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A fault diagnosis framework based on extreme learning machine (ELM) and AdaBoost.SAMME is proposed in a nuclear power
plant (NPP) in this paper. After briefly describing the principles of ELM and AdaBoost.SAMME algorithm, the fault diagnosis
framework sets ELM algorithm as the weak classifier and then integrates several weak classifiers into a strong one using the
AdaBoost.SAMME algorithm. Furthermore, some experiments are put forward for the setting of two algorithms. The results of
simulation experiments on the HPR1000 simulator show that the combined method has higher precision and faster speed by
improving the performance of weak classifiers compared to the BP neural network and verify the feasibility and validity of the
ensemble learning method for fault diagnosis. Meanwhile, the results also indicate that the proposed method can meet the
requirements of a real-time diagnosis of the nuclear power plant.

1. Introduction

Structures of the nuclear power plant (NPP) are compli-
cated, which have potential radiation detriment. Thus, the
requirements for their safety and reliability are quite strict.
One technical way to provide operation supports for the
operators is fault diagnosis technology, and its application in
NPP can assist operators to find and identify faults timely
and accurately. It is also an effective method for preventing
and reducing human factor errors. Fault diagnosis tech-
nology has important significance in improving the safe
operation of NPP [1].

With the wide application of digital instruments and
control systems in NPP, the fault diagnosis methods based
on data driving have obtained extensive research. In the
literature, a lot of fault diagnosis methods have been pro-
posed; for example, Wang Hang applied the support vector
machine (SVM) and improved particle swarm optimization
(PSO) to perform further diagnosis in NPP on the basis of
qualitative reasoning by knowledge-based preliminary di-
agnosis and sample data provided by an online simulation
model [2]. Sinuhe adopted a time-lagged feed-forward

neural network in the research of the total instantaneous
blockage of an assembly in the core of a sodium-cooled fast
reactor [3]. Principal component analysis (PCA) is applied
for fault detection of sensors in a nuclear power plant by Li
et al. [4]. Qiu Pinda addressed a scheme for improving the
accuracy of fault diagnosis by fusing the sparse coding fault
diagnosis results with the expert system [5]. Shyamapada
Mandal addressed an approach for small/minor fault de-
tection of thermocouple sensors in a nuclear power plant
using time series analysis methods [6]. He proposed another
method based on the symbolic dynamic filter (SDF); the
proposed method is also able to detect and classify the minor
as well as major signal faults in the thermocouple signal [6].
To handle the complex sensor error detection problem in
NPPs, an LSTM network was applied with successful results
obtained by Choi and Lee [7].

The above methods have made some achievements in
fault diagnosis of NPP, but they have their drawbacks: neural
network based on gradient descend method is prone to get
the local minimum with slow convergence and tendency to
overfitting [8]; SVM lacks sparseness, and with the in-
creasing sample size, the number of support vector tends to
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increase with time spent in model training [9]. PCA is
applied to fault detection on the basis of steady conditions,
but for the variable conditions of NPP, a single PCA model is
difficult to apply because it may cause misdiagnosis and
missed diagnosis [10, 11]. Expert systems require a great deal
of expert experience which is often hard to get [12]. SDF is
essentially a kind of time series analysis method, and the
basic idea of SDF is using temporal relation of historical data
to predict behavior; therefore, SDF has better performances
for strong time sequence data, but with limited capabilities
for data with a lot of nonlinear relation. LSTM is difficult to
determine parameters, so it is difficult to be practice applied
[13].

Although a lot of methods have been done on fault
diagnosis in NPP, most applications focus exclusively on the
design and optimization of each method as well as the
implementation of each method on various systems or
components. That is, different algorithms have different
performances, advantages, and disadvantages. It can be
really difficult to satisfy all the needs in NPP with a single
algorithm.

How to improve the performance of each algorithm has
become the research hotspot of many scholars. Fortunately,
the emergence of ensemble learning can provide ideas for
solving those problems, but there is little research on the
fault diagnosis with an ensemble learning algorithm in NPP.
The model that meets the training samples may not have the
same good performance in practical application, so the
model will be exposed to a certain amount of risk when being
output. It is really worth mentioning that the integration of
multiple models can reduce this risk. Ensemble learning can
combine multiple weak models to a good strong model.
With the increasing of the number of weak models, the error
rate of the integration decreases exponentially and even-
tually goes to zero [14, 15]. And ensemble learning can also
greatly improve the stability and generalization ability of
original weak models [16].

