of choice is a weighted
average of (2.18) and (2.19), interpretation of results should focus on marginal effects of
covariates rather than the signs of estimated coefficients. This is the strategy adopted in the
empirical analysis below.

2.3. A Special Case

Since the zero-inflated univariate ordered probit (ZIOP) model has not been analyzed
previously in the Bayesian framework, we provide a brief sketch of the basic framework for
ZIOP. The univariate ordered probit model with excess of zeros can be obtained as a special
case of the ZIBOP model presented previously. To achieve this, let ρ12 = 0 in the ZIBOP
model and focus on the first ordered outcome with r = 1. In the standard ordered response
approach, the model for the latent variable ỹ∗

1i is given by (2.1) with r = 1. The observed
ordered variable ỹ1i can be presented compactly as

ỹ1i =
J∑
j=0

jI
(
α1j < ỹ

∗
1i ≤ α1j+1

)
, (2.21)
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where I(w ∈ A) is the indicator function equal to 1 or 0 according to whether w ∈ A or not.
Again α10, α11, . . . , α1J1 are unknown threshold parameters, where we set α10 = −∞, α11 = 0,
and α1J1+1 = ∞.

Zero-inflation is now introduced at point ỹ1i = 0. Using the latent variable model (2.4)
for the zero inflation, the observed binary variable is given by si = I(s∗i > 0), where I(s∗i >
0) = 1 if s∗i > 0, and 0 otherwise. In regime 1, si = 1 or s∗i > 0 for participants (e.g., smokers),
while, in regime 0, si = 0 or s∗i ≤ 0 for nonparticipants. In the context of the zero-inflation
model, the observed response variable takes the form y1i = siỹ1i. We observe y1i = 0 when
either the individual is a non-participant (si = 0) or the individual is a zero-consumption
participant (si = 1 and ỹ1i = 0). Likewise, we observe positive outcome (consumption) when
the individual is a positive consumption participant (si = 1 and ỹ∗

1i > 0).
Assume that ε1 and μ are independently distributed. Harris and Zhao [15] also

consider the case where ε1 and μ are correlated. In the context of our application, the
correlated model did not provide improvements over the uncorrelated ZIOP in terms
of deviance information criterion. The zero-inflated ordered multinomial distribution, say
Pr(y1i), arises as a mixture of a degenerate distribution at zero and the assumed distribution
of the response variable ỹ1i as follows:

f1
(
y∗

1i, y1i, s
∗
i , si | x1i, zi,Ψ1

)
=

⎧
⎨
⎩

Pr(si = 0) + Pr(si = 1)Pr
(
ỹ1i = 0

)
, for j = 0

Pr(si = 1)Pr
(
ỹ1i = j

)
, for j = 1, 2, . . . , J1,

(2.22)

where, for any parameter vector Ω10 associated with the distribution of (ε1, μ), Ψ1 =
(β1, γ ,α

1,Ω10) with α1 = (α12, . . . , α1J1). For simplicity, dependence on latent variables,
covariates, and parameters has been suppressed on the right-hand side of (2.22). The
likelihood based on N-independent observations takes the form

L1
(
y∗

1, y1, s
∗, s | x1, z,Ψ1

)
=

N∏
i=1

J1∏
j=0

[
Pr
(
y1i = j | x1i, zi,Ψ1

)]dij

=
N∏
i=1

∏
j=0

[
Pr(si = 0) + Pr(si = 1)Pr

(
ỹ1i = j

)]dij

×
N∏
i=1

∏
j>0

[
Pr(si = 1)Pr

(
ỹ1i = j

)]dij ,

(2.23)

where, for example, y∗
1 = (y∗

1, . . . , y
∗
N)′, and dij = 1 if individual i chooses outcome j, or dij = 0

otherwise.
Different choices of the specification of the joint distribution of (ε1i, μi) give rise to

various zero-inflated ordered response models. For example, if the disturbance terms in the
latent variable equations are normally distributed, we get the zero-inflated ordered probit
model of Harris and Zhao [15]. The zero-inflated ordered logit model can be obtained by
assuming that ε1i and μi are independent, each of the random variables following the logistic
distribution with cumulative distribution function defined as Λ(a) = ea/(1 + ea). Unlike the
ordered probit framework, the ordered logit cannot lend itself easily to allow for correlation
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between bivariate discrete response outcomes. Henceforth, we focus on the ordered probit
paradigm in both univariate and bivariate settings.

Assuming that ε1i and μi are independently normally distributed, each with mean 0
and variance 1, the required components in (2.22) and consequently (2.23) are given by:

Pr(si = 0) = Φ
(−z′iγ

)
,

Pr
(
ỹ1i = 0

)
= Φ
(−x′

1iβ1

)
,

Pr
(
ỹ1i = j

)
= Φ
(
α1j+1 − x′1iβ1

) −Φ
(
α1j − x′1iβ1

)
, for j = 1, . . . , J1 − 1 with α10 = 0,

Pr
(
ỹ1i = J1

)
= 1 −Φ

(
α1J1 − x′1iβ1

)
.

(2.24)

The marginal effects for the univariate ZIOP are given by Harris and Zhao [15]. Bayesian
analysis of the univariate ZIOP will be treated as a special case of the zero-inflated bivariate
order probit model in the next section.

3. Bayesian Analysis

3.1. Prior Distributions

The Bayesian hierarchical model requires prior distributions for each parameter in the model.
For this purpose, we can use noninformative conjugate priors. There are two reasons for
adopting noninformative conjugate priors. First, we prefer to let the data dictate the inference
about the parameters with little or no influence from prior distributions. Secondly, the
noninformative priors facilitate resampling using Markov Chain Monte Carlo algorithm
(MCMC) and have nice convergence properties. We assume noninformative (vague or
diffuse) normal priors for regression coefficients β, with mean β∗ and variance Ωβ which
are chosen to make the distribution proper but diffuse with large variances. Similarly, γ ∼
N(γ∗,Ωγ).

In choosing prior distributions for the threshold parameters, α’s, caution is needed
because of the order restriction on them. One way to avoid the order restriction is to
reparameterize them. Following Chib and Hamilton [18] treatment in the univariate ordered
probit case, we reparameterize the ordered threshold parameters

τr2 = log(αr2); τrj = log
(
αrj − αrj−1

)
, j = 3, . . . , Jr ; r = 1, 2 (3.1)

with the inverse map

αrj =
j∑

m=2

exp(τrm), j = 2, . . . , Jr ; r = 1, 2. (3.2)

For r = 1, 2, let τ r = (τr2, τr3, . . . , τrJ)
′ so that τ = (τ1, τ2). We choose normal prior τ ∼

N(τ∗,Ωτ) without order restrictions for τr ’s.
The only unknown parameter associate with the distribution of (ε, μ) in (2.1) and (2.4)

is ρ12, the correlation between ε1 and ε2. The values of ρ12 by definition are restricted to be in
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the −1 to 1 interval. Therefore, the choice for prior distribution for ρ12 can be uniform (−1, 1)
or a proper distribution based on reparameterization. Let ν denote the hyperbolic arc-tangent
transformation of ρ12, that is,

ν = a tanh
(
ρ12
)
, (3.3)

and taking hyperbolic tangent transformation of ν gives us back ρ12 = tanh(ν). Then
parameter ν is asymptotically normal distributed with stabilized variance, 1/(N − 3), where
N is the sample size. We may also assume that ν ∼N(ν∗, σ2

ν).

3.2. Bayesian Analysis via MCMC

For carrying out a Bayesian inference, the joint posterior distribution of the parameters of
the ZIBOP model in (2.6) conditional on the data is obtained by combining the likelihood
function given in (2.9) and the above-specified prior distributions via Bayes’ theorem, as:

f(Ψb | x, z) ∝
N∏
i=1

∏
(j,l)=(0,0)

[
Φ
(−z′iγ

)
+ Φ
(
z′iγ
)
Φ2
(−x′1iβ1,−x′2iβ2, ρ12

)]dijl

×
N∏
i=1

∏
(j,l)/= (0,0)

[
Φ
(
z′iγ
)[
Φ2
(
α1j+1 − x′1iβ1, α2l+1 − x′2iβ2; ρ12

)

−Φ2
(
α1j − x′1iβ1, α2l − x′2iβ2, ρ12

)]
]dijl

× f(Ψb),
(3.4)

where f(Ψb) ∝ f(β)f(γ)f(τ)f(ν) and the parameter vector Ψb now consists of β = (β′
1,β

′
2)

′,
γ , τ = (τ1, τ2), s and ν = a tanh(ρ12). Here f(β) ∝ |Ωβ|−1/2 exp{−1/2(β − β∗)′Ω−1

β
(β −

β∗)};f(γ) ∝ |Ωγ |−1/2 exp{−1/2(γ − γ ∗)′Ω−1
γ (γ − γ ∗)};f(τ) ∝ |Ωτ |−1/2 exp{−1/2(τ − τ∗)′Ω−1

τ (τ −
τ∗)};τrj are defined in (3.1), and αrj are given via the inverse map (3.2).

Full conditional posterior distributions are required to implement the MCMC
algorithm [19–22], and they are given as follows:

(1) fixed effects:

(a) zero state:

f
(
γ | x, z,Ψ−γ

) ∝ ∣∣Ωγ

∣∣−1/2 exp
{
−1

2
(γ − γ ∗)′Ω−1

γ (γ − γ ∗)
}
× f(Ψb | x, z); (3.5)

(b) nonzero state:

f
(
β | x, z,Ψ−β

) ∝ ∣∣Ωβ

∣∣−1/2 exp
{
−1

2
(
β − β∗)′Ω−1

β

(
β − β∗)

}
× f(Ψb | x, z). (3.6)
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(2) thresholds:

f(τ | x, z,Ψ−τ) ∝ |Ωτ |−1/2 exp
{
−1

2
(τ − τ∗)′Ω−1

τ (τ − τ∗)
}

×
N∏
i=1

∏

(j,l)/= (0,0)

[
Φ
(
z′iγ
)[
Φ2
(
α1j+1 − x′1iβ1, α2l+1 − x′2iβ2; ρ12

)

−Φ2
(
α1j − x′1iβ1, α2l − x′2iβ2, ρ12

)]
]dijl

.

(3.7)

(3) bivariate correlation:

f(ν | x, z,Ψ−ν) ∝ σ−1
ν exp

{
− (ν − ν∗)2

2σ2
ν

}
× f(Ψb | x, z). (3.8)

The MCMC algorithm simulates direct draws from the above full conditionals
iteratively until convergence is achieved. A single long chain [23, 24] is used for the proposed
model. Geyer [23] argues that using a single longer chain is better than using a number of
smaller chains with different initial values. We follow this strategy in our empirical analysis.

The Bayesian analysis of the univariate ZIOP follows as a special case of that of the
ZIBOP presented above. In particular, the joint posterior distribution of the parameters of
the ZIOP model in (2.22) conditional on the data is obtained by combining the likelihood
function given in (2.23) and the above-specified prior distributions (with modified notations)
via Bayes’ theorem, as follows:

f(Ψ | x, z, ) ∝
N∏
i=1

∏
j=0

[
Φ
(−z′iγ

)
+ Φ
(
z′iγ
)
Φ
(−x′iβ

)]dij

×
N∏
i=1

∏
j>0

[
Φ
(
z′iγ
){

Φ
(
αj+1 − x′iβ

) −Φ
(
αj − x′iβ

)}]dij

× f(β)f(γ)f(τ),

(3.9)

where, using notation of Section 2.3 for β and the other parameter vectors, f(β) ∝
|Ωβ|−1/2 exp{−1/2(β −β∗)′Ω−1

β (β −β∗)}; f(γ) ∝ |Ωγ |−1/2 exp{−1/2(γ − γ ∗)′Ω−1
γ (γ − γ ∗)}; f(τ) ∝

|Ωτ |−1/2 exp{−1/2(τ −τ∗)′Ω−1
τ (τ −τ∗)}, τ2 = log(α2) and τj = log(αj −αj−1), j = 3, . . . , J . Apart

from dropping the bivariate correlation, we basically replace the bivariate normal cumulative
distribution Φ2(·, ·; ρ12) by the univariate counterpart Φ(·). Details are available upon request
from the authors.

Apart from Bayesian estimation of the regression parameters, the posterior distribu-
tions of other quantities of interest can be obtained. These include posteriors for marginal
effects and probabilities for nonparticipation, zero-consumption, and joint outcomes of
interest. These will be considered in the application section. Next, we summarize model
selection procedure.

The commonly used criteria for model selection like BIC and AIC are not appropriate
for the multilevel models (in the presence of random effects), which complicates the counting
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of the true number of free parameters. To overcome such a hurdle, Spiegelhalter et al. [25]
proposed a Bayesian model comparison criterion, called Deviance Information Criterion
(DIC). It is given as

DIC = goodness-of-fit + penalty for complexity, (3.10)

where the “goodness-of-fit” is measured by the deviance for θ = (β, γ, α)

D(θ) = −2 logL(data | θ) (3.11)

and complexity is measured by the “effective number of parameters”:

pD = Eθ|y[D(θ)] −D(Eθ|y[θ]
)

= D −D
(
θ
)

;
(3.12)

that is, posterior mean deviance minus deviance evaluated at the posterior mean of the
parameters. The DIC is then defined analogously to AIC as

DIC = D
(
θ
)
+ 2pD

= D + pD.
(3.13)

The idea here is that models with smaller DIC should be preferred to models with larger DIC.
Models are penalized both by the value of D, which favors a good fit, but also (similar to AIC
and BIC) by the effective number of parameters pD. The advantage of DIC over other criteria,
for Bayesian model selection, is that the DIC is easily calculated from the MCMC samples. In
contrast, AIC and BIC require calculating the likelihood at its maximum values, which are
not easily available from the MCMC simulation.

4. Application

4.1. Data

We consider an application to tobacco consumption behavior of individuals based on the 2001
household Tobacco Prevalence survey data from Bangladesh. The Survey was conducted in
two administrative districts of paramount interest for tobacco production and consumption
in the country. Data on daily consumption of smoking and chewing tobacco along with other
socioeconomic and demographic characteristics and parental tobacco consumption habits
were collected from respondents of 10 years of age and above. The data set has been used
previously by Gurmu and Yunus [26] in the context of binary response models. Here we
focus on a sample consisting of 6000 individual respondents aged between 10 and 101 years.

The ordinal outcomes yr = 0, 1, 2, 3 used in this paper correspond roughly to zero,
low, moderate, and high levels of tobacco consumption in the form of smoking (y1) or
chewing tobacco (y2), respectively. The first dependent variable y1 for an individual’s daily
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Table 1: Bivariate frequency distribution for intensity of tobacco use.

Smoke group Chew group Total (N)
0 1 2

0 3931 302 324 4557
1 265 12 6 283
2 526 35 37 598
3 498 29 35 562

Total (N) 5220 378 402 6000

cigarette smoking intensities assumes the following 4 choices: y1 = 0 if nonsmoker, y1 = 1
if smoking up to 7 cigarettes per day, y = 2 if smoking between 8 and 12 cigarettes daily,
and y1 = 3 if smoking more than 12 cigarettes daily; likewise, for the intensity of chewing
tobacco, y2 = 0 if reported not chewing tobacco, y2 = 1 if uses up to 7 chewing tobacco,
and y2 = 2 if consuming 7 or more chewing tobacco. The frequency distribution of cigarette
smoking and tobacco chewing choices in Table 1 shows that nearly 66% of the respondents
identify themselves as nonusers of tobacco. Our modeling strategy recognizes that these self-
identified current nonusers of tobacco may include either individuals who never smoke or
chew tobacco (genuine nonusers) or those who do, but not during the reporting period
(potential users of tobacco). For example, potential tobacco users may include those who
wrongly claim to be nonusers, previous tobacco users that are currently nonusers, and those
most likely to use tobacco in the future due to changes in, say, prices and income. Table 1
also shows that 76% of the respondents are non-smokers and nearly 87% identify themselves
as nonusers of tobacco for chewing. Given the extremely high proportion of observed zeros
coupled with sparse cells on the right tail, we employ the zero-inflated bivariate ordered
probit framework.

Table 2 gives definition of the explanatory variables as well as their means and
standard deviations. The respondents are more likely to be Muslim, married, in early thirties,
live in rural area, and have about 7 years of formal schooling. Although the country is mostly
agrarian, only around 11% of the respondents were related to agricultural occupation in either
doing agricultural operations on their own farms or working as agricultural wage laborers.
About 12% of the respondents belong to the service occupation. The benchmark occupational
group consists of business and other occupations. More than one-half of the fathers and
slightly less than two-thirds of the mothers of the respondents currently use or have used
tobacco products in the past.

Among the variables given in Table 2, the two indicators of parental use of tobacco
products are included in z as part of the participation equation (2.4). The rest of the variables
are included in xr and z of (2.1) and (2.4). To allow for nonlinear effects, age and education
enter all three equations using a quadratic form. Due to lack of data on prices, our analysis
is limited to the study of other economic and demographic determinants of participation,
smoking, and chewing tobacco.

4.2. Results

We estimate the standard bivariate ordered probit (BOP) and zero-inflated bivariate ordered
probit regression models for smoking and chewing tobacco and report estimation results for
parameters, marginal effects, and choice probabilities, along measures of model selection.
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Table 2: Definition and summary statistics for independent variables.

Name Definition Meanb St. Dev.

Agea Age in years 30.35 (14.9)

Educationa Number of years of formal
schooling 6.83 (4.7)

Income Monthly family income in
1000s of Taka 7.57 (10.3)

Male = 1 if male 54.6
Married = 1 if married 57.2
Muslim = 1 if religion is Islam 78.4
Father use = 1 if father uses tobacco 54.0
Mother use = 1 if mother uses tobacco 65.1

Region = 1 if Rangpur resident,
= 0 if Chittagong resident 49.7

Urban = 1 if urban resident 38.0

Agriservice = 1 if agriculture labor or
service occupation 23.2

Self-employed = 1 if self-employed or
household chores 30.7

Student = 1 if student 26.8

Other = 1 if business or other
occupations (control) 19.3

a
In implementation, we also include age squared and education squared.

bThe means for binary variables are in percentage.

Table 3: Goodness-of-fit statistics via DIC.

Model Dbar Dhat pD DIC
Bivariate ordered
probit (BOP) 11417.1 11386.9 30.1 11447.2

Zero-inflated BOP 11301.1 11270.3 29.8 11329.9
Dbar: Posterior mean of deviance, Dhat: Deviance evaluated at the posterior mean of the parameters, pD: Dbar-Dhat, the
effective number of parameters, and DIC: Deviance information criterion.

An earlier version of this paper reports results from the standard ordered probit model as
well as the uncorrelated and correlated versions of the univariate zero-inflated ordered probit
model for smoking tobacco. Convergence of the generated samples is assessed using standard
tools (such as trace plots and ACF plots) within WinBUGS software. After initial 10,000
burn-in iterations, every 10th MCMC sample thereafter was retained from the next 100,000
iterations, obtaining 10,000 samples for subsequent posterior inference of the unknown
parameters. The slowest convergence is observed for some parameters in the inflation
submodel. By contrast, the autocorrelations functions for most of the marginal effects die
out quickly relative to those for the associated parameters.

Table 3 reports the goodness-of-fit statistics for the standard bivariate ordered probit
model and its zero-inflated version, ZIBOP. The ZIBOP regression model clearly dominates
BOP in terms of DIC and its components; compare the DIC of 11330 for the former and 11447
for the latter model. Table 4 gives posterior means, standard deviations, medians, and the
95 percent credible intervals (in terms of the 2.5 and 97.5 percentiles) of the parameters and
choice probabilities from ZIBOP model. For comparison, the corresponding results from BOP
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Table 4: Posterior mean, standard deviation, and 95% credible intervals of parameters from zibop for
smoking and chewing tobacco.

Variable Mean St. dev. 2.50% Median 97.50%

Main (β1,α1): smoking (y1):
Age/10 0.672 0.119 0.444 0.685 0.894
Age square/100 −0.070 0.012 −0.093 −0.071 −0.046
Education −0.071 0.014 −0.097 −0.071 −0.042
Education square 0.001 0.001 −0.002 0.001 0.003
Income 0.000 0.002 −0.005 0.000 0.005
Male 2.092 0.086 1.925 2.091 2.269
Married 0.213 0.070 0.074 0.213 0.353
Muslim −0.053 0.052 −0.157 −0.053 0.049
Region −0.007 0.048 −0.102 −0.007 0.086
Urban −0.096 0.051 −0.198 −0.097 0.004
Agriservice −0.234 0.056 −0.345 −0.233 −0.125
Self-employed −0.246 0.087 −0.414 −0.247 −0.069
student −0.476 0.137 −0.742 −0.478 −0.204
α12 0.284 0.017 0.252 0.283 0.318
α13 0.987 0.030 0.928 0.987 1.048
Main (β2,α2): chewing (y2)
Age/10 0.649 0.133 0.382 0.658 0.893
Age square/100 −0.046 0.013 −0.071 −0.046 −0.019
Education −0.020 0.016 −0.052 −0.020 0.012
Education square −0.002 0.001 −0.005 −0.002 0.000
Income 0.001 0.003 −0.004 0.002 0.007
Male −0.479 0.081 −0.641 −0.479 −0.320
Married −0.025 0.075 −0.171 −0.025 0.122
Muslim −0.072 0.056 −0.181 −0.072 0.039
Region 0.417 0.051 0.317 0.418 0.517
Urban −0.080 0.058 −0.194 −0.079 0.035
Agriservice 0.052 0.074 −0.096 0.052 0.194
Self-employed 0.127 0.092 −0.058 0.126 0.309
Student −0.450 0.221 −0.887 −0.448 −0.023
α22 0.484 0.023 0.439 0.484 0.531
Inflation (γ):
Age/10 −0.012 2.044 −4.755 0.253 2.861
Age square/100 0.509 0.552 −0.197 0.398 1.812
Education −0.218 0.115 −0.476 −0.204 −0.024
Education square 0.028 0.011 0.010 0.026 0.053
Income 0.006 0.022 −0.027 0.003 0.059
Male 0.239 0.827 −1.582 0.417 1.379
Married 2.306 4.478 −0.416 0.500 16.900
Muslim −0.528 0.356 −1.331 −0.494 0.068
Mother −0.170 0.267 −0.716 −0.164 0.345
Father −0.119 0.330 −0.664 −0.160 0.605
Region 0.630 0.291 0.061 0.625 1.222
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Table 4: Continued.

