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The topic of this paper is the development of sensitivity and uncertainty analysis capability to the reactor physics code CASMO-4
in the context of the UAM (Uncertainty Analysis in Best-Estimate Modelling for Design, Operation, and Safety Analysis of LWRs)
benchmark. The sensitivity analysis implementation is based on generalized perturbation theory, which enables computing the
sensitivity profiles of reaction rate ratios efficiently by solving one generalized adjoint system for each response. Both the theoretical
background and the practical guidelines for modifying a deterministic transport code to compute the generalized adjoint solutions
and sensitivity coefficients are reviewed. The implementation to CASMO-4 is described in detail. The developed uncertainty
analysis methodology is deterministic, meaning that the uncertainties are computed based on the sensitivity profiles and covariance
matrices for the uncertain nuclear data parameters. The main conclusions related to the approach used for creating a covariance
library compatible with the cross-section libraries of CASMO-4 are presented. Numerical results are given for a lattice physics test
problem representing a BWR, and the results are compared to the TSUNAMI-2D sequence in SCALE 6.1.

1. Introduction

The topic of this paper is the development of sensitivity
and uncertainty analysis capability to the reactor physics
code CASMO-4 [1] in the context of the UAM (Uncertainty
Analysis in Best-Estimate Modelling for Design, Operation
and Safety Analysis of LWRs) benchmark [2]. At VTT,
CASMO-4 is the standard tool for lattice physics calculations,
and therefore it was a natural choice as the development
platform for a sensitivity and uncertainty calculation system
for the pin cell and fuel assembly exercises in the benchmark.

Sensitivities with respect to uncertain parameters can be
computed efficiently by utilizing the adjoint system of the
criticality equation. The propagated parameter uncertainty
can then be calculated deterministically by the Sandwich
rule by combining the sensitivity profiles with the covari-
ance matrices of the parameters. As a first step, classical
perturbation theory (CPT) was implemented to CASMO-4
to enable the computation of critical eigenvalue sensitivities
with respect to nuclear data parameters. In this context,
a methodology was devised for processing the covariance
matrices from SCALE 6 [3] to become compatible with the

cross-section libraries of CASMO-4 to enable uncertainty
analysis. This work has been reported in detail in [4].
Recently, generalized perturbation theory (GPT) has been
added to the code as a new feature. This enables performing
sensitivity analysis for responses that can be presented as
reaction rate ratios. In this framework, one generalized
adjoint system needs to be solved for each response, after
which the response sensitivity profiles for all parameters of
interest can be computed in an efficient manner.

This paper is organized as follows. Section 2 reviews
the theoretical background for sensitivity and uncertainty
analysis based on generalized perturbation theory, and
Section 3 focuses on the implementation to CASMO-4. In
Section 3.1, the computation of generalized adjoint solutions
is considered and practical guidelines are presented for
modifying a deterministic transport code to solve the adjoint
problems needed in sensitivity analysis. Section 3.2 concerns
the computation of sensitivity and uncertainty profiles.
Finally, in Section 4, numerical results are presented for a
lattice physics test problem representing a BWR, and they are
compared to the TSUNAMI-2D sequence in SCALE 6.1.
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2. Theoretical Background

The purpose of sensitivity analysis is to study how sensitive
a mathematical model is to perturbations in its uncertain
parameters. The target of uncertainty analysis is to estimate
how the uncertainty in these parameters is propagated to
a response dependent on the mathematical model under
consideration. In this work the mathematical model is the
neutron transport eigenvalue problem, which can be written
in operator form as

AΦ = 1
k

BΦ, (1)

where Φ ∈ HΦ is the neutron flux, HΦ is a Hilbert space,
and k is the multiplication factor. The uncertain parameters
consist of nuclear data parameters and they are denoted
by the vector σ ∈ Eσ . It should be noted that both
the continuous-energy criticality equation and the various
systems derived from it in numerical computations can be
written in the form of (1).

2.1. Sensitivity Analysis. The object of local sensitivity anal-
ysis is to determine how the response R depends on the
uncertain parameters in the vicinity of their best-estimate
values. In this work, the responses under consideration
include homogenized assembly parameters and the mul-
tiplication factor, whereas the uncertain parameters are
neutron cross-sections. When considering the continuous-
energy eigenvalue problem, the cross-sections are functions
of energy and location, and the appropriate derivative is the
functional directional derivative called the Gâteaux variation
[5]. It follows that the sensitivity of R with respect to the
perturbation h = [δΦ, δσ] ∈ D = HΦ × Eσ at the point
ê = [ ̂Φ, σ̂] ∈ D may be defined as

δR(ê; h) = lim
t→ 0

R(ê + th)− R(ê)
t

. (2)

When the parameters σ are perturbed, also the solution
Φ is affected and therefore the computation of the sensitivity
δR(ê; h) requires that the perturbation δΦ is known. In
principle, δΦ can be computed to first order from the
following forward sensitivity system:

δA(ê; h) = − 1
k2
δk(ê; h)BΦ +

1
k
δB(ê; h)

⇐⇒ A′σ(ê)δσ + A(ê)δΦ = − 1
k2
δk(ê; h)BΦ

+
1
k

B′σ(ê)δσ +
1
k

B(ê)δΦ,

(3)

which can be derived by taking the Gâteaux variation
of system (1) with respect to a perturbation h on both
sides. However, when computing several sensitivities, this
approach would require the repetitive solving of (3).

