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In this issue which continues the series of these specials
devoted to fuzzy functions, relations, and fuzzy transforms,
these concepts must be here intended in the widest sense, as
noted in the papers whose contents can be resumed in the
following way.

In a paper by F. Di Martino and S. Sessa, two algorithms
for constructing a GOP sequence of colour frames (differ-
entiated in intra, predictive, and bidirectional in the space
RGB) are proposed. A classification of these frames is made
by means of a similarity measure defined by the Lukasiewicz
t-norm. Furthermore, they are divided in subframes called
blocks and are compressed via direct fuzzy transforms.These
blocks are decompressed with the inverse fuzzy transforms;
successively they are reassembled for giving the reconstructed
frames whose PSNR (calculated as mean in the three bands
R, G, and B) is fully comparable with the PSNR obtained by
using the traditional fuzzy transforms andMPEG-4methods.

In the paper by L.-C. Chang et al., the authors propose
a fuzzy inference system for management of surface and
subsurface resources water. A detailed discussion of all fuzzy
rules and related parameters is presented as well.

In another paper by F. Di Martino and S. Sessa, the
authors use the fuzzy transforms for matching problem with
many grey images extracted from a well-known dataset.
The authors prove that their results are analogous to those
obtained with the GEFS and SEFS based methods contained
in their previous work for images of square dimensions, but
the presented method is extended to images of arbitrary
dimensions. Experiments are performed also over colour
images.

In the paper by B. D. Pant et al., the authors prove a
common fixed point theorem for two pairs of compatible
and subsequentially continuous (or, in alternative, subcom-
patible and reciprocally continuous) maps under a suitable
contractive condition in a fuzzy metric space. Two numerical
examples support their results.

In the paper by P. Vlašánek, the author shows that the
choice of the basic functions in the reconstruction of images
based on fuzzy transforms is crucial. Indeed, he analyzes how
to improve this choice by finding the best basic functions also
for damaged testing images and by proposing an algorithm
for reconstruction.

We hope that these topics are stimulating for wide
audience.

Salvatore Sessa
Ferdinando Di Martino

Irina G. Perfilieva



Hindawi Publishing Corporation
Advances in Fuzzy Systems
Volume 2013, Article ID 826596, 9 pages
http://dx.doi.org/10.1155/2013/826596

Research Article
A Coupled Fixed Point Theorem in Fuzzy Metric Space
Satisfying 𝜙-Contractive Condition

B. D. Pant,1 Sunny Chauhan,2 Jelena VujakoviT,3

Muhammad Alamgir Khan,4 and Calogero Vetro5

1 Government Degree College, Champawat, Uttarakhand 262523, India
2 R. H. Government Postgraduate College, Kashipur (Udham Singh Nagar), Uttarakhand 244713, India
3 Faculty of Sciences and Mathematics, Lole Ribara 29, 38 200 Kosovska Mitrovica, Serbia
4Department of Natural Resources Engineering and Management, University of Kurdistan, Erbil 22570, Iraq
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The intent of this paper is to prove a coupled fixed point theorem for two pairs of compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous) mappings, satisfying 𝜙-contractive conditions in a fuzzy metric space. We
also furnish some illustrative examples to support our results.

1. Introduction

The evolution of fuzzy mathematics commenced with the
introduction of the notion of fuzzy sets by Zadeh [1],
where the concept of uncertainty was introduced in the
theory of sets, in a nonprobabilistic manner. Fuzzy set
theory has applications in applied sciences such as mathe-
matical programming, model theory, engineering sciences,
image processing, and control theory. In 1975, Kramosil and
Michalek [2] introduced the concept of fuzzy metric space as
a generalization of the statistical (probabilistic) metric space.
Afterwards, Grabiec [3] defined the completeness of the fuzzy
metric space and extended the Banach contraction principle
to fuzzy metric spaces. Since then, many authors contributed
to the development of this theory, also in relation to fixed
point theory (e.g., [4–9]).

Mishra et al. [10] extended the notion of compatible map-
pings (introduced by Jungck [11] in metric spaces) to fuzzy
metric spaces and proved common fixed point theorems
in presence of continuity of at least one of the mappings,
completeness of the underlying space, and containment of
the ranges amongst involved mappings. Further, Singh and
Jain [12] weakened the notion of compatibility by using the

notion ofweakly compatible,mappings in fuzzymetric spaces
and showed that every pair of compatible mappings is weakly
compatible but converse is not true. Inspired by Bouhadjera
and Godet-Thobie [13, 14], Gopal and Imdad [15] extended
the notions of subcompatibility and subsequential continuity
to fuzzy metric spaces and proved fixed point theorems using
these notions together due to Imdad et al. [16]. In recent past,
several authors proved various fixed point theorems employ-
ing more general contractive conditions (e.g., [17–26]).

On the other hand, Bhaskar and Lakshmikantham [27]
and Lakshmikantham and Ćirić [28] gave some coupled fixed
point theorems in partially ordered metric spaces (see also
[29–31]). In 2010, Sedghi et al. [32] proved common coupled
fixed point theorems in fuzzy metric spaces for commuting
mappings. Motivated by the results of [33], Hu [34] proved
a coupled fixed point theorem for compatible mappings
satisfying 𝜙-contractive conditions in fuzzy metric spaces
with continuous t-norm of H-type and generalized the result
of Sedghi et al. [32]. In an interesting note, Zhu and Xiao [35]
showed that the results contained in Sedghi et al. [32] are not
true in their present form.

Inspired by the work of Zhu and Xiao [35], we prove
coupled common fixed point theorems for two pairs of
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mappings satisfying a general contractive condition in fuzzy
metric spaces, by using the notions of compatibility and
subsequential continuity (alternately subcompatibility and
reciprocal continuity). Our results improve many known
common coupled fixed point theorems available in the
existing literature.We support our resultswith two illustrative
examples.

2. Preliminaries

In this section, we collect some basic notions and results. In
the sequel R+ will denote the set of all positive real numbers
while N will denote the set of natural numbers.

Definition 1 (see [1]). Let𝑋 be any set. A fuzzy set 𝐴 in𝑋 is a
function with domain𝑋 and values in [0, 1].

Definition 2 (see [36]). A binary operation ∗ : [0, 1] ×
[0, 1] → [0, 1] is a continuous 𝑡-norm if ∗ satisfies the
following conditions:

(a) ∗ is commutative and associative;
(b) ∗ is continuous;
(c) 𝑎 ∗ 1 = 𝑎 for all 𝑎 ∈ [0, 1];
(d) 𝑎∗𝑏 ≤ 𝑐∗𝑑whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 for all 𝑎, 𝑏, 𝑐, 𝑑 ∈

[0, 1].

Definition 3 (see [37]). One says that a 𝑡-norm ∗ is of H-type
if the family {∗𝑛} of its iterates is equicontinuous at 𝑥 = 1;
that is, for any 𝜆 ∈ (0, 1), there exists 𝛿(𝜆) ∈ (0, 1) such that
𝑥 > 1 − 𝛿 implies ∗𝑛(𝑥) > 1 − 𝜆, for all 𝑛 ∈ N.

The 𝑡-norm ∗
𝑚
= min{𝑎, 𝑏} for all 𝑎, 𝑏 ∈ [0, 1] is an

example of 𝑡-norm of H-type, but there are some other 𝑡-
norms ∗ of H-type (see [37]).

Definition 4 (see [2]). A 3-tuple (𝑋,𝑀, ∗) is said to be a
fuzzy metric space if 𝑋 is an arbitrary nonempty set, ∗ is a
continuous 𝑡-norm, and 𝑀 is a fuzzy set in 𝑋2 × (0, +∞)
satisfying the following conditions, for each 𝑥, 𝑦, 𝑧 ∈ 𝑋 and
𝑡, 𝑠 > 0:

(a) 𝑀(𝑥, 𝑦, 𝑡) > 0;
(b) 𝑀(𝑥, 𝑦, 𝑡) = 1 for all 𝑡 > 0 if and only if 𝑥 = 𝑦;
(c) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡);
(d) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠);
(e) 𝑀(𝑥, 𝑦, ⋅) : (0,∞) → (0, 1] is continuous.

Example 5 (see [7]). Let (𝑋, 𝑑) be a metric space. Define the
𝑡-norm 𝑎 ∗ 𝑏 = 𝑎𝑏 for all 𝑎, 𝑏 ∈ [0, 1], and, for all 𝑥, 𝑦 ∈ 𝑋
and 𝑡 > 0,

𝑀(𝑥, 𝑦, 𝑡) =
𝑡

𝑡 + 𝑑 (𝑥, 𝑦)
. (1)

Then (𝑋,𝑀, ∗) is a fuzzy metric space, and the fuzzy metric
𝑀 induced by the metric 𝑑 is often referred, as the standard
fuzzy metric.

Example 6 (see [32]). Let (𝑋, 𝑑) be a metric space and 𝜓 be
an increasing and continuous function from R+ into (0, 1)
such that lim

𝑠→∞
𝜓(𝑠) = 1. Four typical examples of these

functions are 𝜓(𝑠) = 𝑠/(𝑠 + 1), 𝜓(𝑠) = sin(𝜋𝑠/(2𝑠 + 1)),
𝜓(𝑠) = 1 − 𝑒−𝑠, and 𝜓(𝑠) = 𝑒−1/𝑠. Let 𝑎 ∗ 𝑏 = 𝑎𝑏 for all
𝑎, 𝑏 ∈ [0, 1], and, for each 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0, define

𝑀(𝑥, 𝑦, 𝑡) = [𝜓 (𝑡)]
𝑑(𝑥,𝑦)

. (2)

It is easy to see that (𝑋,𝑀, ∗) is a fuzzy metric space.

Definition 7 (see [34]). DefineΦ = {𝜙 : R+ → R+} such that
𝜙 ∈ Φ satisfies the following conditions:

(𝜙-1) 𝜙 is nondecreasing;
(𝜙-2) 𝜙 is upper semicontinuous from the right;
(𝜙-3) ∑∞

𝑛=0
𝜙𝑛(𝑠) < +∞ for all 𝑠 > 0, where 𝜙𝑛+1(𝑠) =

𝜙(𝜙𝑛(𝑠)), 𝑛 ∈ N.

Clearly if 𝜙 ∈ Φ, then 𝜙(𝑠) < 𝑠 for all 𝑠 > 0.

Definition 8 (see [27]). An element (𝑥, 𝑦) ∈ 𝑋 × 𝑋 is called

(a) a coupled fixed point of the mapping 𝑓 : 𝑋×𝑋 → 𝑋
if

𝑓 (𝑥, 𝑦) = 𝑥, 𝑓 (𝑦, 𝑥) = 𝑦; (3)

(b) a coupled coincidence point of the mappings 𝑓 : 𝑋 ×
𝑋 → 𝑋 and 𝑔 : 𝑋 → 𝑋 if

𝑓 (𝑥, 𝑦) = 𝑔 (𝑥) , 𝑓 (𝑦, 𝑥) = 𝑔 (𝑦) ; (4)

(c) a common coupled fixed point of the mappings 𝑓 :
𝑋 × 𝑋 → 𝑋 and 𝑔 : 𝑋 → 𝑋 if

𝑥 = 𝑓 (𝑥, 𝑦) = 𝑔 (𝑥) ,

𝑦 = 𝑓 (𝑦, 𝑥) = 𝑔 (𝑦) .
(5)

Definition 9 (see [27]). An element 𝑥 ∈ 𝑋 is called a common
fixed point of the mappings 𝑓 : 𝑋×𝑋 → 𝑋 and 𝑔 : 𝑋 → 𝑋
if

𝑥 = 𝑔 (𝑥) = 𝑓 (𝑥, 𝑥) . (6)

Definition 10 (see [34]). The mappings 𝑓 : 𝑋 × 𝑋 → 𝑋 and
𝑔 : 𝑋 → 𝑋 are called compatible if

lim
𝑛→∞

𝑀(𝑔𝑓 (𝑥
𝑛
, 𝑦
𝑛
) , 𝑓 (𝑔𝑥

𝑛
, 𝑔𝑦
𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝑔𝑓 (𝑦
𝑛
, 𝑥
𝑛
) , 𝑓 (𝑔𝑦

𝑛
, 𝑔𝑥
𝑛
) , 𝑡) = 1,

(7)

for all 𝑡 > 0, whenever {𝑥
𝑛
} and {𝑦

𝑛
} are sequences in𝑋 such

that

lim
𝑛→∞

𝑓 (𝑥
𝑛
, 𝑦
𝑛
) = lim
𝑛→∞

𝑔𝑥
𝑛
= 𝛼,

lim
𝑛→∞

𝑓 (𝑦
𝑛
, 𝑥
𝑛
) = lim
𝑛→∞

𝑔𝑦
𝑛
= 𝛽,

(8)

for some 𝛼, 𝛽 ∈ 𝑋.
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Now we introduce the following notions.

Definition 11. Themappings𝑓 : 𝑋×𝑋 → 𝑋 and 𝑔 : 𝑋 → 𝑋
are said to be reciprocally continuous if, for sequences {𝑥

𝑛
},

{𝑦
𝑛
} in𝑋, one has

lim
𝑛→∞

𝑓 (𝑔𝑥
𝑛
, 𝑔𝑦
𝑛
) = 𝑓 (𝛼, 𝛽) ,

lim
𝑛→∞

𝑔𝑓 (𝑥
𝑛
, 𝑦
𝑛
) = 𝑔𝛼,

lim
𝑛→∞

𝑓 (𝑔𝑦
𝑛
, 𝑔𝑥
𝑛
) = 𝑓 (𝛽, 𝛼) ,

lim
𝑛→∞

𝑔𝑓 (𝑦
𝑛
, 𝑥
𝑛
) = 𝑔𝛽,

(9)

whenever

lim
𝑛→∞

𝑓 (𝑥
𝑛
, 𝑦
𝑛
) = lim
𝑛→∞

𝑔𝑥
𝑛
= 𝛼,

lim
𝑛→∞

𝑓 (𝑦
𝑛
, 𝑥
𝑛
) = lim
𝑛→∞

𝑔𝑦
𝑛
= 𝛽,

(10)

for some 𝛼, 𝛽 ∈ 𝑋.

If two self-mappings are continuous, then they are obvi-
ously reciprocally continuous, but the converse is not true.
Moreover, in the setting of common fixed point theorems
for compatible pairs of self mappings satisfying contractive
conditions, continuity of one of the mappings implies their
reciprocal continuity but not conversely (see [38]).

Definition 12. Themappings𝑓 : 𝑋×𝑋 → 𝑋 and𝑔 : 𝑋 → 𝑋
are said to be subsequentially continuous if and only if there
exist sequences {𝑥

𝑛
}, {𝑦
𝑛
} in𝑋 such that

lim
𝑛→∞

𝑓 (𝑥
𝑛
, 𝑦
𝑛
) = lim
𝑛→∞

𝑔𝑥
𝑛
= 𝛼,

lim
𝑛→∞

𝑓 (𝑦
𝑛
, 𝑥
𝑛
) = lim
𝑛→∞

𝑔𝑦
𝑛
= 𝛽,

(11)

for some 𝛼, 𝛽 ∈ 𝑋, and

lim
𝑛→∞

𝑓 (𝑔𝑥
𝑛
, 𝑔𝑦
𝑛
) = 𝑓 (𝛼, 𝛽) ,

lim
𝑛→∞

𝑔𝑓 (𝑥
𝑛
, 𝑦
𝑛
) = 𝑔𝛼,

lim
𝑛→∞

𝑓 (𝑔𝑦
𝑛
, 𝑔𝑥
𝑛
) = 𝑓 (𝛽, 𝛼) ,

lim
𝑛→∞

𝑔𝑓 (𝑦
𝑛
, 𝑥
𝑛
) = 𝑔𝛽.

(12)

One can easily check that if two self mappings 𝑓 and
𝑔 are both continuous, hence also reciprocally continuous
mappings but 𝑓 and 𝑔 are not sub-sequentially continuous
(see [38, Example 1]).

Definition 13. The mappings 𝑓 : 𝑋 × 𝑋 → 𝑋 and 𝑔 :
𝑋 → 𝑋 are said to be subcompatible if and only if there
exist sequences {𝑥

𝑛
}, {𝑦
𝑛
} in𝑋 such that

lim
𝑛→∞

𝑓 (𝑥
𝑛
, 𝑦
𝑛
) = lim
𝑛→∞

𝑔𝑥
𝑛
= 𝛼,

lim
𝑛→∞

𝑓 (𝑦
𝑛
, 𝑥
𝑛
) = lim
𝑛→∞

𝑔𝑦
𝑛
= 𝛽,

(13)

for some 𝛼, 𝛽 ∈ 𝑋, and

lim
𝑛→∞

𝑀(𝑓 (𝑔𝑥
𝑛
, 𝑔𝑦
𝑛
) , 𝑔𝑓 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝑓 (𝑔𝑦
𝑛
, 𝑔𝑥
𝑛
) , 𝑔𝑓 (𝑦

𝑛
, 𝑥
𝑛
) , 𝑡) = 1,

(14)

for all 𝑡 > 0.

3. Results

In this section, we state and prove our fixed point results.

Theorem 14. Let (𝑋,𝑀, ∗) be a fuzzy metric space, where ∗
is a continuous t-norm of H-type such that 𝑀(𝑥, 𝑦, 𝑡) → 1
as 𝑡 → ∞, for all 𝑥, 𝑦 ∈ 𝑋. Let 𝐴, 𝐵 : 𝑋 × 𝑋 → 𝑋 and
𝑆, 𝑇 : 𝑋 → 𝑋 be four mappings such that

(a) the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are compatible and subse-
quentially continuous;

(b) there exists 𝜙 ∈ Φ such that

𝑀(𝐴 (𝑥, 𝑦) , 𝐵 (𝑢, V) , 𝜙 (𝑡))

≥ 𝑀 (𝑆𝑥, 𝑇𝑢, 𝑡) ∗ 𝑀(𝑆𝑦, 𝑇V, 𝑡) ,
(15)

for all 𝑥, 𝑦, 𝑢, V ∈ 𝑋 and 𝑡 > 0.

Then there exists a unique point 𝛼 in 𝑋 such that 𝛼 = 𝑆𝛼 =
𝑇𝛼 = 𝐴(𝛼, 𝛼) = 𝐵(𝛼, 𝛼).

Proof. Since the mappings 𝐴 and 𝑆 are subsequentially
continuous and compatible, there exist sequences {𝑥

𝑛
}, {𝑦
𝑛
}

in𝑋 such that

lim
𝑛→∞

𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = lim
𝑛→∞

𝑆𝑥
𝑛
= 𝛼,

lim
𝑛→∞

𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = lim
𝑛→∞

𝑆𝑦
𝑛
= 𝛽,

(16)

for all 𝛼, 𝛽 ∈ 𝑋, and

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) , 𝑆𝐴 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) , 𝑆𝐴 (𝑦

𝑛
, 𝑥
𝑛
) , 𝑡) = 1,

(17)

that is 𝐴(𝛼, 𝛽) = 𝑆𝛼 and 𝐴(𝛽, 𝛼) = 𝑆𝛽. Similarly, with respect
to the pair (𝐵, 𝑇), there exist sequences {𝑥󸀠

𝑛
}, {𝑦󸀠
𝑛
} in 𝑋 such

that

lim
𝑛→∞

𝐵 (𝑥
󸀠

𝑛
, 𝑦
󸀠

𝑛
) = lim
𝑛→∞

𝑇𝑥
󸀠

𝑛
= 𝛼
󸀠

,

lim
𝑛→∞

𝐵 (𝑦
󸀠

𝑛
, 𝑥
󸀠

𝑛
) = lim
𝑛→∞

𝑇𝑦
󸀠

𝑛
= 𝛽
󸀠

,
(18)

for all 𝛼󸀠, 𝛽󸀠 ∈ 𝑋, and

lim
𝑛→∞

𝑀(𝐵 (𝑇𝑥
󸀠

𝑛
, 𝑇𝑦
󸀠

𝑛
) , 𝑇𝐵 (𝑥

󸀠

𝑛
, 𝑦
󸀠

𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝐵 (𝑇𝑦
󸀠

𝑛
, 𝑇𝑥
󸀠

𝑛
) , 𝑇𝐵 (𝑦

󸀠

𝑛
, 𝑥
󸀠

𝑛
) , 𝑡) = 1,

(19)

that is 𝐵(𝛼󸀠, 𝛽󸀠) = 𝑇𝛼󸀠 and 𝐵(𝛽󸀠, 𝛼󸀠) = 𝑇𝛽󸀠. Hence (𝛼, 𝛽) ∈
𝑋 × 𝑋 is a coupled coincidence point of the pair (𝐴, 𝑆),
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whereas (𝛼󸀠, 𝛽󸀠) ∈ 𝑋 × 𝑋 is a coupled coincidence point of
the pair (𝐵, 𝑇).