Variable Mean St. dev. 2.50% Median 97.50%

Urban 0.040 0.357 −0.737 0.071 0.675
Agrservice 5.312 5.416 1.017 2.674 20.470
Self-employed 3.783 5.025 0.124 1.275 17.990
Sstudent −0.344 0.411 −1.154 −0.339 0.466
ρ12 −0.185 0.033 −0.249 −0.186 −0.119
Select probabilities:
P (y1 = 0) 0.760 0.004 0.752 0.760 0.768
P (y2 = 0) 0.871 0.004 0.864 0.871 0.879
P (y1 = 0, y2 = 0) 0.662 0.005 0.652 0.662 0.671
P (zero-inflation) 0.242 0.048 0.151 0.243 0.323

Results for the constant terms in the main and inflation parts have been suppressed for brevity.

are shown in Table 6 of the appendix. Both models predict significant negative correlation
between the likelihood of smoking and chewing tobacco. The posterior estimates of the cut-
off points are qualitatively similar across models. In what follows, we focus on discussion
of results from the preferred ZIBOP model. The 95% credible interval for the correlation
parameter ρ12 from the zero-inflated model is in the range −0.25 to −0.12, indicating that
smoking and chewing tobacco are generally substitutes. Results of selected predicted choice
probabilities (bottom of Table 4) show that the ZIBOP regression model provides very good
fit to the data. The posterior mean for the probability of (zero, zero)-inflation is about 24%
while the 95% credible interval is [0.15, 0.32], indicating that a substantial proportion of zeros
may be attributed to nonparticipants. These results underscore the importance of modeling
excess zeros in bivariate ordered probit models.

To facilitate interpretation of results, we report in Tables 5 and 7 the same set of
posterior estimates for the marginal effects from ZIBOP and BOP models, respectively.
Since age and education enter the three equations non-linearly, we report the total marginal
effects coming from the linear and quadratic parts. We examine closely the marginal effects
on the unconditional marginal probabilities at all levels of smoking and chewing tobacco
(y1 = 0, 1, 2, 3; y2 = 0, 1, 2). The marginal effects reported in Table 5 show that the results for
covariates are generally plausible. Age has a negative impact on probabilities of moderate
and heavy use of tobacco. For heavy smokers, education has a significant negative impact on
the probability of smoking cigarettes. An additional year of schooling on average decreases
probability of smoking by about 6.9% for heavy smokers. Among participants, being male or
married has positive impact on probability of smoking, while the effects for being Muslim,
urban resident, and student are largely negative. Male respondents are more likely to smoke
cigarettes while women respondents are more likely to use chewing tobacco with heavy
intensity, a result which is in line with custom of the country [26].

Using (2.13), we decompose the marginal effect on probability of observing zero-
consumption into two components: the effect on nonparticipation (zero inflation) and zero-
consumption. For each explanatory variable, this decomposition is shown in Table 5 in the
first three rows for smoking and in rows 1, 7, and 8 for chewing tobacco. For most variables,
the effects on probabilities of nonparticipation and zero-consumption are on average opposite
in sign, but this difference seems to diminish at the upper tail of the distribution. For example,
looking at the posterior mean for age under smoking, getting older by one more year
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Table 5: Posterior mean, standard deviation, and 95% credible intervals of marginal effects of covariates
on probability of smoking and chewing tobacco (ZIBOP model).

Variable Probability Mean St. dev. 2.50% Median 97.50%

Age Nonparticipation −0.0259 0.0129 −0.0556 −0.0236 −0.0078
Zero-consumption, y1 0.0463 0.0102 0.0294 0.0453 0.0687

All zeros, y1 = 0 0.0204 0.0059 0.0078 0.0213 0.0304
y1 = 1 0.0058 0.0035 0.0009 0.0053 0.0138
y1 = 2 −0.0014 0.0029 −0.0057 −0.0019 0.0055
y1 = 3 −0.0690 0.0235 −0.1223 −0.0658 −0.0344

Zero-consumption, y2 0.0403 0.0116 0.0195 0.0386 0.0675
All zeros, y2 = 0 0.0145 0.0064 0.0018 0.0149 0.0264

y2 = 1 −0.0034 0.0021 −0.0071 −0.0035 0.0008
y2 = 2 −0.0019 0.0014 −0.0043 −0.0020 0.0011

Education Nonparticipation −0.2823 0.0768 −0.4260 −0.2837 −0.1252
Zero-consumption, y1 0.2447 0.0749 0.0917 0.2459 0.3851

All zeros, y1 = 0 −0.0377 0.0241 −0.0853 −0.0374 0.0094
y1 = 1 0.0498 0.0141 0.0231 0.0494 0.0789
y1 = 2 0.0241 0.0102 0.0045 0.0239 0.0444
y1 = 3 −0.5557 0.1536 −0.8415 −0.5588 −0.2417

Zero-consumption, y2 0.3136 0.0772 0.1561 0.3159 0.4546
All zeros, y2 = 0 0.0313 0.0161 −0.0009 0.0315 0.0618

y2 = 1 −0.0134 0.0080 −0.0288 −0.0135 0.0027
y2 = 2 −0.0222 0.0119 −0.0455 −0.0221 0.0009

Income Nonparticipation −0.0004 0.0015 −0.0038 −0.0002 0.0022
Zero-consumption, y1 0.0003 0.0014 −0.0022 0.0002 0.0035

All zeros, y1 = 0 −0.0001 0.0004 −0.0009 −0.0001 0.0008
y1 = 1 0.0001 0.0003 −0.0005 0.0000 0.0008
y1 = 2 0.0000 0.0002 −0.0003 0.0000 0.0004
y1 = 3 −0.0007 0.0030 −0.0075 −0.0004 0.0044

Zero-consumption, y2 0.0001 0.0016 −0.0025 0.0000 0.0036
All zeros, y2 = 0 −0.0002 0.0005 −0.0011 −0.0002 0.0007

y2 = 1 0.0001 0.0002 −0.0003 0.0001 0.0004
y2 = 2 0.0001 0.0001 −0.0002 0.0001 0.0003

Male Nonparticipation −0.0254 0.0599 −0.1268 −0.0305 0.1012
Zero-consumption, y1 −0.3595 0.0611 −0.4900 −0.3540 −0.2565

All zeros, y1 = 0 −0.3849 0.0116 −0.4078 −0.3849 −0.3618
y1 = 1 0.0630 0.0040 0.0555 0.0630 0.0711
y1 = 2 0.1560 0.0065 0.1435 0.1559 0.1689
y1 = 3 0.1659 0.0083 0.1503 0.1657 0.1829

Zero-consumption, y2 0.1012 0.0623 −0.0309 0.1064 0.2075
All zeros, y2 = 0 0.0758 0.0126 0.0511 0.0759 0.1004

y2 = 1 0.0501 0.0033 0.0438 0.0500 0.0567
y2 = 2 −0.1258 0.0112 −0.1478 −0.1258 −0.1040

Married Nonparticipation −0.0680 0.0777 −0.2274 −0.0433 0.0346
Zero-consumption, y1 0.0200 0.0705 −0.0778 −0.0001 0.1692

All zeros, y1 = 0 −0.0480 0.0149 −0.0796 −0.0472 −0.0207
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Table 5: Continued.

Variable Probability Mean St. dev. 2.50% Median 97.50%

y1 = 1 0.0056 0.0035 0.0006 0.0047 0.0132
y1 = 2 0.0161 0.0061 0.0060 0.0154 0.0296
y1 = 3 0.0263 0.0073 0.0116 0.0264 0.0406

Zero-consumption, y2 0.0709 0.0791 −0.0371 0.0474 0.2349
All zeros, y2 = 0 0.0028 0.0119 −0.0200 0.0026 0.0269

y2 = 1 0.0628 0.0032 0.0566 0.0627 0.0693
y2 = 2 −0.0656 0.0115 −0.0888 −0.0654 −0.0434

Muslim Nonparticipation 0.0393 0.0243 −0.0050 0.0384 0.0900
Zero-consumption, y1 −0.0239 0.0247 −0.0752 −0.0231 0.0216

All zeros, y1 = 0 0.0154 0.0090 −0.0016 0.0153 0.0334
y1 = 1 −0.0023 0.0011 −0.0044 −0.0022 −0.0002
y1 = 2 −0.0053 0.0027 −0.0106 −0.0053 −0.0001
y1 = 3 −0.0078 0.0060 −0.0200 −0.0077 0.0036

Zero-consumption, y2 −0.0260 0.0258 −0.0797 −0.0253 0.0222
All zeros, y2 = 0 0.0133 0.0092 −0.0046 0.0133 0.0315

y2 = 1 0.0613 0.0030 0.0554 0.0613 0.0674
y2 = 2 −0.0746 0.0091 −0.0926 −0.0746 −0.0569

Father use Nonparticipation 0.0122 0.0187 −0.0251 0.0124 0.0487
Zero-consumption, y1 −0.0102 0.0158 −0.0411 −0.0104 0.0214

All zeros, y1 = 0 0.0020 0.0030 −0.0040 0.0019 0.0082
y1 = 1 −0.0005 0.0008 −0.0022 −0.0005 0.0011
y1 = 2 −0.0009 0.0014 −0.0037 −0.0009 0.0018
y1 = 3 −0.0005 0.0008 −0.0023 −0.0005 0.0011

Zero-consumption, y2 −0.0116 0.0179 −0.0464 −0.0118 0.0240
All zeros, y2 = 0 0.0006 0.0011 −0.0012 0.0003 0.0033

y2 = 1 −0.0003 0.0006 −0.0019 −0.0002 0.0007
y2 = 2 −0.0002 0.0005 −0.0014 −0.0001 0.0005

Mother use Nonparticipation 0.0129 0.0257 −0.0343 0.0123 0.0634
Zero-consumption, y1 −0.0106 0.0215 −0.0527 −0.0103 0.0298

All zeros, y1 = 0 0.0024 0.0043 −0.0047 0.0020 0.0115
y1 = 1 −0.0006 0.0012 −0.0031 −0.0006 0.0014
y1 = 2 −0.0011 0.0019 −0.0051 −0.0009 0.0022
y1 = 3 −0.0007 0.0012 −0.0033 −0.0005 0.0012

Zero-consumption, y2 −0.0119 0.0242 −0.0587 −0.0118 0.0338
All zeros, y2 = 0 0.0010 0.0016 −0.0007 0.0004 0.0053

y2 = 1 −0.0006 0.0009 −0.0030 −0.0002 0.0005
y2 = 2 −0.0004 0.0007 −0.0023 −0.0001 0.0002

Region Nonparticipation −0.0480 0.0240 −0.0963 −0.0470 −0.0040
Zero-consumption, y1 0.0412 0.0237 −0.0039 0.0406 0.0889

All zeros, y1 = 0 −0.0068 0.0079 −0.0222 −0.0068 0.0086
y1 = 1 0.0021 0.0011 0.0001 0.0021 0.0046
y1 = 2 0.0033 0.0025 −0.0016 0.0033 0.0083
y1 = 3 0.0013 0.0052 −0.0087 0.0014 0.0114
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Table 5: Continued.

Variable Probability Mean St. dev. 2.50% Median 97.50%

Zero-consumption, y2 −0.0206 0.0252 −0.0672 −0.0217 0.0301
All zeros, y2 = 0 −0.0686 0.0078 −0.0840 −0.0686 −0.0533

y2 = 1 0.0756 0.0038 0.0682 0.0755 0.0832
y2 = 2 −0.0070 0.0070 −0.0207 −0.0070 0.0072

Urban Nonparticipation −0.0062 0.0261 −0.0595 −0.0054 0.0428
Zero-consumption, y1 0.0217 0.0258 −0.0271 0.0211 0.0733

All zeros, y1 = 0 0.0155 0.0088 −0.0018 0.0155 0.0324
y1 = 1 −0.0007 0.0012 −0.0029 −0.0008 0.0017
y1 = 2 −0.0042 0.0028 −0.0096 −0.0042 0.0014
y1 = 3 −0.0106 0.0056 −0.0215 −0.0106 0.0006

Zero-consumption, y2 0.0181 0.0275 −0.0337 0.0178 0.0739
All zeros, y2 = 0 0.0119 0.0090 −0.0062 0.0120 0.0295

y2 = 1 0.0597 0.0036 0.0528 0.0597 0.0668
y2 = 2 −0.0716 0.0075 −0.0864 −0.0717 −0.0566

Agriservice Nonparticipation −0.1989 0.0521 −0.3092 −0.1960 −0.1062
Zero-consumption, y1 0.2102 0.0506 0.1202 0.2075 0.3161

All zeros, y1 = 0 0.0113 0.0098 −0.0084 0.0115 0.0297
y1 = 1 0.0058 0.0018 0.0026 0.0057 0.0097
y1 = 2 0.0023 0.0033 −0.0039 0.0021 0.0092
y1 = 3 −0.0194 0.0060 −0.0311 −0.0194 −0.0077

Zero-consumption, y2 0.1838 0.0530 0.0871 0.1811 0.2940
All zeros, y2 = 0 −0.0151 0.0126 −0.0400 −0.0150 0.0091

y2 = 1 0.0680 0.0049 0.0588 0.0678 0.0782
y2 = 2 −0.0529 0.0096 −0.0716 −0.0530 −0.0338

Self-employed Nonparticipation −0.1287 0.0693 −0.2542 −0.1191 −0.0122
Zero-consumption, y1 0.1590 0.0686 0.0431 0.1508 0.2845

All zeros, y1 = 0 0.0303 0.0166 −0.0034 0.0305 0.0627
y1 = 1 0.0005 0.0025 −0.0042 0.0005 0.0058
y1 = 2 −0.0075 0.0060 −0.0192 −0.0075 0.0043
y1 = 3 −0.0233 0.0089 −0.0398 −0.0237 −0.0046

Zero-consumption, y2 0.1034 0.0704 −0.0179 0.0941 0.2327
All zeros, y2=0 −0.0254 0.0147 −0.0546 −0.0251 0.0035

y2 = 1 0.0684 0.0047 0.0594 0.0681 0.0781
y2 = 2 −0.0430 0.0118 −0.0660 −0.0431 −0.0195

Student Nonparticipation 0.0305 0.0357 −0.0312 0.0270 0.1076
Zero-consumption, y1 0.0548 0.0434 −0.0353 0.0564 0.1354

All zeros, y1 = 0 0.0852 0.0206 0.0437 0.0855 0.1247
y1 = 1 −0.0090 0.0027 −0.0149 −0.0089 −0.0041
y1 = 2 −0.0295 0.0079 −0.0455 −0.0294 −0.0143
y1 = 3 −0.0468 0.0106 −0.0657 −0.0475 −0.0244

Zero-consumption, y2 0.0284 0.0448 −0.0686 0.0313 0.1073
All zeros, y2 = 0 0.0588 0.0239 0.0065 0.0610 0.0995

y2 = 1 0.0390 0.0102 0.0207 0.0383 0.0604
y2 = 2 −0.0979 0.0142 −0.1211 −0.0994 −0.0659
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Table 6: Posterior mean, standard deviation and 95% credible intervals of parameters from BOP for
smoking and chewing tobacco.

Variable Mean St. Dev. 2.50% Median 97.50%

Smoking (y1) equation, (β1,α1)
Age/10 1.029 0.095 0.828 1.030 1.199
Age square/100 −0.104 0.010 −0.123 −0.105 −0.082
Education −0.078 0.014 −0.105 −0.078 −0.050
Education square 0.002 0.001 0.000 0.002 0.004
Income 0.000 0.002 −0.004 0.000 0.005
Male 2.066 0.091 1.888 2.067 2.245
Married 0.221 0.064 0.093 0.220 0.349
Muslim −0.083 0.049 −0.177 −0.083 0.015
Region 0.041 0.043 −0.044 0.041 0.125
Urban −0.091 0.048 −0.186 −0.091 0.002
Agriservice −0.121 0.050 −0.219 −0.122 −0.023
Self-employed −0.149 0.087 −0.318 −0.150 0.021
Sstudent −0.720 0.093 −0.905 −0.719 −0.538
α12 0.270 0.015 0.241 0.270 0.300
α13 0.956 0.028 0.901 0.956 1.012
Chewing (y2) equation, (β2,α2)
Age/10 0.797 0.091 0.609 0.801 0.977
Age square/100 −0.059 0.010 −0.079 −0.059 −0.039
Education −0.023 0.016 −0.055 −0.023 0.008
Education square −0.002 0.001 −0.005 −0.002 0.001
Income 0.002 0.003 −0.004 0.002 0.007
Male −0.441 0.074 −0.586 −0.441 −0.295
Married −0.010 0.073 −0.153 −0.011 0.134
Muslim −0.077 0.056 −0.187 −0.077 0.033
Region 0.430 0.049 0.334 0.430 0.528
Urban −0.082 0.056 −0.193 −0.081 0.026
Agriservice 0.078 0.073 −0.067 0.078 0.222
Self employed 0.177 0.087 0.010 0.176 0.351
Student −0.715 0.177 −1.070 −0.710 −0.378
α22 0.480 0.023 0.436 0.480 0.525
ρ12 −0.178 0.034 −0.244 −0.179 −0.111

Each equation includes father use and mother use variables as well as a constant term.

decreases probability of nonparticipation by about 2.6% but increases probability of zero-
consumption by 4.6%, implying a net increase of 2.0% in predicted probability of observing
zero. The effect of age in the case of chewing tobacco is qualitatively similar, negative effect on
genuine nonusers and positive effect on potential tobacco users, with the latter dominating
in the overall effect.

Income has opposite effects on probability of nonparticipation and zero-consumption,
predicting on average that tobacco is an inferior good for nonparticipants and a normal
good for participants. However, the 95% credible interval contains zero, suggesting that the
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Table 7: Posterior mean, standard deviation, and 95% credible intervals of marginal effects of covariates
on probability of smoking and chewing tobacco (BOP model).

Variable Probability Mean St. dev. 2.50% Median 97.50%

Age All zeros, y1 = 0 0.0368 0.0038 0.0288 0.0369 0.0438
y1 = 1 −0.0004 0.0003 −0.0009 −0.0004 0.0002
y1 = 2 −0.0073 0.0010 −0.0093 −0.0073 −0.0054
y1 = 3 −0.0292 0.0029 −0.0345 −0.0292 −0.0230

All zeros, y2 = 0 0.0213 0.0043 0.0125 0.0215 0.0298
y2 = 1 −0.0056 0.0013 −0.0082 −0.0057 −0.0031
y2 = 2 −0.0030 0.0008 −0.0047 −0.0030 −0.0014

Education All zeros, y1 = 0 −0.0342 0.0236 −0.0803 −0.0340 0.0126
y1 = 1 0.0038 0.0025 −0.0011 0.0039 0.0086
y1 = 2 0.0130 0.0084 −0.0039 0.0129 0.0293
y1 = 3 0.0174 0.0128 −0.0076 0.0172 0.0428

All zeros, y2 = 0 0.0322 0.0156 0.0002 0.0326 0.0616
y2 = 1 −0.0150 0.0077 −0.0296 −0.0151 0.0009
y2 = 2 −0.0201 0.0113 −0.0418 −0.0203 0.0024

Income All zeros, y1 = 0 −0.0001 0.0004 −0.0009 −0.0001 0.0007
y1 = 1 0.0000 0.0000 −0.0001 0.0000 0.0001
y1 = 2 0.0000 0.0001 −0.0002 0.0000 0.0002
y1 = 3 0.0000 0.0002 −0.0004 0.0000 0.0005

All zeros, y2 = 0 −0.0003 0.0005 −0.0012 −0.0003 0.0007
y2 = 1 0.0001 0.0002 −0.0002 0.0001 0.0004
y2 = 2 0.0001 0.0002 −0.0002 0.0001 0.0004

Male All zeros, y1 = 0 −0.3824 0.0121 −0.4064 −0.3826 −0.3586
y1 = 1 0.0641 0.0040 0.0567 0.0640 0.0722
y1 = 2 0.1540 0.0065 0.1416 0.1540 0.1667
y1 = 3 0.1643 0.0083 0.1487 0.1641 0.1807

All zeros, y2 = 0 0.0721 0.0123 0.0481 0.0721 0.0962
y2 = 1 0.0500 0.0032 0.0438 0.0500 0.0565
y2 = 2 −0.1222 0.0108 −0.1430 −0.1220 −0.1014

Married All zeros, y1 = 0 −0.0416 0.0124 −0.0666 −0.0415 −0.0174
y1 = 1 0.0039 0.0013 0.0015 0.0038 0.0067
y1 = 2 0.0131 0.0042 0.0053 0.0130 0.0218
y1 = 3 0.0246 0.0070 0.0106 0.0247 0.0385

All zeros, y2 = 0 0.0018 0.0118 −0.0207 0.0018 0.0254
y2 = 1 0.0622 0.0031 0.0563 0.0622 0.0685
y2 = 2 −0.0640 0.0114 −0.0873 −0.0640 −0.0420

Muslim All zeros, y1 = 0 0.0154 0.0092 −0.0029 0.0154 0.0331
y1 = 1 −0.0013 0.0008 −0.0028 −0.0013 0.0002
y1 = 2 −0.0044 0.0026 −0.0093 −0.0044 0.0008
y1 = 3 −0.0097 0.0058 −0.0211 −0.0097 0.0018

All zeros, y2 = 0 0.0126 0.0093 −0.0051 0.0125 0.0313
y2 = 1 0.0613 0.0031 0.0555 0.0613 0.0675
y2 = 2 −0.0739 0.0091 −0.0922 −0.0739 −0.0562

Father use All zeros, y1 = 0 0.7604 0.0042 0.7521 0.7604 0.7684
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Table 7: Continued.