Fortunately, the sensitivities can be computed more
efficiently by exploiting the adjoint of (1), which is defined
as the system that satisfies the following relation: (In some

cases the adjoint relation needs to be written in the form
〈AΦ+(1/k)BΦ,Ψ〉 = 〈Φ, A∗Ψ+(1/k)B∗Ψ〉+[P(Ψ,Φ)]x∈∂Ω,
where [P(Ψ,Φ)]x∈∂Ω is a bilinear form associated with the
system. We will only consider cases where it is straightfor-
ward to force this term to vanish.)

〈

AΦ− 1
k

BΦ,Ψ
�

=
〈

Φ, A∗Ψ− 1
k

B∗Ψ
�

, (4)

where the brackets 〈·, ·〉 denote an inner product. When
considering the continuous-energy criticality equation, it
is customary to employ the L2 inner product [6, 7]. The
solution to the adjoint problem

(

A∗ − 1
k

B∗
)

Ψ = 0 (5)

is called the fundamental adjoint. Physically, the solution
to this system can be interpreted to represent the average
contribution, that is, importance of a neutron to the
multiplication factor. Interestingly, the adjoint system of (5)
can be derived solely based on this physical interpretation
[8]. Like the neutron flux, the fundamental adjoint has
an arbitrary normalization, and the concept of importance
should be understood in relative terms. Therefore, the value
Ψ(r,Ω,E) represents the importance of a neutron located at
the point [r,Ω,E] compared to the importance of neutrons
elsewhere in the phase space [9]. Based on this physical
reasoning, it can be deduced that the fundamental adjoint
must always be nonnegative.

By utilizing (4) and (5), it is straightforward to obtain
the following expression for the relative sensitivity of the
multiplication factor with respect to a perturbation δσ (For
derivation, see for example, [4, 10]):

δk(ê; h)
k

= −
〈(

A′σ(ê)− (1/k)B′σ(ê)
)

δσ ,Ψ
〉

〈(1/k)BΦ,Ψ〉 . (6)

This equation is known in reactor physics as classical
perturbation theory. In addition, the adjoint system can be
utilized in the sensitivity analysis of the eigenvalue problem
for other responses fulfilling the following properties. Firstly,
the response R must be Fréchet-differentiable with respect to
Φ, in which case we can write

δR(ê; h) = R′σ(ê)δσ +
〈∇ΦR(ê), δΦ

〉

Φ. (7)

In addition, the response’s Fréchet derivative ∇ΦR (also
called gradient) must be orthogonal to the forward solution

〈∇ΦR,Φ〉 = 0. (8)

When these assumptions are fulfilled, the generalized adjoint
corresponding to the response R can be defined as the
solution to the following inhomogeneous system:

(

A∗ +
1
k

B∗
)

Γ = ∇ΦR

R
. (9)

Notice that in the previous equation the eigenvalue k is
fixed to correspond to the solution of (1) and therefore the
operator A∗ + (1/k)B∗ is singular, which necessitates (8) in
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order for the solution Γ to exist. Also, when a solution Γ0 to
(9) exists, there exists an infinite amount of solutions of the
form

Γ = Γ0 + aΨ, a ∈ R. (10)

In this case, it is possible to choose a solution that is
orthogonal to the (forward) fission source. This particular
solution can be written as

Γp = Γ0 − 〈Γ0, BΦ〉
〈Ψ, BΦ〉Ψ

= Γ0 − 〈B
∗Γ0,Φ〉

〈B∗Ψ,Φ〉Ψ.
(11)

We can now derive a practical expression for the response
sensitivity with respect to a perturbation δσ :

δR(ê, h)
R

= R′σ(ê)δσ
R

+

〈

∇ΦR(ê)
R

, δΦ

〉

Φ

(9)= R′σ(ê)δσ
R

+
〈

(A∗ +
1
k

B∗)Γ, δΦ
�

Φ

(4)= R′σ(ê)δσ
R

+
〈

Γ,
(

A +
1
k

B
)

δΦ
�

Φ

(3)= R′σ(ê)δσ
R

−
〈

Γ,
(

A′σ(ê)− 1
k

B′σ(ê)
)

δσ
�

Φ

− δk(ê; h)
k2

〈Γ, BΦ〉Φ

= R′σ(ê)δσ
R

−
〈

Γp,
(

A′σ(ê)− 1
k

B′σ(ê)
)

δσ
�

Φ
.

(12)

This framework is often referred to as generalized perturba-
tion theory when the response R is of the form:

R(e) = 〈Φ,Σ1〉
〈Φ,Σ2〉 . (13)

In this case, it is straightforward to show that (8) is satisfied
and that R is Fréchet-differentiable, the relative gradient
being

∇ΦR

R
= Σ1

〈Φ,Σ1〉 −
Σ2

〈Φ,Σ2〉 . (14)

The generalized adjoint Γ(r,Ω,E) can be physically
interpreted as the average contribution of an additional
neutron at the phase space point [r,Ω,E] to the response
under consideration. The generalized adjoint is normalized
according to the value of the response. It should also be
noticed that since an additional neutron may also reduce
the value of the response, generalized adjoints can also have
negative values. The gradient of the response may also be
negative in some parts of the phase space.

In practice, the eigenvalue problem and the corre-
sponding adjoint equations are solved numerically, which
gives rise to some complications in the perturbation theory

formalism. Ideally, the discretizations should be performed
in a consistent manner so that the respective adjoint relations
are satisfied at all stages of the computation [5]. However,
this is usually infeasible in reactor physics calculations, and
therefore it is customary to take the eigenvalue problem
discretized with respect to energy and direction as the
starting point for sensitivity analysis. This issue is discussed
in more detail in [4].