Now we assert that (𝛼, 𝛽) = (𝛼󸀠, 𝛽󸀠), that is, 𝛼 = 𝛼󸀠 and
𝛽 = 𝛽󸀠. Since ∗ is a 𝑡-norm of H-type, for any 𝜆 > 0, there
exists an 𝜇 > 0 such that

(1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝

≥ 1 − 𝜆, (20)

for all 𝑝 ∈ N.
Since𝑀(𝑥, 𝑦, ⋅) is continuous and lim

𝑡→∞
𝑀(𝑥, 𝑦, 𝑡) = 1

for all 𝑥, 𝑦 ∈ 𝑋, there exists 𝑡
0
> 0 such that𝑀(𝛼, 𝛼󸀠, 𝑡

0
) ≥

1 − 𝜇 and𝑀(𝛽, 𝛽󸀠, 𝑡
0
) ≥ 1 − 𝜇.

On the other hand, since 𝜙 ∈ Φ, by condition (𝜙-3), we
have∑∞

𝑛=1
𝜙𝑛(𝑡
0
) < ∞. Then for any 𝑡 > 0, there exists 𝑛

0
∈ N

such that 𝑡 > ∑∞
𝑝=𝑛0

𝜙𝑝(𝑡
0
). On using inequality (15) with 𝑥 =

𝑥
𝑛
, 𝑦 = 𝑦

𝑛
, 𝑢 = 𝑥󸀠

𝑛
, and V = 𝑦󸀠

𝑛
, we have

𝑀(𝐴 (𝑥
𝑛
, 𝑦
𝑛
) , 𝐵 (𝑥

󸀠

𝑛
, 𝑦
󸀠

𝑛
) , 𝜙 (𝑡

0
))

≥ 𝑀(𝑆𝑥
𝑛
, 𝑇𝑥
󸀠

𝑛
, 𝑡
0
) ∗𝑀(𝑆𝑦

𝑛
, 𝑇𝑦
󸀠

𝑛
, 𝑡
0
) .

(21)

Letting 𝑛 → ∞, we get

𝑀(𝛼, 𝛼
󸀠

, 𝜙 (𝑡
0
)) ≥ 𝑀(𝛼, 𝛼

󸀠

, 𝑡
0
) ∗𝑀(𝛽, 𝛽

󸀠

, 𝑡
0
) . (22)

Again using inequality (15) with 𝑥 = 𝑦
𝑛
, 𝑦 = 𝑥

𝑛
, 𝑢 = 𝑦󸀠

𝑛
, and

V = 𝑥󸀠
𝑛
, we have

𝑀(𝐴 (𝑦
𝑛
, 𝑥
𝑛
) , 𝐵 (𝑦

󸀠

𝑛
, 𝑥
󸀠

𝑛
) , 𝜙 (𝑡

0
))

≥ 𝑀(𝑆𝑦
𝑛
, 𝑇𝑦
󸀠

𝑛
, 𝑡
0
) ∗𝑀(𝑆𝑥

𝑛
, 𝑇𝑥
󸀠

𝑛
, 𝑡
0
) .

(23)

Letting 𝑛 → ∞, we get

𝑀(𝛽, 𝛽
󸀠

, 𝜙 (𝑡
0
)) ≥ 𝑀(𝛽, 𝛽

󸀠

, 𝑡
0
) ∗𝑀(𝛼, 𝛼

󸀠

, 𝑡
0
) . (24)

From (22) and (24), we obtain

𝑀(𝛼, 𝛼
󸀠

, 𝜙 (𝑡
0
)) ∗ 𝑀(𝛽, 𝛽

󸀠

, 𝜙 (𝑡
0
))

≥ [𝑀(𝛼, 𝛼
󸀠

, 𝑡
0
)]
2

∗ [𝑀(𝛽, 𝛽
󸀠

, 𝑡
0
)]
2

.

(25)

In general, for all 𝑛 ∈ N, we have

𝑀(𝛼, 𝛼
󸀠

, 𝜙
𝑛

(𝑡
0
)) ∗𝑀(𝛽, 𝛽

󸀠

, 𝜙
𝑛

(𝑡
0
))

≥ [𝑀(𝛼, 𝛼
󸀠

, 𝜙
𝑛−1

(𝑡
0
))]
2

∗ [𝑀(𝛽, 𝛽
󸀠

, 𝜙
𝑛−1

(𝑡
0
))]
2

≥ [𝑀(𝛼, 𝛼
󸀠

, 𝑡
0
)]
2
𝑛

∗ [𝑀(𝛽, 𝛽
󸀠

, 𝑡
0
)]
2
𝑛

.

(26)

Then, we have

𝑀(𝛼, 𝛼
󸀠

, 𝑡) ∗ 𝑀(𝛽, 𝛽
󸀠

, 𝑡)

≥ [𝑀(𝛼, 𝛼
󸀠

,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))]

∗ [𝑀(𝛽, 𝛽
󸀠

,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))]

≥ [𝑀(𝛼, 𝛼
󸀠

, 𝜙
𝑛0 (𝑡
0
))]

∗ [𝑀(𝛽, 𝛽
󸀠

, 𝜙
𝑛0 (𝑡
0
))]

≥ [𝑀(𝛼, 𝛼
󸀠

, 𝑡
0
)]
2
𝑛0

∗ [𝑀(𝛽, 𝛽
󸀠

, 𝑡
0
)]
2
𝑛0

≥ (1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2
2𝑛0

≥ 1 − 𝜆.

(27)

So for any 𝜆 > 0, we have

𝑀(𝛼, 𝛼
󸀠

, 𝑡) ∗ 𝑀(𝛽, 𝛽
󸀠

, 𝑡) ≥ 1 − 𝜆, (28)

for all 𝑡 > 0, and so 𝛼 = 𝛼󸀠 and 𝛽 = 𝛽󸀠. Therefore we have

𝐴 (𝛼, 𝛽) = 𝑆𝛼, 𝐴 (𝛽, 𝛼) = 𝑆𝛽,

𝐵 (𝛼, 𝛽) = 𝑇𝛼, 𝐵 (𝛽, 𝛼) = 𝑇𝛽.
(29)

Next, we show that 𝑆𝛼 = 𝑇𝛼 and 𝑆𝛽 = 𝑇𝛽. Since ∗ is a 𝑡-norm
of H-type, for any 𝜆 > 0, there exists an 𝜇 > 0 such that

(1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝

≥ 1 − 𝜆, (30)

for all 𝑝 ∈ N.
Since𝑀(𝑥, 𝑦, ⋅) is continuous and lim

𝑡→+∞
𝑀(𝑥, 𝑦, 𝑡) =

1 for all 𝑥, 𝑦 ∈ 𝑋, there exists 𝑡
0
> 0 such that𝑀(𝑆𝛼, 𝑇𝛼, 𝑡

0
) ≥

1 − 𝜇 and𝑀(𝑆𝛽, 𝑇𝛽, 𝑡
0
) ≥ 1 − 𝜇.

Since 𝜙 ∈ Φ, by condition (𝜙-3), we have ∑∞
𝑛=1
𝜙𝑛(𝑡
0
) <

∞. Then for any 𝑡 > 0, there exists 𝑛
0
∈ N such that 𝑡 >

∑
∞

𝑝=𝑛0

𝜙𝑝(𝑡
0
). On using inequality (15) with 𝑥 = 𝑢 = 𝛼, 𝑦 =

V = 𝛽, we have

𝑀(𝐴 (𝛼, 𝛽) , 𝐵 (𝛼, 𝛽) , 𝜙 (𝑡
0
))

≥ 𝑀(𝑆𝛼, 𝑇𝛼, 𝑡
0
) ∗ 𝑀(𝑆𝛽, 𝑇𝛽, 𝑡

0
) ,

(31)

and so

𝑀(𝑆𝛼, 𝑇𝛼, 𝜙 (𝑡
0
)) ≥ 𝑀(𝑆𝛼, 𝑇𝛼, 𝑡

0
) ∗ 𝑀(𝑆𝛽, 𝑇𝛽, 𝑡

0
) . (32)

Similarly, we can obtain

𝑀(𝑆𝛽, 𝑇𝛽, 𝜙 (𝑡
0
)) ≥ 𝑀(𝑆𝛽, 𝑇𝛽, 𝑡

0
) ∗ 𝑀(𝑆𝛼, 𝑇𝛼, 𝑡

0
) . (33)

From (32) and (33), we have

𝑀(𝑆𝛼, 𝑇𝛼, 𝜙 (𝑡
0
)) ∗ 𝑀(𝑆𝛽, 𝑇𝛽, 𝜙 (𝑡

0
))

≥ [𝑀 (𝑆𝛼, 𝑇𝛼, 𝑡
0
)]
2

∗ [𝑀(𝑆𝛽, 𝑇𝛽, 𝑡
0
)]
2

.
(34)
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In general, for all 𝑛 ∈ N, we get

𝑀(𝑆𝛼, 𝑇𝛼, 𝜙
𝑛

(𝑡
0
)) ∗ 𝑀(𝑆𝛽, 𝑇𝛽, 𝜙

𝑛

(𝑡
0
))

≥ [𝑀(𝑆𝛼, 𝑇𝛼, 𝜙
𝑛−1

(𝑡
0
))]
2

∗ [𝑀(𝑆𝛽, 𝑇𝛽, 𝜙
𝑛−1

(𝑡
0
))]
2

≥ [𝑀 (𝑆𝛼, 𝑇𝛼, 𝑡
0
)]
2
𝑛

∗ [𝑀 (𝑆𝛽, 𝑇𝛽, 𝑡
0
)]
2
𝑛

.

(35)

Then, we have

𝑀(𝑆𝛼, 𝑇𝛼, 𝑡) ∗ 𝑀(𝑆𝛽, 𝑇𝛽, 𝑡)

≥ [𝑀(𝑆𝛼, 𝑇𝛼,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))]

∗ [𝑀(𝑆𝛽, 𝑇𝛽,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))]

≥ [𝑀(𝑆𝛼, 𝑇𝛼, 𝜙
𝑛0 (𝑡
0
))]

∗ [𝑀 (𝑆𝛽, 𝑇𝛽, 𝜙
𝑛0 (𝑡
0
))]

≥ [𝑀 (𝑆𝛼, 𝑇𝛼, 𝑡
0
)]
2
𝑛0

∗ [𝑀(𝑆𝛽, 𝑇𝛽, 𝑡
0
)]
2
𝑛0

≥ (1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2
2𝑛0

≥ 1 − 𝜆.

(36)

So for any 𝜆 > 0, we obtain

𝑀(𝑆𝛼, 𝑇𝛼, 𝑡) ∗ 𝑀 (𝑆𝛽, 𝑇𝛽, 𝑡) ≥ 1 − 𝜆, (37)

for all 𝑡 > 0, and hence 𝑆𝛼 = 𝑇𝛼 and 𝑆𝛽 = 𝑇𝛽. Therefore

𝑆𝛼 = 𝑇𝛼 = 𝐴 (𝛼, 𝛽) = 𝐵 (𝛼, 𝛽) ,

𝑆𝛽 = 𝑇𝛽 = 𝐴 (𝛽, 𝛼) = 𝐵 (𝛽, 𝛼) .
(38)

Now we show that 𝑆𝛼 = 𝛼 and 𝑆𝛽 = 𝛽. Since ∗ is a 𝑡-norm of
H-type, for any 𝜆 > 0, there exists an 𝜇 > 0 such that

(1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝

≥ 1 − 𝜆, (39)

for all 𝑝 ∈ N.
Since𝑀(𝑥, 𝑦, ⋅) is continuous and lim

𝑡→+∞
𝑀(𝑥, 𝑦, 𝑡) =

1 for all 𝑥, 𝑦 ∈ 𝑋, there exists 𝑡
0
> 0 such that𝑀(𝑆𝛼, 𝛼, 𝑡

0
) ≥

1 − 𝜇 and𝑀(𝑆𝛽, 𝛽, 𝑡
0
) ≥ 1 − 𝜇.

On the other hand, since 𝜙 ∈ Φ, by condition (𝜙-3) we
have∑∞

𝑛=1
𝜙𝑛(𝑡
0
) < ∞. Then for any 𝑡 > 0, there exists 𝑛

0
∈ N

such that 𝑡 > ∑∞
𝑝=𝑛0

𝜙𝑝(𝑡
0
). On using inequality (15) with 𝑥 =

𝛼, 𝑦 = 𝛽, 𝑢 = 𝑥󸀠
𝑛
, V = 𝑦󸀠

𝑛
, we have

𝑀(𝐴 (𝛼, 𝛽) , 𝐵 (𝑥
󸀠

𝑛
, 𝑦
󸀠

𝑛
) , 𝜙 (𝑡

0
))

≥ 𝑀(𝑆𝛼, 𝑇𝑥
󸀠

𝑛
, 𝑡
0
) ∗𝑀(𝑆𝛽, 𝑇𝑦

󸀠

𝑛
, 𝑡
0
) .

(40)

Letting 𝑛 → ∞, we obtain

𝑀(𝑆𝛼, 𝛼, 𝜙 (𝑡
0
)) ≥ 𝑀(𝑆𝛼, 𝛼, 𝑡

0
) ∗ 𝑀(𝑆𝛽, 𝛽, 𝑡

0
) . (41)

Similarly, we can get

𝑀(𝑆𝛽, 𝛽, 𝜙 (𝑡
0
)) ≥ 𝑀(𝑆𝛽, 𝛽, 𝑡

0
) ∗ 𝑀(𝑆𝛼, 𝛼, 𝑡

0
) . (42)

Consequently, from (41) and (42), we have

𝑀(𝑆𝛼, 𝛼, 𝜙 (𝑡
0
)) ∗ 𝑀(𝑆𝛽, 𝛽, 𝜙 (𝑡

0
))

≥ [𝑀 (𝑆𝛼, 𝛼, 𝑡
0
)]
2

∗ [𝑀(𝑆𝛽, 𝛽, 𝑡
0
)]
2

.
(43)

In general, for all 𝑛 ∈ N, we get

𝑀(𝑆𝛼, 𝛼, 𝜙
𝑛

(𝑡
0
)) ∗ 𝑀(𝑆𝛽, 𝛽, 𝜙

𝑛

(𝑡
0
))

≥ [𝑀(𝑆𝛼, 𝛼, 𝜙
𝑛−1

(𝑡
0
))]
2

∗ [𝑀(𝑆𝛽, 𝛽, 𝜙
𝑛−1

(𝑡
0
))]
2

≥ [𝑀(𝑆𝛼, 𝛼, 𝑡
0
)]
2
𝑛

∗ [𝑀(𝑆𝛽, 𝛽, 𝑡
0
)]
2
𝑛

.

(44)

Then, we have

𝑀(𝑆𝛼, 𝛼, 𝑡) ∗ 𝑀 (𝑆𝛽, 𝛽, 𝑡)

≥ [𝑀(𝑆𝛼, 𝛼,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))]

∗ [𝑀(𝑆𝛽, 𝛽,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))]

≥ [𝑀(𝑆𝛼, 𝛼, 𝜙
𝑛0 (𝑡
0
))]

∗ [𝑀 (𝑆𝛽, 𝛽, 𝜙
𝑛0 (𝑡
0
))]

≥ [𝑀 (𝑆𝛼, 𝛼, 𝑡
0
)]
2
𝑛0

∗ [𝑀(𝑆𝛽, 𝛽, 𝑡
0
)]
2
𝑛0

≥ (1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2
2𝑛0

≥ 1 − 𝜆.

(45)

Therefore for any 𝜆 > 0, we obtain

𝑀(𝑆𝛼, 𝛼, 𝑡) ∗ 𝑀 (𝑆𝛽, 𝛽, 𝑡) ≥ 1 − 𝜆, (46)

for all 𝑡 > 0 and so 𝑆𝛼 = 𝛼 and 𝑆𝛽 = 𝛽. Thus

𝛼 = 𝑆𝛼 = 𝑇𝛼 = 𝐴 (𝛼, 𝛽) = 𝐵 (𝛼, 𝛽) ,

𝛽 = 𝑆𝛽 = 𝑇𝛽 = 𝐴 (𝛽, 𝛼) = 𝐵 (𝛽, 𝛼) .
(47)

Finally, we assert that 𝛼 = 𝛽. Since ∗ is a 𝑡-norm of H-type,
for any 𝜆 > 0, there exists an 𝜇 > 0 such that

(1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝

≥ 1 − 𝜆, (48)

for all 𝑝 ∈ N.
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Since𝑀(𝑥, 𝑦, ⋅) is continuous and lim
𝑡→+∞

𝑀(𝑥, 𝑦, 𝑡) =
1 for all 𝑥, 𝑦 ∈ 𝑋, there exists 𝑡

0
> 0 such that𝑀(𝛼, 𝛽, 𝑡

0
) ≥

1 − 𝜇.
Also, since 𝜙 ∈ Φ, by condition (𝜙-3), we have

∑
∞

𝑛=1
𝜙𝑛(𝑡
0
) < ∞. Then for any 𝑡 > 0, there exists 𝑛

0
∈ N

such that 𝑡 > ∑
∞

𝑝=𝑛0

𝜙𝑝(𝑡
0
). On using inequality (15) with

𝑥 = V = 𝛼, 𝑦 = 𝑢 = 𝛽, we have

𝑀(𝐴 (𝛼, 𝛽) , 𝐵 (𝛽, 𝛼) , 𝜙 (𝑡
0
))

≥ 𝑀(𝑆𝛼, 𝑇𝛽, 𝑡
0
) ∗ 𝑀(𝑆𝛽, 𝑇𝛼, 𝑡

0
) ,

(49)

and so

𝑀(𝛼, 𝛽, 𝜙 (𝑡
0
)) ≥ 𝑀(𝛼, 𝛽, 𝑡

0
) ∗ 𝑀(𝛽, 𝛼, 𝑡

0
) . (50)

Thus we have

𝑀(𝛼, 𝛽, 𝑡) ≥ 𝑀(𝛼, 𝛽,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))

≥ 𝑀(𝛼, 𝛽, 𝜙
𝑛0 (𝑡
0
))

≥ [𝑀 (𝛼, 𝛽, 𝑡
0
)]
2
𝑛0

∗ [𝑀(𝛽, 𝛼, 𝑡
0
)]
2
𝑛0

≥ (1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2
2𝑛0

≥ 1 − 𝜆,

(51)

which implies that 𝛼 = 𝛽. Therefore, we proved that there
exists 𝛼 in𝑋 such that

𝛼 = 𝑆𝛼 = 𝑇𝛼 = 𝐴 (𝛼, 𝛼) = 𝐵 (𝛼, 𝛼) . (52)

The uniqueness of such a point follows immediately from
inequality (15) and so we omit the details.

Remark 15. The conclusion ofTheorem 14 remains true if we
substitute condition (a) with the following condition:

(a󸀠) the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are subcompatible and
reciprocally continuous.

From Theorem 14, taking 𝐴 = 𝐵 and 𝑆 = 𝑇, we deduce
the following natural result.

Corollary 16. Let (𝑋,𝑀, ∗) be a fuzzy metric space, where ∗
is a continuous t-norm of H-type such that𝑀(𝑥, 𝑦, 𝑡) → 1 as
𝑡 → ∞, for all 𝑥, 𝑦 ∈ 𝑋. Let 𝐴 : 𝑋 × 𝑋 → 𝑋 and 𝑆 : 𝑋 →
𝑋 be compatible and subsequentially continuous (alternately
subcompatible and reciprocally continuous) mappings such
that

𝑀(𝐴 (𝑥, 𝑦) , 𝐴 (𝑢, V) , 𝜙 (𝑡))

≥ 𝑀 (𝑆𝑥, 𝑆𝑢, 𝑡) ∗ 𝑀 (𝑆𝑦, 𝑆V, 𝑡) ,
(53)

for all 𝑥, 𝑦, 𝑢, V ∈ 𝑋, 𝜙 ∈ Φ and 𝑡 > 0. Then there exists a
unique point 𝛼 in𝑋 such that 𝛼 = 𝑆𝛼 = 𝐴(𝛼, 𝛼).

Next, we illustrate our results providing the following
examples.