Variable Probability Mean St. dev. 2.50% Median 97.50%

y1 = 1 0.0477 0.0027 0.0426 0.0477 0.0531
y1 = 2 0.0982 0.0035 0.0915 0.0982 0.1051
y1 = 3 0.0937 0.0032 0.0874 0.0936 0.1000

All zeros, y2 = 0 0.8713 0.0039 0.8635 0.8713 0.8789
y2 = 1 0.0623 0.0030 0.0566 0.0623 0.0684
y2 = 2 0.0664 0.0030 0.0607 0.0664 0.0724

Mother use All zeros, y1 = 0 0.7604 0.0042 0.7521 0.7604 0.7684
y1 = 1 0.0477 0.0027 0.0426 0.0477 0.0531
y1 = 2 0.0982 0.0035 0.0915 0.0982 0.1051
y1 = 3 0.0937 0.0032 0.0874 0.0936 0.1000

All zeros, y2 = 0 0.8713 0.0039 0.8635 0.8713 0.8789
y2 = 1 0.0623 0.0030 0.0566 0.0623 0.0684
y2 = 2 0.0664 0.0030 0.0607 0.0664 0.0724

Region All zeros, y1 = 0 −0.0075 0.0079 −0.0229 −0.0075 0.0080
y1 = 1 0.0006 0.0007 −0.0007 0.0006 0.0020
y1 = 2 0.0022 0.0023 −0.0023 0.0022 0.0067
y1 = 3 0.0047 0.0049 −0.0050 0.0047 0.0144

All zeros, y2 = 0 −0.0691 0.0078 −0.0846 −0.0691 −0.0539
y2 = 1 0.0756 0.0038 0.0684 0.0755 0.0832
y2 = 2 −0.0065 0.0070 −0.0200 −0.0065 0.0072

Urban All zeros, y1 = 0 0.0167 0.0087 −0.0003 0.0167 0.0339
y1 = 1 −0.0014 0.0008 −0.0030 −0.0014 0.0000
y1 = 2 −0.0049 0.0026 −0.0100 −0.0049 0.0001
y1 = 3 −0.0104 0.0054 −0.0210 −0.0104 0.0002

All zeros, y2 = 0 0.0130 0.0088 −0.0041 0.0129 0.0303
y2 = 1 0.0592 0.0036 0.0524 0.0591 0.0664
y2 = 2 −0.0721 0.0074 −0.0866 −0.0721 −0.0576

Agriservice All zeros, y1 = 0 0.0218 0.0088 0.0043 0.0219 0.0390
y1 = 1 −0.0018 0.0007 −0.0032 −0.0018 −0.0004
y1 = 2 −0.0062 0.0025 −0.0110 −0.0062 −0.0013
y1 = 3 −0.0138 0.0057 −0.0250 −0.0139 −0.0027

All zeros, y2 = 0 −0.0127 0.0119 −0.0366 −0.0127 0.0106
y2 = 1 0.0656 0.0043 0.0572 0.0655 0.0742
y2 = 2 −0.0528 0.0094 −0.0711 −0.0529 −0.0338

Self employed All zeros, y1 = 0 0.0277 0.0162 −0.0039 0.0277 0.0592
y1 = 1 −0.0028 0.0018 −0.0065 −0.0027 0.0003
y1 = 2 −0.0087 0.0053 −0.0194 −0.0086 0.0012
y1 = 3 −0.0163 0.0093 −0.0335 −0.0165 0.0025

All zeros, y2 = 0 −0.0290 0.0144 −0.0578 −0.0286 −0.0017
y2 = 1 0.0686 0.0046 0.0600 0.0685 0.0779
y2 = 2 −0.0396 0.0116 −0.0617 −0.0398 −0.0162

Student All zeros, y1 = 0 0.1287 0.0155 0.0980 0.1286 0.1588
y1 = 1 −0.0173 0.0030 −0.0235 −0.0171 −0.0118
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Table 7: Continued.

Variable Probability Mean St. dev. 2.50% Median 97.50%

y1 = 2 −0.0475 0.0069 −0.0614 −0.0475 −0.0343
y1 = 3 −0.0639 0.0063 −0.0758 −0.0640 −0.0510

All zeros, y2 = 0 0.0855 0.0151 0.0531 0.0866 0.1117
y2 = 1 0.0278 0.0071 0.0154 0.0274 0.0428
y2 = 2 −0.1133 0.0088 −0.1288 −0.1140 −0.0944

effect of income is weak. Generally, the opposing effects on probabilities of nonparticipation
and zeroconsumption would have repercussions on both the magnitude and the statistical
significance of the full effect of observing zero-consumption. Similar considerations apply
to positive levels of consumption since the marginal effect on probability of observing
consumption level j (j = 1, 2, . . .) can be decomposed into the marginal effects on (i)
participation P(si = 1) and (ii) levels of consumption conditional on participation, P(yri = j |
si = 1). These results show that policy recommendations that ignore excess zeros may lead to
misleading conclusions.

5. Conclusion

In this paper we analyze the zero-inflated bivariate ordered probit model in a Bayesian
framework. The underlying model arises as a mixture of a point mass distribution at (0, 0) for
nonparticipants and the bivariate ordered probit distribution for participants. The Bayesian
analysis is carried out using MCMC techniques to approximate the posterior distribution of
the parameters. Using household tobacco survey data with substantial proportion of zeros,
we analyze the socioeconomic determinants of individual problem of smoking and chewing
tobacco. In our illustration, we find evidence that accounting for excess zeros provides
very good fit to the data. The use of a model that ignores zero-inflation masks differential
effects of covariates on nonusers and users at various levels of consumption, including
zeros. The Bayesian approach to modeling excess zeros provides computational flexibility of
generalizing to multivariate ordered response models as well as ordinal panel data models.

The proposed zero-inflated bivariate model is particularly useful when most of the
bivariate ordered outcomes are zero (y1 = 0, y2 = 0). In addition to allowing for inflation
in the double-zero state, our approach can be extended to allow for zero inflation in each
component. If needed, other states in an ordered regression model may be inflated as well.
These extensions need to be justified empirically on a case-by-case basis and are beyond the
scope of this paper.

Appendices

A.

For more details see Tables 6 and 7.

B.

WinBUGS Code for Fitting the Proposed Models (see Algorithm 1).



24 Journal of Probability and Statistics

#Variable names in the tobacco data are given in y[,1:21]
model {

for(h in 1:N) {
## participation model ###

cov2[h]<- gama[1]+gama[2]*y[h,6]+gama[3]*y[h,7]+gama[4]*y[h,8]+gama[5]*y[h,9]
cov3[h]<- gama[6]*y[h,10]+gama[7]*y[h,11]+gama[8]*y[h,12]+gama[9]*y[h,13]
cov4[h]<- gama[10]*y[h,14] +gama[11]*y[h,15]+gama[12]*y[h,16]
cov5[h]<- gama[13]*y[h,17]+gama[14]*y[h,18]+gama[15]*y[h,19] +gama[16]*y[h,20]
cov[h] <- cov2[h]+cov3[h]+cov4[h] +cov5[h]
pi[h] <- phi(-cov[h])
ph.5a[h] <- phi(cov[h])

### consumption model #####
#Smoking #

covar2[h]<-beta[1]+beta[2]*y[h,6]+beta[3]*y[h,7]+beta[4]*y[h,8]+beta[5]*y[h,9]
covar3[h]<-beta[6]*y[h,10]+beta[7]*y[h,11]+beta[8]*y[h,12]+beta[9]*y[h,13]

+beta2[1]*y[h,16]
covar4[h]<-beta2[2]*y[h,17]+beta2[3]*y[h,18]+beta2[4]*y[h,19]+beta2[5]*y[h,20]
covar[h] <- covar2[h]+covar3[h]+covar4[h]

#Chewing #
covar2.chew[h]<-beta.chew[1]+beta.chew[2]*y[h,6]+beta.chew[3]*y[h,7]

+beta.chew[4]*y[h,8
covar3.chew[h] <- beta.chew[5]*y[h,9]+beta.chew[6]*y[h,10]+beta.chew[7]*y[h,11]
covar4.chew[h] <- beta.chew[8]*y[h,12]+beta.chew[9]*y[h,13]
covar5.chew[h] <- beta2.chew[1]*y[h,16]+beta2.chew[2]*y[h,17]

+beta2.chew[3]*y[h,18]
covar6.chew[h] <- beta2.chew[4]*y[h,19]+ beta2.chew[5]*y[h,20]
covar.chew2[h] <-covar2.chew[h]+covar3.chew[h]+covar4.chew[h]
covar.chew3[h] <-covar5.chew[h]+covar6.chew[h]+covar7.chew[h]
covar.chew[h] <- covar.chew2[h]+covar.chew3[h]

# Cumulative probability of < j
ph.2[h] <- (1/sqrt(2*3.14159))*exp(-0.5*covar[h]*covar[h])
ph.3[h] <- (1/sqrt(2*3.14159))*exp(-0.5*(alpha[1]-covar[h])*(alpha[1]-covar[h]))
ph.4[h] <- (1/sqrt(2*3.14159))*exp(-0.5*(alpha[2]-covar[h])*(alpha[2]-covar[h]))
ph.5b[h]<- phi(-covar[h])

#joint CDF probability for ((y1,y2)=(0,0))
nu.0[h] <- -rho12*ph.2[h]/phi(-covar[h])
s2.0[h] <-1+rho12*(-covar[h])*nu.0[h]-nu.0[h]*nu.0[h]
Q.00[h] <-ph.5b[h]*phi((-covar.chew[h]-nu.0[h])/sqrt(s2.0[h]))

#joint CDF probability for ((y1,y2)=(0,1))
Q.01[h] <-ph.5b[h]*phi((alpha.chew-covar.chew[h]-nu.0[h])/sqrt(s2.0[h]))

......
#joint CDF probability for ((y1,y2)=(3,2))

Q.32[h] <-1

mu[h,1] <- pi[h] + ph.5a[h]*Q.00[h] #p[0,0]
mu[h,2] <- ph.5a[h]*(Q.01[h]-Q.00[h]) #p[0,1]
mu[h,3] <- ph.5a[h]*(Q.02[h]-Q.01[h]) #p[0,2]
mu[h,4] <- ph.5a[h]*(Q.10[h]-Q.00[h]) #p[1,0]
mu[h,5] <- ph.5a[h]*(Q.11[h]-Q.10[h]-Q.01[h]+Q.00[h]) #p[1,1]
mu[h,6] <- ph.5a[h]*(Q.12[h]-Q.11[h]-Q.02[h]+Q.01[h]) #p[1,2]
mu[h,7] <- ph.5a[h]*(Q.20[h]-Q.10[h]) #p[2,0]
mu[h,8] <- ph.5a[h]*(Q.21[h]-Q.20[h]-Q.11[h]+Q.10[h]) #p[2,1]
mu[h,9] <- ph.5a[h]*(Q.22[h]-Q.21[h]-Q.12[h]+Q.11[h]) #p[2,2]
mu[h,10] <- ph.5a[h]*(Q.30[h]-Q.20[h]) #p[3,0]
mu[h,11] <- ph.5a[h]*(Q.31[h]-Q.30[h]-Q.21[h]+Q.20[h])

ph.5a[h]*(Q.32[h]-Q.31[h]-Q.22[h]+Q.21[h])
#p[3,1]
#p[3,2]mu[h,12] <-

y[h,21] ~dcat(mu[h,1:12])}}

Algorithm 1
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In the past two decades, joint models of longitudinal and survival data have received much
attention in the literature. These models are often desirable in the following situations: (i) survival
models with measurement errors or missing data in time-dependent covariates, (ii) longitudinal
models with informative dropouts, and (iii) a survival process and a longitudinal process are
associated via latent variables. In these cases, separate inferences based on the longitudinal model
and the survival model may lead to biased or inefficient results. In this paper, we provide a
brief overview of joint models for longitudinal and survival data and commonly used methods,
including the likelihood method and two-stage methods.

1. Introduction

Longitudinal data and survival data frequently arise together in practice. For example,
in many medical studies, we often collect patients’ information (e.g., blood pressures)
repeatedly over time and we are also interested in the time to recovery or recurrence of a
disease. Longitudinal data and survival data are often associated in some ways. The time to
event may be associated with the longitudinal trajectories. Separate analyses of longitudinal
data and survival data may lead to inefficient or biased results. Joint models of longitudinal
and survival data, on the other hand, incorporate all information simultaneously and provide
valid and efficient inferences.

Figure 1 shows a longitudinal dataset in which CD4 cell counts are measured
repeatedly over time in an AIDS study. Here, the time to event could be time to viral rebound,
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Figure 1: CD4 measurements over time. (a) All subjects. (b) Five randomly selected subjects.

time to dropout, or time to death, depending on the research objectives. Data analysis can
mainly focus on either the longitudinal data or the survival data or both. When the analysis
focuses on longitudinal data, we often need to address informative dropouts since dropouts
are very common in longitudinal studies. When the analysis focuses on survival data, we
often need to incorporate time-dependent covariates such as CD4 since the times to event
may be associated with the covariate trajectories. Sometimes, the main interest may lie in the
association between the longitudinal process and survival process. In any of these cases, joint
models are required to feature correlated longitudinal and survival data.

Typically, joint models for longitudinal and survival data are required in the following
situations:

(i) survival models with measurement errors in time-dependent covariates;

(ii) longitudinal models with informative dropouts;

(iii) longitudinal and survival processes are governed by a common latent process;

(iv) the use of external information for more efficient inference.

Joint models of longitudinal and survival data have attracted increasing attention
over the last two decades. Tsiatis and Davidian [1] provided a nice overview of early work
on joint models, including De Gruttola and Tu [2], Wulfsohn and Tsiatis [3], Henderson
et al. [4], and Wang and Taylor [5], among others. More recent work includes Ding and
Wang [6], Nathoo and Dean [7], Ye et al. [8], Albert and Shih [9], Jacqmin-Gadda et al.
[10], Rizopoulos et al. [11], Wu et al. [12], Huang et al. [13], and Pan and Yi [14], among
others. A typical model setting is to assume a mixed-effects model for the longitudinal data
and a Cox model or an accelerated failure time (AFT) model for the survival data, with the
two models sharing some random effects or variables. The likelihood method is often used,
implemented by EM algorithms. Another common approach is based on two-stage methods,
which are computationally simpler. Henderson et al. [4] allow different random effects in the
longitudinal and survival models, but assume that the random effects are correlated. Bayesian
methods have also been proposed [13, 15, 16].
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Since the literature on joint models is quite extensive, it is difficult to review all
references here. In this paper, we provide a brief review of the joint model literature. In
Section 2, we describe a standard formulation of joint models. In Section 3, we review a
commonly used two-stage method. In Section 4, we describe the standard likelihood method.
In Section 5, we discuss some extensions of standard joint models. A real data example and
a simulation study are presented in Section 6 to illustrate and evaluate the methods. We
conclude the paper in Section 7 with discussion.

2. A Standard Formulation of a Joint Model

In this section, we consider a standard formulation of a joint model. In the literature, a typical
setup is a survival model with measurement errors in time-dependent covariates, in which
a linear mixed-effects (LME) model is often used to model time-dependent covariates to
address covariate measurement errors and a Cox proportional hazards (PH) model is used
for modelling the survival data. We focus on this setup to illustrate the basic ideas.

Consider a longitudinal study with n individuals in the sample. The objective is to
model the time to an event of interest or survival time. Time-varying covariates are used in the
survival model to partially explain the variation in the event times. Let si be the survival time
for individual i, i = 1, 2, . . . , n. Some individuals may not experience any events by the end of
the study so their event times may be right censored. We assume that the censoring is random
or noninformative. For individual i, let ci be the censoring time, and let δi = I(si ≤ ci) be the
censoring indicator such that δi = 0 if the survival time for individual i is right censored and
δi = 1 otherwise. The observed survival data are {(ti, δi), i = 1, 2, . . . , n}, where ti = min(si, ci).

In survival models, some time-dependent covariates may be measured with errors.
For simplicity, we consider a single time-dependent covariate. Let zij be the observed covariate
value for individual i at time uij , subject to measurement errors, i = 1, 2, . . . , n; j = 1, 2, . . . , mi.
Let the corresponding unobserved true covariate value be z∗ij . Denote zi = (zi1, . . . , zimi)

T , and

z∗i = (z∗i1, . . . , z
∗
imi

)T . In many cases, the longitudinal covariate measurements are terminated
at the event or censoring time ti. For example, this is the case when the events are dropouts.
In this case, we have uimi ≤ ti, and the covariate values after the event time ti are all missing.
Let xi be covariates without measurement errors.

We consider the following Cox model for the survival data:

λi(t) = λ0(t) exp
(
z∗i (t)β1 + xTi β2

)
, i = 1, . . . , n, (2.1)

where λi(t) is the hazard function, λ0(t) is the unspecified baseline hazard function, and β =
(β1,β

T
2 )

T are unknown parameters. Survival model (2.1) assumes that the hazard function
λi(t) depends on the unobserved true covariate values z∗i (t), rather than the observed but
mismeasured covariate value zi(t).

In Cox model (2.1), the time-dependent covariate value zi(t) should be available at
any event time t. In practice, however, covariates are usually measured intermittently at times
(say) {uij , j = 1, 2, . . . , mi} for individual i, with the measurement times possibly varying
across individuals, leading to possible “missing covariates.” Moreover, covariates may be
measured with errors. Therefore, it is common to have both missing data and measurement
for errors in time-dependent covariates, which must be addressed when conducting inference
based on the Cox model (2.1). For simplicity, we assume that the missing covariate data are
missing at random [17].
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To address either missing data or measurement error or both, a standard approach is
to model the time-dependent covariates. A common choice is the following LME model:

zi = Uiα + Viai + εi ≡ z∗i + εi, i = 1, . . . , n, (2.2)

where Ui and Vi are known design matrices, α is a vector of fixed-effects parameters, ai is
a vector of random effects, εi = (εi1, . . . , εimi)

T is a vector of measurement errors, and the
unobserved true covariates are z∗i = Uiα + Viai. Often, we assume that

ai ∼N(0, A), εi ∼N
(

0, σ2I
)
, (2.3)

and ai and εi are independent, where A is a covariance matrix, σ2 is a parameter, and I is
an identity matrix. Here, we focus on the case that the observations of the covariate process
is truncated by the event time; that is, no covariate data are available after the event occurs
(such as death or dropout).

Note that the survival model (2.1) and the longitudinal model (2.2) are linked through
the shared random effects ai. In some applications, not necessarily in the measurement error
context, the shared random effects may be viewed as a latent process that governs both
the longitudinal process and the survival process. The shared random effects induce the
dependence between the longitudinal and survival processes, and this dependence suggests
the need of joint modelling.

There are two commonly used approaches for inference of joint models:

(i) two-stage methods,

(ii) likelihood methods.

In the following sections, we describe these two approaches in detail. Other approaches for
joint modes have also been proposed, such as those based on estimating equations, but we
omit them here for space consideration.

3. Two-Stage Methods

In the joint modelling literature, various two-stage methods have been proposed. A simple
(naive) two-stage method is as follows.

Stage 1. Fit a LME model to the longitudinal covariate data, and estimate the missing or
mismeasured covariates based on the fitted model.

Stage 2. Fit the survival model separately, with the missing or unobserved true covariate val-
ues substituted by their estimates from the first stage as if they were observed values and
then proceed with the usual survival analysis.

Main advantages of the two-stage methods, including the modified two-stage methods
as described below, are the simplicity and that they can be implemented with existing
software. The limitation of those methods is that they may lead to biased inference for
several reasons. First, in the estimation of the longitudinal covariate model parameters, the
truncations resulted from the events are not incorporated. That is, the longitudinal covariate
trajectories of subjects who experience an event may be different from those who do not
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experience that event, so estimation of the parameters associated with the longitudinal
covariate model in the first stage, based only on observed covariate data, may be biased.
Second, the uncertainty of the estimation in the first stage is not incorporated in the second
stage of the survival model estimation. Thus, standard errors of the parameter estimates of
the survival model may be underestimated. Third, all information in the longitudinal process
and the survival process is not fully combined in each model fitting to produce the most
efficient estimates.

The bias in the estimation of the longitudinal model parameters caused by ignoring
the informative truncations from the events may depend on the strength of the association
between the longitudinal process and the survival process. The bias resulted from ignoring
the estimation uncertainty in Stage 1 may depend on the magnitude of measurement errors in
covariates. To address these issues, various modified two-stage methods have been proposed,
leading to better two-stage methods.

Self and Pawitan [18] considered a two-stage method in which the least-square
method was used to fit individual longitudinal covariate trajectories; the resulting estimates
were used to impute the “true” covariate values in the survival models and inference was
then based on the usual partial likelihood. Tsiatis et al. [19] considered an approximation to
the hazard function and then using the approximation to construct the partial likelihood.
They replaced the true covariate z∗i (t) by an empirical Bayes estimate of the conditional
expectation E(z∗i (t) | zHi (t), t ≤ si), where zHi (t) = {zi(u), u ≤ t} is the covariate history up to
time t. They obtained the empirical Bayes estimate from a standard fit of the LME model to
the covariate data up to time t for all subjects still at risk at time t. Similar two-stage methods
were also proposed in Bycott and Taylor [20] and Dafni and Tsiatis [21].

More recently, other two-stage methods have been developed in the literature. In the
sequel, we review some of these recent methods. Following Prentice [22], we rewrite the
survival model (2.1) as

λi(t; zi(t), xi) = λ0(t)E
[
exp

(
z∗i (t)β1 + xTi β2

)
| zi(t), xi, ti > t

]
, (3.1)

which involves an intractable conditional expectation. Following Dafni and Tsiatis [21] and
Ye et al. [8], we approximate the above conditional expectation by

E
[
exp

(
z∗i (t)β1 + xTi β2

)
| zi(t), xi, ti > t

]

≈ exp
[
E
(
z∗i (t)β1 + xTi β2 | zi(t), xi, ti > t

)]
.

(3.2)

A two-stage method may then proceed as follows. In the first step, we estimate the
conditional expectation E(z∗i (t)β1 + xTi β2 | zi(t), xi, ti > t) by fitting the covariate model (2.2)
to the observed longitudinal data and survival data. In the second step, we then substitute the
conditional expectation (3.2) in (3.1) by its estimate from the first step and then we proceed
with standard inference for the Cox model. Ye et al. [8] proposed two approaches for the first
step, called risk set regression calibration (RRC) method and ordinary regression calibration (ORC)
method, respectively. The idea is to fit the LME covariate model (2.2) to either the observed
covariate data in the risk set or all observed covariate data.

Note that the bias resulted from the naive two-stage method is caused by the fact that
the covariate trajectory is related to the length of followup. For example, subjects who drop
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out early or die early may have different trajectories than those who stay in the study. Thus,
much of the bias may be removed if we can recapture these missing covariate measurements
due to truncation by incorporating the event time information. Albert and Shih [9] proposed
to recapture the missing measurements by generating data from the conditional distribution
of the covariate given the event time:

f(zi | si;θ) =
∫
f(zi | ai;θ)f(ai | si;θ)dai, (3.3)

where the covariate zi and event time si are assumed to be conditionally independent
given the random effects ai, and θ contains all unknown parameters. They approximate
the conditional density f(zi | si;θ) using a LME model, and then use standard software
to simulate missing data from f(zi | si;θ). Once the missing measurements are simulated,
the covariate model is then fitted to the “complete data,” which are used in the second step.
The procedure is iterated several times to incorporate the missing data uncertainty. Thus, the
idea is similar to a multiple imputation method with nonignorable missing data. Such an
approach may reduce the bias resulted from truncations.

To incorporate the estimation uncertainty in the first step, we may consider a parametric
bootstrap method as follows.

Step 1. Generate covariate values based on the assumed covariate model, with the unknown
parameters substituted by their estimates.

Step 2. Generate survival times from the fitted survival model.

Step 3. For each generated bootstrap dataset from Steps 1 and 2, fit the models using the
two-stage method and obtain new parameter estimates.

Repeating the procedure B times (say, B = 500), we can obtain the standard errors
for the fixed parameters from the sample covariance matrix across the B bootstrap datasets.
This Bootstrap method may produce more reliable standard errors than the naive two-stage
method if the assumed models are correct.