2.2. Uncertainty Analysis. The uncertainty of the uncertain
parameters σ should be understood in terms of the Bayesian
probability interpretation. In this framework, probability
is defined as a subjective measure that characterizes the
plausibility of various hypotheses. When estimating param-
eters, all knowledge about a parameter σj is assumed to be
incorporated into its marginal probability distribution p(σj).

This distribution is defined so that the integral
∫ b
a p(σj) dσj

corresponds to the (Bayesian) probability that the value of
σj belongs to the interval [a, b]. The distribution p(σ) can
then be used to form an estimate for the parameters and
their associated uncertainties. Usually, the mean value or the
mode is chosen as the estimate for the parameters, whereas
the covariance matrix of the distribution is chosen as the
descriptive statistic for the uncertainty.

In the Bayesian formalism, the outcome of the uncer-
tainty analysis should ideally be the full posterior distribu-
tion p(R). However, determining p(R) analytically is usually
extremely challenging and the distribution can only be
estimated pointwise based on a simulation. In deterministic
uncertainty analysis, the objective is not to form the entire
distribution p(R), but to compute an estimate for the
covariance matrix Cov[R] by linearizing the response R ≈
Sσ . Here S ∈ RJ×K is the response vector sensitivity matrix, J
is the number of responses, and K is the number of uncertain
parameters. After linearizing the response, the covariance
matrix can be computed simply using the identity

Cov[R] ≈ Cov[Sσ] = S Cov[σ]ST , (15)

known as the first-order uncertainty propagation formula or
the Sandwich rule.

3. Implementation

3.1. Computation of Generalized Adjoint Fluxes. This section
reviews the guidelines for modifying a deterministic trans-
port solver to compute the adjoint solutions needed in gen-
eralized perturbation theory and describes the methodology
used in the implementation to CASMO-4. As mentioned
previously, the description on the implementation of clas-
sical perturbation theory to CASMO-4 has been recently
published in [4], and therefore, in this paper, the emphasis
is placed on the GPT-specific features.

As explained in Section 2.1, it is customary to take
the energy- and direction-discretized system as the starting
point for perturbation theory. In CASMO-4, the multigroup
criticality equation is solved by the method of characteristics
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assuming isotropic scattering. Therefore, the following sys-
tem of equations may be taken as the forward problem:

Ωm · ∇Φg(r,Ωm) + ΣgΦg(r,Ωm)

= 1
4π

G
∑

h=1

Σ
h→ g
s φh(r) +

χg
4πk

G
∑

h=1

ν Σhf φ
h(r),

g = 1, . . . ,G.

(16)

In (16) the scalar flux is approximated by the quadrature
formula

φh(r) =
M
∑

m=1

ωmΦ
h(r,Ωm). (17)

In order to simulate an infinite lattice, the boundary condi-
tions are often assumed to be reflective, that is,

Φ(r,Ωm,E) = Φ
(

r,Ω′
m,E

)

, r ∈ Γ, Ωm · n < 0, (18)

where Ωm = Ω′
m − 2(n · Ω′

m)n is the reflection direction.
The inner product corresponding to this discretization can
be defined in a consistent manner as

〈Φ,Ψ〉 =
G
∑

g=1

M
∑

m=1

ωm

∫

D
d3rΦg(r,Ωm)Ψg(r,Ωm). (19)

The adjoint system can now be written

−Ωm · ∇Ψg(r,Ωm) + Σg Ψg(r,Ωm)

= 1
4π

G
∑

h=1

Σ
g→h
s ψh(r) +

ν Σ
g
f

4πk

G
∑

h=1

χhψ
h(r), g = 1, . . . ,G,

(20)

with the boundary conditions

Ψ(r,Ωm,E) = Ψ
(

r,Ω′
m,E

)

, r ∈ Γ, Ωm · n > 0. (21)

It is straightforward to check that the systems (16) and (20)
with their respective boundary conditions satisfy (4) with
respect to the inner product defined by (19).

The generalized adjoint problem for a response of the
form of (13) can now be written

−Ωm · ∇Γg(r,Ωm) + Σg Γg(r,Ωm)

= 1
4π

G
∑

h=1

Σ
g→h
s γh(r) +

ν Σ
g
f

4πk

G
∑

h=1

χhγ
h(r)

+
Σ
g
1(r)

〈Φ,Σ1〉 −
Σ
g
2(r)

〈Φ,Σ2〉 , g = 1, . . . ,G,

(22)

where the generalized adjoint of the scalar flux has been
denoted by γh(r). As explained in Section 2.1, this system
may have an infinite number of solutions, of which we wish
to solve the one that satisfies

〈

B∗Γp,Φ
〉

= 0. (23)

In deterministic transport solvers, the iteration for fixed
source calculations is generally of the form

AΦn+1 = BΦn + S, (24)

where S is an external source. This iteration scheme with a
fixed eigenvalue is also well suited for solving the generalized
adjoint problem of (22), in which case the iteration takes the
form

A∗Γn+1 = 1
k

B∗Γn +
∇ΦR

R
. (25)

During the iteration, however, the convergence to the
particular solution that is orthogonal to the fission source
must be ensured. It is straightforward to show that if the
initial guess for the generalized adjoint flux satisfies (23),
this orthogonality property is preserved during the iteration.
Firstly,

〈

A∗Γn+1,Φ
〉

(25)= 1
k

〈

B∗Γn,Φ
〉

+
〈∇ΦR

R
,Φ
�

(8)= 1
k

〈

B∗Γn,Φ
〉

.