Example 17. Let 𝑋 = [0, +∞), 𝑎 ∗ 𝑏 = 𝑎𝑏 for all 𝑎, 𝑏 ∈ [0, 1]
and 𝜓(𝑠) = 𝑠/(𝑠 + 1) for all 𝑠 ∈ R+. Then (𝑋,𝑀, ∗) is a fuzzy
metric space, where

𝑀(𝑥, 𝑦, 𝑡) = [𝜓 (𝑡)]
|𝑥−𝑦|

, (54)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0. Let 𝜙(𝑠) = 𝑠/2, and let themappings
𝐴 : 𝑋 × 𝑋 → 𝑋, 𝑆 : 𝑋 → 𝑋 be defined as

𝐴 (𝑥, 𝑦) =
{
{
{

3𝑥 + 3𝑦 − 5, if 𝑥, 𝑦 ∈ (1,∞) ,
𝑥 + 𝑦

6
, otherwise,

𝑆 (𝑥) =
{
{
{

3𝑥 − 2, if 𝑥 ∈ (1,∞) ,
𝑥

6
, if 𝑥 ∈ [0, 1] .

(55)

In view of Definition 10, to prove compatibility, we have only
to consider sequences {𝑥

𝑛
} and {𝑦

𝑛
} converging to zero from

the right. In such case we have

lim
𝑛→∞

𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 0 = lim

𝑛→∞

𝑆 (𝑥
𝑛
) ,

lim
𝑛→∞

𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 0 = lim

𝑛→∞

𝑆 (𝑦
𝑛
) .

(56)

Next, we get

lim
𝑛→∞

𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) = 0 = 𝐴 (0, 0) ,

lim
𝑛→∞

𝑆𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 0 = 𝑆 (0) ,

lim
𝑛→∞

𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) = 0 = 𝐴 (0, 0) ,

lim
𝑛→∞

𝑆𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 0 = 𝑆 (0) .

(57)

Consequently

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑥
𝑛
𝑆𝑦
𝑛
) , 𝑆𝐴 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑦
𝑛
𝑆𝑥
𝑛
) , 𝑆𝐴 (𝑦

𝑛
, 𝑥
𝑛
) , 𝑡) = 1,

(58)

for all 𝑡 > 0.
On the other hand, to prove subsequential continuity, in

view ofDefinition 12, we have only to consider sequences {𝑥
𝑛
}

and {𝑦
𝑛
} converging to one from the right. In such case we

have

lim
𝑛→∞

𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 1 = lim

𝑛→∞

𝑆 (𝑥
𝑛
) ,

lim
𝑛→∞

𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 1 = lim

𝑛→∞

𝑆 (𝑦
𝑛
) .

(59)

Also, note that, for the same sequences, we get

lim
𝑛→∞

𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) = 1 ̸=𝐴 (1, 1) ,

lim
𝑛→∞

𝑆𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 1 ̸= 𝑆 (1) ,

lim
𝑛→∞

𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) = 1 ̸=𝐴 (1, 1) ,

lim
𝑛→∞

𝑆𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 1 ̸= 𝑆 (1) ,

(60)
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but

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) , 𝑆𝐴 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) , 𝑆𝐴 (𝑦

𝑛
, 𝑥
𝑛
) , 𝑡) = 1.

(61)

Thus, the mappings 𝐴 and 𝑆 are compatible as well as
subsequentially continuous but not reciprocally continuous.
Next, by a routine calculation, one can verify that condition
(53) holds true. For instance, for all 𝑡 > 0 and 𝑥, 𝑦, 𝑢, V ∈
[0, 1], we have

𝑀(𝐴 (𝑥, 𝑦) , 𝐴 (𝑢, V) , 𝜙 (𝑡))

= 𝑀(𝐴 (𝑥, 𝑦) , 𝐴 (𝑢, V) , (
𝑡

2
))

= [𝜓(
𝑡

2
)]
|𝑥−𝑢+𝑦−V|/6

≥ [𝜓(
𝑡

2
)]
|𝑥−𝑢|/6

⋅ [𝜓 (
𝑡

2
)]
|𝑦−V|/6

= [
𝑡

𝑡 + 2
]
|𝑥−𝑢|/6

⋅ [
𝑡

𝑡 + 2
]
|𝑦−V|/6

≥ [
𝑡

𝑡 + 1
]
|𝑥−𝑢|/6

⋅ [
𝑡

𝑡 + 1
]
|𝑦−V|/6

= [𝜓 (𝑡)]
|𝑥−𝑢|/6

⋅ [𝜓 (𝑡)]
|𝑦−V|/6

= 𝑀(𝑆𝑥, 𝑆𝑢, 𝑡) ⋅ 𝑀 (𝑆𝑦, 𝑆V, 𝑡)

= 𝑀 (𝑆𝑥, 𝑆𝑢, 𝑡) ∗ 𝑀 (𝑆𝑦, 𝑆V, 𝑡) .

(62)

Therefore, all the conditions of Corollary 16 are satisfied
and (0,0) is the unique common fixed point of the pair (𝐴, 𝑆).
It is noted that this example cannot be covered by those fixed
point theorems which involve compatibility and reciprocal
continuity both.

Example 18. In the setting of Example 17 (besides retaining
the rest), let 𝑋 = (−∞,∞), and let the mappings 𝐴 : 𝑋 ×
𝑋 → 𝑋, 𝑆 : 𝑋 → 𝑋 be defined as

𝐴 (𝑥, 𝑦) =

{{{{
{{{{
{

𝑥 + 𝑦

4
, if 𝑥, 𝑦 ∈ (−∞, 1) ,

3𝑥 + 3𝑦 − 5, if 𝑥, 𝑦 ∈ [1,∞) ,
𝑥 − 𝑦

4
, if 𝑥 ∈ (−∞, 1) , 𝑦 ∈ [1,∞) ,

𝑆 (𝑥) = {
𝑥 + 1, if 𝑥 ∈ (−∞, 1) ,
3𝑥 − 2, if 𝑥 ∈ [1,∞) .

(63)

In view of Definitions 11 and 13, to prove reciprocal continuity
and subcompatibility, we have only to consider sequences
{𝑥
𝑛
} and {𝑦

𝑛
} converging to one from the right. For such

sequences, we get

lim
𝑛→∞

𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 1 = lim

𝑛→∞

𝑆 (𝑥
𝑛
) ,

lim
𝑛→∞

𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 1 = lim

𝑛→∞

𝑆 (𝑦
𝑛
) .

(64)

Also, we deduce that

lim
𝑛→∞

𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) = 1 = 𝐴 (1, 1) ,

lim
𝑛→∞

𝑆𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 1 = 𝑆 (1) ,

lim
𝑛→∞

𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) = 1 = 𝐴 (1, 1) ,

lim
𝑛→∞

𝑆𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 1 = 𝑆 (1) .

(65)

Therefore, we have

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) , 𝑆𝐴 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) , 𝑆𝐴 (𝑦

𝑛
, 𝑥
𝑛
) , 𝑡) = 1,

(66)

for all 𝑡 > 0. Finally, to show that themappings𝐴 and 𝑆 are not
compatible, it suffices to consider the particular sequences
{𝑥
𝑛
} = {1/𝑛 − 2}

𝑛∈N and {𝑦
𝑛
} = {1/3𝑛 − 2}

𝑛∈N in 𝑋. In fact,
in such case, we have

lim
𝑛→∞

𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = −1 = lim

𝑛→∞

𝑆 (𝑥
𝑛
) ,

lim
𝑛→∞

𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = −1 = lim

𝑛→∞

𝑆 (𝑦
𝑛
) .

(67)

Next, we deduce that

lim
𝑛→∞

𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) = −

1

2
= 𝐴 (−1, −1) ,

lim
𝑛→∞

𝑆𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 0 = 𝑆 (−1) ,

lim
𝑛→∞

𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) = −

1

2
= 𝐴 (−1, −1) ,

lim
𝑛→∞

𝑆𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 0 = 𝑆 (−1) .

(68)

Consequently, we obtain

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) , 𝑆𝐴 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑡) ̸= 1,

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) , 𝑆𝐴 (𝑦

𝑛
, 𝑥
𝑛
) , 𝑡) ̸= 1,

(69)

for all 𝑡 > 0. Thus, the mappings 𝐴 and 𝑆 are reciprocally
continuous as well as subcompatible but not compatible.
Next, by a routine calculation, one can verify that condition
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(53) holds true. For instance, for all 𝑡 > 0 and 𝑥, 𝑦, 𝑢, V ∈
[1,∞), we have

𝑀(𝐴 (𝑥, 𝑦) , 𝐴 (𝑢, V) , 𝜙 (𝑡))

= 𝑀(𝐴 (𝑥, 𝑦) , 𝐴 (𝑢, V) , (
𝑡

2
))

= [𝜓(
𝑡

2
)]
|3𝑥−3𝑢+3𝑦−3V|

≥ [𝜓(
𝑡

2
)]
3|𝑥−𝑢|

⋅ [𝜓 (
𝑡

2
)]
3|𝑦−V|

= [
𝑡

𝑡 + 2
]
3|𝑥−𝑢|

⋅ [
𝑡

𝑡 + 2
]
3|𝑦−V|

≥ [
𝑡

𝑡 + 1
]
3|𝑥−𝑢|

.[
𝑡

𝑡 + 1
]
3|𝑦−V|

= [𝜓 (𝑡)]
3|𝑥−𝑢|

⋅ [𝜓 (𝑡)]
3|𝑦−V|

= 𝑀(𝑆𝑥, 𝑆𝑢, 𝑡) ⋅ 𝑀 (𝑆𝑦, 𝑆V, 𝑡)

= 𝑀 (𝑆𝑥, 𝑆𝑢, 𝑡) ∗ 𝑀 (𝑆𝑦, 𝑆V, 𝑡) .

(70)

Therefore, all the conditions of Corollary 16 are satisfied,
and (1, 1) is the unique common fixed point of the pair
(𝐴, 𝑆). It is also noted that this example cannot be covered by
those fixed point theorems which involve compatibility and
reciprocal continuity both.

Remark 19. The conclusions of Theorem 14 and Corollary 16
remain true if we assume 𝜙(𝑠) = 𝑘𝑠, where 𝑘 ∈ (0, 1).

4. Conclusion

Theorem 14 is proved for two pairs of compatible and
subsequentially continuous (alternately subcompatible and
reciprocally continuous) mappings in fuzzy metric spaces,
wherein conditions on completeness (or closedness) of the
underlying space (or subspaces) together with conditions on
continuity in respect to anyone of the involved mappings
are relaxed. Theorem 14 improves the results of Jain et al.
[39, Theorem 3.2, Corollary 3.2, Theorem 3.3, Theorem 3.4,
Theorem 4.1] and Hu [34, Theorem 1]. A natural result
is also obtained for a pair of mappings (see Corollary 16).
Finally, Examples 17 and 18 are furnished to demonstrate the
usefulness of Corollary 16. In view of Remark 19,Theorem 14
and Corollary 16 improve the results of Sedghi et al. [32,
Theorem 2.5, Corollary 2.6] and Jain et al. [39, Corollary 3.1].
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Copyright © 2013 Pavel Vlašánek. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Image reconstruction technique based on F-transform uses clearly defined basic functions. These functions have strong impact on
the quality of reconstruction. We can use some predefined shape and radius, but also we can create a new one from the scratch.
The aim of this paper is to analyze the creating process and based on that find best basic function for input set of damaged testing
images.

1. Introduction

Image reconstruction aims at recovering damaged parts. In
real situation this damage can be caused by various sources
on various surfaces. Input information has to be digitalized
as a first step and after that divided on damaged and
nondamaged parts. Typical situation lays on photography.
We can distinguish among many types of damage like stains,
scratches, text, or noise.We can say that every kind of damage
covers typical way of damaging process. Unwanted time or
date stamp is covered by text. Scratches, cracks, and folds
are covered by inpaint. These are shown in Figure 1 which
includes also noise.

Target of reconstruction is removing damaged parts from
input image and replacing themby the parts with recomputed
values. These values are computed from the neighborhood
ones. The technique mentioned in this paper is based on F-
transformwhich brings particular way of valuation neighbor-
hood pixels and their usage in the computation [1, 2]. Other
methods [3, 4] differ by the choice at the technique.

In this paper, we will focus on the valuation part of the
computation. Quality of reconstruction will be measured by
RMSE value (RMSE stands for the root mean square error).
In Figure 2 you can see damaged input images and recon-
structed ones with usage of the ideal basic function described
later. We will analyse influence of changing parameter on
target quality.

2. F-Transform

In image reconstruction, a discrete version of the F-transform
is used. Details can be seen in [5, 6]. In this section two-
dimensional (2D) variant and also conditions for proper
functioning will be briefly introduced.

2.1. Fuzzy Partition with Ruspini Condition. Let 𝑥
1
< ⋅ ⋅ ⋅ <

𝑥
𝑛
be fixed nodes within [𝑎, 𝑏] such that 𝑥

1
= 𝑎, 𝑥

𝑛
= 𝑏

and 𝑛 ≥ 2. We say that the fuzzy sets 𝐴
1
, . . . , 𝐴

𝑛
, identified

with their membership functions defined on [𝑎, 𝑏], establish
a fuzzy partition with Ruspini condition of [𝑎, 𝑏] if they fulfill
the following conditions for 𝑘 = 1, . . . , 𝑛:

(1) 𝐴
𝑘
: [𝑎, 𝑏] → [0, 1], 𝐴

𝑘
(𝑥
𝑘
) = 1;

(2) 𝐴
𝑘
(𝑥) = 0 if 𝑥 ∉ (𝑥

𝑘−1
, 𝑥
𝑘+1
), where for uniformity of

notation, we set 𝑥
0
= 𝑎 and 𝑥

𝑛+1
= 𝑏;

(3) 𝐴
𝑘
(𝑥) is continuous;

(4) 𝐴
𝑘
(𝑥), for 𝑘 = 2, . . . , 𝑛, increases on [𝑥

𝑘−1
, 𝑥
𝑘
], and

𝐴
𝑘
(𝑥), for 𝑘 = 1, . . . , 𝑛 − 1, strictly decreases on

[𝑥
𝑘
, 𝑥
𝑘+1
];

(5) for all 𝑥 ∈ [𝑎, 𝑏],

𝑛

∑
𝑘=1

𝐴
𝑘
(𝑥) = 1. (1)
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(a) (b) (c)

Figure 1: (a) Inpaint damage; (b) text damage; (c) noise damage.

(a)

Picture

Nature

Lena

(b) (c)

Figure 2: (a) Original image; (b) damaged image; (c) reconstructed
image.

The condition (1) is known as the Ruspini condition. The
membership functions 𝐴

1
, . . . , 𝐴

𝑛
are called basic functions.

A point𝑥 ∈ [𝑎, 𝑏] is covered by basic function𝐴
𝑘
if𝐴
𝑘
(𝑥) > 0.

2.2. Shape of the Basic Function. The shape of the basic func-
tions is not predetermined, and therefore, it can be chosen
according to additional requirements (e.g., smoothness). Let
us give examples of various fuzzy partitions with the Ruspini
condition. In Figure 3, two such partitions with triangular
and cosine basic functions are shown. The formulas given
below represent generic fuzzy partitions with the Ruspini
condition and triangular functions:

𝐴
1
(𝑥) =

{{
{{
{

1 −
(𝑥 − 𝑥

1
)

ℎ
1

, 𝑥 ∈ [𝑥
1
, 𝑥
2
] ,

0, otherwise,

𝐴
𝑘
(𝑥) =

{{{{{{
{{{{{{
{

(𝑥 − 𝑥
𝑘−1
)

ℎ
𝑘−1

, 𝑥 ∈ [𝑥
𝑘−1
, 𝑥
𝑘
] ,

1 −
(𝑥 − 𝑥

𝑘
)

ℎ
𝑘

, 𝑥 ∈ [𝑥
𝑘
, 𝑥
𝑘+1
] ,

0, otherwise,

𝐴
𝑛
(𝑥) =

{{
{{
{

(𝑥 − 𝑥
𝑛−1
)

ℎ
𝑛−1

, 𝑥 ∈ [𝑥
𝑛−1
, 𝑥
𝑛
] ,

0, otherwise,
(2)

where 𝑘 = 2, . . . , 𝑛 − 1 and ℎ
𝑘
= 𝑥
𝑘+1

− 𝑥
𝑘
.

We say that a Ruspini partition of [𝑎, 𝑏] is ℎ-uniform if
its nodes 𝑥

1
, . . . , 𝑥

𝑛
, where 𝑛 ≥ 3, are ℎ-equidistant; that is,

𝑥
𝑘
= 𝑎 + ℎ(𝑘 − 1), for 𝑘 = 1, . . . , 𝑛, where ℎ = (𝑏 − 𝑎)/(𝑛 − 1),

and two additional properties are met:

(6) 𝐴
𝑘
(𝑥
𝑘
− 𝑥) = 𝐴

𝑘
(𝑥
𝑘
+ 𝑥), for all 𝑥 ∈ [0, ℎ], 𝑘 =

2, . . . , 𝑛 − 1;

(7) 𝐴
𝑘
(𝑥) = 𝐴

𝑘−1
(𝑥 − ℎ), for all 𝑘 = 2, . . . , 𝑛 − 1 and

𝑥 ∈ [𝑥
𝑘
, 𝑥
𝑘+1
], and 𝐴

𝑘+1
(𝑥) = 𝐴

𝑘
(𝑥 − ℎ), for all 𝑘 =

2, . . . , 𝑛 − 1 and 𝑥 ∈ [𝑥
𝑘
, 𝑥
𝑘+1
].

An ℎ-uniform fuzzy partition of [𝑎, 𝑏] can be determined
by the so called generating function 𝐴

0
: [−1, 1] → [0, 1],

which is assumed to be even (The function 𝐴
0
: [−1, 1] → R

is even if for all 𝑥 ∈ [0, 1], 𝐴
0
(−𝑥) = 𝐴

0
(𝑥)), continuous,

have a bell shape, and fulfill 𝐴
0
(0) = 1. Basic functions 𝐴

𝑘

of an ℎ-uniform fuzzy partition with generating function 𝐴
0

are shifted copies of 𝐴
0
in the sense that

𝐴
1
(𝑥) =

{
{
{

𝐴
0
(
𝑥 − 𝑥
1

ℎ
) , 𝑥 ∈ [𝑥

1
, 𝑥
2
] ,

0, otherwise,
(3)
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Figure 3: (a) Ruspini partitions with triangular basic function; (b) Ruspini partitions with cosine basic function.
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6

a by

Figure 4: Template for basic function definition.

and for 𝑘 = 2, . . . , 𝑛 − 1,

𝐴
𝑘
(𝑥) =

{
{
{

𝐴
0
(
𝑥 − 𝑥
𝑘

ℎ
) , 𝑥 ∈ [𝑥

𝑘−1
, 𝑥
𝑘+1
] ,

0, otherwise,

𝐴
𝑛
(𝑥) =

{
{
{

𝐴
0
(
𝑥 − 𝑥
𝑛

ℎ
) , 𝑥 ∈ [𝑥

𝑛
− 1, 𝑥
𝑛
] ,

0, otherwise.

(4)

As an example, we notice that the function 𝐴
0
(𝑥) =

1 − |𝑥| is a generating function for any ℎ-uniform triangular
partition. In the sequel, we will be using ℎ-uniform fuzzy
partitions only and refer to ℎ as to a radius of partition [7].

2.3. Discrete 2D F-Transform. We say that the 𝑛 × 𝑚-matrix
of real numbers [𝑈

𝑘𝑙
] is called the (discrete) F-transform

of 𝑢 with respect to {𝐴
1
, . . . , 𝐴

𝑛
} and {𝐵

1
, . . . , 𝐵

𝑚
} if for all

𝑘 = 1, . . . , 𝑛, 𝑙 = 1, . . . , 𝑚,

𝑈
𝑘𝑙
=
∑
𝑀

𝑗=1
∑
𝑁

𝑖=1
𝑢 (𝑝
𝑖
, 𝑞
𝑗
)𝐴
𝑘
(𝑝
𝑖
) 𝐵
𝑙
(𝑞
𝑗
)

∑
𝑀

𝑗=1
∑
𝑁

𝑖=1
𝐴
𝑘
(𝑝
𝑖
) 𝐵
𝑙
(𝑞
𝑗
)

. (5)

The elements 𝑈
𝑘𝑙

are called components of the F-
transform.

The inverse F-transform is defined as follows:

𝑢̂ (𝑖, 𝑗) =
𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝑈
𝑘𝑙
𝐴
𝑘
(𝑖) 𝐵
𝑙
(𝑗) . (6)

We use discrete basic functions 𝐴
𝑘
and 𝐵

𝑙
. Our results

show that sufficient image reconstruction is enough to use
maximal radius 4. Discrete basic function with respect to
Ruspini condition is building on top of template in Figure 4.