Two-stage methods have bearing with the regression calibration method in measure-
ment error literature. Many of these two-stage methods may not completely remove biases.
Moreover, they rely on certain assumptions and approximations. The validity of these
assumptions and the accuracy of these approximations need to be further investigated.

4. Likelihood Methods

The likelihood method is perhaps the most widely used approach in the joint model literature.
It provides a unified approach for inference, and it produces valid and the most efficient
inference if the assumed models are correct. The likelihood method is based on the likelihood
for both longitudinal data and survival data. However, since the likelihood function can be
complicated, a main challenge for the likelihood method is computation.

4.1. The Likelihood

All the observed data are {(ti, δi, zi, xi), i = 1, 2, . . . , n}. Let θ = (β,α, σ,A,λ0) denote the
collection of all unknown parameters in the models, where λ0 = {λ0(ti), i = 1, 2, . . . , n}.
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We assume that the censoring of survival data and the assessment process of longitudinal
measurements are noninformative. The (overall) likelihood for all the observed data is given
by

L(θ) =
n∏
i=1

∫
f
(
ti, δi | z∗i ,λ0,β

)
f
(
zi | ai,α, σ2

)
f(ai | A)dai, (4.1)

where

f
(
ti, δi | z∗i ,λ0,β

)
=
[
λ0(ti) exp

(
z∗i (ti)β1 + xTi β2

)]δi

× exp

[
−
∫ ti

0
λ0(x) exp

(
z∗i (ti)β1 + xTi β2

)
dx

]
,

f
(
zi | ai,α, σ2

)
=
(

2πσ2
)−mi/2

exp

[
−
(
zi − z∗i

)T(zi − z∗i
)

2σ2

]
,

f(ai | A) = (2π |A|)−1/2 exp

[
−
(
aTi A

−1ai
)

2

]
.

(4.2)

Parameter estimation can then be based on the observed-data likelihood L(θ) via
the maximum likelihood method. Note that the baseline hazard λ0(t) in the Cox model
is unspecified. It can be estimated using the nonparametric maximum likelihood method
by assuming that λ0(t) takes discrete mass at each failure time ti. Thus, the dimension of
the parameter vector λ0 is equal to the number of unique failure times. This converts the
semiparametric Cox model to a parametric model, but it introduces a major challenge since
standard asymptotic theory for the maximum likelihood estimators (MLEs) may not apply
due to the infinitely dimensional nature of λ0.

MLEs of the model parameters can either be obtained by a direct maximization of
the observed data log likelihood or by using an EM algorithm. Since the observed data log
likelihood involves an intractable integral, a direct maximization is often based on numerical
integration techniques such as the Gaussian Hermite quadrature or Monte Carlo methods.
These methods, however, can be quite computationally intensive if the dimension of the
unobservable random effects ai is not low. The EM algorithm is known for its stability and
generality, so it is widely used for likelihood inference of joint models [1, 3, 11, 23]. Since
the E-step of an EM algorithm still involves an intractable integral, Monte Carlo methods or
Laplacian approximations are often used to approximate the conditional expectation in the
E-step. In the M-step, the Newton-Raphson method is often used.

Hsieh et al. [24] noted that standard errors for estimators of the parameters (α,β, σ)
based on the Fisher information matrix may be problematic, because of the semiparametric
nature of the joint model. They recommended a bootstrap method to obtain standard errors.

4.2. Computational Issues

A main challenge in the likelihood inference for joint models is the computational complexity,
since numerical methods or Monte Carlo methods can be very computationally intensive
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when the dimension of the random effects ai is not small. Moreover, convergence of the EM
algorithms can sometimes be an issue. Tsiatis and Davidian [1] and Tsiatis and Davidian
[25] proposed an alternative approach, a so-called conditional score method, which makes
no distributional assumption for the random effects ai. Their method treats ai as “nuisance
parameters” and conditions on an appropriate “sufficient statistic” for ai. Conditioning on
this sufficient statistic would remove the dependence of the conditional distribution on the
random effects ai. This approach leads to a set of unbiased estimating equations, similar to
the usual partial likelihood score equations or generalized estimating equation (GEE). The
resulting estimates are, under certain regularity conditions, consistent and asymptotically
normal, although they may not be the most efficient. Moreover, their method is relatively
simple to implement. Song et al. [26] considered an alternative approach to relax the
normality assumption of ai. They assume that the random effects follow distributions in
a class of smooth density family, including the standard normal density as a special case.
They use the likelihood method for inference via an EM algorithm, but the computation is
considerably more intensive than the conditional score method. Song and Wang [27] also
proposed a local corrected score estimator and a local conditional score estimator, for which
no distributional assumptions are needed for the underlying true covariates.

Approximate but computationally more efficient methods for joint models have also
appeared in the literature, such as those based on Laplace approximations (e.g., [11, 12, 28]).
When the dimension of the integration in the likelihood for joint models is high, the Laplace
approximations offer considerably computational advantages over numerical or Monte Carlo
methods. Note that the order of the Laplace approximation error is O(m−1

i ), which cannot be
made arbitrarily accurate for a given dataset, where mi is the number of within-individual
measurements for individual i. Therefore, the Laplace approximation works well if the
number of within-individual measurements is large. Approximate methods based on Taylor
series approximations are similar to the Laplace approximation; that is, their performance
improves as mi increases.

Rizopoulos et al. [11] proposed to use the full exponential Laplace approximation
in the E-step of the EM algorithm. Compared to the standard (first-order) Laplace approx-
imation, the full exponential Laplace approximate method has approximation error of
order O(m−2

i ) and requires a much smaller number of within-individual longitudinal meas-
urements to produce reliable results. Lee et al. [28] suggested second-order Laplace
approximations. However, these Laplace approximation methods cannot control the mag-
nitude of the approximation errors, unlike Gaussian quadrature or Monte Carlo integration
techniques.

5. Bayesian Methods

Bayesian joint models have also been studied by various authors, including Faucett and
Thomas [29], Xu and Zeger [15], Wang and Taylor [5], Law et al. [30], Ibrahim et al. [16],
and Huang et al. [13]. Joint models may contain many unknown parameters, which may
lead to potential problems in inference. A main advantage of Bayesian methods is that they
can borrow additional information from similar studies or from experts and incorporate this
information in the current analysis, in the forms of prior distributions for the current model
parameters. Thus, Bayesian methods can be very useful for inference of joint models.

For Bayesian joint models, the model parameters are assumed to follow some prior
distributions, and inference is then based on the posterior distribution given the observed
data. Let θ denote the collection of unknown parameters in the joint model, and let f(θ)
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denote the prior distribution. Let D = {(ti, δi, zi, xi), i = 1, 2, . . . , n} denote all observed data.
The joint posterior distribution for all unknown parameters θ and random effects a = {ai, i =
1, . . . , n} is then given by

f(θ, a | D) ∝
n∏
i=1

[
f
(
ti, δi | z∗i , xi,θ

)
f(zi | ai,θ)f(ai | A)

]
f(θ | θ0), (5.1)

where θ0 are known hyperparameters. Bayesian inference is then based on Monte Carlo
samples drawn from the posterior distribution f(θ, a | D) using an MCMC algorithm such
as the Gibbs sampler. For example, the posterior means and variances of the parameters can
be estimated based on these Monte Carlo samples, and Bayesian inference can then be based
on these estimated posterior means and variances. This Monte Carlo sampling can be done
using the publically available WinBUGS software [31], which is quite general, flexible, and
easy to use.

Like other Bayesian methods, it is desirable to check if the final results are sensitive to
the choices of prior distributions. Sometimes, in the absence of prior information, noninfor-
mative priors or flat priors may be desirable.

6. Other Joint Models

In the previous sections, we have focused on joint models based on a Cox model for
right-censored survival data and a LME model for longitudinal data. Other models for
survival data and longitudinal data can also be considered in joint models. For example,
for survival data, we may consider accelerated failure time (AFT) models and models for
interval censored data and models for recurrent events. For longitudinal data, nonlinear,
generalized linear mixed models or semiparametric/nonparametric mixed models can be
utilized. Although the different survival models and longitudinal models can be employed,
basic ideas and approaches for inference remain essentially the same. In the following, we
briefly review some of these joint models.

6.1. Joint Models Based on an LME Model and an AFT Model

In joint modelling of longitudinal and survival data, we can use the AFT model to
feature survival data. Here, we focus on an AFT model with measurement errors in time-
dependent covariates. For longitudinal data, we again consider LME models for simplicity.
The description below is based on Tseng et al. [23]. A semiparametric AFT model can be
written in a form similar to the Cox model:

hi(t) = h0

[∫ t

0
exp

{−z∗i (u)β
}
du

]
exp

{−z∗i (t)β
}
, (6.1)

where hi(t) is the hazard function of the ith individual at time t, h0(t) is the baseline
hazard function, and z∗i (t) is the unobserved true covariate value at time t. For the observed
measurements zi(t), we again consider the LME model (2.2).

Tseng et al. [23] proposed a likelihood method using an EM algorithm. The likelihood
for all observed data is given by

L(θ) =
n∏
i=1

∫
f
(
ti, δi | z∗i , h0, β

)
f
(
zi | ai,α, σ2

)
f(ai | A)dai, (6.2)
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where f(zi | ai,α, σ2) and f(ai | A) are the same as those for (4.1) and

f
(
ti, δi | z∗i , h0, β

)
=

[
h0
{
φ(ti;θ, ai)

}∂φ(ti; z∗i , β
)

∂ti

]δi
exp

{
−
∫φ(ti;z

∗
i ,β)

0
h0(u)du

}
, (6.3)

where z∗i denotes the covariate history and φ is a known function.
Handling the AFT structure in the joint modelling setting is more difficult than for

the Cox model, since f(ti, δi | z∗i , h0,β) is more complicated and the baseline function
h0{φ(ti; z∗i ,β)} involves unknown quantities (β,α, A, ai), while this is not the case in the
Cox model. One cannot use the point mass function with masses assigned to all uncensored
survival times ti for the baseline hazard function h0. In other words, in Cox models, the
baseline hazard h0 can be represented by a collection of parameters which are point masses,
but this approach is not feasible for the AFT model because of its dependence on covariates
via function φ(ti; z

∗
i ,β). To circumvent this, Tseng et al. [23] assumed the baseline hazard

function h0 to be a step function, taking constant values between two consecutive failure
times.

Tseng et al. [23] used an Monte Carlo EM algorithm to obtain the MLEs. The
framework is similar to that in the previous section. They used a Monte Carlo method
to approximate the conditional expectations in the E-step. The M-step involves more
complicated computations due to the complicated baseline hazard h0. To obtain the standard
errors of the MLEs, the usual asymptotic formula based on Fisher information matrix may be
questionable, so they used a bootstrap method.

6.2. Joint Models with Interval Censored Survival Data

In the previous sections, we have focused on right censored survival data and assume that
either the exact survival times or censoring times are observed. In practice, however, we
often cannot observe the exact survival nor censoring times, but we only know that events
have occurred over certain time intervals. Such survival data are called interval censored. For
simplicity, we assume that all individuals are assessed at the same times. Again, let Si be the
time to an event (survival time) for individual i, with observed value si. Let ri = (ri1, . . . , rim)

T

be the vector of event indicators such that rij = 1 if subject i has an event occurred from time
tj−1 to time tj , and let rij = 0 otherwise, i = 1, 2, . . . , n; j = 1, 2, . . . , m. We assume that ri1 = 0
for all i. Let pij = P(tj−1 ≤ Si < tj), and let

πij = P
(
tj−1 ≤ Si < tj | Si ≥ tj−1

)
= 1 − P(Si ≥ tj | Si ≥ tj−1

)
. (6.4)

Then, we have pij = (1 − πi1)(1 − πi2) · · · (1 − πi,j−1)πij . The probability function for the event
indicator vector ri can be written as

f(ri) =
m∏
j=1

p
rij
ij =

m∏
j=1

π
rij
ij

(
1 − πij

)1−rij , (6.5)

which is the probability function for a Bernoulli distribution. We can introduce observed
error-prone covariate value zi, with true value z∗i , and assume

log
{− log

(
1 − πij

)}
= βTz∗i + γj , (6.6)
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where β and γ = (γ1, . . . , γm)
T are unknown parameters. Then, we can write the probability

function of ri as f(ri | z∗i ,β, γ). Alternatively, we can assume that ri depends on z∗i only
through the random effects ai and writing the probability function of ri as f(ri | ai,β, γ).

Let f(zi | ai,α, σ) be the conditional probability density function, given the random
effects ai, and f(ai | A) be the marginal probability density function for ai with covariance
matrix A. Let θ denote the collection of all parameters in all models. Then, the likelihood for
all the observed data can be written as

Lo(θ) =
n∏
i=1

[∫
f(zi | ai,α, σ)f(ri | ai,β, γ)f(ai | A)dai

]
. (6.7)

MLE of parameters θ can be obtained by maximizing the observed data likelihood Lo(θ).
Because the observed-data likelihood Lo(θ) can be difficult to evaluate due to its involvement
of an intractable and possibly high-dimensional integral, one may proceed with Monte Carlo
EM algorithms or other computationally more efficient approximate methods.

6.3. GLMM and NLME Models for Longitudinal Data

We have focused on LME models for modelling the longitudinal data. Other models for
longitudinal data can also be considered. For example, one may consider nonlinear mixed-
effects (NLME) models for modelling the longitudinal data in joint models [12, 32]. NLME
models are often mechanistic models in the sense that they are typically based on the
underlying mechanisms which generate the data. On the other hand, LME models are
typically empirical models; that is, they are usually used to approximately describe the
observed data without considering possible data-generation mechanisms. Thus, NLME
models may be scientifically more desirable if such models exist. Similarly, for nonnormal
longitudinal data, generalized linear mixed models (GLMMs) can be considered, which are
special nonlinear models but are essentially empirical models as well.

When the longitudinal models are nonlinear, the general ideas of the two-stage
methods and likelihood methods for joint models can still be applied. The complication is
that computation becomes more demanding, because of the nonlinearity of the longitudinal
models.

6.4. Joint Models with Missing Data

For longitudinal data, missing values are very common. When missing data are nonignorable
in the sense that the missingness probability may be related to the missing values or the
random effects, the missing data process is often needed to be incorporated in inferential
procedures in order to obtain valid results. For likelihood methods, it is straightforward to
incorporate missing data mechanisms in joint model inference. However, the computation
becomes even more challenging. Wu et al. [12, 32] considered the missing data problems for
joint models, using Monte Carlo EM algorithms and Laplace approximations.

7. Example and Simulation

7.1. An Illustrating Example

As an illustration, we consider an AIDS dataset which includes 46 HIV infected patients
receiving an anti-HIV treatment. Viral load (i.e., plasma HIV RNA) and CD4 cell count were
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repeatedly measured during the treatment. The number of viral load measurements for each
individual varies from 4 to 10. It is known that CD4 is measured with substantial errors.
About 11% viral load measurements are below the detection limit after the initial period of
viral decay. We call the viral load below the detection limit as “viral suppression.” We wish
to check if the initial CD4 trajectories are predictive for the time to viral suppression.

Let si be the time to viral suppression, that is, the time from the start of the treatment
to the first scheduled time when the viral load drops below the detection limit. The viral
suppression times for patients whose viral loads never dropped below detection limit may
be regarded as right censored, with the study end time as the censoring time. We employ two
models, the Cox model (2.1) or the AFT model (6.1), to feature the time to viral suppression,
where z∗i (t) is the unobserved true CD4 cell count at time t for individual i. We do not consider
additional covariates here.

To address the measurement error in the time-dependent covariate CD4 cell count, we
use the LME model to model the CD4 trajectories:

CD4ij = (α0 + ai1) +
(
α1 + ai2uij

)
+ εij , (7.1)

where the parameters, random effects and random errors, and the assumed distributions
are the same as those described in the previous sections. The fixed parameters (α0, α1) are
population intercept and slope of the CD4 process and (ai1, ai2) are individual variations from
the population averages. To avoid very small (large) estimates, which may be unstable, we
standardize the CD4 cell counts and rescale the original time t (in days) so that the new time
scale is between 0 and 1. We estimate the model parameters using the joint model method and
the two-stage method with/out bootstrap standard error correction. The number B = 500 of
the bootstrap samples is taken. For the joint model method, we consider the Cox model (2.1)
and the AFT model (6.1) with h0(·) being the Weibull baseline risk function. On the other
hand, only the Cox model (2.1) is employed for the two-stage method for comparison. These
analyses may be implemented by using the functions coxph(), lme(), and jointModel() in R
software.

Table 1 presents the resulting estimates of main parameters of interest and their
standard errors. We can see from Table 1 that under either the Cox or the AFT survival
models, both the two-stage and the joint model methods produce similar estimates for the
covariate (CD4) longitudinal model. However, the two-stage method may underestimate
the standard errors of the parameter estimates since it does not incorporate the survival
information in the estimation procedure. Note that the parameters in the Cox model and
the AFT model have different interpretations, due to different model formulations, so they
are not directly comparable.

The parameter β1 in the survival models measures the effect of the true time-
dependent covariate CD4 values on event times, so its estimate and the associated P value can
be used to check if the true CD4 values are predictive for the times to viral suppression. Since
the covariate CD4 is measured with errors, addressing the measurement error is the main
focus of joint modelling in this application. Thus, the estimation of β1 is of primary interest.
For the joint model method, under either the Cox or the AFT models, there is some evidence
that covariate CD4 is associated with the time to viral suppression, after measurement error
has been addressed. It is seen that evidence of significance of the covariate effect is the
strongest under the Cox model. On the other hand, the two-stage method may severely
underestimate the covariate CD4 effect (the small value of β̂1). Moreover, the naive two-stage
method underestimates the standard error of β̂1, due to failing to incorporate the estimating



Journal of Probability and Statistics 13

Table 1: Analyses of the AIDS data under different models.

Model Method β0 β1 α0 α1 σ

Cox model Two-stage

Estimate — 0.315 −0.233 1.345 0.605
SE — 0.208 0.113 0.154 —

P value — 0.129 0.040 <0.001 —
BSE — 0.237 — — —

Cox model Joint model
Estimate — 0.648 −0.201 1.342 0.603

SE — 0.234 0.135 0.162 —
P value — 0.006 0.137 <0.001 —

AFT model Joint model
Estimate 0.168 −0.487 −0.237 1.341 0.604

SE 0.260 0.289 0.125 0.156 —
P value 0.517 0.091 0.059 <0.001 —

SE: standard error; BSE: bootstrap standard error. The P values are from the Wald tests for testing if the corresponding
parameters are zero or not.

uncertainty from the first step. This underestimation of standard error is somewhat corrected
by the bootstrap method.

7.2. A Simulation Study

In this section, we conduct a simulation study to compare the joint model method and the
two-stage method with/out bootstrap standard error correction. We generate 500 datasets
from the time-dependent covariate CD4 process (7.1) in the example of the previous section
and the Cox model (2.1) with constant baseline hazard function λ0(t) ≡ 1 with emphasis
on the effect of the time-dependent covariate. The measurement time points used in the
simulation are the same as those in the example of the previous section. The true values
of model parameters, given in Table 2, are similar to those in the example, and the variance-
covariance matrix A of the random effect ai is set to be diagonal. Again, we take B = 500
bootstrap samples for the bootstrap standard error in the two-stage method.

In Table 2, we report the simulation results of averages parameter estimates (Est),
empirical standard errors (ESE), averages of asymptotic standard errors (ASE), average of
bootstrap standard errors (BSE), empirical biases (Bias), mean square errors (MSE), and
coverage rates (CR) for the 95% confidence intervals. We can see from Table 2 that the
two-stage and the joint model methods produce similar parameter estimates (close to true
parameters) except the one for the covariate effect β1. In particular, the estimate β̂1 based
on the joint model method is very close to its true value, while the estimate based on the
two-stage method is about one-third of its true value, which indicates that the two-stage
method may underestimate the time-dependent covariate effect severely. The joint model
method provides smaller mean square errors and more reasonable coverage rates for the
95% confidence intervals than the two-stage method. Moreover, the two-stage method may
underestimate the standard deviation of β̂1 and the bootstrap correction on this standard error
seems plausible.

From the above results, we see that the joint likelihood method produces less biased
estimates and more reliable standard errors than the two-stage method. These results
have important implications. For example, if one uses Wald-type tests for model selection,
the likelihood method would give more reliable results. However, two-stage methods are
generally simpler and computationally quicker to output estimates than likelihood methods.
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Table 2: Comparison of the two-stage Method and the joint likelihood method via a simulation study.

Method Parameter β1 α0 α1 σ A11 A22

True value 0.6 −0.2 1.3 0.6 0.5 0.3

Two-stage

Est 0.183 −0.183 1.303 0.598 0.501 0.353
ESE 0.216 0.111 0.164 0.025 0.114 0.209
ASE 0.201 0.111 0.164 — — —
BSE 0.250 — — — — —
Bias −0.417 0.017 0.003 −0.002 −0.001 0.053
MSE 0.221 0.013 0.027 0.0007 0.013 0.046
CR 42.8 95.6 94.4 — — —

Joint model

Est 0.6004 −0.175 1.296 0.598 0.492 0.321
ESE 0.256 0.103 0.161 0.020 0.092 0.156
ASE 0.249 0.099 0.163 — — —
Bias 0.0004 0.025 −0.004 −0.002 −0.008 0.021
MSE 0.066 0.011 0.026 0.0004 0.008 0.025
CR 95.6 95.8 95.2 — — —

We can also compare the two methods with Bayesian methods. Note that, however, Bayesian
methods are equivalent to the likelihood method when noninformative priors are used. We
expect that Bayesian methods have similar performance to likelihood methods.

8. Discussion

We have provided a brief review of common joint models and methods for inference. In
practice, when we need to consider a longitudinal process and an event process and suspect
that the two processes may be associated, such as survival models with time-dependent
covariates or longitudinal models with informative dropouts, it is important to use joint
model methods for inference in order to avoid biased results. The literature on model
selection for joint models is quite limited. In practice, the best longitudinal model can be
selected based on the observed longitudinal data, and the best survival model can be selected
based on the survival data, using standard model selection procedures for these models.
Then, we specify reasonable link between the two models, such as shared random effects. To
choose methods for inference, the joint likelihood method generally produces most reliable
results if the assumed models and distributions are correct. On the other hand, the two-
stage methods may be computationally simpler, and many existing models and methods for
longitudinal data and survival data can be easily adapted. However, two-stage methods may
not completely eliminate the biases in parameter estimates in some cases.