(26)

On the other hand,
〈

A∗Γn+1,Φ
〉

=
〈

Γn+1, AΦ
〉

(1)= 1
k

〈

Γn+1, BΦ
〉

= 1
k

〈

B∗Γn+1,Φ
〉

.

(27)

Therefore, for each iteration n,
〈

B∗Γn+1,Φ
〉

= 〈B∗Γn,Φ
〉

, (28)

from which the result follows. In practice, however, due
to round-off errors and the unavoidable inconsistencies
in formulating the discretizations and adjoint relations, a
refinement of the iteration scheme is necessary to guarantee
that (23) remains satisfied [11]. A suitable procedure is
to force the orthogonality of the solution with each outer
iteration. In this case, in accordance with (11), the iteration
takes the form

A∗Γn+1 = 1
k

B∗
(

Γn − 〈B
∗Γn,Φ〉

〈B∗Ψ,Φ〉Ψ
)

+
∇ΦR

R
. (29)

Notice that this iteration scheme requires that the forward
solution and the fundamental adjoint solution have been
previously computed and that they are accessible during the
iteration.

By comparing (29) with the forward problem of (16),
it can be seen that if the forward system had an external
source, the systems would be of the same form with the
exception that the adjoint system is solved in the opposite
direction. Therefore, if the transport solver does not rely
on the assumption of the nonnegativity of the flux or the
sources, relatively few modifications are needed to transform
the solver to also compute the generalized adjoint functions.
For example, the method of characteristics, used in CASMO-
4, does not require that the solution or the sources are non-
negative. In this case, the following operations need to be
performed before the adjoint calculation [10].
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(1) Transpose the scattering matrix.

(2) Interchange the vectors νσ f and χ.

(3) Invert the group indices for all variables as follows:
G↔ 1, (G− 1) ↔ 2, . . ..

After these operations, the transport solver can be used
to compute the fundamental adjoint solution. Notice also
that these operations automatically convert the forward
boundary conditions to the adjoint boundary conditions.
When solving a generalized adjoint problem, the following
changes need to be additionally implemented within the
(forward) transport solver.

(1) Add the response gradient ∇ΦR/R to the variable for
an external source.

(2) Modify the fission source Fg to the form

Fg =
χg

4πk

G
∑

h=1

ν Σhf

(

φh(r)− 〈BΦ,ΦF〉
〈BΨ,ΦF〉Ψ

g
)

, (30)

where ΦF denotes the forward solution of (16) and Ψ
the adjoint solution of (20).

The multigroup solution Φ given by the solver must then
be interpreted so that, for example, Φg(r,Ω) corresponds to
ΓG+1−g(r,−Ω). Notice that if the transport solver is based
on a numerical scheme that relies on the nonnegativity of
the flux or the sources, some additional modifications are
necessary in addition to the ones described above. For further
details, see for example, [11].

3.2. Computation of Sensitivity and Uncertainty Profiles. After
obtaining the adjoint solutions, the sensitivities with respect
to the multigroup nuclear data parameters can be computed
according to (6) and (12). Notice that even after the
multigroup approximation, these parameters are still spatial
functions and therefore the derivatives in the equations refer
to functional derivatives. The inner product in the sensitivity
expressions can be discretized as

〈Φ,Ψ〉 ≈
I
∑

i=1

G
∑

g=1

M
∑

m=1

ωmVi Φ
g,i,m

Ψ
g,i,m

, (31)

where i denotes the mesh index and Φ
g,i,m

and Ψ
g,i,m

denote
the average fluxes.

In order to compute the uncertainties using the Sandwich
rule, the sensitivities and covariance matrices need to be
formed with respect to the same parameters using the same
energy group structure. In the SCALE 6 covariance library
[3], the available covariance matrices are given in a 40-
group structure for the parameters listed in Table 1. Most of
these covariance matrices are nuclide specific. It should be
emphasized that there is no covariance data for the group-
to-group transfer cross-sections.

Multigroup covariance matrices can in principle be
transformed to another multigroup structure by simple
mathematical techniques. The applicability of this approach
depends on the differences between the group structures.

Table 1: Parameters for which there exists covariance data in the
SCALE library.

Parameter MT number

σt 1

σe 2

σi 4

σn,2n 16

σf 18

σγ 102

σn,p 103

σn,d 104

σn,t 105

σn,He 106

σn,α 107

ν 456

χ 1018

In particular, the widths of the energy groups should not
dramatically change. In this work, the code Angelo 2.3 [12]
was used to transform the matrices to the energy group
structure used in the sensitivity calculations with CASMO-
4. The transformation procedure used in the code is based
on flat-flux approximation, where the resampled values on
the new grid are computed as lethargy overlap weighted
averages. For further details, see [13]. When modifying
the energy group structure of fission spectrum covariance
matrices, further correction procedures are necessary in
order to guarantee that the covariance matrices are in
accordance with the normalization condition

∑

g χ
g = 1

[14]. The correction can also be applied to the fission
spectrum sensitivities in which case the sensitivities are called
constrained [14]. This was the approach chosen in this work.