You can see white squares in Figure 4. These squares can
be marked as parts of the basic function. One marked per
column. After that is automatically computed mirrored part
of the basic function as can be seen in Figure 5. We choose
𝑦 = 4 for the column 𝑎. Value in column 10 is the same, and
because of Ruspini condition, values in columns 5 and 7 are
easily computable as

𝑓 (𝑦
5
) = 1 − 𝑓 (𝑦

𝑎
) ,

𝑓 (𝑦
7
) = 1 − 𝑓 (𝑦

𝑎
) = 𝑓 (𝑦

5
) .

(7)

Because of using Ruspini condition, we can use copies of
the basic function for covering the whole range. Height of
the template determines values 𝑓(𝑦) on the 𝑦 axis. For better
usability we choose value 0 for first row, 1 for last one, and
twice 0.5 on the middle. Two basic functions with marked
values can be seen in Figure 6.
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(a) (b)

Figure 5: (a) Result after selection of fourth pixel in 𝑎 column; (b) result after selection of fifth pixel in 𝑏 column.

1.0
0.9
0.8
0.7
0.6
0.5
0.5
0.4
0.3
0.2
0.1
0.0

Figure 6: Template for basic function definition.

The overlapping part of basic functions have functional
values equal 1 in each column. For better visualization, black
vertical lines are also plotted.

3. Influence of Basic Functions

Shapes of the basic functions can benondecreasing, oscillating,
or nonincreasing. Differences and influences on computation
are described in [8]. We choose basic functions with radius
2 in the first step of reconstruction and radius 4 in the
second step because of fully sufficient usage on the input set
of testing images. In this paper, we focus on building shape
of basic function step by step based on results provided by
RMSE. We identified two ways of this process which will be
demonstrated on template in Figure 4 where max = 6.

Column by Column. Find the best value for current column
and continue with next column:

(1) choose radius 𝑟 = 2,

(2) choose active column as 𝑐 = “𝑎, ”

(3) choose current row as 𝑦 = 1,

(4) based on those values create a basic function by
mirroring and with respect to Ruspini condition
formula (7),

(5) use the basic function for image reconstruction,

(6) compare reconstructed image with original undam-
aged one by RMSE,

(7) if 𝑦 = max, then 𝑟 = 4, 𝑐 = “𝑏” and continue by step
3,

(8) change current row as 𝑦 = 𝑦 + 1,

(9) continue by step 4.

Radius by Radius. Find the best value for current radius and
continue with next radius:

(1) choose current radius as 𝑟 = 2,
(2) choose current column as 𝑐 = “𝑎, ”
(3) choose current row as 𝑦 = 1,
(4) based on those values create a basic function,
(5) use the basic function for image reconstruction,
(6) compare reconstructed image with the original

undamaged by RMSE,
(7) if 𝑦 = max and 𝑟 = 4, then 𝑐 = “𝑏” and continue by

step 3,
(8) if 𝑦 = max, then 𝑟 = 4 and continue by step 3,
(9) choose current row as 𝑦 = 𝑦 + 1,
(10) continue by step 4.
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(a) (b)

Figure 7: (a) Basic function for radius 2; (b) basic function for radius 4.

Table 1: RMSE values of the column by column basic function
creation.

𝑦
𝑎 𝑏 𝑎 𝑏 𝑎 𝑏

Lena Picture Nature
1 62.99 5.16 46.72 4.01 71.25 7.55
2 49.99 5.04 36.63 3.89 56.39 7.39
3 49.98 4.97 36.62 3.82 56.37 7.30
4 49.97 4.93 36.62 3.79 56.36 7.27
5 49.97 4.92 36.61 3.80 56.35 7.27
6 49.96 4.95 36.61 3.84 56.35 7.32

First way column by column is computed in Table 1. You
can see that there is for column 𝑎 best RMSE value for 𝑦 = 6.
It means that we choose sixth row for column 𝑎. Next column
𝑏 is the best RMSE value in row 𝑦 = 5 for the Lena and
Nature images and 𝑦 = 4 for the Picture image. We choose
basic function with values 𝑦 = 6 for column 𝑎 and 𝑦 = 5 for
column 𝑏. This function is in Figure 8.

Second way of basic function creation radius by radius is
computed in Table 2. From the table comes that the best value
is 𝑦 = 2 for 𝑎 and 𝑦 = 5 for column 𝑏. This basic function is
shown in Figure 7.

4. Conclusion

As a result we can say that step by step process converges to
oscillating or linear shape. Column by column way is the best
solution oscillating basic function. Value 𝑦 = 6 for column 𝑎
and 𝑦 = 5 for column 𝑏 provides RMSE values 4.92 for Lena,
3.80 for Picture, and 7.27 for Nature. Because of very close
results for Picture image between 𝑏 = 4 and 𝑏 = 5, we choose

Table 2: RMSE values of the radius by radius basic function creation.

𝑎/𝑏 1 2 3 4 5 6
Lena

1 6.12 5.71 5.58 5.51 5.50 5.52
2 5.16 4.97 4.85 4.79 4.78 4.81
3 5.12 4.96 4.86 4.81 4.80 4.83
4 5.11 4.97 4.88 4.83 4.83 4.86
5 5.13 5.00 4.92 4.87 4.87 4.90
6 5.16 5.04 5.97 4.93 4.92 4.95

Picture
1 4.93 4.32 4.21 4.16 4.15 4.19
2 3.93 3.76 3.65 3.61 3.61 3.65
3 3.91 3.76 3.67 3.63 3.64 3.68
4 3.92 3.79 3.71 3.67 3.68 3.72
5 3.96 3.83 3.76 3.73 3.73 3.77
6 4.01 3.89 3.82 3.80 3.80 3.84

Nature
1 8.50 7.68 7.45 7.33 7.30 7.33
2 7.63 7.33 7.16 7.07 7.06 7.10
3 7.53 7.30 7.15 7.09 7.09 7.13
4 7.50 7.30 7.18 7.13 7.14 7.19
5 7.51 7.34 7.23 7.19 7.20 7.25
6 7.55 7.39 7.30 7.27 7.27 7.32

value 𝑏 = 5 for all of them. Radius by radius is the best linear
function with 𝑦 = 2 for column 𝑎 and 𝑦 = 5 for column 𝑏.
For Lena RMSE is equal to 4.78, for Picture is equal to 3.61,
and for Nature is equal to 7.06.
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(a) (b)

Figure 8: (a) Basic function for radius 2; (b) basic function for radius 4.
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We use a new method based on discrete fuzzy transforms for coding/decoding frames of color videos in which we determine
dynamically the GOP sequences. Frames can be differentiated into intraframes, predictive frames, and bidirectional frames, and we
consider particular frames, calledΔ-frames (resp., R-frames), for codingP-frames (resp., B-frames) by using two similaritymeasures
based on Lukasiewicz 𝑡-norm; moreover, a preprocessing phase is proposed to determine similarity thresholds for classifying the
above types of frame. The proposed method provides acceptable results in terms of quality of the reconstructed videos to a certain
extent if compared with classical-based F-transforms method and the standard MPEG-4.

1. Introduction

A video can be considered as a sequence of frames of sizes
𝑁 ×𝑀; a frame is an image that can be compressed by using
a lossy compression method. We can classify each frame as
intraframe (for short, I-frame), predictive frame (for short, P-
frame), and bidirectional frame (for short, B-frame) which is
more compressible than I-frame. A B-frame can be predicted
or interpolated from an earlier and/or later frame. In order
to avoid a growing propagation error, a B-frame is not used
as a reference to make further predictions in most encoding
standards except in AVC [1]. A frame can be considered
as a P-frame if it is “similar” to the previous I-frame in
the frame sequence; otherwise, it must be considered as a
new I-frame. This similarity relation between a P-frame and
the previous I-frame is fundamental in video-compression
processes because a P-frame has values in its pixels very
close to the pixels of the previous I-frame. This suggests
to define a frame containing differences between a P-frame
and the previous I-frame, called Δ-frame which has a low
quantity of information and hence it can be coded with a
low compression rate. A P-frame is decoded via the previous
I-frame and the Δ-frame. In the MPEG-4 method [2, 3],
that adopts the JPEG technique [4] for coding/decoding
frames, the I-frames, P-frames, and B-frames are arranged
in a Group of Picture (for short, GOP) sequence. A B-frame

is reconstructed by using either the previous or successive
I-frame. Here the results of [5] are improved by using a
technique based on F-transforms for coding B-frames. For
convenience, we assume that the first frame of a video is an
I-frame. We assign an ID number to each frame of the video.
Thenwe can say that the 𝑘th frame is a B-frame or a P-frame if
it is “very similar” to the previous 𝑖th I-frame in the sense that
its similarity Sim(𝑖, 𝑘) a parameter defined on the Lukasiewicz
𝑡-norm (see formula (12)) is greater than a threshold value
Sim𝑃 [5]; otherwise the 𝑘th frame is assumed to be a new I-
frame as the first frame of the successive GOP sequence.

The first algorithm is used for determining the GOP
sequences; the second algorithm is used for determining the
type of P-frame or B-frame. The first frame of the GOP
sequence is always an I-frame and the last frame is a P-frame.
The function “analyze GOP sequence (ID1, ID2)” reported
in Algorithm 1 describes this process, where ID1 is the ID of
the first I-frame and ID2 is the ID of the last P-frame in the
GOP sequence. This function is used for determining if the
𝑘th frame in the GOP sequence, where ID1 < 𝑘 < ID2, is a
B-frame or a P-frame. We define a threshold similarity Sim𝐵,
and we compare it with the frame whose ID is formed from
the integer [𝑀𝑠] contained in the mean𝑀𝑠 of the previous I-
frame or P-frame and the 𝑘th frame by obtaining a similarity
value Sim(𝑘, [𝑀𝑠]). In the array element NP[𝑘] we insert the
ID number of the last frame after the 𝑘th frame for which



2 Advances in Fuzzy Systems

Sim(𝑘, [𝑀𝑠]) < Sim𝐵 holds. The variable 𝑖 contains the
ID number of the previous I-frame or P-frame; it is initially
called ID1; the variable 𝑤 points to the last frame in the GOP
sequence; it is called ID2.

Algorithm 1 (analyze GOP sequence (ID1, ID2)). Pseudo-
code for determining a GOP sequence

(1) 𝑖 = ID of the first I-frame //𝑖 is the ID of first frame of
the video

(2) 𝑤 = number of frames //𝑤 is the ID of the last P-frame
of the video

(3) 𝑘 = 𝑖 + 1
(4) IF 𝑘 < 𝑤
(5) Calculate the similarity Sim(𝑖, 𝑘) between the 𝑘th

frame and the 𝑖th frame
(6) If Sim(𝑖, 𝑘) < Sim𝑃,

(a) the 𝑘th frame is a B-frame or a P-frame and is
inserted in the GOP sequence

(b) 𝑘 = 𝑘 + 1

(7) Else

(a) analyse GOP sequence (𝑖, 𝑘 − 1)
(b) 𝑖 = 𝑘
(c) go to (3)

(8) End.

Algorithm 2. Pseudo-code for determining type of frames

(1) 𝑖 = ID1//𝑖 is the ID of the first frame of the GOP
sequence

(2) 𝑤 = ID2//𝑤 is the ID of the last P-frame of the GOP
sequence

(3) For each 𝑘 in [𝑖 + 1, 𝑤 − 1]
NP[𝑘] = 𝑘//InitializeNP[𝑘]

(4) 𝑠 = 𝑘 + 1
(5) Create the [𝑀𝑠]th frame as a new frame whose

normalized pixels are obtained as the mean between
the normalized pixels of the 𝑖th and 𝑠th frames

(6) Calculate the similarity Sim(𝑘, [𝑀𝑠]) between the 𝑘th
and [𝑀𝑠]th frames. If Sim(𝑘, [𝑀𝑠]) < Sim𝐵,

(a) NP[𝑘] = 𝑠 − 1
(b) Else 𝑠 = 𝑠 + 1
(c) go to step (6)

(7) next for
(8) NPMin = min(NP[𝑘])
(9) The frames between the 𝑖th and NPMin-th frames are

labelled as B-frames
(10) The NPMin-th frame is labelled as a P-frame
(11) If NPmin < 𝑤 then

(a) 𝑖 = NPMin,
(b) go to step (2)

(12) End.

In our approach we determine a GOP sequence at each
step. The frame after the last P-frame is the I-frame of the
new GOP sequence. After determining the GOP sequences
of the color video, we use the F-transforms [5, 7–10] for
compressing the frames. The F-transform method has been
developed in [5]. In this paper each frame is converted in the
𝑌𝑈𝑉 space. Indeed, since the human eye perceives an image
mostly in the 𝑌 band (brightness) with respect to the 𝑈 and
𝑉 bands (chrominance), we can use a stronger compression
rate for coding the image in 𝑈 and 𝑉 bands with respect to
that one used for coding the image in the 𝑌 band, without
loss of information in the reconstructed image. In [5] the
authors show that the quality of the reconstructed images is
better than the one obtained using the F-transform method
directly in the 𝑅𝐺𝐵 space (see also [11, 12]). The proposed
method is widely discussed in Section 4. In Sections 2 and
3 the theory of F-transforms and its application are recalled
for image compression, respectively. In Section 5 the results
are deduced on a large color videos dataset.

2. Fuzzy Transforms

We recall from [9] some essential definitions. Let 𝑛 ≥ 3 and
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
be points (nodes) of [𝑎, 𝑏] such that 𝑥

1
= 𝑎 <

𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 𝑏. The fuzzy sets 𝐴

1
, . . . , 𝐴

𝑛
: [𝑎, 𝑏] → [0, 1]

form a fuzzy partition of [𝑎, 𝑏] if
(1) 𝐴

𝑖
(𝑥
𝑖
) = 1 for any 𝑖 = 1, 2, . . . , 𝑛;

(2) 𝐴
𝑖
(𝑥) = 0 if 𝑥 ∉ (𝑥

𝑖−1
, 𝑥
𝑖+1
), where 𝑖 = 1, 2, . . . , 𝑛 and

𝑥
0
= 𝑥
1
= 𝑎, 𝑥

𝑛+1
= 𝑥
𝑛
= 𝑏;

(3) 𝐴
𝑖
(𝑥) is a continuous function on [𝑎, 𝑏];

(4) 𝐴
𝑖
(𝑥) is strictly increasing on the interval [𝑥

𝑖−1
, 𝑥
𝑖
] for

𝑖 = 2, . . . , 𝑛 and is strictly decreasing on the interval [𝑥
𝑖
, 𝑥
𝑖+1
]

for 𝑖 = 1, . . . , 𝑛 − 1;
(5) for any 𝑥 ∈ [𝑎, 𝑏], ∑𝑛

𝑖=1
𝐴
𝑖
(𝑥) = 1.

We say that {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
} constitute a symmetric fuzzy

partition if the following hold:
(6) equidistance of the nodes, that is, 𝑥

𝑖
= 𝑎 + ℎ ⋅ (𝑖 − 1)

for 𝑖 = 1, 2, . . . , 𝑛, where ℎ = (𝑏 − 𝑎)/(𝑛 − 1);
(7) 𝐴

𝑖
(𝑥
𝑖
− 𝑥) = 𝐴

𝑖
(𝑥
𝑖
+ 𝑥) for any 𝑥 ∈ [0, ℎ] and 𝑖 =

2, . . . , 𝑛 − 1;
(8) 𝐴

𝑖+1
(𝑥) = 𝐴

𝑖
(𝑥 − ℎ) for any 𝑥 ∈ [𝑥

𝑖
, 𝑥
𝑖+1
] and 𝑖 =

1, 2, . . . , 𝑛 − 1.
Considering functions 𝑓 taking values on a finite set

𝑃 = {𝑝
1
, . . . , 𝑝

𝑚
} ⊆ [𝑎, 𝑏], 𝑓 : 𝑃 → [0, 1], we suppose

that 𝑃 is sufficiently dense with respect to a fuzzy partition
{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
} of [𝑎, 𝑏], that is, if 𝑚 > 𝑛 and for each

𝑖 = 1, . . . , 𝑛 there exists an index 𝑗 ∈ {1, . . . , 𝑚} such that
𝐴
𝑖
(𝑝
𝑗
) > 0. Now let 𝑛,𝑚 ≥ 3, 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑚
∈ [𝑐, 𝑑] be

other 𝑚 assigned nodes such that 𝑦
1
= 𝑐 < ⋅ ⋅ ⋅ < 𝑦

𝑚
= 𝑑.

Let 𝐶
1
, . . . , 𝐶

𝑚
: [𝑐, 𝑑] → [0, 1] be another fuzzy partitions

of [𝑐, 𝑑]. Let 𝑓 : 𝑃 × 𝑄 → [0, 1] be a function defined
on the finite set 𝑃 × 𝑄 = {𝑝

1
, . . . , 𝑝

𝑁
} × {𝑞

1
, . . . , 𝑞

𝑀
} ⊆

[𝑎, 𝑏] × [𝑐, 𝑑], with 𝑁 > 𝑛 and 𝑀 > 𝑚, where 𝑃 (resp.,
𝑄) is sufficiently dense with respect to some fuzzy partition
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{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
} of [𝑎, 𝑏] (resp., {𝐶

1
, . . . , 𝐶

𝑚
} of [𝑐, 𝑑]). Then

[𝐹
𝑘𝑙
], 𝐹
𝑘𝑙
∈ [0, 1], 𝑘 = 1, . . . , 𝑛 and 𝑙 = 1, . . . , 𝑚, is the fuzzy

matrix which is defined as discrete F-transform of 𝑓 with
respect to {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
} and {𝐶

1
, . . . , 𝐶

𝑚
} if the following

holds:

𝐹
𝑘𝑙
=
∑
𝑀

𝑗=1
∑
𝑁

𝑖=1
𝑓 (𝑝
𝑖
, 𝑞
𝑗
)𝐴
𝑘
(𝑝
𝑖
) 𝐶
𝑙
(𝑞
𝑗
)

∑
𝑀

𝑗=1
∑
𝑁

𝑖=1
𝐴
𝑘
(𝑝
𝑖
) 𝐶
𝑙
(𝑞
𝑗
)

. (1)

Afterwards we define 𝑓𝐹
𝑛𝑚

: 𝑃 × 𝑄 → [0, 1] to be the
inverse F-transform of𝑓with respect to {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
} and

{𝐶
1
, . . . , 𝐶

𝑚
} as

𝑓
𝐹

𝑛𝑚
(𝑝
𝑖
, 𝑞
𝑗
) =
𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝐹
𝑘𝑙
𝐴
𝑘
(𝑝
𝑖
) 𝐶
𝑙
(𝑞
𝑗
) . (2)

The following theorem holds.