When the longitudinal covariate process terminates at event times, that is, when the
longitudinal values are unavailable at and after the event times such as deaths or dropouts,
the covariates are sometimes called internal time-dependent covariates. Sometimes, however,
longitudinal covariate information is available at and after the event times. For example,
CD4 measurements may be still available after patients have been diagnosed with AIDS.
Such covariates are sometimes called external covariates. In joint models, it is important to
distinguish internal and external time-dependent covariates. In particular, for internal time-
dependent covariates, joint models are more desirable since separate analysis in this case may
lead to more severe bias.
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Survival models with measurement errors in time-dependent covariates have received
much attention in the joint models literature. Another common situation is longitudinal
models with informative dropouts, in which survival models can be used to model
the dropout process. Both situations focus on characterizing the association between the
longitudinal and survival processes. Some authors have also considered joint models in
which the focus is on more efficient inference of the survival model, using longitudinal data
as auxiliary information [15, 33, 34] or assume that the longitudinal process and the survival
process are governed by a common latent process [4]. Nathoo and Dean [7] considered an
interesting joint model in which an NLME model is used to model tree growth, with spatial
correlation incorporated.

Joint models can also be extended to multivariate cases, in which more than one lon-
gitudinal processes and more than one event processes can be modelled simultaneously.
Extensions are often conceptually straightforward, but computation and implementation can
be more tedious than univariate cases. See Henderson et al. [4], Xu and Zeger [35], and Song
et al. [26].

Zeng and Cai [36] derived some asymptotic results for maximum likelihood
estimators in joint analysis of longitudinal and survival data. They showed the consistency
of the maximum likelihood estimators, derived their asymptotic distributions, and showed
that the maximum likelihood estimators in joint analysis are semiparametrically efficient.

Although there has been extensive research in joint models in the last two decades
and the importance of joint models has been increasingly recognized, joint models are
still not widely used in practice. A main reason is perhaps lack of software. Recently,
Dimitris Rizopoulos has developed an R package called JM that can be used to fit joint
models with normal longitudinal responses and event times under a maximum likelihood
approach. Various options for the survival model and optimization/integration algorithms
are provided, such as Cox models and AFT models for survival data and the Gauss-Hermite
integration methods and Laplace approximations.
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Complex longitudinal data are commonly analyzed using nonlinear mixed-effects (NLME) models
with a normal distribution. However, a departure from normality may lead to invalid inference and
unreasonable parameter estimates. Some covariates may be measured with substantial errors, and
the response observations may also be subjected to left-censoring due to a detection limit. Inferen-
tial procedures can be complicated dramatically when such data with asymmetric characteristics,
left censoring, and measurement errors are analyzed. There is relatively little work concerning all
of the three features simultaneously. In this paper, we jointly investigate a skew-t NLME Tobit
model for response (with left censoring) process and a skew-t nonparametric mixed-effects model
for covariate (with measurement errors) process under a Bayesian framework. A real data example
is used to illustrate the proposed methods.

1. Introduction

Modeling of longitudinal data is an active area of biostatistics and statistics research that has
received a lot of attention in the recent years. Various statistical modeling and analysis meth-
ods have been suggested in the literature for analyzing such data with complex features (Hig-
gins et al. [1], Liu and Wu [2], Wulfsohn and Tsiatis [3], and Wu [4]). However, there is a
relatively little work done on simultaneously accounting for skewness, left censoring due to
a detection limit (for example, a threshold below which viral loads are not quantifiable) and
covariate measurement errors, which are inherent features of longitudinal data. This paper
proposes a joint skew-t NLME Tobit model for a response and measurement errors in co-
variate by simultaneously accounting for left-censoring and skewness. Thus, the proposed
model addresses three important features of longitudinal data such as viral load in an AIDS
study.
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Firstly, our model relaxes the normality assumption for random errors and random-
effects by using flexible skew-normal and skew-t distributions. It has been documented in the
literature that the normality assumption lacks robustness against extreme values, obscures
important features of between- and within-subject variations, and leads to biased or mislead-
ing results (Huang and Dagne [5], Verbeke and Lesaffre [6], and Sahu et al. [7]). Specially,
nonnormal characteristics such as skewness with heavy tails appear very often in virologic
responses. For example, Figures 1(a) and 1(b) displays the histograms of repeated viral load
(in ln scale) and CD4 cell count measurements for 44 subjects enrolled in an AIDS clinical
study (Acosta et al. [8]). For this data set, which is analyzed in this paper, both viral load
(even after ln-transformation) and CD4 cell count are highly skewed, and thus a normality
assumption may be violated.

Secondly, an outcome of a longitudinal study may be subject to a detection limit be-
cause of low sensitivity of current standard assays (Perelson et al. [9]). For example, for a
longitudinal AIDS study, designed to collect data on every individual at each assessment, the
response (viral load) measurements may be subject to left censoring due to a detection limit
of quantification. Figures 1(c) and 1(d) shows the measurements of viral load and CD4 cell
count for three randomly selected patients in the study. We can see that for some patients their
viral loads are below detection limit (BDL), which is 50 (in copies/mL). When observations
fall below the BDL, a common practice is to impute the censored values by either the detection
limit or half of the detection limit (Wu [4], Ding and Wu [10], and Davidian and Giltinan
[11]). Such ad hoc methods may produce biased results (Hughes [12]). In this paper, instead
of arbitrarily imputing the observations below detection limit, we impute them using fully
Bayesian predictive distributions based on a Tobit model (Tobin [13]), which is discussed in
Section 2.

Thirdly, another feature of a longitudinal data set is the existence of time-varying
covariates which suffer from random measurement errors. This is usually the case in a longi-
tudinal AIDS study where CD4 cell counts are often measured with substantial measurement
errors. Thus, any statistical inference without considering measurement errors in covariates
may result in biased results (Liu and Wu [2], Wu [4], and Huang and Dagne [5]). In this
paper, we jointly model measurement errors in covariate process along with the response
process. The distributional assumption for the covariate model is a skew-t distribution which
is relatively robust against potential extreme values and heavy tails.

Our research was motivated by the AIDS clinical trial considered by Acosta et al. [8]. In
this study, 44 HIV-1-infected patients were treated with a potent artiretroviral regimen. RNA
viral load was measured in copies/mL at study days 0, 7, 14, 28, 56, 84, 112, 140, and 168
of followup. Covariates such as CD4 cell counts were also measured throughout the study
on similar scheme. In this study, the viral load detectable limit is 50 copies/mL, and there
are 107 out of 357 (30 percent) of all viral load measurements that are below the detection
limit. Previous studies show that change in viral load may be associated with change in
CD4 cell counts. It is important to study the patterns of virological response to treatment in
order to make clinical decisions and provide individualized treatments. Since viral load meas-
urements appear to be skewed and censored, and in addition CD4 cell counts are typically
measured with substantial errors and skewness, statistical analyses must take all these factors
into account.

For longitudinal data, it is not clear how asymmetric nature, left censoring due to BDL,
and covariate measurement error may interact and simultaneously influence inferential pro-
cedures. It is the objective of this paper to investigate the effects on inference when
all of the three typical features exist in the longitudinal data. To achieve our objective,
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Figure 1: The histograms (a,b) of viral load measured from RNA levels (in natural ln scale) and
standardized CD4 cell count in plasma for 44 patients in an AIDS clinical trial study. Profiles (c,d) of
viral load (response) in ln scale and CD4 cell count (covariate) for three randomly selected patients. The
vertical and horizontal lines in (a) and (c) are below the detectable level of viral load (3.91 = ln(50)).

we employ a fairly general framework to accommodate a large class of problems with various
features. Accordingly, we explore a flexible class of skew-elliptical (SE) distributions (see
the Appendix for details) which include skew-normal (SN) and skew-t (ST) distributions as
special cases for accounting skewness and heavy tails of longitudinal data, extend the Tobit
model (Tobin [13]) to treat all left-censored observations as missing values, and investigate
nonparametric mixed effects model for covariate measured with error under the framework
of joint models. Because the SN distribution is a special case of the ST distribution when
the degrees of freedom approach infinity, for the completeness and convenient presentation,
we chose ST distributions to develop NLME Tobit joint models (i.e., the ST distribution is
assumed for within-subject random errors and between-subject random effects). The skew-
ness in both within-subject random errors and random-effects distributions may jointly con-
tribute to the skewness of response and covariate variables in a longitudinal study, which
makes the assumption of normality unrealistic.

The remaining of the paper is structured as follows. In Section 2, we present the joint
models with ST distribution and associated Bayesian modeling approach in general forms
so that they can be applicable to other scientific fields. In Section 3, we discuss specific
joint models for HIV response process with left censoring and CD4 covariate process with
measurement error that are used to illustrate the proposed methods using the data set
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described above and report the analysis results. Finally, the paper concludes with some dis-
cussions in Section 4.

2. Joint Models and Bayesian Inferential Methods

2.1. Skew-t Mixed-Effects Tobit Joint Models

In this section, we present the models and methods in general forms so that our methods may
be applicable to other areas of research. An approach we present in this paper treats censored
values as realizations of a latent (unobserved) continuous variable that has been left-cen-
sored. This idea was popularized by Tobin ([13]) and the resulting model is commonly re-
ferred to as the Tobit model. Denote the number of subjects by n and the number of meas-
urements on the ith subject by ni. Let yij = yi(tij) and zij = zi(tij) be observed response and
covariate for individual i at time tij (i = 1, 2, . . . , n; j = 1, 2, . . . , ni) and qij denote the latent
response variable that would be measured if the assay did not have a lower detectible limit ρ.
In our case the Tobit model can be formulated as

yij =

⎧
⎨
⎩
qij if qij > ρ,

missing if qij ≤ ρ,
(2.1)

where ρ is a nonstochastic BDL, which in our example below is equivalent to ln(50). Note
that the value of yij is missing when it is less than or equal to ρ.

For the response process with left-censoring, we consider the following NLME model
with an ST distribution which incorporates possibly mismeasured time-varying covariates

yij = g
(
tij , xij ,βij

)
+ eij , ei iid ∼ STni,νe

(
0, σ2Ini ,Δ(δei)

)
,

βij = d
(
z∗ij ,β,bi

)
, bi iid ∼ STs3,νb(0, Σb,Δ(δb)),

(2.2)

where xij is an s1×1 design vector, g(·) is a linear or nonlinear known function, d(·) is an s1-di-
mensional vector-valued linear function, βij is an s1 × 1 individual-specific time-dependent
parameter vector, β is an s2 × 1 population parameter vector (s2 ≥ s1); in the model (2.2), we
assume that the individual-specific parameters βij depend on the true (but unobservable)
covariate z∗ij rather than the observed covariate zij , which may be measured with errors, and
we discuss a covariate model (2.3) below.

It is noticed that we assume that an s3 × 1 vector of random effects bi = (bi1, . . . , bis3)
T

(s3 ≤ s1) follows a multivariate ST distribution with the unrestricted covariance matrix Σb,
the s3 × s3 skewness diagonal matrix Δ(δb) = diag(δb1 , . . . , δ

b
s3
), and the degree of freedom

νb; the model random error ei = (ei1, . . . , eini)
T follows a multivariate ST distribution with the

unknown scale parameter σ2, the degree of freedom νe, and the ni × ni skewness diagonal
matrix Δ(δei) = diag(δei1 , . . . , δeini ), where the ni × 1 skewness parameter vector δei =
(δei1 , . . . , δeini )

T . In particular, if δei1 = · · · = δeini =̂ δe, then Δ(δei) = δeIni and δei = δe1ni with
1ni = (1, . . . , 1)T ; this indicates that we are interested in skewness of overall data set and is the
case to be used in real data analysis in Section 3.

Covariate models have been investigated extensively in the literature (Higgins et al.
[1], Liu and Wu [2], Wu [4], and Carroll et al. [14]). However, those models used the
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normality assumption for random measurement errors. As we pointed out earlier, this as-
sumption lacks robustness against departures from normality and may also lead to mislead-
ing results. In this paper, we extend the covariate models by assuming an ST distribution for
the random errors. We adopt a flexible empirical nonparametric mixed-effects model with an
ST to quantify the covariate process as follows:

zij = w
(
tij
)
+ hi
(
tij
)
+ εij
(
≡ z∗ij + εij

)
εi iid ∼ STni,νε

(
0, τ2Ini ,Δ(δεi)

)
, (2.3)

where w(tij) and hi(tij) are unknown nonparametric smooth fixed-effects and random effects
functions, respectively, and εi = (εi1, . . . , εini)

T follows a multivariate ST distribution with
degrees of freedom νε, the unknown scale parameter τ2, and the ni × ni skewness diagonal
matrix Δ(δεi) = diag(δεi1 , . . . , δεini ) with ni×1 skewness parameter vector δεi = (δεi1 , . . . , δεini )

T .
In particular, if δεi1 = · · · = δεini =̂ δε, then Δ(δεi) = δεIni and δεi = δε1ni . z

∗
ij = w(tij) + hi(tij)

are the true but unobservable covariate values at time tij . The fixed smooth function w(t)
represents population average of the covariate process, while the random smooth function
hi(t) is introduced to incorporate the large interindividual variation in the covariate process.
We assume that hi(t) is the realization of a zero-mean stochastic process.

Nonparametric mixed-effects model (2.3) is more flexible than parametric mixed-
effects models. To fit model (2.3), we apply a regression spline method to w(t) and hi(t). The
working principle is briefly described as follows and more details can be found in the
literature (Davidian and Giltinan [11] and Wu and Zhang [15]). The main idea of regression
spline is to approximatew(t) and hi(t) by using a linear combination of spline basis functions.
For instance, w(t) and hi(t) can be approximated by a linear combination of basis functions
Ψp(t) = {ψ0(t), ψ1(t), ..., ψp−1(t)}T and Φq(t) = {φ0(t), φ1(t), ..., φq−1(t)}T , respectively. That is,

w(t) ≈ wp(t) =
p−1∑
l=0

αlψl(t) = Ψp(t)Tα, hi(t) ≈ hiq(t) =
q−1∑
l=0

ailφl(t) = Φq(t)Tai, (2.4)

where α = (α0, . . . , αp−1)
T is a p × 1 vector of fixed-effects and ai = (ai0, . . . , ai,q−1)

T (q ≤ p)
is a q × 1 vector of random-effects with ai iid ∼ STq,νa(0,Σa,Δ(δa)) with the unrestricted
covariance matrix Σa, the skewness diagonal matrix Δ(δa) = diag(δa1 , . . . , δ

a
q ), and the degrees

of freedom νa. Based on the assumption of hi(t), we can regard ai as iid realizations of
a zero-mean random vector. For our model, we consider natural cubic spline bases with
the percentile-based knots. To select an optimal degree of regression spline and numbers of
knots, that is, optimal sizes of p and q, the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC) is often applied (Davidian and Giltinan [11] and Wu and Zhang
[15]). Replacing w(t) and hi(t) by their approximations wp(t) and hiq(t), we can approximate
model (2.3) by the following linear mixed-effects (LME) model:

zij ≈ Ψp

(
tij
)T
α +Φq

(
tij
)Tai + εij ≈ z∗ij + εij , εi iid ∼ STni,νε

(
0, τ2Ini ,Δ(δεi)

)
. (2.5)

2.2. Simultaneous Bayesian Inference

In a longitudinal study, such as the AIDS study described previously, the longitudinal re-
sponse and covariate processes are usually connected physically or biologically. Statistical
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inference based on the commonly used two-step method may be undesirable since it fails to
take the covariate estimation into account (Higgins et al. [1]). Although a simultaneous infer-
ence method based on a joint likelihood for the covariate and response data may be favorable,
the computation associated with the joint likelihood inference in joint models of longitudinal
data can be extremely intensive and may lead to convergence problems and in some cases
it can even be computationally infeasible (Liu and Wu [2] and Wu [4]). Here we propose a
simultaneous Bayesian inference method based on MCMC procedure for longitudinal data
of response with left censoring and covariate with measurement error. The Bayesian joint
modeling approach may pave a way to alleviate the computational burdens and to overcome
convergence problems.

We assume that ai, bi, εi, and ei are mutually independent of each other. Following
Sahu et al. [7] and properties of ST distribution, in order to specify the models (2.5) and (2.2)
for MCMC computation, it can be shown that by introducing four random variable vectors
wei = (wei1 , . . . , weini

)T ,wεi = (wεi1 , . . . , wεini
)T ,wbi = (wbi1 , . . . , wbis3

)T and wai = (wai1 , . . . ,

waiq)
T and four random variables ξei , ξεi , ξbi , and ξai (i = 1, . . . , n) based on the stochastic rep-

resentation for the ST distribution (see the Appendix for details), zij and yij can be hierarch-
ically formulated as

yij | bi, weij , ξei ; β, σ2, δeij ∼N
(
g
(
tij , xij ,d

(
z∗ij ,β,bi

))
+ δeijweij , ξ

−1
ei σ

2
)
,

weij ∼N(0, 1)I
(
weij > 0

)
, ξei | νe ∼ G

(νe
2
,
νe
2

)
,

bi | wbi , ξbi ;Σb,δb ∼Ns3

(
Δ(δb)wbi , ξ

−1
bi
Σb
)
,

wbi ∼Ns3(0, Is3)I(wbi > 0), ξbi | νb ∼ G
(νb

2
,
νb
2

)
,

zij | ai, wεij , ξεi ;α, τ
2, δεij ∼N

(
z∗ij + δεijwεij , ξ

−1
εi τ

2
)
,

wεij ∼N(0, 1)I
(
wεij > 0

)
, ξεi | νε ∼ G

(νε
2
,
νε
2

)
,

ai | wai , ξai ;Σa,δa ∼Nq

(
Δ(δa)wai , ξ

−1
ai Σa

)
,

wai ∼Nq

(
0, Iq
)
I(wai > 0), ξai | νa ∼ G

(νa
2
,
νa
2

)
,

(2.6)

where G(·) is a gamma distribution, I(weij > 0) is an indicator function, and weij ∼ N(0, 1)
truncated in the space weij > 0 (standard half-normal distribution); wεij ,wai , and wbi can be
defined similarly. z∗ij is viewed as the true but unobservable covariate values at time tij . It is
noted that, as discussed in the Appendix, the hierarchical model with the ST distribution (2.6)
can be reduced to the following three special cases: (i) a model with skew-normal (SN) dis-
tribution as νe, νε, νb, νa → ∞ and ξei , ξεi , ξbi and ξai → 1 with probability 1 (i.e., the four cor-
responding distributional specifications are omitted in (2.6)); (ii) a model with standard t-dis-
tribution as δεij = δeij = 0, δb = δa = 0, and thus the four distributional specifications of wεij ,
weij , wai , and wbi are omitted in (2.6); (iii) a model with standard normal distribution as
νε, νe, νa, νb → ∞ and δεij = δeij = 0 and δb = δa = 0; in this case, the eight corresponding
distributional specifications are omitted in (2.6).
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Let θ = {α,β, τ2, σ2,Σa,Σb, νε, νe, νa, νb,δa,δb,δεi ,δei ; i = 1, . . . , n} be the collection of
unknown parameters in models (2.2) and (2.5). To complete the Bayesian formulation, we
need to specify prior distributions for unknown parameters in the models (2.2) and (2.5) as
follows:

α ∼Np(α0,Λ1), τ2 ∼ IG(ω1, ω2), Σa ∼ IW
(
Ω1, ρ1

)
, δεi ∼Nni(0,Γ1),

β ∼Ns2

(
β0,Λ2

)
, σ2 ∼ IG(ω3, ω4), Σb ∼ IW

(
Ω2, ρ2

)
, δei ∼Nni(0,Γ2),

νε ∼ G(νε0, νε1)I(νε > 3), νe ∼ G(νe0, νe1)I(νe > 3), νa ∼ G(νa0, νa1)I(νa > 3),

νb ∼ G(νb0, νb1)I(νb > 3), δa ∼Nq(0,Γ3), δb ∼Ns3(0,Γ4),

(2.7)

where the mutually independent Inverse Gamma (IG), Normal (N), Gamma (G), and In-
verse Wishart (IW) prior distributions are chosen to facilitate computations (Pinheiro and
Bates [16]). The hyperparameter matrices Λ1,Λ2,Ω1,Ω2,Γ1,Γ2,Γ3, and Γ4 can be assumed to
be diagonal for convenient implementation.

Let f(· | ·), F(· | ·) and π(·) denote a probability density function (pdf), cumulative
density function (cdf), and prior density function, respectively. Conditional on the ran-
dom variables and some unknown parameters, a detectable measurement yij contributes
f(yij | bi, weij , uei), whereas a nondetectable measurement contributes F(ρ | bi, weij , uei) ≡
P(yij < ρ | bi, weij , uei) in the likelihood. We assume that α,β, τ2, σ2,Σa,Σb, νε, νe,δεi ,
δei(i = 1, . . . , n) are independent of each other, that is, π(θ) = π(α)π(β)π(τ2)π(σ2)π(Σa)
π(Σb)π(νε)π(νe)π(νa)π(νb)π(δa)π(δb)

∏
iπ(δεi)π(δei). After we specify the models for the

observed data and the prior distributions for the unknown model parameters, we can make
statistical inference for the parameters based on their posterior distributions under the Baye-
sian framework. Letting yi = (yi1, . . . , yini)

T and zi = (zi1, . . . , zini)
T , the joint posterior density

of θ based on the observed data can be given by

f(θ | data) ∝
{

n∏
i=1

∫ ∫
LyiLziLaiLbidaidbi

}
π(θ), (2.8)

where Lyi =
∏ni

j=1f(yij | bi, weij , ξei)
1−cij F(ρ | bi, weij , ξei)

cij f(weij | weij > 0)f(ξei) is the likeli-
hood for the observed response data, cij is the censoring indicator such that yij is observed if
cij = 0, and yij is left-censored if cij = 1, that is, yij = qij if cij = 0, and yij is treated as missing
if cij = 1, and Lzi =

∏ni
j=1f(zij | ai, wεij , ξεi)f(wεij | wεij > 0)f(ξεi) is the likelihood for the

observed covariate data {zi, i = 1, . . . , n}, Lbi = f(bi | wbi , ξbi)f(wbi | wbi > 0)f(ξbi), and
Lai = f(ai | wai , ξai)f(wai | wai > 0)f(ξai).

In general, the integrals in (2.8) are of high dimension and do not have closed form
solutions. Therefore, it is prohibitive to directly calculate the posterior distribution of θ based
on the observed data. As an alternative, MCMC procedures can be used to sample based on
(2.8) using the Gibbs sampler along with the Metropolis-Hasting (M-H) algorithm. An im-
portant advantage of the above representations based on the hierarchical models (2.6) and
(2.7) is that they can be very easily implemented using the freely available WinBUGS software
(Lunn et al. [17]) and that the computational effort is equivalent to the one necessary to fit the
normal version of the model. Note that when using WinBUGS to implement our modeling ap-
proach, it is not necessary to explicitly specify the full conditional distributions. Thus we omit
those here to save space.
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3. Data Analysis

3.1. Specification of Models

We now analyze the data set described in Section 1 based on the proposed method. Among
the 44 eligible patients, the number of viral load measurements for each patient varies from
4 to 9 measurements. As is evident from Figures 1(c) and 1(d), the interpatient variations in
viral load appear to be large and these variations appear to change over time. Previous studies
suggest that the interpatient variation in viral load may be partially explained by time-vary-
ing CD4 cell count (Wu [4] and Huang et al. [18]).