In order to utilize the covariance data given for the
parameters in Table 1, sensitivity profiles should be com-
puted with respect to the same parameters. However, many
lattice physics codes such as CASMO, HELIOS [15], WIMS
[16], and DRAGON [17] employ nuclear data libraries that
do not contain cross-section data for the individual capture
and scattering reactions, but only for the total capture and
scattering cross-section. There are generally three different
approaches to overcome this difficulty. The most natural
approach is perhaps to add the missing cross-sections to
the code, either by creating a new cross-section library
or by modifying the cross-sections inside the code [18].
Another option, suitable for deterministic analysis, is not
to use problem-dependent cross-sections in the sensitivity
analysis. In this case, the sensitivity coefficients can be
computed outside the code based on the forward and adjoint
fluxes and any set of cross-sections. This was the idea, for
example, behind connecting DRAGON with the sensitivity
and uncertainty analysis code SUSD3D after a generalized
adjoint mode was implemented to DRAGON [19]. The third
option is to form the covariance matrices corresponding to
the total capture and scattering cross-sections [4]. This is the
approach that was chosen in this work.
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Since the relationships between the total and individual
capture and scattering reactions are linear, the covariance
matrices corresponding to the total capture and scattering
reactions can be computed with the Sandwich rule without
introducing any approximation. The method used for com-
bining the covariance matrices has been recently described in
detail in [4]. Therefore, only the most important conclusions
related to the methodology are repeated here.

Firstly, in the context of the capture reactions, the results
are expected to be fully consistent with the case where the
sensitivities are computed with respect to the individual
capture reactions. In the case of the scattering reactions,
however, the sensitivity profiles with respect to the individual
and the total scattering cross-sections cannot be defined in
a consistent manner and this affects the uncertainty results.
In this context, it should be emphasized that the treatment
of the covariance matrices involves no approximations and
the inconsistency is solely related to the computation of
the sensitivities. As mentioned previously, there is no cross-

section data for the transfer cross-sections σ
h→ g, j
x but only

for σ
g, j
x =∑G

h=1 σ
g→h, j
x , where x refers to a scattering reaction

(e.g., elastic, inelastic) and j is the nuclide index. Therefore,
in order to use the scattering covariance data, the sensitivity

profiles should be computed with respect to σ
g, j
x . Because of

the scattering source term in (16), however, the derivative

with respect to σ
g, j
x is not mathematically well defined

without additional constraints. Typically it is assumed that
the probabilities of transfers to various groups are fixed, that
is,

σ
g→h, j
x = σ

g, j
x p

g→h, j
x , (32)

where p
g→h
x is the proportion of neutrons scattered from

energy group g to energy group h, which is assumed to

remain fixed even if the scattering cross-section σ
g, j
x is

perturbed [20]. Based on this assumption, the scattering
source in (16) can be written as

Sg = 1
4π

G
∑

h=1

Σ
h→ g
s φh = 1

4π

∑

x

∑

j

N j
G
∑

h=1

σ
h, j
x p

h→ g
x φh, (33)

where the summations over x include all scattering reactions.

After this assumption, the derivative with respect to σ
g, j
x is

well defined and can be computed as usual. It is straightfor-
ward to show that this approach corresponds to computing
the sensitivity coefficients with respect to the transfer cross-

sections σ
g→h, j
x and summing them over h.

However, the sensitivity with respect to the total scat-

tering cross-section σ
j

s = ∑

x σ
j

x is not well defined if the
constraint (32) is enforced. In order to define this sensitivity,
fixed transfer rates must be assumed for the total scattering
cross-section. Also, computing the total scattering sensitivity
as the sum of the individual scattering sensitivities implicitly
enforces this constraint. Since the two assumptions required
to compute the individual and total scattering sensitivities are
inconsistent, the chain rule of derivation does not apply to

them, and, for example, although σ
g, j
s = σ

g, j
e + σ

g, j
i holds,

dR/dσg, j
e /= (dR/dσg, j

s )(dσg, j
s /dσg, j

e ).

4. Numerical Results for PB-2 Lattice
Physics Exercise

The calculation framework was applied to the BWR test
case from the UAM benchmark lattice physics Exercise 1.2
considering a single fuel assembly with reflective boundary
conditions [2], and the results were compared against
the TSUNAMI-2D sequence in SCALE 6.1 [21]. The test
problem represents Peach Bottom 2 (PB-2) under hot zero
power conditions. Two-group homogenized cross-sections
have been considered as responses in the GPT framework.

The outline of the CASMO-4 calculations is presented in
Figure 1. The calculations were carried out using the cross-
section library E60200 that contains 70 energy groups and
is based on ENDF/B-VI data [22]. The covariance data were
taken from the SCALE 6 library ZZ-SCALE6.0/COVA-44G
[3] according to the guidelines of the benchmark. The library
is based on evaluations from various sources (including
ENDF/B-VII, ENDF/B-VI, JENDL-3.1) and approximate
covariance data. The covariances in the library are given in
relative terms, and therefore the library is intended to be used
with all cross-section libraries including the ones that are
inconsistent with the evaluations. While this is not strictly
correct, it is considered to be acceptable due to the scarcity of
comprehensive covariance data among other reasons [23].

The list of the nuclides present in these test cases can be
found in the benchmark specification [2]. Apart from the
isotopes of chromium and iron, all available covariance data
in the library was included in the uncertainty computations.
The reason for excluding these isotopes is that the employed
cross-section library E60200 does not contain isotope-
specific cross-sections for these materials but only cross-
sections for natural chromium and iron.