In this paper, as a representative algorithm of ensemble
learning, the AdaBoost algorithm combined with the
SAMME algorithm (with sagewise additive modeling using a
multiclass exponential loss function) [17] is applied in fault
diagnosis research in NPP, which selecting extreme learning
machine (ELM) as the weak classifier. The contributions of
this paper are as follows:

(i) A fault diagnosis method based on ELM-Ada-
Boost.SAMME for the nuclear power plant is
proposed.

(ii) AdaBoost.SAMME is applied to improve the per-
formance of the ELM algorithm.

(iii) The novel part of this work is to verify the feasibility
and validity of the ensemble learning method for
fault diagnosis in this paper.

The paper is organized as follows: based on previous
research, innovation points of this paper are described in
Section 1. Two different methods are introduced to integrate
into Section 2. Section 3 outlines the fault diagnosis
framework in NPP with an ensemble learning algorithm.
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The accuracy and effectiveness of the ensemble learning
algorithm are evaluated in the HPR1000 simulator in Section
4. Conclusions are given in the last section.

2. Proposed Algorithm: ELM-
AdaBoost.SAMME

2.1. ELM Algorithm. ELM algorithm is proposed based on
SLENs, which randomly selects the input weight matrix and
hidden layer biases, and there is no need to adjust. This
algorithm has many advantages; on one hand, the ELM
algorithm can get the output weight of SLFNs through a
simple generalized inverse operation of the hidden layer
output matrices, which only needs to set the number of
hidden layer neurons at the entire training process. On the
other hand, the ELM algorithm is composed of simple
mathematical algorithms; thus, it has a significant advantage
in learning efficiency, and it overcomes the disadvantage of
gradient-based traditional learning algorithm with falling
into local minimum and overfitting [18]. The structure of
ELM is shown in Figure 1.

Supposed that an original training data matrix with N
variables can be expressed as x; = [x;, X5, ..., X;x]" €Ry and
¥: = [Yi1> - Vi1 €Rg. For example, a ELM network with L
hidden nodes and activation function g (x) can be defined as

L
Y Big(w;-x;+b) =0, i=12...,Lj=12...N,
i=1

(1

where weights w; and bias b; are randomly chosen and f3; is
output weight which connects the ith hidden node with the
output node; they are expressed in equation (2). Activation
function g(x) can select any bounded continuous functions
like sigmoid, threshold, sine, and cosine:

Wy - WiN
w = : R
Wrp - WIN / LxN
Wy Wk
B=1 . , (2)
Wrp oo Wik / Ixk
b,
b=| :
bL Lx1

The output of ELM can approximate the N samples with
zero error, which can be described as

N
Y lloi =il =o. (3)
i1

Then, we can have

L
fr) =Y Bgw; - x;+b) =y, i=12...L (4
i=1
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Equation (4) can be expressed in a condensed form as
Hp =Y, where H is the hidden layer output matrix of the
ELM:

H(wl,...

L0 by b Xy, xy) =

ELM is aimed to minimize training error as well as the
norm of output weights. Then, equation (5) is turned into a
least-square problem: min[HB =Yl The calculation of
output weights can be transformed into finding least-square
solutions to the above linear equation, which is given as

B=H'Y, (6)

where H* is the Moore-Penrose generalized inverse of
matrix H.

Based on the foregoing analysis, the ELM algorithm has
many specialties like the smallest norm of weights and the
minimum approximation of training error and only needs to
debug the number of hidden layers. All these advantages
make it well suitable for the fault diagnosis of NPP in the
following chapters.

2.2. Adaboost. SAMME Algorithm. Adaboost is a machine
learning algorithm based on boosting [19]. Adaboost
algorithm can integrate several classifiers to generate a
new classifier with better performance. When solving the
binary classification problem, the Adaboost algorithm
only requires the accuracy of each weak classifier to be
higher than 0.5 for each training sample. However, this
requirement is much forced for multiclassification
problems. Meanwhile, the weak classifiers are required to
have slightly higher accuracy than random guesses; this
requirement is also too weak which will not ensure the
improving classification accuracy of the strong classifier.
To solve multiclassification problems, SAMME is intro-
duced into the Adaboost algorithm:

Firstly, each sample is given an initial weight value, then
Adaboost. SAMME algorithm can adaptively update weight
values by iteratively calculating the error rate of the weak
classifier. The error rates also determine the weight value of
each weak classifier, which represents its share in the final
strong classifier. It can be briefly described as the fellow steps
(see Algorithm 1).

Algorithm 1. Adaboost.SAMME algorithm.

Input:  training  samples  (x;,¥;), xRy,
y;€(1,2,...,K), where K is the number of fault
types, G,, (x) is selected as the weak classifier based
on the ELM method in this paper, and M is the
number of weak classifiers.