Theorem 3. Let 𝑓 : 𝑃 ×𝑄 → [0, 1] be a function assigned on
𝑃 × 𝑄 = {𝑝

1
, . . . , 𝑝

𝑁
} × {𝑞
1
, . . . , 𝑞

𝑀
} ⊆ [𝑎, 𝑏] × [𝑐, 𝑑]. Then for

every 𝜀 > 0, there exist two integers 𝑛(𝜀), 𝑚(𝜀) with 𝑛(𝜀) < 𝑁,
𝑚(𝜀) < 𝑀 and some fuzzy partitions {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛(𝜀)
} of

[𝑎, 𝑏] and {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚(𝜀)
} of [𝑐, 𝑑] for which 𝑃 and 𝑄 are

sufficiently dense with respect to these partitions, respectively,
and such that the following inequality holds for every 𝑖 =
1, . . . , 𝑁, 𝑗 = 1, . . . ,𝑀:

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑝𝑖, 𝑞𝑗) − 𝑓
𝐹

𝑛(𝜀)𝑚(𝜀)
(𝑝
𝑖
, 𝑞
𝑗
)
󵄨󵄨󵄨󵄨󵄨 < 𝜀. (3)

3. The Coding/Decoding Process

Let 𝑅 be an image of sizes 𝑁 × 𝑀, considered as a fuzzy
relation 𝑅 : (𝑖, 𝑗) ∈ {1, . . . , 𝑁} × {1, . . . ,𝑀} → [0, 1]; that
is, 𝑅(𝑖, 𝑗) = 𝑃(𝑖, 𝑗)/𝐿

𝑡
, with 𝑃(𝑖, 𝑗) being the normalized value

of the pixel with respect to the length 𝐿𝑡 of the scale used.
For simplicity, let 𝑝

𝑖
= 𝑖, 𝑞

𝑗
= 𝑗, 𝑎 = 𝑐 = 1, 𝑏 = 𝑁,

and 𝑑 = 𝑀. Let the fuzzy sets 𝐴
1
, . . . , 𝐴

𝑛
: [1,𝑁] →

[0, 1] and 𝐶
1
, . . . , 𝐶

𝑚
: [1,𝑀] → [0, 1], with 𝑛 < 𝑁

and 𝑚 < 𝑀, form a fuzzy partition of [1,𝑁] and [1,𝑀],
respectively. Following [8], 𝑅 is subdivided in submatrices
𝑅
𝐵
of sizes 𝑁(𝑅

𝐵
) × 𝑀(𝑅

𝐵
), 𝑅
𝐵
: (𝑖, 𝑗) ∈ {1, . . . , 𝑁(𝑅

𝐵
)} ×

{1, . . . ,𝑀(𝑅
𝐵
)} → [0, 1], called blocks, coded to matrices

of sizes 𝑛(𝑅
𝐵
) × 𝑚(𝑅

𝐵
), (𝑛(𝑅

𝐵
) < 𝑁(𝑅

𝐵
), 𝑚(𝑅

𝐵
) < 𝑀(𝑅

𝐵
))

via the following discrete F-transforms [𝐹𝐵
𝑘𝑙
] for every (𝑘, 𝑙) ∈

{1, . . . , 𝑛(𝑅
𝐵
)} × {1, . . . , 𝑚(𝑅

𝐵
)} as

𝐹
𝐵

𝑘𝑙
=
∑
𝑀(𝑅𝐵)

𝑗=1
∑
𝑁(𝑅𝐵)

𝑖=1
𝑅
𝐵
(𝑖, 𝑗) 𝐴

𝑘
(𝑖) 𝐶
𝑙
(𝑗)

∑
𝑀(𝑅𝐵)

𝑗=1
∑
𝑁(𝑅𝐵)

𝑖=1
𝐴
𝑘
(𝑖) 𝐶
𝑙
(𝑗)

, (4)

and decode [𝐹𝐵
𝑘𝑙
] via 𝑅𝐹

𝑛(𝑅𝐵)𝑚(𝑅𝐵)
: (𝑖, 𝑗) ∈ {1, . . . , 𝑁(𝑅

𝐵
)} ×

{1, . . . ,𝑀(𝑅
𝐵
)} → [0, 1] defined as

𝑅
𝐹

𝑛(𝑅𝐵)𝑚(𝑅𝐵)
=

𝑀(𝑅𝐵)

∑
𝑗=1

𝑁(𝑅𝐵)

∑
𝑖=1

𝐹
𝐵

𝑘𝑙
𝐴
𝑘
(𝑖) 𝐶
𝑙
(𝑗) (5)

which approximates 𝑅
𝐵
in the sense of Theorem 3; that

is, there exist, for every 𝜀 > 0, two integers 𝑛(𝑅
𝐵
, 𝜀),

𝑚(𝑅
𝐵
, 𝜀) such that the following holds for every (𝑖, 𝑗) ∈

{1, . . . , 𝑁(𝑅
𝐵
)} × {1, . . . ,𝑀(𝑅

𝐵
)}:

󵄨󵄨󵄨󵄨󵄨𝑅𝐵 (𝑖, 𝑗) − 𝑅
𝐹

𝑛(𝑅𝐵,𝜀)𝑚(𝑅𝐵,𝜀)
(𝑖, 𝑗)

󵄨󵄨󵄨󵄨󵄨 < 𝜀. (6)

Unfortunately the previous theorem does not suggest a
method for finding such integers, and then we try to assign
values to 𝑛(𝑅

𝐵
) = 𝑛(𝑅

𝐵
, 𝜀) and 𝑚(𝑅

𝐵
) = 𝑚(𝑅

𝐵
, 𝜀) for getting

compression rates given by

𝜌 (𝑅
𝐵
) =

𝑛 (𝑅
𝐵
) ⋅ 𝑚 (𝑅

𝐵
)

𝑁 (𝑅
𝐵
) ⋅ 𝑀 (𝑅

𝐵
)

(7)

which are useful to code any original block 𝑅
𝐵
. The recom-

position of the blocks 𝑅𝐹
𝑛(𝑅𝐵)𝑚(𝑅𝐵)

gives the image 𝑅𝐹 whose
PSNR with respect to the original image 𝑅 is calculated via
the following well-known formula:

PSNR (𝑅, 𝑅𝐹)

= 20log
10

𝐿𝑡

√∑
𝑁

𝑖=1
∑
𝑀

𝑗=1
(𝑅 (𝑖, 𝑗) − 𝑅𝐹 (𝑖, 𝑗))

2

/𝑁 ×𝑀
.

(8)

In accordance with [8], in the proposed experiments the
best results are deduced with the symmetric fuzzy partitions
𝐴
1
, . . . , 𝐴

𝑛(𝑅𝐵)
: [1,𝑁(𝑅

𝐵
)] → [0, 1] and 𝐶

1
, . . . , 𝐶

𝑚(𝑅𝐵)
:

[1,𝑀(𝑅
𝐵
)] → [0, 1] defined as

𝐴
1
(𝑖) =

{
{
{

0.5 (cos 𝜋
ℎ
(𝑖 − 1) + 1) if 1 ≤ 𝑖 ≤ 𝑥

2
,

0 else,

𝐴
𝑘
(𝑖) =

{
{
{

0.5 (cos 𝜋
ℎ
(𝑖 − 𝑥

𝑘
) + 1) if 𝑥

𝑘
≤ 𝑖 ≤ 𝑥

𝑘+1
,

0 else,

𝐴
𝑛(𝑅𝐵)

(𝑖)

=
{
{
{

0.5 (cos 𝜋
ℎ
(𝑖 − 𝑥

𝑛(𝑅𝐵−1)
)+1) if 𝑥

𝑛(𝐵)−1
≤𝑖≤𝑁 (𝑅

𝐵
) ,

0 else,
(9)
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where 𝑘 = 2, . . . , 𝑛(𝑅
𝐵
) − 1, ℎ = (𝑁(𝑅

𝐵
) − 1)/(𝑛(𝑅

𝐵
) − 1),

𝑥
𝑘
= 1 + ℎ ⋅ (𝑘 − 1), and

𝐶
1
(𝑗) =

{
{
{

0.5 (cos 𝜋
𝑠
(𝑗 − 1) + 1) if 1 ≤ 𝑗 ≤ 𝑦

2
,

0 else,

𝐶
𝑡
(𝑗) =

{
{
{

0.5 (cos 𝜋
𝑠
(𝑗 − 𝑦

𝑡
) + 1) if 𝑦

𝑡−1
≤ 𝑗 ≤ 𝑥

𝑡+1
,

0 else,

𝐶
𝑚(𝑅𝐵)

(𝑗)

=
{
{
{

0.5(cos 𝜋
𝑠
(𝑗−𝑦
𝑚(𝑅𝐵)−1

)+1) if 𝑦
𝑚(𝑅𝐵)−1

≤𝑗≤𝑀(𝑅
𝐵
),

0 else,
(10)

where 𝑡 = 2, . . . , 𝑚(𝑅
𝐵
)−1, 𝑠 = (𝑀(𝑅

𝐵
)−1)/(𝑚(𝑅

𝐵
)−1), and

𝑦
𝑡
= 1 + 𝑠 ⋅ (𝑡 − 1).

4. Our Proposal

The proposed process includes the following steps:

(1) each color frame, seen as a fuzzy relation, is converted
from the space 𝑅𝐺𝐵 to the space 𝑌𝑈𝑉;

(2) a classification of the frames is made via the previous
algorithms;

(3) the compression rate 𝜌
𝐼
= 𝜌
𝐼
(𝑅
𝐵
) of the I-frames is

the mean of three (possibly different) compression
rates used in the three bands, that is, if any block
𝑅
𝐵
of an I-frame has sizes (say) 𝑁

𝐼𝑌
(𝑅
𝐵
) × 𝑀

𝐼𝑌
(𝑅
𝐵
)

in the band 𝑌 and is coded to a block of sizes (say)
𝑛
𝐼𝑌
(𝑅
𝐵
) ×𝑚
𝐼𝑌
(𝑅
𝐵
) for which the related compression

rate is given by 𝜌
𝐼𝑌
= 𝜌
𝐼𝑌
(𝑅
𝐵
) = (𝑛

𝐼𝑌
(𝑅
𝐵
) ⋅ 𝑚
𝐼𝑌
(𝑅
𝐵
)) ⋅

(𝑁
𝐼𝑌
(𝑅
𝐵
) ⋅ 𝑀
𝐼𝑌
(𝑅
𝐵
))− and the analogous meaning

has the symbols 𝜌
𝐼𝑈
, 𝜌
𝐼𝑉
. Of course we have 𝜌

𝐼
=

(𝜌
𝐼𝑌
+𝜌
𝐼𝑈
+𝜌
𝐼𝑉
)/3. A similar meaning can be given to

𝜌
Δ
= 𝜌
Δ
(𝑅
𝐵
) (resp., 𝜌

𝑅
= 𝜌
𝑅
(𝑅
𝐵
)) for Δ-frames (resp.,

R-frames).

A color image in the𝑅𝐺𝐵 space with pixels normalized in
[0, 1] is converted to 𝑌𝑈𝑉 space via the formula [5]

[

[

𝑌
𝑈
𝑉

]

]

= [

[

0.299 0.587 0.114
−0.169 −0.332 0.500
0.500 −0.419 −0.0813

]

]

[

[

𝑅
𝐺
𝐵

]

]

+ [

[

0
0.5
0.5

]

]

. (11)

Since no misunderstanding can arise, a frame is denoted by a
capital letter instead of its ID number in a sequence of a video.
In step (2), the similarity measure adopted in [5] is used for
classifying the type of frame. It is based on the Lukasiewicz

𝑡-norm between two frames 𝐹 and 𝐺, with 𝐹, 𝐺 : (𝑖, 𝑗) ∈
{1, 2, . . . , 𝑁} × {1, 2, . . . ,𝑀} → [0, 1], defined as

Sim (𝐹, 𝐺) = (
𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

{1 −max {𝐹 (𝑖, 𝑗) , 𝐺 (𝑖, 𝑗)}

+min {𝐹 (𝑖, 𝑗) , 𝐺 (𝑖, 𝑗)}})

× (𝑁 ×𝑀)
−1

.

(12)

In the 𝜇th band (𝜇 ∈ {𝑌, 𝑈, 𝑉}) we will use the symbol
Sim
𝜇
(𝐹, 𝐺). The authors [5] have shown that Lukasiewicz

𝑡-norm provides the best results with respect to other 𝑡-
norms as the classical Min and the arithmetical product. For
convenience, we assume that the first frame of a video is an
I-frame. For determining a GOP sequence in a single band, it
can be verified if the successive frame 𝐺 is a B-frame or a P-
frame, that is, if it is “very similar” to the preceding I-frame 𝐹
in the sense that Sim(𝐹, 𝐺) < Sim𝐵, with Sim𝐵 ∈ [0, 1] being
a prefixed threshold value; otherwise𝐺 is assumed to be a new
I-frame. We determine a GOP sequence in an assigned band
using (12) with the following process:

(1) we consider the first frame 𝐹 as an I-frame;
(2) we compare 𝐹 with the successive frame 𝐺;
(3) if Sim(𝐹, 𝐺) < Sim𝑃, the frame 𝐺 is a B-frame or a

P-frame and is enclosed in the GOP sequence. Then
we consider the successive frame𝐺 and go to step (2);
otherwise 𝐺 is a new I-frame. The previous frame is
a P-frame and represents the last frame of the GOP
sequence.

After determining the GOP sequence, we check if each
frame of the sequence is a B-frame or a P-frame by using
the previous algorithms. In step (3) we finally compress the
frames. In order to reduce the mean compression rate for a
P-frame, in [5] and references therein, the authors introduce
a “difference” frame D, called Δ-frame, between a P-Frame
𝐺 and I-frame 𝐹 by defining 𝐷 : (𝑖, 𝑗) ∈ {1, 2, . . . , 𝑁} ×
{1, 2, . . . ,𝑀} → [0, 1] as

𝐷(𝑖, 𝑗) =
[𝐹 (𝑖, 𝑗) − 𝐺 (𝑖, 𝑗) + 1]

2
. (13)

The usage of the Δ-frame has the advantage of using a
stronger compression rate for the P-frames with respect to
the I-frames; indeed a P-frame 𝐺 has values in its pixels very
close to the pixels of the previous I-frame. Hence theΔ-frame
𝐷 in (13) has a low quantity of information and it can be
coded with a low compression rate.Then, if𝐷󸀠 and 𝐹󸀠 are the
frames obtained after coding/decoding 𝐹 and 𝐷, the frame
𝐺󸀠 (reconstruction of the frame 𝐺), with 𝐷󸀠, 𝐹󸀠, 𝐺󸀠 : (𝑖, 𝑗) ∈
{1, 2, . . . , 𝑁} × {1, 2, . . . ,𝑀} → [0, 1], is deduced from the
membership values of 𝐹󸀠 and𝐷󸀠 via the following formula:

𝐺
󸀠

(𝑖, 𝑗) =
max {0, 𝐹󸀠 (𝑖, 𝑗) − 2𝐷󸀠 (𝑖, 𝑗) + 1}
max {1, 𝐹󸀠 (𝑖, 𝑗) − 2𝐷󸀠 (𝑖, 𝑗) + 1}

. (14)
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(a) (b)

(c) (d)

Figure 1: (a) Frame 1 of “tennis2” [6], (b) Frame 1 in 𝑌 band, (c) Frame 1 in 𝑈 band, and (d) Frame 1 in 𝑉 band.
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Figure 2: Diff(PSNR) with the similarity in 𝑌, 𝑈, and 𝑉 bands.

Nowwe present a new schema for coding/decoding a B-frame
which is inserted in a GOP between an I-frame 𝐹 and a P-
frame 𝐺. Then we consider a frame 𝑅 given by

𝑅 (𝑖, 𝑗) =
[(𝐹 (𝑖, 𝑗) + 𝐺 (𝑖, 𝑗)) /2 − 𝐵 (𝑖, 𝑗) + 1]

2
(15)

and we code it. Let 𝑅󸀠 be the frame obtained after decoding
𝑅, with 𝑅󸀠 : (𝑖, 𝑗) ∈ {1, 2, . . . , 𝑁} × {1, 2, . . . ,𝑀} →
[0, 1]. All the coding/decoding processes are realized via the
F-transforms with the symmetric fuzzy partition given in
Section 3. We reconstruct the B-frame, say 𝐵󸀠, by combining
the membership values of 𝐹󸀠, 𝐺󸀠, and 𝑅󸀠 via the following
formula:

𝐵
󸀠

(𝑖, 𝑗) =
max {0, [𝐹󸀠 (𝑖, 𝑗) + 𝐺󸀠 (𝑖, 𝑗)] /2 − 2𝑅󸀠 (𝑖, 𝑗) + 1}
max {1, [𝐹󸀠 (𝑖, 𝑗) + 𝐺󸀠 (𝑖, 𝑗)] /2 − 2𝑅󸀠 (𝑖, 𝑗) + 1}

.

(16)

We use the formulas (14) and (16) for reconstructing the
P-frames and the B-frames in the videos, respectively. In
accordance with [5], we convert each image in the 𝑅𝐺𝐵 space
by using the formula

[
[

[

𝑅

𝐺

𝐵

]
]

]

=
[
[

[

1 0 1.4075

1 −0.3455 −0.7169

1 1.7790 0

]
]

]

[
[

[

𝑌

𝑈

𝑉

]
]

]

+
[
[

[

0.5

0.5

0.5

]
]

]

. (17)

For simplicity of presentation, in our tests here we adopt
𝑀(𝑅
𝐵
) = 𝑁(𝑅

𝐵
), 𝑚(𝑅

𝐵
) = 𝑛(𝑅

𝐵
). In [5] a preprocessing

phase is adopted for determining the threshold Sim𝑃 calcu-
lated with the following steps:
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(a) (b)

(c)

Figure 3: (a) Δ-frame from Frame 4 in 𝑌 band, (b) R-frame from Frame 2 in 𝑌 band, and (c) R-frame from Frame 3 in 𝑌 band.

(a) (b)

(c) (d)

Figure 4: (a) Δ-frame from Frame 6 in 𝑈 band, (b) R-frame from Frame 2 in𝑈 band, (c) R-frame from Frame 3 in𝑈 band, and (d) R-frame
from Frame 4 in 𝑈 band.
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(a) (b)

(c) (d)

Figure 5: (a) Δ-frame from Frame 5 in 𝑉 band, (b) R-frame from Frame 2 in 𝑉 band, (c) R-frame from Frame 3 in 𝑉 band, and (d) R-frame
from Frame 4 in 𝑉 band.

(1) if the initial frame 𝐹 is considered as an I-frame,
we compress 𝐹 in the 𝜇th band (𝜇 ∈ {𝑌, 𝑈, 𝑉})
with compression rate 𝜌

𝐼𝜇
; each successive frame is

a P-frame 𝐺 and we archive the similarity value
Sim
𝜇
(𝐹, 𝐺) calculated with formula (12); we compress

the Δ-frame𝐷 in the 𝜇th band with compression rate
equal to 𝜌

𝑃𝜇
(less than of 𝜌

𝐼𝜇
) and if 𝐷󸀠 is the related

decompressed frame, we derive the P-frame 𝐺󸀠 via
(14);

(2) each P-frame 𝐺 is also coded in the 𝜇th band
with compression rate 𝜌

𝑃𝜇
and let 𝐺󸀠󸀠 be the

decoded P-frame by using directly the F-transforms;
then we determine the difference diff(PSNR) =
|PSNR(𝐺󸀠󸀠, 𝐺) − PSNR(𝐺󸀠, 𝐺)|;

(3) the trend of diff(PSNR) is plotted with respect to
the similarity Sim

𝜇
(𝐹, 𝐺) in each band of the image.

As similarity threshold, we assume that value of
Sim
𝜇
(𝐹, 𝐺) such that diff(PSNR) does not exceed a

prefixed limit is equal to 3 (cf. [5] for details);

(4) then the threshold Sim𝑃 is given by

Sim𝑃 = max
𝐺∈GOP

{max {Sim
𝜇
(𝐹, 𝐺) : 𝜇 ∈ {𝑌, 𝑈, 𝑉}}} (18)

with 𝐹 being the first I-frame of the GOP sequence. In our
tests, in addition we put Sim𝐵 = Sim𝑃 in the preprocessing
phase.

5. The Results

For brevity of discussion, we show the results obtained for the
color video “tennis2” [6].We present all the results by assum-
ing 𝜌
𝐼
≈ 0.262 for the I-frames, 𝜌

Δ
≈0.027 for the Δ-frames,

and 𝜌
𝑅
≈ 0.020 for the R-frames. Figures 1(a)–1(d) show

the first frame of the video and the corresponding single-
band images in the 𝑌𝑈𝑉 space, respectively. As example of
Diff(PSNR), Figure 2 contains the plots of Diff(PSNR) ≤ 3
for the similarity values obtained in 𝑌, 𝑈, and 𝑉 bands for
which we choose Sim

𝑌
(𝐹, 𝐺) > 0.948 = Sim𝑃 (as average).

As examples we show some Δ-frames and R-frames in each
band.

(i) 𝑌 Band. The first P-frame is given by the fourth frame.
Figure 3(a) contains the Δ-frame obtained by using (13)
from the fourth frame and the first frame (an I-frame). The
second and the third frames are B-frames. Figure 3(b) (resp.,
Figure 3(c)) shows the R-frame obtained by using (15) from
the second (resp., third) frame, the first frame (an I-frame),
and the fourth frame (a P-frame).

(ii) 𝑈 Band. The first P-frame is given by the sixth frame.
Figure 4(a) contains the Δ-frame obtained by using (13) from
the sixth frame and the first frame (an I-frame).The frames 2,
3, and 4 are B-frames. Figures 4(b)–4(d) show the R-frames
obtained by using (15) from the first frame (an I-frame),
the B-frames 2, 3, and 4, and the sixth frame (a P-frame),
respectively.

(iii)𝑉 Band. The first P-frame is given by the fifth frame.
Figure 5(a) contains the Δ-frame obtained by using (13) from
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(a) (b)

(c)

Figure 6: (a) Frame 2 in the proposed method, (b) Frame 2 in F-transforms, and (c) Frame 2 in MPEG-4.

Table 1: Results for “tennis2” [6] in the proposed method.

Parameters Y band U band V band
Number of I-frames 15 7 8
Number of P-frames 31 23 23
Number of B-frames 54 70 69
Mean compression rate 𝜌(B) 0.1128 0.0236 0.0245
Mean PSNR for I-Frames 27.011 25.545 25.812
Mean PSNR for P-Frames 24.816 23.710 23.815
Mean PSNR for B-Frames 24.734 22.819 23.026

the sixth frame and the first frame (an I-frame). The frames
2, 3, and 4 are B-frames. Figures 5(b)–5(d) show the R-frames
obtained by using (15) from the first frame (an I-frame),
the B-frames 2, 3, and 4, and the fifth frame (a P-frame),
respectively.