The covariance matrices from ZZ-SCALE6.0/COVA-
44G were processed for compatibility with CASMO-4. The
sensitivity profiles in CASMO-4 were computed using the
40-group structure option that was the closest match to the
amount of groups in the covariance data and, as mentioned
in Section 3.2, the code Angelo 2.3 [12] was used to process
the covariance matrices to this energy group structure. Next,
the nuclear data processing code NJOY [24] was used to
transform the 40-group covariance files to the BOXR format.
Auxiliary FORTRAN programs were written for combining
the covariance matrices according to the principles described
in Section 3.2.

The TSUNAMI-2D calculations were performed using
the ENDF/B-VI-based cross-section library V6-238 con-
taining 238 energy groups. The module CENTRM was
used for self-shielding. Implicit sensitivity analysis [9] was
omitted in the TSUNAMI calculations in order to facilitate
the comparison of the results given by CASMO-4 and
TSUNAMI-2D.

4.1. Results Based on Classical Perturbation Theory. A sum-
mary of the results based on classical perturbation theory
for the multiplication factor is presented in Table 2. The
relative difference between the multiplication factors com-
puted with CASMO-4 and TSUNAMI-2D is 52 pcm in both
forward and adjoint cases. For the total uncertainty, the
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Resonance calculation

Omitted

Micro group calculation

Condense to macro groups

Macro group calculation

Condense to 2D groups

2D transport calculation

Sensitivity analysis

Uncertainty analysis

Modified CASMO-4

Added

Standard CASMO-4

• 40 groups
• Including nuclide-specific
  cross-sections 

• 70 groups
• Nuclide-specific cross-sections
  stored for sensitivity analysis

• Adjoint calculations

Macroscopic cross-sections

Figure 1: Outline of the CASMO-4 calculations.

values given by CASMO-4 and TSUNAMI-2D are also very
consistent. Table 3 shows the five most significant sources
of uncertainty together with the corresponding energy- and
region-integrated sensitivity coefficients. As can be seen
from this table, both the sensitivity and the uncertainty
results are in good accordance. The greatest difference occurs
for the capture cross-section of 238U, for which CASMO-4
yields a greater sensitivity. This appears to originate from
the differences in the cross-section libraries. In particular,
the cross-section library E60200 used in the CASMO-4
calculation has not been reduced in terms of the 238U
resonance integral, which is known to be overestimated in
the ENDF/B-VI data [22].

Figure 2 shows the volume-averaged forward flux and the
volume-averaged fundamental adjoint Ψ corresponding to
this test case. As explained in Section 2.1, the value Ψ

g
repre-

sents the average importance of neutrons in the energy group
g to the multiplication factor in comparison to neutrons

Table 2: Summary of the results for the multiplication factor.

Code Forward k Adjoint k Rel. uncertainty, Δk/k (%)

CASMO-4 1.10548 1.10546 0.508

TSUNAMI-2d 1.10490 1.10490 0.506

7
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3

2

1

0
10−4 10−2 100 102 104 106

Forward flux per unit lethargy
Adjoint flux

Energy (eV)

Figure 2: Volume-averaged forward flux and fundamental adjoint
flux.

in other energy groups. The plot can be interpreted from
this point of view. For example, it can easily be seen from
the figure how the 238U capture cross-section resonances
reduce the importance of neutrons in the corresponding
energy groups. This phenomenon is particularly clear in
the energy group E14 = [4.00 eV, 9.88 eV], where the
multigroup capture cross-section attains its maximum value.
It can also be clearly distinguished from the plot how the
adjoint function has a higher value in the energy groups
corresponding to the peaks in the fission cross-section of
235U. To further demonstrate this, Figure 3 shows a plot of
the problem-dependent 235U fission and 238U capture cross-
sections in the same 40-group structure. The increase in
the adjoint values in the highest energy groups corresponds
mainly to the increase in the value of ν at these energies.

Figure 4 shows the multiplication factor sensitivity pro-
files for the parameters, whose integrated sensitivity coef-
ficients have the greatest absolute values, excluding the
sensitivity profile with respect to the fission spectrum of
235U, which was constrained in the computation. As can
be seen from the figure, the multiplication factor is the
most sensitive to the fission parameters of 235U, the capture
cross-section of 238U, and the scattering cross-section of
1H. The positive sensitivity to the capture of 238U in the
highest energy group follows from the fact that in CASMO-
4 the (n, 2n) reaction cross-section has been included in the
capture cross-section with a negative sign in this group. It
is instructive to compare the sensitivity profiles with the
forward and adjoint fluxes plotted in Figure 2. Notice that
the peaks in the sensitivity profiles of 235U coincide with
the thermal peak of the neutron flux, where most of the
fissions occur. In general, perturbing a nuclear parameter
has a greater impact on the results in the energy groups,
where the flux is higher. On the contrary, the values of
the fundamental adjoint represent the average importance
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Table 3: The five most significant sources of uncertainty for the multiplication factor and the corresponding energy- and region-integrated
relative sensitivity coefficients.