Models for covariate processes are needed in order to incorporate measurement errors
in covariates. CD4 cell counts often have nonnegligible measurement errors, and ignoring
these errors can lead to severely misleading results in a statistical inference (Carroll et al.
[14]). In A5055 study, roughly 10 per cent of the CD4 measurement times are inconsistent
with the viral load measurement times. Consequently, CD4 measurements may be missed
at viral load measurement times mainly due to a different CD4 measurement scheme as
designed in the study (e.g., CD4 measurements were missed at day 7 as displayed in
Figures 1(c) and 1(d)). There seem to be no particular patterns for the missingness. Thus
we assume that the missing data in CD4 are missing at random (MAR) in the sense of Rubin
[19], so that the missing data mechanism can be ignored in the analysis. With CD4 measures
collected over time from the AIDS study, we may model the CD4 process to partially address
the measurement errors (Wu [4]). However, the CD4 trajectories are often complicated, and
there is no well-established model for the CD4 process. We, thus, model the CD4 process
empirically using a nonparametric mixed-effects model, which is flexible and works well
for complex longitudinal data. We use linear combinations of natural cubic splines with
percentile-based knots to approximate w(t) and hi(t). Following the study in (Liu and Wu
[2]), we set ψ0(t) = φ0(t) = 1 and take the same natural cubic splines in the approximations
(2.4) with q ≤ p (in order to limit the dimension of random-effects). The values of p and q
are determined based on the AIC/BIC criteria. The AIC/BIC values are evaluated for various
models with (p, q) = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)} which was found that the model
with (p, q) = (3, 3) has the smallest AIC/BIC values being 703.6/744.4. We thus adopted the
following ST nonparametric mixed-effects CD4 covariate model:

zij = (α0 + ai0) + (α1 + ai1)ψ1
(
tij
)
+ (α2 + ai2)ψ2

(
tij
)
+ εij
(
≡ z∗ij + εij

)
, (3.1)

where zij is the observed CD4 value at time tij , ψ1(·) and ψ2(·) are two basis functions given in
Section 2.1 and taking the same natural cubic splines for φ(·), α = (α0, α1, α2)

T is a vector of
population parameters (fixed-effects), ai = (ai0, ai1, ai2)

T is a vector of random-effects, and
εi = (εi1, . . . , εini)

T ∼ STni,νε(0, τ
2Ini , δεIni). In addition, in order to avoid too small or large

estimates which may be unstable, we standardize the time-varying covariate CD4 cell counts
(each CD4 value is subtracted by mean 375.46 and divided by standard deviation 228.57) and
rescale the original time (in days) so that the time scale is between 0 and 1.

For the initial stage of viral decay after treatment, a biologically reasonable viral load
model can be formulated by the uniexponential form (Ho et al. [20]), V (t) = V (0) exp(−λt),
where V (t) is the total virus at time t and λ is the rate of change in viral load. To model the
complete viral load trajectory, one possible extension of the model given above is to allow λ
to vary over time. A simple determinant for time-varying λ is the linear function λ(t) = a+bt.
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For HIV viral dynamic models, it is typical to take ln-transformation of the viral load in order
to stabilize the variance and to speed up estimation algorithm (Ding and Wu [10]). After
ln-transformation of V (t), substituting λ by the linear function λ(t) = a + bt, we obtain the
following quadratic linear mixed-effects model:

yij = βi0 + βij1tij + βij2t2ij + eij , (3.2)

where yij = ln(Vi(tij)), parameter βi0 represents the initial viral load in ln scale, and pa-
rameters βij1 and βij2 incorporate change in viral decay rate over time, with λij ≡ −(βij1 +
βij2tij) being the time-varying exponential decay rate. ei = (ei1, . . . , eini)

T ∼ STni,νe(0, σ
2Ini ,

δeIni); βij = (βij0, βij1, βij2)
T is a vector of individual parameters for the ith subject at time tij .

Since CD4 cell counts are measured with errors, we assume that the individual-specific
and time-varying parameters βij are related to the summary of true CD4 values z∗ij which
may be interpreted as the “regularized” CD4 covariate value. As discussed by Wu [21], to
determine whether CD4 values influence the dynamic parameters βij , AIC/BIC criteria are
used again as guidance (Pinheiro and Bates [16]) to find the following model

βi0 = β1 + bi1, βij1 = β2 + β3z
∗
ij + bi2, βij2 = β4 + β5z

∗
ij + bi3, (3.3)

where bi = (bi1, . . . , bi3)
T is individual random-effect, and β = (β1, β2, . . . , β5)

T is a vector of
population parameters. The model (3.3) indicates that the current (regularized) CD4 values
z∗ij rather than the past (observed) CD4 values zij are most predictive of the change in viral
load at time tij . One possible explanation is that, since CD4 measurements for each individual
are often sparse, the current CD4 value may be the best summary of immediate past CD4
values, while the early CD4 values may not be very predictive of the current change in viral
load.

3.2. Model Implementation

In this section, we analyze the AIDS data set described in Section 1 to illustrate the proposed
joint modeling method (denoted by JM) based on the joint models (3.2) in conjunction with
the covariate model (3.1) and the corresponding specifications of prior distributions. As
shown in Figures 1(a) and 1(b), the histograms of viral load in ln scale and CD4 cell count
clearly indicate their asymmetric nature and it seems logical to fit the joint model with a skew
distribution to the data set. Along with this consideration, the following statistical models
with different distributions of both model errors and random-effects for both the response
model (3.2) and the covariate model (3.1) are employed to compare their performance.

(i) SN Model: ei, εi, bi, and ai follow an SN-distribution.

(ii) ST Model: ei, εi, bi, and ai follow an ST-distribution.

(iii) NModel: ei, εi, bi, and ai follow a normal (N) distribution.

We investigate the following three scenarios. First, since a normal distribution is a spe-
cial case of an SN distribution when skewness parameter is zero, while the ST distribution
reduces to the SN distribution when the degree of freedom approaches infinity, we investigate
how an asymmetric (SN or ST) distribution contributes to modeling results and parameter
estimation in comparison with a symmetric (normal) distribution. Second, we estimate the
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model parameters by using the “naive” method (denoted by NV), which ignores meas-
urement errors in CD4, and missing responses are imputed by the half (i.e., ln(25)) of the
BDL. That is, the “naive” method only uses the observed CD4 values zij rather than true
(unobservable) CD4 values z∗ij in the response model (3.2) and the missing data in the Tobit
model (2.1) is imputed by ln(25). We use it as a comparison to the JM proposed in Section 2.
This comparison attempts to investigate how the measurement errors in CD4 and missing
data in viral load together contribute to modeling results. Third, when covariates are meas-
ured with errors, a common approach is the so-called two-step (TS) method (Higgins et al.
[1]): the first step estimates the “true” covariate values based on the covariate model (3.1); at
the second step the covariate in the response model (2.6) is substituted by the estimate from
the first step. Thus we use the two-step (TS) method to assess the performance of the JM
method.

The progress in the Bayesian posterior computation due to MCMC procedures has
made it possible to fit increasingly complex statistical models (Lunn et al. [17] and Huang
et al. [18]). To choose the best model among candidate models, it has become more important
to develop efficient model selection criteria. A recent publication by Spiegelhalter et al. [22]
suggested a generalization of AIC called deviance information criterion (DIC). Since the
structure of DIC allows for an automatic computation in WinBUGS, we use DIC to compare
the models in this paper. As with other model selection criteria, we caution that DIC is not
intended for identification of the “correct” model, but rather merely as a method of com-
paring a collection of alternative formulations. In our models with different distribution
specifications for model errors, DIC can be used to find out how assumption of a skew-
normal distribution contributes to virologic response in comparison with that of a normal
distribution and how the proposed joint modeling approach influences parameter estimation
compared with the “naive” method and imputation method.

To carry out the Bayesian inference, we need to specify the values of the hyperparame-
ters in the prior distributions. In the Bayesian approach, we only need to specify the priors at
the population level. The values of the hyperparameters were mostly chosen from previous
studies in the literature (Liu and Wu [2], Huang and Dagne [5], Sahu et al. [7], Wu [21],
and among others). We take weakly informative prior distribution for the parameters in the
models. In particular, (i) fixed-effects were taken to be independent normal distribution
N(0, 100) for each component of the population parameter vectors α and β. (ii) For the
scale parameters τ2 and σ2, we assume a limiting noninformative inverse gamma prior dis-
tribution, IG(0.01, 0.01) so that the distribution has mean 1 and variance 100. (iii) The priors
for the variance-covariance matrices of the random-effects Σa and Σb are taken to be inverse
Wishart distributions IW(Ω1, ρ1) and IW(Ω2, ρ2) with covariance matrices Ω1 = Ω2 =
diag(0.01, 0.01, 0.01) and degrees of freedom ρ1 = ρ2 = 5, respectively. (iv) The degrees of
freedom parameters νε, νe, νa, and νb follow a truncated gamma distribution with two hyper-
parameter values being 1 and 0.1, respectively. (v) For each of the skewness parameters δe,
δε, δak , and δbk (k = 1, 2, 3), we choose independent normal distribution N(0, 100), where we
assume that δei = δe1ni and δεi = δε1ni to indicate that we are interested in skewness of overall
viral load data and overall CD4 cell count data. The MCMC sampler was implemented using
WinBUGS software, and the program codes are available from authors on request. The con-
vergence of MCMC implementation was assessed using standard tools (such as trace plots
which are not shown here to save space) within WinBUGS, and convergence was achieved
after initial 50,000 burn-in iterations. After convergence diagnostics was done, one long chain
of 200,000 iterations, retaining every 20th, was run to obtain 10,000 samples for Bayesian in-
ference. Next, we report analysis results of the three scenarios proposed above.
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3.3. Comparison of Joint Modeling Results

The population posterior mean (PM), the corresponding standard deviation (SD), and 95%
credible interval for fixed-effects parameters based on the three models (SN, ST, and N) for
JM method are presented in the upper part of Table 1. The significant findings are presented as
follows. (i) For the response model (3.2), where the most substantively interesting parameters
are (β2, β3, β4, β5), the estimates of β2 and β4, the linear coefficient and quadratic coefficient of
time, respectively, under the three models, are significant since the 95% credible intervals do
not contain zero. Among the coefficients of the true CD4 covariate (β3, β5) in model (3.3), the
posterior means of β5 are significantly different from zero for all the three models under JM
method. Moreover, the posterior mean values for β5 are quite different between models SN
(−4.76), ST (−6.31), and N (−6.26), implying that the posterior means may be substantially
biased if model distribution ignores skewness. We will see later that SN gives better fit than
either ST or N. In addition, for the scale parameter σ2, the posterior mean value (2.63) in N
model is much larger than that of any other corresponding posterior means in SN and ST
models. (ii) For parameter estimates of the CD4 covariate model (3.1), the posterior means of
intercept α0 and coefficient α1 based on SN and ST models are significant, while the posterior
mean of α2 turns out to be nonsignificant under all the three models. For the scale parameter
τ2 of the covariate model, the posterior mean value (0.13) is the largest under N model. This
is expected since the model based on ordinary normal distribution does not account for skew-
ness and heaviness in tails for the type of data analyzed here.

To assess the goodness-of-fit of the proposed JM method, the diagnosis plots for the
SN, ST, and N models comparing the residuals and the fitted values (Figures 2(a)–2(c)) and
the observed values versus the fitted values (Figures 2(d)–2(f)). The distribution of the re-
siduals for SN model looks tighter than those for either ST model or N model, showing
a better fit. Similar results are observed by looking at the plots in Figures 2(d)–2(f). The plot
for SN model has most of the points close the line showing a strong agreement between
the observed and the fitted values. Clearly, it can be seen from the plots that N model, which
ignores skewness, does not fit the data very well as compared to either SN model or ST model.
Note that the horizontal line designates the below detection limit (BDL), which is at ln(50).
The recorded observations less than BDL are not accurate and, therefore, have not been used
in the analysis, but instead they were treated as missing and predicted values are obtained.
These predicted values are plotted against the recorded observations below detection limit
as shown in the lower-row plots. In general, from the model fitting results, both SN and ST
models provide a reasonably good fit to the observed data even though SN model is slightly
better than ST model.

In order to further investigate whether SN model under JM method can provide better
fit to the data than ST model, the DIC values are obtained and found to be 863.0 for SN
model and 985.6 for ST model. The DIC value for SN model is smaller than that of ST model,
confirming that SN model is better than ST model in fitting the proposed joint model. As
mentioned before, it is hard sometimes to tell which model is “correct” but which one fits
data better. The model which fits the data better may be more appealing in order to describe
the mechanism of HIV infection and CD4 changing process. Thus, based on the DIC criterion,
the results indicate that SN model is relatively better than either ST model or N model. These
findings are consistent with those displayed in the goodness-of-fit in Figure 2 indicating that
SN model outperforms both ST model and N model. In summary, our results suggest that
it is very important to assume an SN distribution for the response Tobit model and the CD4
covariate model in order to achieve reliable results, in particular if the data exhibit skewness,
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Table 1: A summary of the estimated posterior mean (PM) of population (fixed-effects) and scale parame-
ters, the corresponding standard deviation (SD) and lower limit (LCI) and upper limit (UCI) of 95% equal-
tail credible interval (CI) as well as DIC values based on the joint modeling (JM), the naive (NV), and the
two-step (TS) methods.

Method Model α0 α1 α2 β1 β2 β3 β4 β5 τ2 σ2 DIC

JM

SN
PM −0.95 0.15 −0.23 5.62 −14.6 −2.34 11.7 −4.76 0.07 0.14

863.0LCI −1.58 0.06 −15.2 4.17 −22.1 −5.14 4.52 −9.92 0.04 0.01
UCI −0.01 0.90 14.8 7.59 −8.14 1.44 21.7 −0.62 0.11 0.64
SD 0.47 0.37 7.63 0.96 3.98 1.65 5.25 2.34 0.02 0.18

ST

PM −0.94 0.34 −0.31 5.84 −12.0 −1.20 8.12 −6.31 0.04 0.21

985.6LCI −1.41 0.18 −14.1 4.15 −16.5 −5.72 2.20 −12.6 0.02 0.01
UCI −0.06 0.88 13.4 8.02 −7.72 2.72 19.2 −1.41 0.05 0.86
SD 0.35 0.26 7.09 1.10 2.22 2.22 4.14 2.77 0.01 0.26

N

PM −0.21 0.45 −2.87 7.74 −15.4 −0.80 13.6 −6.26 0.13 2.63
1242.3LCI −0.46 0.22 −15.9 7.20 −18.3 −4.16 9.97 −11.7 0.11 2.06

UCI 0.04 0.68 9.90 8.29 −12.6 2.53 17.2 −1.43 0.16 3.35
SD 0.13 0.12 6.54 0.28 1.48 1.73 1.85 2.61 0.01 0.33

NV SN

PM — — — 5.03 −11.1 0.58 6.83 −2.10 — 0.10

1083.5LCI — — — 3.82 −13.6 −0.94 4.52 −4.18 — 0.01
UCI — — — 6.59 −8.73 2.08 9.18 0.07 — 0.35
SD — — — 0.75 1.23 0.77 1.19 1.04 — 0.09

TS SN

PM −0.99 0.19 2.71 5.91 −14.4 −1.24 8.47 −5.90 0.09 0.14

1023.8LCI −1.58 −0.43 −12.1 4.12 −22.1 −5.01 1.83 −10.6 0.05 0.01
UCI 0.07 0.90 17.1 7.72 −8.50 2.16 21.2 −0.80 0.14 0.65
SD 0.42 0.36 7.54 1.05 3.88 1.79 5.14 2.52 0.02 0.18

but not heaviness in the tails. Along with these observations, next we provide detailed fitting
results and interpretations based on the SN Model.

3.4. Estimation Results Based on SN Model

For comparison, we used the “naive” (NV) method to estimate the model parameters pre-
sented in the lower part of Table 1 where the raw (observed) CD4 values zij rather than the
true (unobserved) CD4 values z∗ij are substituted in the response model (3.3). It can be seen
that there are important differences in the posterior means for the parameters β3 and β5, which
are coefficients of CD4 covariate. These posterior means are β̂3 = 0.58 and β̂5 = −2.10 for the
NV method, and β̂3 = −2.34 and β̂5 = −4.76 for the JM method. The NV method may produce
biased posterior means and may substantially overestimate the covariate CD4 effect. The
estimated standard deviations (SD) for the CD4 effect (β3 and β5) using the JM method are
1.65 and 2.34, which are approximately twice as large as those (0.77 and 1.04) using the NV
method, respectively, probably because the JM method incorporates the variation from fitting
the CD4 process. The differences of the NV estimates and the JM estimates suggest that the
estimated parameters may be substantially biased if measurement errors in CD4 covariate are
ignored. We also obtained DIC value of 1083.5 for the NV method, while the DIC value for the
JM method is 863.0. We can see from the estimated DIC values that the JM approach provides
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Figure 2: The goodness-of-fit. (a–c): Residuals versus fitted values of ln(RNA) under skew-normal (SN),
skew-t (ST), and normal (N) models based on the JM method; the values below detection limit (ln(50))
are not included in the plots since there are no corresponding residuals but only predicted values. (d–f):
Observed values versus fitted values of ln(RNA) under SN, ST, and N models, where the horizontal line
at ln(50) represents the detection limit.
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Table 2: A summary of the estimated posterior mean (PM) of skewness and degree of freedom parameters,
the corresponding standard deviation (SD), and lower limit (LCI) and upper limit (UCI) of 95% equal-tail
credible interval (CI) based on the joint modeling (JM), the naive (NV), and the two-step (TS) methods.

Method Model δε δe δa1 δa2 δa3 δb1 δb2 δb3 νε νe νa νb

JM

SN

PM 0.41 2.34 0.58 0.34 0.26 0.52 −1.81 2.58 — — — —
LCI 0.25 1.93 −0.62 −0.58 −16.1 −1.90 −10.1 −10.7 — — — —
UCI 0.54 2.73 1.41 1.09 17.0 2.31 7.12 11.0 — — — —
SD 0.07 0.20 0.60 0.47 8.57 1.18 5.30 6.93 — — — —

ST

PM 0.05 2.26 0.87 0.04 −0.56 0.32 −4.70 6.45 3.32 10.2 14.0 14.4
LCI −0.14 1.59 −0.35 −0.60 −16.5 −2.23 −10.1 −8.23 3.01 3.07 3.52 3.52
UCI 0.25 2.70 1.54 0.65 14.7 2.37 1.91 12.3 4.18 35.2 41.1 41.9
SD 0.11 0.33 0.50 0.32 8.41 1.31 2.93 4.88 0.32 8.98 10.3 10.3

NV SN

PM — 2.24 — — — 0.80 0.15 5.53 — — — —
LCI — 1.95 — — — −1.05 −1.71 3.62 — — — —
UCI — 2.55 — — — 2.25 2.30 7.74 — — — —
SD — 0.15 — — — 0.92 1.00 1.06 — — — —

TS SN

PM 0.16 2.44 0.89 0.28 3.06 0.04 −0.94 5.18 — — — —
LCI −0.39 2.07 −0.48 −0.58 −11.7 −2.20 −8.53 −12.4 — — — —
UCI 0.51 2.79 1.55 1.04 21.0 2.23 7.49 12.2 — — — —
SD 0.29 0.18 0.50 0.45 8.30 1.31 4.75 6.67 — — — —

a better fit to the data in comparison with the NV method. Thus it is important to take the
measurement errors into account when covariates are measured with errors.

Comparing the JM method against the two-step (TS) method from the lower part of
Table 1, we can see that the TS estimates and the JM estimates are somewhat different. In
particular, there are important differences in the posterior means for the parameters β4 and
β5 which is directly associated CD4 covariate. For the parameter β5, the posterior means are
−4.76 (95% CI = (−9.92,−0.62)) and −5.90 (95% CI = (−10.60,−0.80)) for the JM and TS
methods, respectively. The TS method slightly underestimates the effect of CD4 covariate.

The estimated results based on the JM method for SN model in Table 2 presents the
estimated skewness parameters, and the only significant skewness parameters are those for
the response model errors and CD4 covariate model errors, but not random-effects. These are
δ̂e = 2.34 (95% CI = (1.93, 2.73)) and δ̂ε = 0.41 (95% CI = (0.25, 0.54)) for viral load and CD4
cell count, respectively. They are significantly positive confirming the right-skewed viral load
and CD4 cell count as was depicted in Figure 1. Thus, the results suggest that accounting for
significant skewness, when the data exhibit skewness, provides a better model fit to the data
and gives more accurate estimates to the parameters.

In summary, the results indicate that the SN model under the JM method is a better
suited model for viral loads and CD4 covariate with measurement errors. Looking now at the
estimated population initial stage of viral decay after treatment bases on the JM method, we
get λ̂(t) = − (− 14.6 − 2.34z∗(t) + 11.7t − 4.76z∗(t)t), where z∗(t) is the standardized true
CD4 value at time t which may be interpreted as the “regularized” covariate value. Thus, the
population viral load process may be approximated by V̂ (t) = exp[5.62 − λ̂(t)t]. Since the
viral decay rate (λ(t)) is significantly associated with the true CD4 values (due to statistically
significant estimate of β5), this suggests that the viral load change V (t) may be significantly
associated with the true CD4 process. Note that, although the true association described
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above may be complicated, the simple approximation considered here may provide a rea-
sonable guidance and suggest a further research.

4. Discussion

Attempts to jointly fit the viral load data and CD4 cell counts with measurement errors are
compromised by left censoring in viral load response due to detection limits. We addressed
this problem using Bayesian nonlinear mixed-effects Tobit models with skew distributions.
The models were fitted based on the assumption that the viral dynamic model (2.2) continues
to hold for those unobserved left-censored viral loads. This assumption may be reasonable
since the dynamic model considered here is a natural extension of a biologically justified
model (Ding and Wu [10]). Even though left censoring effects are the focus of this paper,
right-censoring (ceiling) effects can also be dealt with in very similar ways. It is therefore im-
portant for researchers to pay attention to censoring effects in a longitudinal data analysis,
and Bayesian Tobit models with skew distributions make best use of both censored and un-
censored data information.

Our results suggest that both ST (skew-t) and SN (skew-normal) models show superi-
ority to theN (normal) model. Our results also indicate that the JM method outperformed the
NV and TS methods in the sense that it produces more accurate parameter estimates. The JM
method is quite general and so can be applied to other application areas, allowing accurate
inferences of parameters while adjusting for skewness, left-censoring, and measurement er-
rors. In short, skew distributions show potentials to gain efficiency and accuracy in estimating
certain parameters when the normality assumption does not hold in the data.