All the results obtained for the video “tennis2” are
synthetized in Table 1.

Figures 6(a)–6(c) contain Frame 2 decoded with the
proposed method, classical F-transforms, and MPEG-4,
respectively.

In Table 2 we report the final PSNR index in the three
methods.

6. Conclusions

We present a new method for coding/decoding color videos,
in which we classify a frame in I-frame, P-frame, and

Table 2: Comparison with other methods for “tennis2” [6].

Parameters Proposed method F-transforms MPEG-4
Mean compression rate 0.053 0.058 0.055
Mean PSNR 23.915 22.801 23.431

B-frame using similarity measures for determining the GOP
sequences and the type of frames. Our method seems to be
fully comparable with classical F-transforms andMPEG-4 for
similar mean compression rates to a certain extent.
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This study develops the water resources management model for conjunctive use of surface and subsurface water using a fuzzy
inference system (FIS). The study applies the FIS to allocate the demands of surface and subsurface water. Subsequently, water
allocations in the surface water system are simulated by using linear programming techniques, and the responses of subsurface
water system with respect to pumping are forecasted by using artificial neural networks.The operating rule for the water systems is
that themore abundant water system suppliesmore water. By using the fuzzy rule, the FIS conjunctive usemodel easily incorporates
expert knowledge and operational polices intowater resourcesmanagement.The result indicates that the FISmodel ismore effective
and efficient when comparedwith the decoupled conjunctive use and simulation-optimizationmodels. Furthermore, the FISmodel
is an alternative way to obtain the conjunctive use policies between surface and subsurface water.

1. Introduction

The objective of the study is to develop a fuzzy rule-based
method for the conjunctive use of surface and subsurface
water systems. Zadeh [1] applied the fuzzy theory to math-
ematically deal with the imprecision and uncertainty. Fuzzy
logic extends upon traditional Boolean logic and deals with
the imprecision in human experience [2]. The fuzzy infer-
ence system (FIS) is an artificial intelligence technique that
combines the fuzzy set, fuzzy logic, and fuzzy reasoning [1, 3–
6]. The FIS utilizes linguistic variables, fuzzy rules, and fuzzy
reasoning and provides a tool for knowledge representation
based on degrees of membership [7]. During the past decade,
the FIS application ranged from runoff forecasting to surface
water supply [3–6, 8, 9]. Shrestha et al. [3] developed a FIS to
determine a real-world reservoir operation.They constructed
a fuzzy rule-based model to derive operation rules for a mul-
tipurpose reservoir. Their research used reservoir storages,
estimated inflows, and demands as the premises and took
reservoir releases as the consequences. The finding showed
that the fuzzy-based structure was ordinary and time-
saving in computation. Russell and Campbell [4] developed

the FIS for a simplified hydroelectric reservoir. The results
also showed that fuzzy logic seemingly offered a way to
improve the existing operating practices, which was relatively
easy to explain and understand when compared with the
complex optimization model. Panigrahi and Mujumdar [5]
used a FIS for a reservoir operation model. The study incor-
porated expert knowledge for framing the fuzzy rule from an
explicit stochastic model. Russell and Campbell [4] applied
the Adaptive-Network-Based FIS (ANFIS) to water resources
management and used the genetic algorithm to search
the optimal reservoir operation based on a given inflow
series. They used FIS for determining optimal water release
according to reservoir depth and inflow. However, previous
studies [3–5]mentioned that applying fuzzy logic to reservoir
operation could remain limited to a single reservoir system.

Conjunctive use of surface and subsurface water is a
challenging work for water resources management [10–14].
Conjunctive water management reduces the deficiencies
by using subsurface water to supplement scarce surface
water supply during the drought. The conjunction use
enhances the reliability of water supplies by providing
independent sources. Başaǧaoǧlu andMariño [10] developed
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a simulation-optimization model of a hypothetical river
basin to determine optimal operating policies for jointly
using surface and subsurface water supplies. The simulation
model was the response function to incorporate the transient
hydraulic interaction between stream and aquifer. The
response function coefficients were derived from results of
the numerical simulation model. Peralta et al. [11] employed
simulation-optimization models to maximize total annual
allocation of surface and subsurface water yield. They used
the models in attempt to satisfy temporally increasing
water needs for alternative future management scenarios.
Philbrick and Kitanidis [12] proposed the gradient dynamic
programming to solve the minimal operating cost problem
by regarding surface and subsurface storages as state variables
for realizing the impact of conjunctive use. Nishikawa [15]
developed a simulation-optimization model for managing
water resources for the city of Santa Barbara in a five-year
planning horizon. Moreover, subsurface water simulation is
linked with linear programming (LP). The model addressed
the cost in water supply to meet demands and control seawa-
ter intrusion. Azaiez [16] developed the model for the con-
junctive use of surface and subsurface water with an artificial
recharge and integrated opportunity costs for the unsatisfied
demand on the limitation of the final subsurface water level.
The problem was simplified to be formulated as a convex
program with linear constraints. Watkins andMcKinney [14]
applied decomposition algorithms to conjunctively managed
surface and subsurface water systems, with reference to
cost functions including both discrete and nonlinear terms.
The complexity had mainly arisen from integrating surface
and subsurface water, that is, two reservoirs and a confined
aquifer.Their study incorporated the subsurface water system
into the management model using the response matrix
approach. However, many studies applied the artificial neural
networks (ANNs) to model hydrology field complexity [17–
22] including rainfall-runoff modeling [22, 23] and ground-
water flow and transport [24]. The current work trained an
ANN to predict the time-varying subsurface water level in
response to management alternatives [18–21]. Coppola et al.
[18] trained an ANN with MODFLOW simulation data to
predict subsurface water levels at locations under various
pumping conditions. The ANN forecasted subsurface water
levels at the next time based on management alternatives
including control and state variables at the current time.

Utilizing fuzzy rules, the FIS provides a tool to incorpo-
rate human expert experience for modeling a conjunctive use
of surface and subsurface water. The FIS obtained allocated
demand of ground and surface water in each stage simulta-
neously. Then, the simulator (i.e., LP and ANN) determined
the future state of system, such as reservoir storages and
hydraulic heads at the next time. Moreover, the LP simulated
the operation of surfacewater system, and theANNpredicted
hydraulic head variations under time-varying pumping.

2. Methods

Figure 1 illustrates the procedure of the FIS conjunctive use
model. The FIS conjunctive use model comprises the control

and simulation levels. Firstly, the FIS, which is in the control
level, determines the assigned demand among surface and
subsurface water each time step. After determining the
assigned demands, the subsurface water submodel deter-
mines the hydraulic head using ANN [19], and the surface
water allocation submodel obtains the reservoir supply and
future reservoir storage using LP [25, 26].

2.1. Fuzzy Inference System (FIS). The FIS is composed of five
functional blocks [5]: (1) a rule base containing a number of
fuzzy if-then rules; (2) a relational database which defines
membership functions of the fuzzy set used in the fuzzy
rules; (3) a fuzzification interface which transforms crisp
inputs into degrees of match with linguistic values; (4) a
fuzzy reasoning which performs inference operations on the
rules; in FIS applications, the max-min and max product
compositional operators are used most commonly because
of their computational simplicity and efficiency; and (5)
a defuzzification interface which transforms a combined
output of fuzzy rules into a crisp value [2, 10, 22].The current
study uses the centroid method to defuzzify the aggregate
fuzzy set, directly computing the real valued output as a
normalized combination of membership values.

The study follows a typical process in developing the fuzzy
system; for example, (1) define the linguistics variables; (2)
construct the fuzzy rule structures; (3) determine the fuzzy
set parameters; (4) encode the fuzzy sets, fuzzy rules, and
the procedures; and (5) evaluate and tune the system [2]
(Figure 2). In this study, the operation rule is the concept of
water level index balance that the water system reaching the
highest levels at the current time has a priority for supply at
the next time [27, 28].The FIS follows the following rule; that
is, the abundant water system supplies more and the scarce
water system supplies less water. In the study, the premises
of the fuzzy rule are surface and subsurface water states, and
the consequence is the assigned demand of each well.The 𝑘th
fuzzy rule in each time step is given as:

if(∑
𝑖

(𝑉
𝑡

𝑖
+ IF𝑡
𝑖
) is 𝐴

𝑘
) and (ℎ

𝑡

is 𝐵
𝑘
) ,

then (𝐷𝑡 is 𝐶
𝑘
) ,

(1)

where 𝑉𝑡
𝑖
is the storage of the 𝑖th reservoir; IF𝑡

𝑖
is the inflow

of the 𝑖th reservoir; ℎ
𝑡

is the average subsurface water level
in the observation wells; 𝐷𝑡 is the assigned demand of each
well in the subsurface water system; and 𝐴

𝑘
, 𝐵
𝑘
and, 𝐶

𝑘
are

linguistic values in the 𝑘th rule.
The premises and consequences are assigned as the

triangular membership functions as in Figure 3. Two input
variables are surface water state and subsurface water state,
that is, average hydraulic head in the observations. The fuzzy
membership functions of the inputs are divided into five
categories, that is, “Low, Low Med., Medium, High Med. and,
High.” Triangular functions with equal base widths are the
simplest possible, and these are often selected for practical
applications [4]. In the study, the surface water state ranges
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Figure 1: Flowchart of the FIS conjunctive use model.

from 0 to 120 × 106m3 and the average hydraulic head
ranges from 70 to 94m in the observation wells. The output
variable is the assigned demand of each well from subsurface
water which ranges from 0 to 0.3 cms and is divided into
four categories in the membership function, that is, Low,
Low Med., Medium, and High. The FIS computes the weights
of each triggered rule, accumulating weights and outputs
for each rule, and finally computing the weighted output
for each rule [6]. Moreover, fuzzy sets provide a means of
translating linguistic descriptors into a usable numerical form
[26]. Table 1 shows the fuzzy rules; for example, If surface
water state is Low, andsubsurface water level isHigh, then the
assigned demand from subsurface water is High. After the
FIS determines subsurface water demand, the surface water
demand could be represented as

𝐷
𝑡

= 𝐷
𝑡

− 𝐷
𝑡

× 𝑁
𝑝
, (2)

where𝐷𝑡 is the whole water requirement in the tth time step;
𝐷𝑡 is the surface water assigned demand in the tth time step;
and𝑁

𝑃
is the number of pumping wells.

2.2. Surface Water Submodel. The surface water allocation
model is represented as

𝐽
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𝑡

[
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where SH𝑡
𝑗
is the shortage in demand 𝑗 at the 𝑡th time step,

SH𝑡
𝑗
= 𝐷𝑡
𝑗
− ∑
𝑖
𝑋𝑡
𝑖,𝑗
; 𝑋𝑡
𝑖,𝑗

means the supply from node 𝑖 in
demand 𝑗 at time step𝑡; and 𝑁

𝐷
is the demand node set; in
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Figure 2: Procedure of developing the fuzzy system.

the study, 𝑗 = 1.𝐺𝑡
𝑖𝑘
is the difference betweenwater level index

(WLI) of the reservoirs 𝑖 and 𝑘 at the 𝑡th time step [27, 28]
and𝑁

𝑆
is the reservoir storage node set; if 𝑖 = 𝑘, then 𝐺𝑡

𝑖𝑘
= 0

otherwise.𝑍𝑡
𝑖
is the ratio of residual volume to the capacity in

reservoir 𝑖 at the 𝑡th time step: (𝑉max
𝑖

−𝑉𝑡
𝑖
)/𝑉max
𝑖

; 𝑐
1
, 𝑐
2
, and 𝑐

3

are the weight coefficients applied to the shortage, surface-
water level index difference, and residual reservoir volume
ratio, respectively (𝑐

1
= 1, 𝑐
2
= 10, and 𝑐

3
= 1).𝑋𝑡

𝑖
denotes the

release from reservoir 𝑖 at time step𝑡; OF𝑡
𝑖
denotes spills of 𝑖

reservoir at time step 𝑡; and 𝑉𝑡
𝑖
is the storage of the reservoir

𝑖. 𝑉min
𝑖

and 𝑉max
𝑖

are minimum and maximum capacity of
the reservoir 𝑖. 𝑋min

𝑖,𝑗
and 𝑋max

𝑖,𝑗
are minimum and maximum

discharge of the pipe from node 𝑖 to 𝑗 and Ω is the node set
of the system network. The surface water demand considers
hedging rule at time step 𝑡. The hedging rule is illustrated as
follows:

if 𝑉𝑡joint ≥ 𝑉2, then 𝐷𝑡 = 𝐷𝑡,

if 𝑉
2
> 𝑉
𝑡

joint ≥ 𝑉3, then 𝐷𝑡 = 𝜔
1
𝐷
𝑡

if 𝑉𝑡joint < 𝑉3, then 𝐷𝑡 = 𝜔
2
𝐷
𝑡

,

(8)

where𝑉𝑡joint is the joint storage in all reservoirs;𝑉
1
is the sum

ofmaximum storage (upper limit) among the reservoirs;𝑉
2
is

Table 1: Rule table for the operation in conjunctive use operation
using FIS within high usage of subsurface water.

Surface water state
Low Low Med. Medium High Med. High

Subsurface water state
Low Low Low Low Low Low
Low Med. High High Low Low Low
Medium High High Low Low Low
High Med. High High Low Low Low
High High High Low Low Low

the sum of target storage (lower limit) among the reservoirs;
and 𝑉

3
is the sum of firm storage (critical limit) among the

reservoirs; 𝜔
1
and 𝜔

2
are the rationing factors. In the study,

𝜔
1
and 𝜔

2
are 0.85 and 0.75.

This study uses the linear programming (LP) to simulate
the surface water system in (3)∼(8).The formulation is as fol-
lows. Equation (3) specifies the objective function consisting
of three subobjectiveswhich include the total shortage in each
time step, the difference between the reservoir water level,
and the ratio of the residual water volume to the capacity of
each reservoir. Equations (4) and (5) list the mass balance
equation and the demand constraint of each reservoir in
each time step. Equation (6) specifies the capacity constraints
for each reservoir in each time step. Equations (7) and (8)
specify the constraints on the flow through the pipes and
hedging rule in each time step. In the study, the model first
determines the demand with the hedging rule (8), and then
the LP determines the flows in the system at 𝑡while satisfying
the demand with the hedging rule.

2.3. Subsurface Water Submodel. The current study uses
ANN to serve as the simulator for modeling nonlinear
and time-varying groundwater flow. An ANN consists of a
number of neurons arranged in an input layer, an output layer,
and one hidden layer. The inputs are state vectors, which are
the set of hydraulic head (ℎ𝑡) and the pumping rate vector
(𝑃𝑡). The output is the hydraulic head vector at the next
time step (ℎ𝑡+1). The subsurface water model is illustrated as
follows:

ℎ
𝑡+1

= 𝑓 (ℎ
𝑡

, 𝑃
𝑡

) , (9)

𝑃
𝑡

𝑖
≤ 𝐷
𝑡

, (10)

where ℎ𝑡 and ℎ𝑡+1 are subsurface water level vectors at time 𝑡
and 𝑡 + 1; 𝑃𝑡 is the supply vector offered from the pumping
well; and 𝑃𝑡

𝑖
is the supply at the well 𝑖 in the 𝑡th time

step. Equation (9) represents the subsurface water transient
equation with the artificial neural networks. Equation (10)
represents the demand-supply of constraint each well at time
𝑡. Pumping rate of eachwell is assumed to be less than or equal
to assigned demand with the FIS in the study.

The ANN was trained by the back-propagation learning
algorithm [29] for subsurface water table prediction. The
typical processes of the ANN parameters identification such
as the number of hidden layers and the neurons are listed
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in Negnevitsky [2]. This ANN consists of a three-layer feed-
forward network and one hidden layer in which the layer
contains twenty neurons.

2.4.The Simulation-OptimizationModel. To compare the FIS
with the simulation-optimization model, this study further
formulates the problem (1)∼(10) into the sequential opti-
mization problem. As previously stated, this investigation
integrates sequential optimization and simulation models to
solve the problem defined as follows:
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3,𝑖
𝑍
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]

,

𝑡 = 1 ∼ 𝑛; 𝑖, 𝑘 ∈ 𝑁
𝑆
, 𝑗 ∈ 𝑁

𝐷

subject to (4) ∼ (10) ,

(11)

where 𝑆𝐺𝑡 represents the difference between WLI of surface
and subsurface water systems at time step 𝑡 and 𝑐

4
is the

weight coefficient applied to WLI difference between surface
and subsurface water systems (𝑐

4
= 10). In the model, the

pumping rates are first obtained by the heuristic optimization
(i.e., genetic algorithm (GA)). Then, the release of each
reservoir and next time-step states are determined by (4)∼
(10) using the LP and ANN.

2.5. Case Study. This study performs numerical analysis on a
water supply problem to verify effectiveness of the proposed
methodology. The planning horizon in the study is twenty
years and each time step is ten days. Figure 4 shows the
conjunctive use system including two reservoirs and an
aquifer. Reservoirs 1 and 2 contain a capacity of 7.0×107 (m3)
and 5.0×107 (m3). Reservoir operation rules will be designed
to vary with periods [30]. Figures 5(a) and 5(b) are operation
rule curves for Reservoirs 1 and 2, respectively. Full of water
in reservoirs is assumed as the initial condition. Figure 6
shows both reservoirs inflows that reflect the hydrological
dynamics of Taiwan. The inflow ratio of drought season
to wet season is 0.32 (Reservoir 1) and 0.20 (Reservoir 2).
Moreover, the capacity factor (i.e., effective capacity/average
annual flow) of Reservoir 1 is 0.24 while that of Reservoir 2
is 0.35. Figure 7 demonstrates a hypothetical homogeneous
unconfined aquifer with dimensions of 17 km by 17 km.
The case contains 170 × 170 finite-difference meshes along
with five pumping wells (red blocks) and five observation
wells (black blocks). The boundary conditions on the north
and south sides are no-flow boundaries. The west and east
constant-head boundaries are 100m and 80m, respectively.
Aquifer properties and simulation parameters are shown in
Table 2.

3. Results and Discussion

3.1. Comparison of Decoupled and Coupled Conjunctive Use
Operations. Table 3 demonstrates the series of models under
the same water requirement amount, 1.5 × 107 (m3/ten-
day). Case 1 considers decoupled operation that surface

Table 2: Aquifer properties and simulation parameters.

Parameter Value
Aquifer thickness (m) 110
Specific yield 0.2
Porosity 0.2
Horizontal hydraulic conductivity (m/s) 0.0001
Vertical hydraulic conductivity (m/s) 0.0001
Simulation time step length (days) 10
Maximum pumping rate (cms) 0.3

Table 3: Case abstract in the study.

Case
number Description

1 Decoupled conjunctive use operation

2 Conjunctive use operation using FIS within high usage
of subsurface water

3 Conjunctive use operation using a
simulation-optimization model

4 Conjunctive use operation using FIS within low usage
of subsurface water

water is supplied in advance, and subsurface water is then
supplied. Case 2 considers the conjunctive use of surface and
subsurface water simultaneously by using FIS based on fuzzy
rules (Table 1). Table 4 presents the water supply and shortage
index (SI) [31, 32] which, proposed by the US Army Corps of
Engineers, could represent the severity of the long-termwater
shortage from surface and subsurface water.The result shows
that the 10-day and annual SI of Case 2 are lower than those of
Case 1. It implies that the FIS could improve water shortage
in the case study. Compared with Case 1, Case 2 decreases
the shortage by 26.23%, and the FIS makes a significant drop
in deficit risk. This indicates that the FIS conjunctive use of
surface and subsurface water is more efficient. The FIS speci-
fies how much water is supplied from surface and subsurface
water to achieve system demand requirement. According
to the fuzzy rules, water is supplied from surface water in
normal time and from subsurface water during the drought.
Figure 8 implies the relationship between subsurface water
supply and shortage in decoupled and coupled conjunctive
use models (Cases 1 and 2). Furthermore, subsurface water is
supplied earlier in coupled conjunctive use model (Case 2)
than in the decoupled conjunctive use model (Case 1)
during the drought. The result indicates that timing of water
allocation is significantly important. Considering the FIS
conjunctive operation (Case 2), water supply from subsurface
water in advance may reduce the impact of shortage under
a long-term operation. Ponnambalam et al. [33] compared
general operating rules developed by both fuzzy rules and
regression-based rules. Their results demonstrate that the
FIS rules perform much better than the regression rules
for dealing with uncertainty of inflows. Fuzzy sets provide
a nonfrequentist approach to considering uncertainty [34].
The FIS conjunctive use of surface and subsurface water
can enhance the reliability of water supplies by providing
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Table 4: The shortage indices and the supply of water system in the cases.