Nuclide Parameter pair
Sensitivity Contribution to Δk/k (%)

CASMO TSUNAMI CASMO TSUNAMI
238U σc, σc −2.434× 10−1 −2.143× 10−1 3.198× 10−1 2.902× 10−1

235U ν, ν 9.160× 10−1 9.370× 10−1 2.720× 10−1 2.773× 10−1

235U σc, σc −1.027× 10−1 −1.025× 10−1 1.454× 10−1 1.422× 10−1

235U σf, σf 4.038× 10−1 4.212× 10−1 1.372× 10−1 1.409× 10−1

235U σf, σc 4.038× 10−1 4.212× 10−1 1.238× 10−1 1.245× 10−1

−1.027× 10−1 −1.025× 10−1
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Figure 3: Self-shielded multigroup cross-sections corresponding to
the test problem.

of neutrons in different energy groups. In particular, the
lowest energy group has the highest importance, but this is
not manifested in the sensitivity profiles, as the flux is very
close to zero in this group. The negative sensitivities to the
scattering reaction of 1H in the four lowest energy groups
can be attributed to the fact that in these groups upscattering
is more likely than downscattering. Therefore, neutrons are
scattered to energy groups with a lower importance. The
same reasoning applies to the scattering sensitivity of 1H
in the highest energy groups, where neutrons are scattered
downwards and the values of the adjoint function decrease
rapidly with energy.

4.2. Results Based on Generalized Perturbation Theory.
Table 4 presents the values and the total uncertainties of the
homogenized two-group cross-sections that were considered
as responses in the GPT-based sensitivity and uncertainty
analysis. In computing the responses, the thermal cut-off was
set at 0.625 eV. It can be seen from the table that all total
uncertainty values are in good agreement with the thermal
responses, whereas for the fast responses the uncertainties
given by TSUNAMI-2D are consistently greater.

Tables 5 and 6 show more detailed sensitivity and uncer-
tainty results for the two-group homogenized production
cross-sections νΣf,1 and νΣf,2. As can be seen from Table 6,
in the case of νΣf,1, the difference in the total uncertainty
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Figure 4: Multiplication factor sensitivity profiles.

values given by CASMO-4 and TSUNAMI-2D is attributable
to the scattering of 238U, for which TSUNAMI-2D yields
a significantly greater uncertainty value, although the total
scattering sensitivity coefficients given by both codes are very
close. As explained in Section 3.2, the sensitivity with respect
to the total scattering cross-section can only be defined if the
group-to-group transfer probabilities are assumed to be fixed
for the total scattering. Also, defining the total scattering
sensitivity as the sum of the individual scattering sensitiv-
ities implicitly enforces this assumption. However, in the
TSUNAMI-2D computation, the total scattering uncertainty
is computed based on the individual scattering sensitivities,
which rely on the assumption of fixed transfer rates for
each scattering reaction. The difference in the total scattering
uncertainties is hence explained by incompatible constraints
in the two uncertainty calculations. This phenomenon is
more evident for the fast group responses since they are more
sensitive to the inelastic scattering of 238U.

Figure 5 shows the volume-averaged generalized adjoint
solutions for the responses νΣf,1 and νΣf,2, denoted by Γf,1 and
Γf,2, respectively. As previously explained, the adjoint values
in each energy group can be interpreted to represent the
average importance of neutrons in that group to the response
under consideration. Therefore, it is not surprising that
thermal neutrons are more important to the response νΣf,2,
whereas fast neutrons are more important to the response
νΣf,1. The positive values of Γf,2 in the fast groups result
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Table 4: Values and uncertainties of the responses considered in the GPT framework.

Response R
Value Relative uncertainty ΔR/R (%)

CASMO TSUNAMI CASMO TSUNAMI

νΣf,1 4.976× 10−3 4.951× 10−3 8.399× 10−1 9.754× 10−1

νΣf,2 6.922× 10−2 6.938× 10−2 4.490× 10−1 4.478× 10−1

Σc,1 5.348× 10−3 5.380× 10−3 1.098× 100 1.168× 100

Σc,2 2.653× 10−2 2.672× 10−2 5.066× 10−1 5.040× 10−1

Σf,1 1.935× 10−3 1.927× 10−3 5.563× 10−1 6.820× 10−1

Σf,2 2.841× 10−2 2.847× 10−2 3.244× 10−1 3.226× 10−1

Table 5: The five most significant sources of uncertainty for the response νΣf,2 and the corresponding energy- and region-integrated relative
sensitivity coefficients.

Nuclide Param. pair
Sensitivity Contribution to ΔR/R (%)

CASMO TSUNAMI CASMO TSUNAMI
235U ν, ν 9.996× 10−1 9.998× 10−1 3.105× 10−1 3.106× 10−1

235U σf, σf 7.985× 10−1 7.941× 10−1 2.893× 10−1 2.869× 10−1

235U σf, σc 7.985× 10−1 7.941× 10−1 1.134× 10−1 1.139× 10−1

−3.599× 10−2 −3.667× 10−2

238U σc, σc −4.406× 10−2 −4.255× 10−2 7.257× 10−2 7.222× 10−2

235U σc, σc −3.599× 10−2 −3.667× 10−2 5.613× 10−2 5.672× 10−2
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Figure 5: Volume-averaged generalized adjoints corresponding to
the responses νΣf,1 and νΣf,2.

from the downscattering of neutrons. Notice that Γf,1 also
has a small positive value in the first thermal group, which
corresponds to the possibility of upscattering. For the most
part, both adjoint fluxes qualitatively follow the fission cross-
section of 235U plotted in Figure 3. In the highest energy
groups, the values of Γf,1 increase rapidly due to the increase
in the values of ν. The negative values of Γf,1 between
0.111 MeV and 2.231 MeV signify that additional neutrons in
those energy groups would on average contribute more to the
denominator 〈Φ, 1〉1 than to the numerator 〈Φ, νΣf〉1. This
in accordance with the fact that fission is unlikely to occur in
this energy region.