The proposed NLME Tobit joint model with skew distributions can be easily fitted
using MCMC procedure by using the WinBUGS package that is available publicly and has
a computational cost similar to the normal version of the model due to the features of
its hierarchically stochastic representations. Implementation via MCMC makes it straight-
forward to compare the proposed models and methods with various scenarios for real data
analysis in comparison with symmetric distributions and asymmetric distributions for model
errors. This makes our approach quite powerful and also accessible to practicing statisticians
in the fields. In order to examine the sensitivity of parameter estimates to the prior distribu-
tions and initial values, we also conducted a limited sensitivity analysis using different values
of hyperparameters of prior distributions and different initial values (data not shown). The
results of the sensitivity analysis showed that the estimated dynamic parameters were not
sensitive to changes of both priors and initial values. Thus, the final results are reasonable and
robust, and the conclusions of our analysis remain unchanged (see Huang et al. [18] for more
details).

The methods of this paper may be extended to accommodate various subpopulations
of patients whose viral decay trajectories after treatment may differ. In addition, the purpose
of this paper is to demonstrate the proposed models and methods with various scenarios for
real data analysis for comparing asymmetric distributions for model errors to a symmetric
distribution, although a limited simulation study might have been conducted to evaluate our
results from different model specifications and the corresponding methods. However, since
this paper investigated many different scenarios-based models and methods with real data
analysis, the complex natures considered, especially skew distributions involved, will pose
some challenges for such a simulation study which requires additional efforts, and it is be-
yond the purpose of this paper. We are currently investigating these related problems and will
report the findings in the near future.
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Appendix

A. Multivariate Skew-t and Skew Normal Distributions

Different versions of the multivariate skew-elliptical (SE) distributions have been proposed
and used in the literature (Sahu et al. [7], Azzalini and Capitanio [23], Jara et al. [24], Arel-
lano-Valle et al. [25], and among others). We adopt a class of multivariate SE distributions
proposed by Sahu et al. [7], which is obtained by using transformation and conditioning and
contains multivariate skew-t (ST) and skew-normal (SN) distributions as special cases. A
k-dimensional random vector Y follows a k-variate SE distribution if its probability density
function (pdf) is given by

f
(
y | μ,Σ,Δ(δ);m(k)

ν

)
= 2kf

(
y | μ,A;m(k)

ν

)
P(V > 0), (A.1)

where A = Σ + Δ2(δ), μ is a location parameter vector, Σ is a covariance matrix, Δ(δ) is
a skewness diagonal matrix with the skewness parameter vector δ = (δ1, δ2, . . . , δk)

T ; V
follows the elliptical distribution El(Δ(δ)A−1(y−μ), Ik −Δ(δ)A−1Δ(δ);m(k)

ν ) and the density
generator function m

(k)
ν (u) = (Γ(k/2)/πk/2)(mν(u)/

∫∞
0 rk/2−1mν(u)dr), with mν(u) being a

function such that
∫∞

0 rk/2−1mν(u)dr exists. The function mν(u) provides the kernel of the
original elliptical density and may depend on the parameter ν. We denote this SE distribution
by SE(μ,Σ,Δ(δ);m(k)). Two examples of mν(u), leading to important special cases used
throughout the paper, are mν(u) = exp(−u/2) and mν(u) = (u/ν)−(ν+k)/2, where ν > 0. These
two expressions lead to the multivariate ST and SN distributions, respectively. In the latter
case, ν corresponds to the degree of freedom parameter.

Since the SN distribution is a special case of the ST distribution when the degree of
freedom approaches infinity, for completeness, this section is started by discussing the mul-
tivariate ST distribution that will be used in defining the ST joint models considered in this
paper. For detailed discussions on properties and differences among various versions of ST
and SN distributions, see the references above. We consider a multivariate ST distribution
introduced by Sahu et al. [7], which is suitable for a Bayesian inference since it is built using
conditional method and is defined below.

An k-dimensional random vector Y follows an k-variate ST distribution if its pdf is
given by

f(y | μ,Σ,Δ(δ), ν) = 2ktk,ν(y | μ,A)P(V > 0). (A.2)

We denote the k-variate t distribution with parameters μ,A and degrees of freedom ν by
tk,ν(μ,A) and the corresponding pdf by tk,ν(y | μ,A) henceforth, V follows the t distribution
tk,ν+k. We denote this distribution by STk,ν(μ,Σ,Δ(δ)). In particular, when Σ = σ2Ik and
Δ(δ) = δIk, (A.2) simplifies to

f
(
y | μ, σ2, δ, ν

)
= 2k
(
σ2 + δ2

)−k/2 Γ((ν +m)/2)

Γ(ν/2)(νπ)k/2

{
1 +

(y − μ)T (y − μ)
ν(σ2 + δ2)

}−(ν+k)/2

× Tk,ν+k
⎡
⎣
{
ν +
(
σ2 + δ2)−1(y − μ)T (y − μ)

ν + k

}−1/2
δ(y − μ)

σ
√
σ2 + δ2

⎤
⎦,

(A.3)
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where Tk,ν+k(·) denotes the cumulative distribution function (cdf) of tk,ν+k(0, Ik). However,
unlike in the SN distribution to be discussed below, the ST density cannot be written as the
product of univariate ST densities. Here Y are dependent but uncorrelated.

The mean and covariance matrix of the ST distribution STk,ν(μ, σ2Ik,Δ(δ)) are given
by

E(Y) = μ +
(
ν

π

)1/2 Γ((ν − 1)/2)
Γ(ν/2)

δ,

cov(Y) =
[
σ2Ik +Δ2(δ)

] ν

ν − 2
− ν

π

[
Γ{(ν − 1)/2}

Γ(ν/2)

]2

Δ2(δ).

(A.4)

According to Lemma 1 of Azzalini and Capitanio [23], if Y follows STk,ν(μ,Σ,Δ(δ)), it
can be represented by

Y = μ + ξ−1/2X, (A.5)

where ξ follows a Gamma distribution Γ(ν/2, ν/2), which is independent of X, and X follows
a k-dimensional skew-normal (SN) distribution, denoted by SNk(0,Σ,Δ(δ)). It follows from
(A.5) that Y | ξ ∼ SNk(μ,Σ/ξ,Δ(δ)). By Proposition 1 of Arellano-Valle et al. [25], the SN
distribution of Y conditional on ξ has a convenient stochastic representation as follows:

Y = μ +Δ(δ)|X0| + ξ−1/2Σ1/2X1, (A.6)

where X0 and X1 are two independent Nk(0, Ik) random vectors. Note that the expression
(A.6) provides a convenience device for random number generation and for implementation
purpose. Let w = |X0|; then w follows a k-dimensional standard normal distributionNk(0, Im)
truncated in the space w > 0 (i.e., the standard half-normal distribution). Thus, following
Sahu et al. [7], a hierarchical representation of (A.6) is given by

Y | w, ξ ∼Nk

(
μ +Δ(δ)w, ξ−1Σ

)
, w ∼Nk(0, Ik)I(w > 0), ξ ∼ G

(ν
2
,
ν

2

)
, (A.7)

where G(·) is a gamma distribution. Note that the ST distribution presented in (A.7) can be
reduced to the following three special cases: (i) as ν → ∞ and ξ → 1 with probability 1 (i.e.,
the last distributional specification is omitted), then the hierarchical expression (A.7) becomes
an SN distribution SNk(μ,Σ,Δ(δ)); (ii) as Δ(δ) = 0, then the hierarchical expression (A.7) is a
standard multivariate t-distribution; (iii) as ν → ∞, ξ → 1 with probability 1, and Δ(δ) = 0,
then the hierarchical expression (A.7) is a standard multivariate normal distribution.

Specifically, if a k-dimensional random vector Y follows a k-variate SN distribution,
then (A.2)–(A.4) revert to the following forms, respectively:

f(y | μ,Σ,Δ(δ)) = 2k|A|−1/2φk
{
A−1/2(y − μ)

}
P(V > 0), (A.8)

where V ∼ Nk{Δ(δ)A−1(y − μ), Ik − Δ(δ)A−1Δ(δ)}, and φk(·) is the pdf of Nk(0, Ik). We
denote the above distribution by SNk(μ,Σ,Δ(δ)). An appealing feature of (A.8) is that it
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gives independent marginal when Σ = diag(σ2
1 , σ

2
2 , . . . , σ

2
k). The pdf (A.8) thus simplifies to

f(y | μ,Σ,Δ(δ)) =
k∏
i=1

⎡
⎢⎣ 2√

σ2
i + δ

2
i

φ

⎧
⎪⎨
⎪⎩

yi − μi√
σ2
i + δ

2
i

⎫
⎪⎬
⎪⎭
Φ

⎧
⎪⎨
⎪⎩
δi
σi

yi − μi√
σ2
i + δ

2
i

⎫
⎪⎬
⎪⎭

⎤
⎥⎦, (A.9)

where φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution, respectively. The
mean and covariance matrix are given by E(Y) = μ+

√
2/πδ, cov(Y) = Σ+(1−2/π)Δ(δ)2. It

is noted that when δ = 0, the SN distribution reduces to usual normal distribution.
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We propose a marginalized joint-modeling approach for marginal inference on the association bet-
ween longitudinal responses and covariates when longitudinal measurements are subject to in-
formative dropouts. The proposed model is motivated by the idea of linking longitudinal respons-
es and dropout times by latent variables while focusing on marginal inferences. We develop a sim-
ple inference procedure based on a series of estimating equations, and the resulting estimators are
consistent and asymptotically normal with a sandwich-type covariance matrix ready to be esti-
mated by the usual plug-in rule. The performance of our approach is evaluated through simula-
tions and illustrated with a renal disease data application.

1. Introduction

Longitudinal studies often encounter data attrition because subjects drop out before the des-
ignated study end. Both statistical analysis and practical interpretation of longitudinal data
can be complicated by dropouts. For example, in the Modification of Diet in Renal Disease
(MDRD) study [1, 2], one main interest was to investigate the efficacy of interventions of
blood pressure control and diet modification on patients with impaired renal functions. The
primary outcome was glomerular filtration rate (GFR), which measured filtering capacity of
kidneys, and was repeatedly measured over the study period. However, some patients could
leave the study prematurely for kidney transplant or dialysis, which precluded further GFR
measurements. This resulted in a dropout mechanism that could relate to patients’ kidney
function and correlate with their GFR values. Other patients were followed to the end of the
study or dropped out due to independent reasons. Thus, statistical analysis of longitudinal
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GFR needs to take into consideration the presence of mixed types of informative and inde-
pendent dropouts.

Many statistical models and inference approaches have been proposed to accommo-
date the nonignorable missingness into modeling longitudinal data (see reviews [3–8]).
According to the target of inference and the interpretation of model parameters, existing
methods can be classified into three categories: subject-specific inference, event-conditioning
inference, and marginal inference. First, a widely used modeling strategy for longitudinal
data with informative dropouts is to specify their joint distribution via shared or correlated
latent variables. Under such model assumptions, the longitudinal parameters have a con-
ditional, subject-specific interpretation (e.g., [9–11]). But the interpretation of longitudinal
parameters usually changes with the number and characteristics of latent variables assumed,
for example, a single random intercept versus a random intercept plus a random slope.

Second, event-conditioning approaches have also been widely used when the target
of inference is within subgroups of patients with particular dropout patterns or when the
dropout can potentially change the material characteristic of the longitudinal process (e.g.,
death). The inference is usually conducted conditioning on the dropout pattern or on the
occurrence of the dropout event. Thus, model parameters have an event-conditioning sub-
population-averaged interpretation, for example, pattern-mixture models for the group ex-
pectation of each dropout pattern [3, 12]; treatment effects among survivors [13]; gender
and age effects in mortal cohort [14]. Because the interpretation of such models is made
by conditioning on a future event, event-conditioning approaches may be natural in a ret-
rospective setting but may not be directly useful for the evaluation of treatment efficacy
prospectively.

Lastly, when the research objective is to study covariate effects at population level in a
dropout-free situation, marginal models address this concern directly. When data are without
missing or missing completely at random (using Rubin’s definition on missingness [15]), the
estimation of model parameters can be carried out by the generalized estimating equation
(GEE) approach assuming a “working” correlation matrix [16]. When dropouts are missing
at random, the inverse probability-weighted GEE methods are commonly used [17, 18]. In the
presence of informative dropouts, the class of selection models that were originally proposed
to adjust selection bias in econometrics [19] have been widely used for the marginal
analysis of longitudinal data [20–22]. Recently, the marginalized transition model [23] and
marginalized pattern-mixture model [24] were proposed for binary longitudinal data with
finite nonignorable nonresponse patterns. These marginalized approaches provide a power-
ful tool for studying the marginal association between longitudinal outcomes and covariates
while incorporating nonignorable nonresponses.

In this paper, we shall adopt the idea of shared latent variables to account for the
dependence between longitudinal responses and informative dropouts while focusing on
marginal inference for the longitudinal responses. Here dropouts can occur on a continuous
time scale. We develop an effective estimation procedure built on a series of asymptotically
unbiased estimating equations with light computational burden. The resulting estimators for
longitudinal parameters are shown to be consistent and asymptotically normal, with a sand-
wich-type variance-covariance matrix that can be estimated by the usual plug-in rule.

The remainder of the paper is organized as follows. In Section 2, we introduce the nota-
tion and the proposed semiparametric marginalized model. In Section 3, a simple estimating
equation-based procedure is first proposed for the situation with pure informative dropouts
and is extended to a more general situation where there is a mixture of random dropouts
and informative dropouts. Asymptotic properties of resulting estimators are also studied.



Journal of Probability and Statistics 3

Simulation studies and an application to a renal disease data set are given in Section 4. Some
remarks are discussed in Section 5. All the technical details are provided in the appendix.

2. Notation and Model Specification

2.1. Data Notation

Consider that a longitudinal study follows n subjects over time period [0, τ]. For the ith
subject i = 1, . . . , n, the complete-data consist of {Yij , Xij , tij , j = 1, . . . , ni}, where Yij is the value
of response at the jth observation time tij and Xij is a p×1 vector of covariates associated with
response Yij . Note that Xij includes baseline covariates that are separately denoted by Zi

and potential time-dependent covariates. Let Ti denote the informative dropout time and Ci

denote the random censoring time that is independent of (Yij , Ti) given the covariates. In
practice, we observe (T ∗

i , δi), where T ∗
i = min(Ti, Ci) and δi = I(Ti ≤ Ci) taking the value of

1 if the informative dropout time is observed and 0 otherwise. Throughout the paper, let I(·)
denote the indicator function. Due to the dropout, longitudinal responses and covariates can
only be observed at tij ≤ T ∗

i . Hence, the observed data are {Yij , Xij , tij , T
∗
i , δi, i = 1, . . . , n, j =

1, . . . , mi}, where mi =
∑ni

j=1 I(tij ≤ T ∗
i ).

2.2. Semiparametric Marginalized Latent Variable Model

We first introduce the composition of our proposed model and then discuss the model moti-
vation and interpretation. The first component is a marginal generalized linear model for
longitudinal responses Yij ’s:

g
{

E
(
Yij | Xij

)}
� g

{
μij
}
= β′MXij , (2.1)

where g(·) is a known link function and μij denotes the marginal expectation. The second
component is a linear transformation model for the informative dropout time Ti:

H(Ti) = −θ′Zi + ηi, (2.2)

where H(·) is an unspecified monotone transformation function and ηi is assumed to follow
a known continuous distribution F(·) that is independent of Zi. The last component is a con-
ditional mean model characterizing the dependence between longitudinal responses and in-
formative dropouts:

g
{

E
(
Yij | Xij , ηi

)}
� g

{
μij
(
ηi
)}

= Δij + α′bij
(
ηi
)
, (2.3)

where the latent random effects bi(ηi) = {b′i1(ηi), . . . , b′ini(ηi)} are investigator-specified func-
tions of ηi and covariates, and Δij is an implicit parameter whose value is determined by the
integral equation matching the conditional mean model (2.3) with the corresponding mar-
ginal model (2.1), that is,

g−1(β′MXij

)
= E

(
Yij | Xij

)
= E

{
E
(
Yij | Xij , ηi

)}
=
∫
g−1{Δij + α′bij

(
η
)}
dF
(
η
)
. (2.4)
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The marginal mean model (2.1) directly specifies the marginal relationship between
the responses and covariates, and βM is the p × 1 marginal regression parameters of main
interest. Next, the semiparametric linear transformation model (2.2) is chosen to provide
a flexible survival model for the informative dropout time while it still can be easily incor-
porated into model (2.3) for the dependence of the longitudinal responses and informative
dropouts. Model (2.2) includes the proportional hazards model [25], the proportional odds
model [26], and the Box-Cox transformation model as special cases and has been studied
intensively in survival analysis literature [27–29]. In addition, as we present in Section 3, the
explicit assumption on the error distribution in (2.2) can facilitate the “marginalization” pro-
cedure for parameter estimation.

The conditional mean model (2.3) is motivated by the construction of the marginalized
random-effects model [30, 31]. As a motivating example, we consider a continuous Gaussian
process following a simple random-effects model, Yij = β′Xij + b0i + b1itij + εij , where
(bi0, bi1) are the random intercept and slope, and error terms εij , j = 1, . . . , ni are assumed
to follow N(0,Σi) but independent of (bi0, bi1) or ηi. Note that εij ’s can still exhibit temporal
dependence in addition to what has been accounted by the random effects, that is, Σi with
AR(1) covariance structure. Furthermore, as in joint modeling approaches via latent vari-

ables, the joint distribution of (b0i, b1i, ηi) is assumed to be N
(
0,
(

Σb,C
C′,1

))
. It is easy to see that

the conditional mean has the expression as model (2.3),

E
(
Yij | Xij , ηi

)
= Δij + C1ηi + C2ηitij . (2.5)

We use model (2.3) primarily as a parsimonious model for the dependence structure between
the longitudinal responses and informative dropout times. However, note that although
model (2.3) takes a similar form as the marginalized random-effects model, it does not
intend to fully specify the joint distribution of the repeated measurements since model
(2.3) only specifies the conditional mean function and there is no conditional independence
assumed.

Note that Δij is the solution of (2.4), and thus its value implicitly depends on βM,
α, the formulation of bij(ηi) and the distribution of ηi. The specification of bij(ηi) reflects
investigator’s assumptions on the dependence structure among the longitudinal responses
and their association with the dropout times. It is well known that the dependence assump-
tions between longitudinal measurements and informative dropouts are usually unverifiable
from the observed data, but it intrinsically affects the inference about βM. Thus, a sensitivity
analysis under various assumptions is always warranted. It is clear that the sensitivity ana-
lysis can be easily conducted within the framework of model (2.3). For example, the analysis
may start with a large model in the specification for α′bij(ηi), for example, α1ηi + α2ηitij +
α′3ηiXij , and then examine the statistical significance of estimates for α’s to further simplify
the model. As shown in the next subsection, complex structure can be imposed on bij(ηi)
without introducing much extra computation. Lastly, we note that the marginal interpretation
of longitudinal parameters in model (2.1) is invariant under different specifications of the
conditional mean model (2.3).
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3. Estimation and Asymptotic Properties

3.1. Conditional Generalized Estimating Equation

First, assume that ηi is known. We construct a “conditional” generalized estimating equation
for B = (β′M, α

′)′. More specifically, the estimating function U(B) is specified as

n∑
i=1

A′
i·
(
ηi
)
Wi

[
Yi· − µi·

(
ηi
)]

=
n∑
i=1

A′
i·
(
ηi
)
Wi

[
Yi· − g−1{Δi· + bi·

(
ηi
)
α
}]
, (3.1)

where Yi· denotes the mi × 1 vector of observed responses of subject i; Δi· = (Δi1, . . . ,Δimi)
′;

bi·(ηi) = {bi1(ηi), . . . , bimi(ηi)}′; µi·(ηi) = {μi1(ηi), . . . , μimi(ηi)}′; Ai·(ηi) = [∂µi·(ηi)/∂β
′
M,

∂µi·(ηi)/∂α
′]; Wi is a mi ×mi weight matrix.

It is easy to see that U(B) has mean zero at the true parameter values B0 under model
(2.3). Note that the vector of marginal parameters βM is implicitly present in U(B) with Δi·
through the constrain equation (2.4). Thus, the Jacobian matrix Ai·(ηi) needs to be derived
using both the constrain (2.4) and models (2.1) and (2.3), which is different from the ordinary
GEE. More specifically, entries of the Jacobian matrix Ai·(ηi) are given by

∂μij
(
ηi
)

∂βM
= XijΥij

[
E
{
Υij
(
ηi
)}]−1Υij

(
ηi
)
,

∂μij
(
ηi
)

∂α
=
{
bij
(
ηi
) − E

{
bij
(
ηi
)
Υij
(
ηi
)}[

E
{
Υij
(
ηi
)}]−1

}
Υij
(
ηi
)
,

(3.2)

where Υij = 1/ġ{g−1(β′MXij)}, Υij(ηi) = 1/ġ[g−1{Δij + α′bij(ηi)}], and we use ȧ(x) to denote
the derivative of a function a(x) throughout this paper. In particular, we have Υij = μij(1−μij)
and Υij(ηi) = μij(ηi){1 − μij(ηi)} under the logit-link function for binary data; Υij = μij and
Υij(ηi) = μij(ηi) under the log-link function for count data. Thus, under these canonical link
functions, Υij = Var(Yij | Xij) and Υij(ηi) = Var(Yij | Xij , ηi) are the marginal variance and
conditional variance of the responses, respectively. In addition, these formulations also fa-
cilitate our selection of the weight matrix Wi. For example, for binary longitudinal data with
logit-link function, we can choose a weight matrix as W−1

i = diag{Var(Yij | Xij , ηi), j =
1, . . . , mi}.

It is clear that the implementation of the estimating function (3.1) requires the knowl-
edge of ηi, which is an unknown quantity and has to be estimated first. The estimation of the
semiparametric linear transformation model (2.2) has been studied by many authors [27–29].
In particular, Chen et al. [27] proposed a class of martingale-based estimating equations,

n∑
i=1

∫∞

0
Zi

[
dNi(t) − I

(
T ∗
i ≥ t)dΛ{θ′Zi +H(t)

}]
= 0,

n∑
i=1

[
dNi(t) − I

(
T ∗
i ≥ t)dΛ{θ′Zi +H(t)

}]
= 0, ∀t ≥ 0,

(3.3)
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where Ni(t) = I(T ∗
i ≤ t, δi = 1). Then an iterative algorithm can be carried out to solve θ and

H simultaneously. We estimate (θ,H) using the approach of Chen et al. [27] and shall denote
the estimates as Θ̂ � (θ̂, Ĥ).