Case 1 2 3 4
10-day SI 2.09 1.44 1.50 1.84
Annual SI 0.61 0.45 0.48 0.59

Number of 10 days in shortage 262 234 241 250

Surface water (104m3) 10-day supply 1345.25 1345.07 1343.68 1347.77
Annual supply 48429.10 48422.62 48372.49 48519.6

Subsurface water (104m3) 10-day supply 49.77 73.44 65.60 56.80
Annual supply 1791.56 2643.77 2361.48 2044.84
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Figure 3: Fuzzy membership function for (a) input 1: surface water state, (b) input 2: subsurface water state, and (c) output: pumping rate.
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Figure 4: Schematic diagram of water resources system.
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Figure 5: The operation rule curve of (a) Reservoir 1 and (b) Reservoir 2.
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Figure 6: Reservoir inflows in surface water system.

independent sources. Surface and subsurface water systems
contain distinctly different characteristics; for example, sur-
face water is rapid fluctuations and subsurface water varies
gradually. Considering the fuzzy rules that abundant water
system supplies more water, the FIS is efficiently applicable to
the management of surface and subsurface water.

3.2. Comparison of FIS and Simulation-Optimization Model.
This study compares the FIS and simulation-optimization
models to verify effectiveness of the proposed FIS method-
ology for conjunctive use of surface and subsurface water.
Simulation-optimization approach is used in Case 3 for
minimizing the water shortage and balancing the usages
between surface and subsurface water (11). In the simulation-
optimizationmodel, the surface and subsurfacewater simula-
tion models including the LP and ANN are embedded in the
genetic algorithm (GA) to determine the pumping rate and
water allocation in each time step sequentially. For the details
of GA refer to McKinney and Lin [35], Chen et al. [36], and
Chang et al. [37].

The result reveals that 10-day and annual SI of the FIS and
simulation-optimization model (Cases 2 and 3) are similar
(Table 4). Both models can decrease the water shortage more
than 20% in comparison Case 1. This information allows the
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Figure 7: Model of subsurface water system, observation, and
pumping wells.
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Figure 8: Comparison of supply of subsurface water and shortage
between Cases 1 and 2.

decisionmakers to control water supply for a long term by the
FIS. Similar to the simulation-optimization model, the fuzzy
operating rules specify how water is managed throughout
the system to achieve system demand requirement. During
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Table 5: Validation results in subsurface water ANN model.

MSE (m2) RMSE (m) AME (m)
Obs. 1 0.42 0.65 0.51
Obs. 2 0.45 0.67 0.53
Obs. 3 1.04 1.02 0.82
Obs. 4 0.43 0.65 0.52
Obs. 5 0.47 0.69 0.54
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Figure 9: Comparison of average hydraulic heads in Case 2 and 4.

the drought, subsurface water is used in advance, and surface
water is saved. Water supply using the FIS will reduce
the impact of shortage. However, problem solving requires
hundreds to thousands of numerical simulation runs for
searching water supply strategies in the GA approach. For
example, the maximum number of generations is twenty, and
the population size for each generation is fifty chromosomes.
Therefore, 1000 searching possibilities at most are needed
in each time step. The computation is more effective using
the FIS than the GA. However, the FIS approach obtains
near-optimal solutions and saves considerable computational
time. The FIS provides an alternative way for conjunctive
operations that offer the good chances for water supply
management [3–5]. The FIS is easy to apply and extend to a
complex water system [3], utilized in controlling humanistic
systems in water resources management, and offers an alter-
native way for conjunctive operation.

3.3. Subsurface Water Table Simulation by ANN and Control
by FIS. The ANN inputs include the hydraulic heads in five
observation wells and pumping rates in five pumping wells
at current time, and the outputs are hydraulic heads in the
observations at next time. The data are generated by the
MODFLOW and sets of input-output patterns are generated
by a random pumping rate between the minimum and
maximum (from 0 to 0.3 cms).TheMODFLOW, is a physical
finite-difference numerical flow model and a computer pro-
gram developed by the US Geological Survey [38]. Moreover,
a network training function updates weight and bias values
according to Levenberg-Marquardt optimization [39]. The
transfer functionswith a hidden layer and the output layer are
hyperbolic tangent. If the training stop criteria (i.e., MSE =
10−7) are not met, the learning algorithm continues.

Table 6: Rule table for the operation in conjunctive use operation
using FIS within low usage of subsurface water.

Surface water state

Low Low
Med. Medium High

Med. High

Subsurface water state
Low Low Low Low Low Low
Low Med. Medium Medium Low Low Low
Medium Medium Medium Low Low Low
High Med. Medium Medium Low Low Low
High Medium Medium Low Low Low

The total available data has been divided into two sets,
training and validation sets: 2,500 samples were used to
train the ANN, and 1,000 samples were used for validation.
Table 5 presents the ANN validation results. Accuracy of
the ANN model can be quantified when compared with
MODFLOW. Comparing relative errors reveals that, among
the table, Observation 1 is the lowest error in the estimation.
Results demonstrate that relative error with respect to average
subsurface water level is 1.3% or less. After the validation,
the ANN simulates the subsurface water level with time
behind the FIS operating. Accordingly, the ANN obtains
better results, and the computing time of the ANN model is
about 1/53 of a traditionalMODFLOW.This result reveals that
the ANN predicts hydraulic heads efficiently at the selected
control locations under variable pumping but condensed
surrogate for subsurface water flow model in interesting
cells [18, 21]. Results show the ANN approach has a great
potential to predict subsurface water level because it permits
developing complex and nonlinear models.

Figure 9 shows time-varying hydraulic heads in the two
FIS cases (Cases 2 and 4) under various pumping strategies.
The fuzzy rules for high and low usages in Cases 2 and 4 are
represented in Tables 1 and 6. Overall, the average hydraulic
heads vary with dry-wet cycles. In Cases 2 and 4, a fuzzy
rule-based system determines the pumping rate considering
hydraulic head constraint implicitly. Moreover, the FIS will
decide to pump a large volume of subsurface water in Case
2 and pump a small volume of subsurface water in Case 4;
therefore the hydraulic head in Case 4 is higher than that
in Case 2. Appropriate subsurface water usage makes water
resources sustainable. Moreover, subsurface water overdraft
causes land subsidence problems in many places; therefore
preventing the consequences of aquifer exploitation is essen-
tial [40, 41]. Results show that the minimum hydraulic head
in Case 2 is around 73m and that in Case 4 is around 81m
(Figure 9), representing that hydraulic head is under control
using the FIS. As a result, fuzzy rules consider hydraulic
head constraints implicitly for environmental conservation.
Accordingly, the FIS is the intelligent control model based
on the fuzzy rule and controls humanistic systems in water
resources management. In the FIS approach, the rules with
the expert experience can satisfy demand and environmental
conservation adaptively. The FIS offers the ability for the
adaptive management so that the system follows the fuzzy
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rule and adapts the supply water based on the states of the
system. Thus, the managers can adjust the fuzzy operation
strategy to satisfy the water demand and environmental
conservation.

4. Conclusions

This study applied a fuzzy inference system (FIS) for the
conjunctive use of surface and subsurface water. The FIS
determines operating policies between surface and subsur-
face water based on the current states. The approach with
the expert knowledge could obtain efficient and near-optimal
solutions when compared to the simulation-optimization
approach. After assigning the demand of surface and subsur-
face water, the ANN and LP simulate the surface and sub-
surface water states.

Results show that the FIS enhances reliability of water
supply and provides a decision for utilizing twowater sources.
To minimize the impacts of consequential shortages, the FIS
follows the operation rules in which abundant water system
supplies more, but scarce water system supplies less. The
FIS improves shortage performance because the FIS supplies
subsurface water early and retains surface water during dry
season. The FIS controls the supply between surface and
subsurface water and reduces the impact of overpumping
of subsurface water. Therefore, the FIS is best utilized in
controlling humanistic systems whose behavior is influ-
enced by expert knowledge for water resources management.
Direction for future studies could consider an autotuning
technology and a neural learning technology or parameter
optimization approaches further acquiring the rule from
expert knowledge [42].
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We apply the concept of Fuzzy Transform (for short, F-transform) for improving the results of the image matching based on the
Greatest Eigen Fuzzy Set (for short, GEFS) with respect tomax-min composition and the Smallest Eigen Fuzzy Set (for short, SEFS)
with respect to min-max composition already studied in the literature. The direct F-transform of an image can be compared with
the direct F-transform of a sample image to be matched and we use suitable indexes to measure the grade of similarity between the
two images. We make our experiments on the image dataset extracted from the well-known Prima Project View Sphere Database,
comparing the results obtained with this method with that one based on the GEFS and SEFS. Other experiments are performed on
frames of videos extracted from the Ohio State University dataset.

1. Introduction

Solution methods of fuzzy relational equations have been
well studied in the literature (cf., e.g., [1–15]) and applied to
image processing problems like image compression [16–19]
and image reconstruction [7, 8, 20–22]. In particular, Eigen
Fuzzy Sets [23–25] have been applied to image processing
and medical diagnosis [2, 6, 7, 16]. If an image 𝐼 of sizes
𝑁 × 𝑁 (pixels) is interpreted as a fuzzy relation 𝑅 on the
set {1, 2, . . . , 𝑁} × {1, 2, . . . , 𝑁} → [0, 1], the concepts of the
Greatest Eigen Fuzzy Set (for short, GEFS) of 𝐼 with respect
to the max-min composition and of the Smallest Eigen Fuzzy
Set (for short, SEFS) of 𝑅 with respect to the min-max
decomposition [2, 24, 25] were studied and used in [26, 27]
for an image matching process defined over square images.
The GEFS and SEFS of the original image are compared with
the GEFS and SEFS of the image to be matched by using a
similarity measure based on the RootMean Square Error (for
short, RMSE). The advantage of using GEFS and SEFS is in
terms of memory storage is that we can indeed compress an
image dataset (in which each image has sizes 𝑁 × 𝑁) in a
dataset in which each image is stored by means of its GEFS
and SEFS which have total dimension 2𝑁.

The main disadvantage of using GEFS and SEFS is that
we cannot compare images in which the number of rows is
different from the number of columns. Our aim is to show

that we can use an F-transform for imagematching problems,
reducing an image dataset of sizes 𝑁 × 𝑀 (in general, 𝑀
is not necessarily equal to 𝑁) into a dataset of dimensions
comparable with that one obtained by using GEFS and SEFS
if𝑀 = 𝑁, so having convenience in terms ofmemory storage.

The F-transform based method [28–30] is used in the
literature for image and video compression [29, 31–33], image
segmentation [20], and data analysis [22, 34]; indeed, in
[31, 32] the quality of the decoded images obtained by using
the F-transform compression method is shown to be better
than that one obtained with the fuzzy relation equations and
fully comparable with the JPEG technique.

The main characteristic of the F-transform method is to
maintain an acceptable quality in the reconstructed image
even under strong compression rates; indeed in [20] the
authors show that the segmentation process can be applied
directly over the compressed images. Here we use the direct
F-transform in image matching analysis with the aim of
reducing the memory used to store the image dataset. In
fact, we compress a monochromatic image (or a band of a
multiband image) 𝐼 of sizes𝑁×𝑀 via the direct F-transform
to a matrix 𝐹 of sizes 𝑛 × 𝑚 using a compression rate 𝜌 =
(𝑛 × 𝑚)/(𝑁 ×𝑀).

By using a distance, we compare the F-transform of each
image with the F-transform of the sample image. We also
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adopt a preprocessing phase for compressing each imagewith
several compression rates. In Figure 1 we show the prepro-
cessing phase on a dataset of color images. We compress
each color image in the three monochromatic components
corresponding to the three bands 𝑅, 𝐺, and 𝐵.

At the end of the preprocessing phase we can use
the compressed image dataset for image matching analysis.
Supposing that the original image dataset was composed by
s color images of sizes 𝑁 × 𝑀 using a compression rate
𝜌 = (𝑛 × 𝑚)/(𝑁 × 𝑀), we obtain that the dimension of the
compressed image dataset is constituted totally of 3𝑠(𝑛 × 𝑚)
pixels.

In Figure 2 we schematize the image matching process.
The sample image is compressed by the F-transformmethod;
then we compare the three compressed bands of each image
obtained via F-transform with those ones deduced for the
sample image by using the Peak Signal to Noise Ratio (for
short, PSNR). At the end of this process, we determine the

image in the dataset with the greatest overall PSNR with
respect to the sample image.

Here a monochromatic image or a band of a color image
𝐼 of sizes 𝑁 × 𝑀 is interpreted as a fuzzy relation 𝑅 whose
entries 𝑅(𝑥, 𝑦) are obtained by normalizing the intensity
𝐼(𝑥, 𝑦) of each pixel with respect to the length 𝐿 of the scale,
that is, 𝑅(𝑥, 𝑦) = 𝐼(𝑥, 𝑦)/𝐿. We show that our F-transform
approach can be also applied in image matching processes to
images of sizes𝑀×𝑁 (eventually,𝑀 ̸=𝑁), giving analogous
results with respect to that one obtained with GEFS and
SEFS based method. The comparison tests are made on the
256 × 256 color image dataset extracted from View Sphere
Database, an image dataset consisting in a set of images of
objects in which an object is photographed from various
directions by using a camera placed on a semisphere whose
center is the same considered object. We also use the Ohio
State University color video datasets sample for our tests.
Each video is composed by frames consisting of color images;
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we show the results for the Mom-Daughter and sflowg
motions. In Section 2we recall the concepts of F-transform in
two variables. In Section 3we recall theGEFS and SEFS based
method; in Section 4wepropose our imagematchingmethod
based on the F-transforms. Our experiments are illustrated in
Section 5, and Section 6 is conclusive.

2. F-Transforms in Two Variables

Following [29] and limiting ourselves to the discrete case, let
𝑛 ≥ 2 and 𝑥

1
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, . . . , 𝑥
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2
, . . . , 𝐴

𝑛
} and {𝐵

1
, . . . , 𝐵

𝑚
} is the function 𝑓𝐹

𝑛𝑚
(𝑝
𝑖
, 𝑞
𝑗
) :

𝑃 × 𝑄 → reals defined as

𝑓
𝐹

𝑛𝑚
(𝑝
𝑖
, 𝑞
𝑗
) =
𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝐹
𝑘𝑙
𝐴
𝑘
(𝑝
𝑖
) 𝐵
𝑙
(𝑞
𝑗
) . (2)

The following existence theorem holds [29].

Theorem 1. Let 𝑓 : 𝑃 × 𝑄 → reals be a given function,
𝑃 × 𝑄 ⊆ [𝑎, 𝑏] × [𝑐, 𝑑], with 𝑃 = {𝑝

1
, . . . , 𝑝

𝑁
} and 𝑄 =

{𝑞
1
, . . . , 𝑞

𝑀
}. Then for every 𝜀 > 0, there exist two integers

𝑛(𝜀), 𝑚(𝜀) and related fuzzy partitions {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛(𝜀)
} of

[𝑎, 𝑏] and {𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑚(𝜀)
} of [𝑐, 𝑑] such that the sets 𝑃,𝑄 are

sufficiently dense with respect to such partitions and |𝑓(𝑝
𝑖
, 𝑞
𝑗
)−

𝑓𝐹
𝑛(𝜀)𝑚(𝜀)

(𝑝
𝑖
, 𝑞
𝑗
)| < 𝜀 is satisfied for every 𝑖 ∈ {1, . . . , 𝑁} and

𝑗 ∈ {1, . . . ,𝑀}.

Let 𝑅 be a gray image of sizes 𝑁 × 𝑀, seen as 𝑅 :
(𝑖, 𝑗) ∈ {1, . . . , 𝑁} × {1, . . . ,𝑀} → [0, 1], with 𝑅(𝑖, 𝑗) being
the normalized value of the pixel 𝑃(𝑖, 𝑗) given by 𝑅(𝑖, 𝑗) =
𝑃(𝑖, 𝑗)/𝐿𝑡 if 𝐿𝑡 is the length of the gray scale. In [27] 𝑅 is
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Figure 5: Eraser at 𝜃 = 11∘ and 𝜙 = 36∘.

Figure 6: Eraser at 𝜃 = 10∘ and 𝜙 = 54∘.

compressed via the F-transform defined for each 𝑘 = 1, . . . , 𝑛
and 𝑙 = 1, . . . , 𝑚 as

𝐹
𝑘𝑙
=
∑
𝑀

𝑗=1
∑
𝑁

𝑖=1
𝑅 (𝑖, 𝑗) 𝐴

𝑘
(𝑖) 𝐵
𝑙
(𝑗)

∑
𝑀

𝑗=1
∑
𝑁

𝑖=1
𝐴
𝑘
(𝑖) 𝐵
𝑙
(𝑗)

, (3)

where 𝑝
𝑖
= 𝑖, 𝑞

𝑗
= 𝑗, 𝑎 = 𝑐 = 1, 𝑏 = 𝑁, 𝑑 = 𝑀, and

{𝐴
1
, . . . , 𝐴

𝑛
} (resp., {𝐵

1
, . . . , 𝐵

𝑚
}), 𝑛 ≪ 𝑁 (resp., 𝑚 ≪ 𝑀), is

a fuzzy partition of [1,𝑁] (resp., [1,𝑀]). The following fuzzy
relation is the decoded version of 𝑅 and it is defined as

𝑅
𝐹

𝑛𝑚
(𝑖, 𝑗) =

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝐹
𝑘𝑙
𝐴
𝑘
(𝑖) 𝐵
𝑙
(𝑗) (4)

for every (𝑖, 𝑗) ∈ {1, . . . , 𝑁} × {1, . . . ,𝑀}. We have subdivided
𝑅 in submatrices 𝑅

𝐵
of sizes 𝑁(𝐵) × 𝑀(𝐵), called blocks

(cf., e.g., [2, 16]), compressed to blocks 𝐹
𝐵
of sizes 𝑛(𝐵) ×

16

18

20

22

24

26

PS
N

R 𝜌
(R

1
,R

2
)

0 20 3010
D (R1, R2)

PSNR𝜌B(R1, R2)

Figure 7: Trend of PSNR with respect to distance (18) for the pen
obtained from the comparison with the sample image at 𝜃 = 10∘ and
𝜙 = 54∘.

Figure 8: Pen at 𝜃 = 10∘ and 𝜙 = 54∘.

𝑚(𝐵)(𝑛(𝐵) < 𝑁(𝐵),𝑚(𝐵) < 𝑀(𝐵)) via [𝐹𝐵
𝑘𝑙
] defined for each

𝑘 = 1, . . . , 𝑛(𝐵) and 𝑙 = 1, . . . , 𝑚(𝐵) as

𝐹
𝐵

𝑘𝑙
=
∑
𝑀(𝐵)

𝑗=1
∑
𝑁(𝐵)

𝑖=1
𝑅
𝐵
(𝑖, 𝑗) 𝐴

𝑘
(𝑖) 𝐵
𝑙
(𝑗)

∑
𝑀(𝐵)

𝑗=1
∑
𝑁(𝐵)

𝑖=1
𝐴
𝑘
(𝑖) 𝐵
𝑙
(𝑗)

. (5)
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Figure 9: Pen at 𝜃 = 10∘ and 𝜙 = 18∘.

Figure 10: Frame 1 in Mom-Daughter.