Figure 6 shows the sensitivity profiles of νΣf,1 with respect
to the parameters, whose integrated sensitivity coefficients
have the greatest absolute values. As can be anticipated, the
response is the most sensitive to the fission parameters of
235U and 238U and in addition to the scattering of 1H. It
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Figure 6: Sensitivity profiles of the response νΣf,1.

is interesting to compare these profiles with the plot of the
generalized adjoint Γf,1 in Figure 5. The sensitivity to the
scattering of 1H has the smallest values in the groups with
the highest importance, as this reaction transfers neutrons to
energy groups with a lower importance. Since fast neutrons
mostly scatter downwards, the scattering sensitivity has
positive values in the groups between 149 eV and 1.35 MeV,
where the importance decreases with increasing energy. This
trend is reversed at 1.35 MeV, where the importance of the
energy groups begins to increase with energy, mainly due to
the increase in the values of ν at these energies.

The sensitivity profiles corresponding to the response
νΣf,2 are plotted in Figure 7. It is noteworthy that the
profiles qualitatively resemble the respective profiles of the
multiplication factor in the thermal region, whereas they
quickly fall to nearly zero in the fast region. From the
perspective of the GPT framework, it is again enlightening
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Table 6: The five most significant sources of uncertainty for the response νΣf,1 and the corresponding energy- and region-integrated relative
sensitivity coefficients. The sensitivity coefficients with respect to the parameter χ have been constrained.

Nuclide Param. pair
Sensitivity Contribution to ΔR/R (%)

CASMO TSUNAMI CASMO TSUNAMI
235U χ, χ 4.657× 10−9 −2.757× 10−10 5.934× 10−1 6.150× 10−1

238U ν, ν 3.975× 10−1 3.879× 10−1 4.623× 10−1 4.544× 10−1

238U σf, σf 3.931× 10−1 3.834× 10−1 2.084× 10−1 1.994× 10−1

238U σs, σs −2.743× 10−2 −2.718× 10−2 2.015× 10−1 5.148× 10−1

235U σf, σf 5.826× 10−1 5.866× 10−1 1.588× 10−1 1.466× 10−1

0.3
0.25

0.2
0.15

0.1
0.05

0
−0.05
−0.1

10−4 10−2 100 102 104 106

Energy (eV)

  R
el

. s
en

si
ti

vi
ty

 
pe

r 
u

n
it

 le
th

ar
gy

0.4
0.35

235U—Ā
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Figure 7: Sensitivity profiles of the response νΣf,2.

to compare the sensitivity plots with the adjoint function Γf,2

plotted in Figure 5 and the flux Φ shown in Figure 2. In the
case of this response, the average importance of neutrons
increases steadily with decreasing energy. Therefore, it is
reasonable that the scattering sensitivities are again negative
in the groups where upscattering is more likely than down-
scattering. Also, the sensitivities peak in the energy region
coinciding with the thermal peak of the forward flux.

5. Summary and Conclusions

Sensitivity and uncertainty analysis capability has been
developed to the reactor physics code CASMO-4 in the
context of the UAM benchmark. Sensitivities with respect
to nuclear data parameters can be computed efficiently by
utilizing the adjoint system of the criticality equation. The
propagated nuclear data uncertainty can then be calculated
deterministically by the Sandwich rule.

Initially, classical perturbation theory was implemented
to the code, which enabled sensitivity analysis of the critical
eigenvalue. In this context, covariance matrices from scale
6 were transformed to become compatible with CASMO-
4, and the resulting covariance library was connected with
the code. Since the cross-section libraries of CASMO-4 do
not contain data for the individual capture and scattering
reactions, the covariance matrices of the individual subre-
actions were combined in the covariance library. This work
has been reported in detail in [4], and the main conclusions
related to the methodology were summarized in this paper.
In particular, the sensitivities with respect to total scattering

and individual scattering cross-sections cannot be defined
in a consistent manner, which leads to some systematic
differences in the uncertainty results.

Recently, generalized perturbation theory was added to
the code as a new feature, which enables performing sensitiv-
ity analysis for responses that can be represented as reaction
rate ratios. For each response, the computation of sensitivity
profiles with respect to all parameters of interest requires
solving one generalized adjoint system. The mathematical
background as well as the physical interpretation of the
generalized adjoint solutions were reviewed, and practical
guidelines were given for modifying a deterministic transport
code to solve the generalized adjoint systems needed in
sensitivity analysis. The theory for computing the sensitivity
profiles was presented both from the perspective of function
space analysis and numerical computations.

Numerical results were presented for a lattice physics
test problem representing a BWR in hot zero power
conditions, and they were compared to the results given
by the TSUNAMI-2D sequence in SCALE 6.1. Two-group
homogenized cross-sections were considered as responses in
the generalized perturbation theory framework. The results
were in very good agreement with the thermal responses,
whereas in the case of fast responses, the uncertainties given
by TSUNAMI-2D were consistently greater. Detailed sensi-
tivity and uncertainty results were presented and analyzed
for the homogenized fast and thermal production cross-
sections. The differences in the uncertainty results for the
fast responses were explained by the incompatible constraints
used in computing the scattering uncertainties.

In the future, the work will continue by extending the
GPT framework to other responses in addition to two-
group homogenized cross-sections with the eventual goal of
modifying CASMO-4 to provide uncertainty estimates for all
homogenized assembly data, which can then be propagated
to coupled neutronics/thermal hydraulics calculations.
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