3.2. Estimation Procedure for Pure Informative Dropouts

We first consider the situation of pure informative dropouts, that is, δi ≡ 1. Define η̂i = Ĥ(Ti)+
θ̂′Zi and replace ηi’s in (3.1) with their estimated counterparts η̂i’s. Denote the resulting
estimating function by U(B; Θ̂) and define the estimator of B as the solution to U(B; Θ̂) = 0.
The estimation of B entails an iteration between solving nonlinear equations for Δij and up-
dating a Newton-Ralphson equation for B. More specifically, given the current estimated
value of B(J) at the Jth step, we first estimate Δ(J)

ij from

g−1
{
β
(J)′

M Xij

}
=
∫
g−1
{
Δij + α(J)

′
bij
(
η
)}
dF
(
η
)
, (3.4)

and then update the parameters B by

B(J+1) = B(J) +

{
n∑
i=1

A(J)
i

′(
η̂i
)
W(J)

i A(J)
i

(
η̂i
)}−1{ n∑

i=1

A(J)
i

′(
η̂i
)
W(J)

i

[
Yi· − µ(J)

i·
(
η̂i
)]}

, (3.5)

where A(J)
i (η̂i), W

(J)
i , and µ(J)

i· (η̂i) are evaluated at the current parameter values B(J) and Δ(J)
ij .

The algorithm is iterated until it converges. Because ηi is assumed to follow an explicit para-
metric distribution F, it greatly simplifies the marginalization procedure (3.4). We propose to
use the Gaussian-quadrature approach [32] to numerically evaluate (3.4) and A(J)

i (η̂i). Since
the integrand of (3.4) is monotonic in Δ(J)

ij and so is the whole integral, it is easy to calculate a

large number of Δ(J)
ij , i = 1, . . . , n, j = 1, . . . , mi, in all iterative steps. Moreover, the numerical

integration is only upon the one-dimensional space of ηi and requires light computation
even with complex structure assumed on bij(ηi). The proposed iterative algorithm has been
implemented using “R” codes, which are available from the authors upon request.

3.3. Estimation Procedure for Mixed Types of Dropouts

We generalize the proposed estimation function (3.1) to accommodate the situation where
there are mixed informative dropouts and random censoring. More specifically, the modified
estimating equation is given by

U∗(B;Θ) =
n∑
i=1

A∗′
i·
(
η∗i , δi

)
W∗

i

[
Yi· − µ∗

i·
(
η∗i , δi

)]
= 0, (3.6)

where η∗i = H(T ∗
i ) + θ

′Zi; the jth component of µ∗
i·(η

∗
i , δi) is

μ∗
ij

(
η∗i , δi

)
= δig−1{Δij + α′bij

(
η∗i
)}

+ (1 − δi)E
[
g−1{Δij + α′bij

(
η
)} | η ≥ η∗i

]
, (3.7)
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and the Jacobian matrix A∗
i·(η

∗
i , δi) = [∂µ∗

i·(η
∗
i , δi)/∂β

′
M, ∂µ

∗
i·(η

∗
i , δi)/∂α

′]. When δi = 1, the ith
component of U∗(B;Θ) is the same as the one in (3.1). For δi = 0, the entries of A∗

i·(η
∗
i , 0) are

given by

∂μ∗
ij

(
η∗i , 0

)

∂βM
= XijΥij

[
E
{
Υij
(
ηi
)}]−1E

{
Υij
(
η
) | η ≥ η∗i

}
,

∂μ∗
ij

(
η∗i , 0

)

∂α
= E

{
bij
(
η
)
Υij
(
η
) | η ≥ η∗i

} − E
{
bij
(
ηi
)
Υij
(
ηi
)}[

E
{
Υij
(
ηi
)}]−1E

{
Υij
(
η
) | η ≥ η∗i

}
.

(3.8)

In addition, the entries of the weight matrix can be changed to Var{Yij | Xij , η
∗
i , δi} accord-

ingly. Conditional expectations of various functions given η ≥ η∗i are computed using the
Gaussian-quadrature method. Let η̂∗i = Ĥ(T ∗

i ) + θ̂
′Zi and replace η∗i ’s in (3.6) with their es-

timated counterparts η̂∗i ’s. Denote the resulting estimating function by U∗(B; Θ̂). Then the
estimator B̂ of B can be obtained from the equationU∗(B; Θ̂) = 0 using the same iterative algo-
rithm described in the previous subsection.

3.4. Asymptotic Properties of B̂

In this subsection, we establish the asymptotic properties of B̂. Towards this end, we need the
following assumptions.

(C1) The covariates Xij ’s are bounded with probability 1.

(C2) The true parameter values B0 and θ0 belong to the interior of a known compact set,
and the true transformation function H0 has a continuous and positive derivative.

(C3) Let Λ(·) denote the cumulative hazard function of ηi. Define λ(t) = Λ̇(t) and ψ(t) =
λ̇(t)/λ(t). Then λ(·) is positive, ψ(·) is continuous, and limt→−∞λ(t) = 0 =
limt→−∞ψ(t).

(C4) τ is finite and satisfies P(T > τ) > 0 and P(C = τ) > 0.

(C5) The matrix Ω ≡ E{A∗′
1·(η

∗
1, δ1)W1A∗

1·(η
∗
1, δ1)} is positive finite, and the number of

repeated measurements mi 
N.

The regularity conditions (C1)–(C4) are also used by Chen et al. [27] to derive the con-
sistency and asymptotically normality of the estimators Θ̂. Condition (C5) is needed to
establish the consistency and asymptotic normality of B̂, which is given in the following
theorem.

Theorem 3.1. Under conditions (C1)–(C5), with probability 1, |B̂ − B0| → 0. In addition, one has,
as n → ∞,

√
n
(
B̂ − B0

)
−→DN

(
0,Ω−1VΩ−1

)
. (3.9)

The definition of V and a sketch of the proof for Theorem 3.1 are given in the appendix.
The asymptotic variance-covariance matrix can be consistently estimated by its empirical
counterpart Ω̂−1V̂ Ω̂−1, which can be easily obtained using the usual plug-in rule.
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4. Numerical Studies

4.1. Simulations

We conducted a series of simulation studies to evaluate the finite-sample performance of our
proposed approach. Consider a binary longitudinal process with the marginal probability of
success as g−1(β0 + β1t + β2Z), where g was the logit-link function; observations occurred
at ti = {tij = j, j = 0, 1, . . . , 5}; Z was generated from a Bernoulli distribution with the
success probability of 0.5, and (β0, β1, β2) = (−1.5, 0.3, 1). The informative dropout time Ti
was generated from a linear transformation model H(Ti) = −θZi + ηi, where θ = −0.5. We
considered three distributions for ηi: the standard normal distribution (N.), the extreme
value distribution (E.), and the logistic distribution (L.), corresponding to the normal trans-
formation model, the Cox proportional hazard model, and the proportional odds model,
respectively, for the informative dropout time. We then generated the binary response Yij
independently from a Bernoulli distribution with the success probability of g−1{Δij+αbij(ηi)},
where Δij was calculated to match the marginal mean value as in (2.4) and α indicated the
level of dependence. We considered several combinations to specify the dependence between
longitudinal outcomes and informative dropout times. More specifically, when α = 0, there
was no informative dropouts; when α = 0.5 (or 0.25) and bij(ηi) = ηi, the dependence
existed and was linear in the latent variable ηi; when α = 0.25 (or 0.5) and bij(ηi) = ηitij ,
the dependence was present through an interaction between the latent variable and the
observation time.

For each scenario, we considered samples of size 100 and 200 and conducted 500 runs
of simulations. The Gaussian-quadrature approximation was calculated using 50 grid points.
We first considered the situation of pure informative dropouts and generated the dropout
time Ti from the transformation model with H0(t) = 2{arctan(t) + π/2}. Under the assump-
tions of ηi following the normal, the extreme value, and the logistic distributions, the average
numbers of repeated measurements were 3.91, 3.37, and 3.94, respectively. The estimation
results on β1 and α are summarized in Table 1. The proposed estimators are unbiased under
all simulated scenarios, and the Wald-type 95% confidence intervals all have reasonable
empirical coverage probabilities. The performance of the proposed method is consistent with
different distributional assumptions of ηi and different specifications of the dependence struc-
ture, and the results improve as the sample size increases.

Next, we consider the situation where there are mixed informative dropouts and ran-
dom censoring. For simplicity, let Ci be an administrative censoring at the end of the study,
that is, τ = 6. The informative dropout time Ti was generated from the transformation model
with H(t) = log(t) − 1 and ηi followed the standard normal distribution. This yielded the
proportion of informative dropouts of 69.6% and the average number of repeated meas-
urements about 4. Other settings were kept the same as in the previous simulations. The
simulation results are presented in Table 2. Again, the proposed approach gives unbiased
parameter estimates and reasonable coverage probabilities under all the scenarios. For com-
parison, we also implemented the ordinary GEE method [16]. When the informative dropout
is absent, that is, α = 0, the GEE method yields consistent parameter estimates of β1 as ex-
pected. But when there is informative dropout (α/= 0), the performance of the GEE method
deteriorates quickly as the magnitude of the dependence between the longitudinal data and
informative dropout increases.

Last, we conducted sensitivity analysis for the proposed approach and our simulations
consisted of two parts. First, as discussed in Section 2, to better characterize the dependence
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Table 1: Simulation results for pure informative dropouts.

F α bij(ηi)
β1 α

N Bias SSE SEE CP Bias SSE SEE CP

N.

0 ηi
100 0.001 0.084 0.082 0.948 0.004 0.130 0.127 0.954
200 0.006 0.057 0.058 0.952 −0.002 0.090 0.091 0.942

0.5 ηi
100 0.008 0.083 0.082 0.952 0.008 0.148 0.142 0.936
200 0.005 0.056 0.058 0.954 0.001 0.102 0.101 0.944

0.25 ηitij
100 0.004 0.102 0.101 0.940 0.006 0.083 0.081 0.938
200 0.009 0.071 0.071 0.948 −0.001 0.060 0.058 0.940

E.

0 ηi
100 0.007 0.107 0.097 0.920 0.001 0.150 0.140 0.942
200 0.002 0.069 0.069 0.950 −0.003 0.010 0.097 0.958

0.5 ηi
100 0.010 0.097 0.097 0.948 0.025 0.161 0.161 0.962
200 0.009 0.071 0.069 0.932 0.002 0.111 0.113 0.950

0.25 ηitij
100 0.026 0.138 0.135 0.936 0.001 0.124 0.114 0.926
200 0.009 0.089 0.095 0.954 0.001 0.079 0.082 0.952

L.

0 ηi
100 0.004 0.079 0.077 0.932 0.001 0.076 0.077 0.950
200 0.002 0.057 0.055 0.952 −0.001 0.058 0.054 0.938

0.5 ηi
100 0.009 0.079 0.076 0.944 0.007 0.114 0.105 0.928
200 0.002 0.053 0.054 0.964 0.006 0.074 0.075 0.956

0.25 ηitij
100 0.003 0.096 0.096 0.954 0.008 0.069 0.067 0.942
200 0.002 0.067 0.068 0.964 0.004 0.047 0.047 0.958

In Tables 1–3: F: error distribution of the semiparametric transformation model; N: sample size; SSE: sample standard
deviations of estimates; SEE: mean of estimates standard errors; CP: 95% coverage probability of Wald-type confidence
interval.

Table 2: Simulation results for mixed types of dropouts.

α bij(ηi) N
Proposed β1 Proposed α GEE β1

Bias SSE CP Bias SSE CP Bias SSE CP

0 ηi
100 0.003 0.075 0.958 −0.007 0.158 0.956 0.002 0.068 0.946
200 0.005 0.056 0.954 −0.003 0.114 0.944 0.005 0.049 0.956

0.25 ηi
100 0.006 0.073 0.948 0.009 0.156 0.964 0.061 0.068 0.878
200 0.004 0.055 0.950 −0.003 0.116 0.936 0.057 0.050 0.768

0.50 ηi
100 0.008 0.076 0.948 0.010 0.174 0.952 0.116 0.070 0.660
200 0.006 0.051 0.960 −0.008 0.121 0.956 0.113 0.049 0.380

0.25 ηitij
100 0.005 0.106 0.948 0.005 0.106 0.960 0.233 0.074 0.110
200 0.009 0.078 0.936 −0.007 0.077 0.940 0.233 0.054 0.000

0.50 ηitij
100 0.007 0.097 0.954 0.010 0.141 0.950 0.397 0.081 0.000
200 0.008 0.071 0.940 −0.008 0.104 0.936 0.395 0.059 0.000

structure between longitudinal responses and informative dropouts, we would suggest to
start with a large model in the specification for α′bij(ηi) and then examine the statistical
significance of estimates for α’s to further simplify the model. We simulated data from a
simple model with either α′bij(ηi) = α1ηi or α′bij(ηi) = α2ηitij , and then applied the proposed
approach by assuming a bigger model (2.3) as Δij + α1ηi + α2ηitij . The simulation results are
summarized in the top panel in Table 3. The proposed method can reasonably well estimate
all the parameters, and in particular, could correctly indicate the unnecessary zero term.
Second, we simulated data from Δij +α1ηi+α2ηitij but fitted misspecified models that omitted
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Table 3: Sensitivity analysis for misspecified models under mixed types of dropouts.

True Fitted Proposed β1 Proposed α1 Proposed α2

N Bias CP Bias CP Bias CP

0.25ηi α1ηi + α2ηitij
100 0.009 0.946 0.014 0.956 0.002 0.950
200 0.009 0.964 −0.002 0.948 0.002 0.968

0.25ηitij α1ηi + α2ηitij
100 0.005 0.946 −0.004 0.954 0.007 0.956
200 0.009 0.936 0.001 0.956 −0.007 0.952

0.5ηi + 0.1ηitij α1ηi
100 0.071 0.860 0.119 0.918
200 0.069 0.788 0.103 0.896

0.2ηi + 0.25ηitij α2ηitij
100 −0.017 0.924 0.086 0.850
200 −0.017 0.902 0.078 0.692

some terms. The results are summarized in the lower panel of Table 3. It is evident that
misspecified models lead to biased estimates for both longitudinal regression coefficients and
dependence parameters.

4.2. Application to Renal Disease Data from MDRD Study

Here we considered a subgroup of 129 patients with low-protein diet in MDRD study B,
among whom, 62 patients were randomized to the group of normal-blood-pressure control
and 67 patients were randomized to the group of low-blood-pressure control. Besides the ran-
domized intervention, other covariates included time in study (time), baseline disease pro-
gression status (Prog), baseline blood pressure (Bp), and log-transformed baseline urine
protein level (log.Pt). There were 52 (40.3%) patients left the study prematurely for kidney
transplant or dialysis and were treated as informative dropouts.

We applied the proposed approach to estimate the marginal effects of covariates on
GFR values. To account for the possible informative dropouts, we assumed that the depen-
dence term α′bij(ηi) had a form of α1ηi+α2ηitij , analogous to the joint modeling approach with
latent random intercept and random slope used in Schluchter et al. [33]. We considered the
situations of ηi following the standard normal, the extreme value, or the standard logistic
distributions. Because the outcome was a continuous variable, we used the identity link
function.

Our results are presented in Table 4 and compared with the results from the ordinary
GEE [16] with an independent working correlation matrix. More specifically, the slope
estimates from the proposed approach indicate a much faster decreasing rate of GFR (e.g.,
time Est = −0.27, SE = 0.03, under the normality assumption for ηi) than the result from the
ordinary GEE method (time Est = −0.14, SE = 0.03). A possible explanation is that those
patients remaining under observation usually have better kidney functions and thus higher
GFR values. The ordinary GEE approach that treats the observed patients as random repre-
sentatives of the population tends to underestimate the degressive trend of GFR.

The estimates for the intervention on blood pressure control show positive effect of the
low-blood-pressure control on the longitudinal GFR development. Although the results are
not statistically significant, the estimates from the proposed method (e.g., Intervention Est
= 0.82, SE = 1.07, under the normality assumption for ηi) are about twice large of the values
from the ordinary GEE method (Intervention Est = 0.35, SE = 0.90). Moreover, for the pro-
posed approach, the results under different distributional assumptions for ηi are quite similar.
The estimates of the dependency parameters (α1, α2) are positive and statistically significant.
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Table 4: Estimates of regression coefficients for the MDRD study.

Proposed GEE
Variable Normal EV Logistic

Est SE Est SE Est SE Est SE
Intercept 18.54 0.96 18.57 0.91 18.58 1.11 18.57 0.78
Time −0.27 0.03 −0.29 0.04 −0.28 0.03 −0.14 0.03
Intervention 0.82 1.06 0.74 1.01 0.71 1.17 0.35 0.90
Prog −0.14 1.07 −0.08 1.02 −0.14 1.19 −0.14 0.91
Bp −0.15 1.38 −0.20 1.34 −0.07 1.48 −0.36 0.49
log.Pt −1.09 0.39 −1.09 0.37 −1.12 0.42 −0.61 0.38
ηi 1.91 0.50 1.38 0.38 1.11 0.28
ηitij 0.14 0.04 0.14 0.04 0.08 0.03
Intervention: blood pressure control (1: low and 0: normal); Prog: baseline disease progression status (1: yes and 0: no);
Bp: baseline blood pressure; log.Pt: baseline log-transformed urine protein level.

This indicates that higher GFR values are positively associated with longer dropout times in
the study. In addition, our proposed approach shows that the baseline urine protein level
is significantly associated with the longitudinal GFR development, but the ordinary GEE
method does not show such significance. The results obtained using our proposed method
are also consistent with those reported in Schluchter et al. [33].

5. Discussion

In this paper, we propose a semiparametric marginalized model for marginal inference of the
relationship between longitudinal responses and covariates in the presence of informative
dropouts. The regression parameters represent the covariate effects on the population
level. The proposed estimators are expected to be insensitive to misspecification of the
latent variable distribution [31], which is desirable pertaining to the sensitivity analysis
on unverifiable assumptions for the informative dropouts. In practice, the choice between
marginal models and other types of joint modeling approaches should be determined by
study objective.

To estimate the regression parameters in the proposed marginalized model, we
proposed a class of simple conditional generalized estimating equations and demonstrated its
computational convenience. In general, a likelihood-based approach can be used to achieve
more efficient inference and is also of great interest. For example, a marginalized random
effects model [30, 31] can be used for the longitudinal process and a frailty model [34] can
be used for the dropout time. Furthermore, latent variables (bij , ηi) can be modeled by a
copula distribution or non-Gaussian distributions [35]. The likelihood-based methods enjoy
the high efficiency and facilitate the implementation of classical model selection procedures,
such as AIC or BIC; however, intensive computations are often involved when the dimension
of random effects is high.

Appendix

A. Proof of Theorem 3.1

Under the conditions (C1)–(C4), Chen et al. [27] established the consistency of θ̂ and the
uniform consistency of a transformed Ĥ(·), that is, supt∈[0,τ]| exp{Ĥ(t)}−exp{H0(t)}| = op(1).
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We first derive the consistency of the proposed estimator B̂, which is the solution of the equa-
tion U∗(B; Θ̂) = 0. Note that −(1/n)(∂U∗(B; Θ̂)/∂B) = (1/n)

∑
nA

∗′
i· (η̂

∗
i , δi)WiA∗

i·(η̂
∗
i , δi) is a

positive definite matrix, and by the law of large numbers and the consistency of θ̂ and Ĥ, it
converges uniformly to a deterministic positive definite matrix Ω(B) over a compact set of
B. In addition, we have that (1/n)U∗(B; Θ̂) converges uniformly to a deterministic function
u∗(B;Θ0) satisfying u∗(B0;Θ0) = 0 and −(∂u∗(B;Θ0)/∂B)|B=B0

= Ω(B0) = Ω. Thus, the esti-
mating equation U∗(B; Θ̂) = 0 exists a unique solution B̂. Since B0 is the unique solution of
u∗(B0;Θ0) = 0, the consistency of B̂ easily follows.

To prove the asymptotic normality, by the Taylor expansion, we have

√
n
(
B̂ − B0

)
=

⎧
⎨
⎩− 1

n

∂U∗
(
B∗; Θ̂

)

∂B

⎫
⎬
⎭

−1

1√
n
U∗
(
B0; Θ̂

)
, (A.1)

where B∗ lies between B̂ and B0. Since B̂ is consistent and −(1/n)(∂U∗(B; Θ̂)/∂B) converges
uniformly to Ω(B), we have that −(1/n)(∂U∗(B∗; Θ̂)/∂B) converges to Ω. Furthermore, the
Taylor expansion of U∗(B0; Θ̂) around Θ0 gives

1√
n
U∗
(
B0; Θ̂
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(
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i
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⎤
⎦ + op(1),

(A.2)

whereOi = ∂Ĥ(T ∗
i ; θ)/∂θ|θ=θ0

and its asymptotic representation can be found in the appendix
of Chen et al. [27]. The asymptotic representations of θ̂ and Ĥ have also been derived by Chen
et al. [27],

√
n
(
θ̂ − θ

)
= Σ−1

∗
1√
n

n∑
i=1

∫ τ
0

{
Zi − μb(t)

}
dMi(t) + op(1),

Λ∗
{
Ĥ(t; θ0)

}
−Λ∗{H0(t)} = n−1

n∑
i=1

∫ t
0

λ∗{H0(s)}
B2(s)

dMi(s) + op
(
n−1/2

)
,

(A.3)

where Ni(t) = δiI(T ∗
i ≤ t) and ξi(t) = I(T ∗

i ≥ t) are the counting and at-risk processes,
respectively,Mi(t) =Ni(t)−

∫ t
0 ξi(s)dΛ{θ′0Zi+H0(s)} is the mean-zero martingale process, and
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the definitions of Σ∗ and the functions Λ∗(·), λ∗(·), B2(·), and μb(·) are given in the appendix
of Chen et al. [27].

Plugging these terms back to the expansion of (1/
√
n)U∗(B0; Θ̂) specified in (A.2),

some rearrangement yields that it is equal to
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where
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The definition of B(t, s) can be found in Chen et al. [27].
Hence, (1/

√
n)U∗(B0; Θ̂) has been written as a standardized summation of indepen-

dent terms with mean zero. By the central limit theorem, it is asymptotically equivalent
to a multivariate Gaussian variable with zero mean and covariance matrix V , which is the
limit of

1
n

n∑
i=1

(
A∗′
i·
(
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)
Wi

{
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)} −
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0
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)⊗2

. (A.6)

From (A.1), it is easy to see that the estimator B̂ is asymptotically normal with mean zero and
the variance-covariance matrix Ω−1VΩ−1, which can be consistently estimated by its empirical
counterpart Ω̂−1V̂ Ω̂−1 using the usual plug-in rule.
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