The basic functions 𝐴
1
, . . . , 𝐴

𝑛(𝐵)
(resp., 𝐵

1
, . . . , 𝐵

𝑚(𝐵)
),

defined below, constitute a uniform fuzzy partition of [1,
𝑁(𝐵)] (resp., [1,𝑀(𝐵)]):

𝐴
1
(𝑥) =

{
{
{

0.5 (1 + cos 𝜋
ℎ
(𝑥 − 𝑥

1
)) , if𝑥 ∈ [𝑥

1
, 𝑥
2
] ,

0, otherwise,

𝐴
𝑘
(𝑥) =

{
{
{

0.5 (1 + cos 𝜋
ℎ
(𝑥 − 𝑥

𝑘
)) , if𝑥 ∈ [𝑥

𝑘−1
, 𝑥
𝑘+1
] ,

0, otherwise,

𝐴
𝑛
(𝑥) =

{
{
{

0.5 (1 + cos 𝜋
ℎ
(𝑥 − 𝑥

𝑛
)) , if𝑥 ∈ [𝑥

𝑛−1
, 𝑥
𝑛
] ,

0, otherwise,
(6)

where 𝑛 = 𝑛(𝐵), 𝑘 = 2, . . . , 𝑛, ℎ = (𝑁(𝐵) − 1)/(𝑛 − 1), 𝑥
𝑘
=

1 + ℎ ⋅ (𝑘 − 1), and

𝐵
1
(𝑦) =

{
{
{

0.5 (1 + cos 𝜋
𝑠
(𝑦 − 𝑦

1
)) , if𝑦 ∈ [𝑦

1
, 𝑦
2
] ,

0, otherwise,

𝐵
𝑡
(𝑦) =

{
{
{

0.5 (1 + cos 𝜋
𝑠
(𝑦 − 𝑦

𝑡
)) , if𝑦 ∈ [𝑦

𝑡−1
, 𝑦
𝑡+1
] ,

0, otherwise,

𝐵
𝑚
(𝑦) =

{
{
{

0.5 (1 + cos 𝜋
𝑠
(𝑦 − 𝑦

𝑚
)) , if𝑦 ∈ [𝑦

𝑚−1
, 𝑦
𝑚
] ,

0, otherwise,
(7)

where𝑚 = 𝑚(𝐵), 𝑡 = 2, . . . , 𝑚, 𝑠 = (𝑀(𝐵)−1)/(𝑚−1),𝑦
𝑡
= 1+

𝑠 ⋅ (𝑡−1). We decompress 𝐹
𝐵
to 𝑅𝐹
𝑛(𝐵)𝑚(𝐵)

of sizes𝑁(𝐵)×𝑀(𝐵)
by setting for every (𝑖, 𝑗) ∈ {1, . . . , 𝑁

𝐵
} × {1, . . . ,𝑀

𝐵
}

𝑅
𝐹

𝑛(𝐵)𝑚(𝐵)
(𝑖, 𝑗) =

𝑛(𝐵)

∑
𝑘=1

𝑚(𝐵)

∑
𝑙=1

𝐹
𝐵

𝑘𝑙
𝐴
𝑘
(𝑖) 𝐵
𝑙
(𝑗) (8)

which approximates 𝑅
𝐵
up to an arbitrary quantity 𝜀 in the

sense of Theorem 1, which, unfortunately, does not give a
method for finding two integers 𝑛(𝐵) and 𝑚(𝐵) such that
|𝑅
𝐵
(𝑝
𝑖
, 𝑞
𝑗
) − 𝑅𝐹

𝑛(𝜀)𝑚(𝜀)
(𝑝
𝑖
, 𝑞
𝑗
)| < 𝜀. Then we prove several

values of 𝑛(𝐵) and 𝑚(𝐵). For every compression rate 𝜌, we
evaluate the quality of the reconstructed image via the PSNR
defined as

(PSNR)
𝜌
= 20 log

10

𝐿

(RMSE)
𝜌

, (9)

where (RMSE)
𝜌
is

(RMSE)
𝜌
=
√∑
𝑁

𝑖=1
∑
𝑀

𝑗=1
(𝑅 (𝑖, 𝑗) − 𝑅𝐹

𝑁𝑀
(𝑖, 𝑗))

2

𝑁 ×𝑀
.

(10)

Here 𝑅𝐹
𝑁𝑀

is the reconstructed image obtained by recompos-
ing the blocks 𝑅𝐹

𝑛(𝐵)𝑚(𝐵)

󸀠.

3. Max-Min and Min-Max Eigen Fuzzy Sets

Let 𝑋 be a nonempty finite set, 𝑅 : 𝑋 × 𝑋 → [0, 1] and
𝐴 : 𝑋 → [0, 1], such that

𝑅 ∘ 𝐴 = 𝐴, (11)

where “∘” is the max-min composition. In terms of member-
ship functions, we have that

𝐴 (𝑦) = max
𝑥∈𝑋

{min (𝐴 (𝑥) , 𝑅 (𝑥, 𝑦)} (12)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝐴 is defined as an Eigen Fuzzy Set of 𝑅.
Let 𝐴

𝑖
: 𝑋 → [0, 1], 𝑖 = 1, 2, . . ., be defined iteratively by

𝐴
1
(𝑧) = max

𝑥∈𝑋

𝑅 (𝑥, 𝑧) ,

𝐴
2
= 𝑅 ∘ 𝐴

1
, . . . , 𝐴

𝑛+1
= 𝑅 ∘ 𝐴

𝑛
, . . . 𝑧 ∈ 𝑋.

(13)
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It is known [2, 24, 25] that there exists an integer 𝑝 ∈
{1, . . . , card𝑋} such that 𝐴

𝑝
is the GEFS of 𝑅 with respect to

the max-min composition. We also consider the following:

𝑅◻𝐴 = 𝐴, (14)

where “◻” denotes themin-max composition, that is, in terms
of membership functions:

𝐴 (𝑦) = min
𝑥∈𝑋

{max (𝐴 (𝑥) , 𝑅 (𝑥, 𝑦)} (15)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝐴 is also defined to be an Eigen Fuzzy
Set of 𝑅 with respect to the min-max composition. It is easily
seen that (14) is equivalent to the following:

𝑅◻𝐴 = 𝐴, (16)

where 𝑅 and𝐴 are pointwise defined as 𝑅(𝑥, 𝑦) = 1 −𝑅(𝑥, 𝑦)
and 𝐴(𝑥) = 1 − 𝐴(𝑥) for all 𝑥, 𝑦 ∈ 𝑋. Since 𝐴

𝑝
for some 𝑝 ∈

{1, . . . , card𝑋} is the GEFS of 𝑅 with respect to the max-min
composition, it is immediately proved that the fuzzy set 𝐵 :
𝑋 → [0, 1] defined as 𝐵(𝑥) = 1 − 𝐴

𝑝
(𝑥) for every 𝑥 ∈ [0, 1]

is the SEFS of 𝑅 with respect to the min-max composition.
In [27] a distance based on GEFS and SEFS for image

matching is used over images of sizes 𝑁 × 𝑁. Indeed,
considering two single-band images of sizes 𝑁 × 𝑁, say 𝑅

1

and 𝑅
2
, such distance is given by

𝑑 (𝑅
1
, 𝑅
2
) = ∑
𝑥∈𝑋

((𝐴
1
(𝑥) − 𝐴

2
(𝑥))
2

+ (𝐵
1
(𝑥) − 𝐵

2
(𝑥))
2

) ,

(17)

where 𝑋 = {1, 2, . . . , 𝑁}, 𝐴
𝑖
, 𝐵
𝑖
are the GEFS and SEFS of

the fuzzy relation 𝑅
𝑖
, respectively, obtained by normalizing

in [0, 1] the pixels of the image 𝐼
𝑖
, 𝑖 = 1, 2.

In [26, 27] experiments are presented over color images
of sizes 256 × 256 concerning two objects (an eraser and
a pen) extracted from View Sphere Database. Each object
is put in the center of a semisphere on which a camera is
placed in 91 different directions. The camera establishes an
image (photography) of the object for each direction which
can be identified from two angles 𝜃 (0∘ < 𝜃 < 90∘) and
Φ (−180∘ < Φ < 180∘) as illustrated in Figure 3.

A sample image 𝑅
1
(with given 𝜃 = 11∘, Φ = 36∘

for the eraser and 𝜃 = 10∘, Φ = 54∘ for the pen) is
to be compared with another image 𝑅

2
chosen among the

remaining 90 directions. GEFS and SEFS are calculated in the
three components of each image in the RGB space, for which
it is natural to assume the following extension of (17):

𝐷(𝑅
1
, 𝑅
2
) =

1

3
(𝑑
𝑅
(𝑅
1
, 𝑅
2
) + 𝑑
𝐺
(𝑅
1
, 𝑅
2
) + 𝑑
𝐵
(𝑅
1
, 𝑅
2
)) ,

(18)

where 𝑑
𝑅
(𝑅
1
, 𝑅
2
), 𝑑
𝐺
(𝑅
1
, 𝑅
2
), 𝑑
𝐵
(𝑅
1
, 𝑅
2
) are the measures

(17) calculated in each band 𝑅, 𝐺, 𝐵. For image matching,
the GEFS and SEFS components in each band are extracted
from each image, thus forming a dataset with reduced storage
memory.An image is comparedwith the images in the dataset
using (18). If the dataset contains 𝑠 color images of sizes𝑁×𝑁

Table 1: Best distances fromGEFS and SEFS basedmethod with 𝜌 =
0.007813 for the eraser image dataset obtained from the comparison
with the sample image at 𝜃 = 11∘ and 𝜙 = 36∘.

𝜃 𝜙 𝑑
𝑅
(𝑅
1
, 𝑅
2
) 𝑑

𝐺
(𝑅
1
, 𝑅
2
) 𝑑

𝐵
(𝑅
1
, 𝑅
2
) 𝐷(𝑅

1
, 𝑅
2
)

10 54 7.2543 20.4322 15.1914 14.2926
11 −36 18.4459 30.1343 25.7560 24.7787
25 37 16.4410 35.3923 24.2910 25.3748
10 89 18.7165 32.1656 25.8345 25.5722
10 −54 17.3107 34.4895 25.8311 25.8771

Figure 11: Frame 2 in Mom-Daughter.

and the dimension of the original dataset is 3𝑠𝑁2, then the
dimension of the GEFS and SEFS dataset is 6𝑠𝑁, so we have
a compression rate given by

𝜌 =
6𝑠𝑁

3𝑠𝑁2
=
2

𝑁
. (19)

So we obtain a compression rate 𝜌 = 0.007813 if𝑁 = 256.

4. The Image Matching Process via
F-Transforms

We consider an image dataset formed by color images of sizes
𝑁 ×𝑀. In the preprocessing phase we compress each image
of the dataset using the direct F-transform. Each image is
divided in blocks of sizes 𝑁(𝐵) × 𝑀(𝐵) and each block is
compressed in a block of sizes 𝑛(𝐵) × 𝑚(𝐵). Thus the images
are coded with a compression rate 𝜌 = (𝑛(𝐵)×𝑚(𝐵))/(𝑁(𝐵)×
𝑀(𝐵)). In our experiments we set the sizes of the original
and compressed blocks, so that 𝜌 is comparable with (18). For
example, for 𝑁 = 𝑀 = 256, we use 𝑁(𝐵) = 𝑀(𝐵) = 24 and
𝑛(𝐵) = 𝑚(𝐵) = 2, so 𝜌 = 0.006944.

In the reduced dataset we store the F-transform compo-
nents of each image. We use the PSNR between a sample
image 𝑅

1
and an image 𝑅

2
defined for every compression rate

𝜌 (cf. (9)) as

PSNR
𝜌
(𝑅
1
, 𝑅
2
) = 20 log

10

𝐿

RMSE
𝜌
(𝑅
1
, 𝑅
2
)
, (20)
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Table 2: Best PSNR from the F-transform based method with 𝐿 = 255 and 𝜌 = 0.006944 for the eraser image dataset obtained from the
comparison with the sample image at 𝜃 = 11∘ and 𝜙 = 36∘.

𝜃 𝜙 PSNR
𝜌𝑅
(𝑅
1
, 𝑅
2
) PSNR

𝜌𝐺
(𝑅
1
, 𝑅
2
) PSNR

𝜌𝐵
(𝑅
1
, 𝑅
2
) PSNR

𝜌
(𝑅
1
, 𝑅
2
)

10 54 25.4702 22.2952 23.7712 23.8455
11 −36 21.8504 20.0625 21.0801 20.9977
25 37 21.4056 17.9865 19.0040 19.4654
10 89 21.3049 17.8858 18.9033 19.3647
10 −54 21.0057 17.5866 18.6041 19.0655
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Frame n∘

Figure 12: Trend of PSNR (𝜌 = 0.006944) with respect to frame
number for the video Mom-Daughter.

Figure 13: Frame 1 in sflowg.

where RMSE (Root Mean Square Error) is given by (cf. (10))

RMSE
𝜌
(𝑅
1
, 𝑅
2
) = √

∑
𝑁

𝑖=1
∑
𝑀

𝑗=1
(𝑅
1
(𝑖, 𝑗) − 𝑅

2
(𝑖, 𝑗))
2

𝑁 ×𝑀
. (21)

If we have color images, we define an overall PSNR as

PSNR
𝜌
(𝑅
1
, 𝑅
2
)

=
1

3
[PSNR

𝜌𝑅
(𝑅
1
, 𝑅
2
) + PSNR

𝜌𝐺
(𝑅
1
, 𝑅
2
)

+PSNR
𝜌𝐵
(𝑅
1
, 𝑅
2
)] ,

(22)

Figure 14: Frame 2 in sflowg.
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Figure 15: Trend of PSNR (𝜌 = 0.006944) with respect to frame
number for the video sflowg.

where PSNR
𝜌𝑅
(𝑅
1
, 𝑅
2
), PSNR

𝜌𝐺
(𝑅
1
, 𝑅
2
), PSNR

𝜌𝐵
(𝑅
1
, 𝑅
2
) are

the similarity measures (20) calculated in each band 𝑅, 𝐺,
𝐵 compression rate 𝜌. In our experiments we compare the
results obtained by using the F-transforms (resp., GEFS and
SEFS) based method with the PSNR (20) (resp. (18)). We
use the color image datasets of 256 gray levels and of sizes
256 × 256 pixels, available in the View Sphere Database for
each object considered, the best image 𝑅

2
of the object itself

maximizes the PSNR (22). In other experiments we use our
F-transform method over color video datasets in which each
frame is formed by images of 256 gray levels and of sizes
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Figure 16: Trend of PSNR difference with respect to PSNR
0
(𝜌 =

0.006944).

Table 3: Best distances from GEFS and SEFS based method with 𝜌
= 0.007813 for the pen image dataset obtained from the comparison
with the sample image at 𝜃 = 10∘ and 𝜙 = 54∘.

𝜃 𝜙 𝑑
𝑅
(𝑅
1
, 𝑅
2
) 𝑑

𝐺
(𝑅
1
, 𝑅
2
) 𝑑

𝐵
(𝑅
1
, 𝑅
2
) 𝐷(𝑅

1
, 𝑅
2
)

10 18 0.8064 0.4495 0.9232 0.7264
10 −18 1.2654 1.0980 7.2903 3.2179
68 84 2.7435 1.7468 5.8812 3.4572
11 36 2.1035 5.4634 3.3769 3.6479
10 −54 2.5394 2.0005 9.2138 4.5845

360×24, available in the Ohio University sample digital color
video database. A color video is schematically formed by a
sequence of frames. If we consider a frame in a video as the
sample image, we prove that the image with greatest PSNR
with respect to the sample image is an image with frame
number close to the frame number of the sample image.

5. Results of Tests

We compare results obtained by using the GEFS and SEFS
and F-transform based methods for image matching on
all the image datasets, each of sizes 256 × 256, extracted
from the View Sphere Database. In the first image dataset,
concerning an eraser, we consider, as sample image 𝑅

1
, the

image obtained from the camera in the direction with angles
𝜃 = 11∘ and 𝜙 = 36∘. For brevity, we consider a dataset of 40
test images, andwe compare𝑅

1
with the images considered in

the remaining 40 other directions. In Table 1 (resp., Table 2)
we report the distances (17) and (18) (resp., PSNR (20) and

(22) with 𝐿 = 255) obtained using the GEFS and SEFS (resp.,
F-transform) based method.

In Figure 4we show the trend of the index PSNRobtained
by the F-Transform method with respect to the distance (18)
obtained using the GEFS and SEFS method.

As we can see from Tables 1 and 2, both methods give the
same reply: the better image similar with the image eraser in
the direction 𝜃 = 11∘ and𝜙 = 36∘ (Figure 5) is given from that
one at 𝜃 = 10∘ and 𝜙 = 54∘ (Figure 6). The trend in Figure 4
shows that the value of the distance (18) increases as the PSNR
decreases.

In order to have a further confirmation of our approach,
we have considered a second object, a pen, contained in the
View Sphere Database whose sample image 𝑅

1
is obtained

from the camera in the direction with angles 𝜃 = 10∘ and
𝜙 = 54∘. We also limit the problem to a dataset of 40 test
images whose best distances (17) and (18) (resp., (20) and (22)
with 𝐿 = 255) under the SEFS and GEFS (resp., F-transform)
based method, are reported in Table 3 (resp., Table 4).

In Figure 7we show the trend of the index PSNRobtained
by the F-transform method with respect to the distance 𝐷
obtained by using the GEFS and SEFS method. As we can
see from Tables 3 and 4, in both methods the best image
similar to the original image in the directions 𝜃 = 10∘ and
𝜙 = 54∘ (Figure 8) is given from that one at 𝜃 = 10∘ and
𝜙 = 18∘ (Figure 9). Also in this example, the trend in Figure 7
shows that the value of the distance (18) increases as the PSNR
decreases.

Now we present the results over a sequence of frames
of a video, Mom-Daughter, available in the Ohio University
sample digital color video database. Each frame is a color
image of sizes 360 × 240 with 256 gray levels for each band.
We use our method with a compression rate 𝜌 = 0.006944;
that is, in each band every frame is decomposed in 150 blocks,
and each block has sizes 24 × 24 compressed to a block of
sizes 2 × 2. Since𝑀 ̸=𝑁, the GEFS and SEFS based method
is not applicable. We set the sample image as the image
corresponding to the first frame of the video. We expect
that the frame number of the image with higher PSNR with
respect to the sample image is the image with frame number
close to the frame number of sample image. In Table 5 we
report the best results obtained using the F-transform based
method in terms of the (20) and (22) with 𝐿 = 255. As
expected, albeit with slight variations, all the PSNRs diminish
by increasing of the frame number, and the second frame
(Figure 11) is the frame with the greatest PSNR w. r. t. the first
frame (Figure 10) containing the sample image.

In Figure 12 we show the trend of the PSNR (22) with the
frame number.This trend is obtained for all the sample video
frames in the video dataset. For reasons of brevity, now we
report only the results obtained for another test performed
on the sequence of frames of another video in the Ohio
sample digital video database, the video sflowg. The PSNR in
Figure 15 diminishes by increasing the frame number, and the
second frame (Figure 14) is the frame with the greatest PSNR
w. r. t. the first frame (Figure 13) containing the sample image.

For supporting the validity of the F-transform method
for all the sample frames, we measure, for the frame with
the greatest PSNR w.r.t the sample frame, the correspondent
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Table 4: Best PSNR from the F-transform based method with 𝐿 = 255 and 𝜌 = 0.006944 for the pen image dataset obtained from the
comparison with the sample image at 𝜃 = 10∘ and 𝜙 = 54∘.

𝜃 𝜙 PSNR
𝜌𝑅
(𝑅
1
, 𝑅
2
) PSNR

𝜌𝐺
(𝑅
1
, 𝑅
2
) PSNR

𝜌𝐵
(𝑅
1
, 𝑅
2
) PSNR

𝜌
(𝑅
1
, 𝑅
2
)

10 18 25.3095 25.2317 23.9915 24.8442
10 −18 24.6794 24.9788 23.4156 24.3579
68 84 24.4219 24.6667 22.6941 23.9276
11 36 24.5678 24.1721 22.5035 23.7478
10 −54 23.7862 23.5642 22.2730 23.2078

Table 5: PSNR with 𝜌 = 0.006944 for the Mom-Daughter video w.r.t. the first frame.

Frame number PSNR
𝜌𝑅
(𝑅
1
, 𝑅) PSNR

𝜌𝐺
(𝑅
1
, 𝑅) PSNR

𝜌𝐵
(𝑅
1
, 𝑅
2
) PSNR

𝜌
(𝑅
1
, 𝑅
2
)

2 42.2146 42.0278 42.6819 42.3081
3 39.5194 39.6131 40.9278 40.0201
4 37.7658 39.0397 39.0397 38.6151
5 36.9349 37.3071 38.8239 37.6886
6 35.4771 36.5276 37.8853 36.6300

value PSNR
0
obtained by using the original frame instead

of the correspondent compressed frame decoded via the
inverse F-Transform. In Figure 16 we show the trend of the
difference PSNR

0
− PSNR with respect to PSNR

0
. The trend

indicates that this difference is always less than 2. This result
shows that if we compress the images in the dataset with rate
𝜌 = 0.006944 by using the F-transform method, we can use
the compressed image dataset for image matching processes,
comparing the decompressed image with respect to a sample
image despite the loss of information due to the compression.

6. Conclusions

The results on the images of sizes 𝑁 × 𝑀 (𝑀 = 𝑁 = 256)
of the View Sphere Image Database show that, using our F-
transform based method, we obtain the same results in terms
of image matching and in terms of reduced memory storage
reached also via the GEFS and SEFS based method, which is
applicable only over images with 𝑁 = 𝑀, while our method
concerns images of any sizes.

Moreover our tests executed on color video frames of sizes
𝑁×𝑀 (𝑀 = 360,𝑁 = 240 pixels with 256 gray levels) of the
Ohio University color videos dataset show that, by choosing
the first frame as the sample image, we obtain as image with
the highest PSNR that one corresponding to the successive
frame, as expected, although a loss of information on the
decoded images because of the compression process.
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