(1) Initialize the weight value of the training samples:

3
g(w - x;+b;) ... glwg-xy+by)
: (5)
g(w-xy+by) - glwp-xy+bp) / nur
o= i=123,...N. (7)

2) Form=1: M

(1) Generate a weak classifier by training with
weighted samples:

G, (x): X— (1,2,...,K), (8)
N
err,, = Z "wmi (Gm (xi) # yi)’ (9)
i=1
1 1—err
=-1 " +log(K —1),
@, 5 og orr +log( ) (10)
Wi .
wm+1,i = V4 exp (_“minm (xi))’ 1= 1’2’ o ‘N’ (11)
N
Zm = Zwmi exp (_‘xminm (xi))’ (12)

Il
—_

1

M
G(x) = sign< Z a,,G,, (x)>. (13)

m=1

(2) Calculate the error rate of each weak classifier:
(3) Calculate the weight value of each weak classifier:
(4) Renew the weight value of training samples
according to step (3):
where Z,, is a standardization factor:
End.

(3) output: strong classifier prediction:

3. Design of Fault Diagnosis Method for NPP
Based on ELM-AdaBoost.SAMME

3.1. Characteristic Parameter Selection for Fault Diagnosis.
Taking HPR1000 NPP as an example, the research and
experiments are based on the HPR1000 simulator. The
typical faults of NPP selected for experimental verification
are loss of coolant accident (LOCA), steam generator tube
rupture (SGTR), main steam pipe rupture in the
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FiGure 1: The structure of ELM.

containment, and main steam pipe rupture outside the
containment. These faults are typical accidents that may
destroy the integrity of NPP. If any accident occurs, NPP
would undoubtedly be in an extremely dangerous state, and
the operators may hardly judge the fault and take coun-
termeasures quickly. The consequences would be unimag-
inable if mishandled. Through analyzing the reasons for the
accidents happened, 21 fault symptoms are selected for and
elaborated in the following paragraph:

The temperature inside the containment; containment
sump level; pressurizer water level; no. 2 SG steam flow;
coolant flow in loop 1; coolant flow in loop 3; no. 1 SG steam
pressure; no. 3 SG steam pressure; temperature of the hot leg
in loop 2; temperature of the cold leg in loop 1; temperature
of the cold leg in loop 3; pressure inside the containment;
pressurizer pressure; no. 1 SG steam flow; no. 3 SG steam
flow; coolant flow in loop 2; primary average pressure; no. 2
SG steam pressure; temperature of the hot leg in loop 1;
temperature of the hot leg in loop 3; and temperature of the
cold leg in loop 2.

3.2. Framework for NPP Fault Diagnosis Based on ELM-
AdaBoost. SAMME. The essence of fault diagnosis for NPP is
a multiclassification problem, a combination of ELM and
AdaBoost.SAMME can settle the problem well. ELM con-
sists of three layers, the 21 characteristic parameters brought
forward by the foregoing words are chosen as the sample
inputs of ELM. Due to a large number of input parameters
and training samples, the number of hidden layers is 140
which is decided by the simulation experiments in the
following section. Four typical faults encoding are chosen as
the output of ELM.

Algorithm flow based on the ELM-AdaBoost. SAMME is
summarized in Figure 2. The left of the framework is the
AdaBoost. SAMME algorithm; next to it is the ELM algo-
rithm. During each pass in the loop, the AdaBoost. SAMME
algorithm is called to generate a weak classifier applying
ELM algorithm. After training the classifier with the whole
samples, errors of the classifier are obtained and saved. The
errors are used to calculate the weight values which will
decide the classifiers’ share in the final classifier and update
samples’ weight values. AdaBoost.SAMME algorithm will
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stop automatically after the predetermined numbers are
reached. Combining the whole classifiers, we can get the final
output encoding as the result of fault diagnosis.

4. Simulation Tests and Analysis

In this section, the diagnosis model is trained and tested with
experimental data to verify its ability of fault recognition.
Meanwhile, in order to test the model performance on every
aspect, BP neural network has been established for
comparison.

4.1. Settings for ELM. A better activation function for ELM
will make a contribution to the more accurate detection of a
fault that occurred in NPP. From Figure 3, three activation
functions are chosen. Sin function’s error rate has been
consistently high within the range of 100 hidden layers of
ELM. Hardlim function is much the same with the sigmoid,
but the curve of the error rate of the sigmoid function is
more stable and with the smallest error rate which represents
the highest accuracy, relative to other functions. Thus, the
sigmoid function is selected as the activation function for the
ELM algorithm.

The number of hidden neurons of the ELM algorithm is
crucial to the performance and accuracy of the network, as
well as restricting the training time. At the beginning of the
training, the number of hidden neurons is 10, and then it
gradually increases to 300 with a step of 10. Finally, the error
rate curves of the training samples and the test samples with
the different numbers of hidden neurons are shown in
Figure 4, and the curve of training time is shown in Figure 5.
From Figure 4, it can be seen that the error rate tends to
decrease remarkably with the increasing number of hidden
neurons, whether to the training curve or testing curve.
Moreover, the accuracy of training samples is approximately
keeping at 90%, when the number of hidden neurons reaches
100. The training time increases slightly with the number of
hidden neurons and basically maintains at 1.76 s which is
illustrated in Figure 5.

To verify the boosting effect of the ELM-Ada-
Boost SAMME method, the following simulation experi-
ments with the different numbers of weak classifiers are
carried out. The three curves represent performances of ELM
with the different numbers of hidden layers: 140, 230, and
400. 140 is set as the number of hidden layers for a weak
classifier, 230 represents a relatively stronger weak classifier,
and the strongest weak classifier has 400 hidden layers. The
results under the same condition are illustrated in Figure 6
and Table 1. The result shows that the ELM with 140 hidden
layers has the biggest jump with a 4.45% promotion of
accuracy rate. The strongest weak classifier has the lowest
error rate from the beginning; however, it has scant room for
higher accuracy because of taking up too much computer
resources. Thus, for the purpose of verifying algorithms’
validity, there is no need to select the model with the smallest
error rate. In a word, in order to demonstrate a more
pronounced effect, the number of hidden neurons is selected
as 140 with lower training accuracy of 89.25% in this paper.
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FIGURE 2: The framework of fault diagnosis based on ELM-AdaBoost.SAMME.
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4.2. Settings for ELM-AdaBoost. SAMME. The relationship
between the error rate and the number of weak classifiers is
shown in Figure 7. The error rate is the ratio of the number of
wrong classified samples and all samples.

According to Figure 7, we can see that the error rate of
training samples tends to decrease with the increasing
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FIGURE 4: Error rate of samples with a different number of hidden
layers of ELM.

number of weak classifiers, which demonstrates the effect of
the AdaBoost. SAMME algorithm to bring the error down. It
is also clearly observed that the error rate of testing samples
is firstly remarkably decreased and then increased slowly,
which indicates that error rate reaches the lowest value with
the increasing of the number of weak classifiers during the
initial phases; however, followed by the continuous in-
creasing of weak classifiers, the error rate of testing samples
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increases because of model overfitting. Meanwhile, due to
the increase in the number of weak classifiers, the training
time also increases. Based on this analysis, the number of
weak classifiers for the ELM-AdaBoost. SAMME algorithm
can be set as 100 with the lowest testing error rate since it
also regards the curves of error rate (Figure 7) and training
time (Figure 8) as selection criteria.

4.3. Comparative Analysis of Simulation Results

4.3.1. Model Comparison and Analysis. This section pres-
ents the results of the proposed method, the efficiency of
the proposed method is validated by the data of the
HPR1000 simulator wusing the indigenous design
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simulation platform of China. The period of data capture is
set as 4 min and then 500 samples are used to train the
ELM-AdaBoost. SAMME model and randomly select 200
samples for testing.

Training samples are made up of two parts: the input part
is fault symptom variables and the output part is fault in-
dication. Training samples include the four-fault data as well
as the normal operating state. All the output samples of fault
indication are encoded with one-hot code. For example, the
encoding [1 0 0 0] means LOCA has occurred. 1 stands for
fault happening and 0 otherwise.

For comparing the properties of the ELM-Ada-
Boost. SAMME model with other algorithms, the simulation
tests are carried out under the MATLAB environment on a
PC platform with 2 Intel Core dual-core CPUs (3.6 GHz)
and 16 GB RAM, and the results of BP neural network and
ELM with the same test conditions are illustrated in Table 2.
Especially for validating the advantages of the combined
algorithm ELM and AdaBoostSAMME, the BP-Ada-
Boost.SAMME is selected for characteristic comparison.

The calculation formulas of the accuracy rate are pre-
sented as follows:

e = (Nall_Nerr)) (14)
Nay
where N, is the total number of samples and N, is the

number of wrong classified samples.
As shown in Table 2, it can be concluded as follows:

(1) Simulation  results show that ELM-Ada-
Boost. SAMME model achieves 97.5% precision in
the testing stage, which is better than other methods.
In contrast with ELM, the accuracy of ELM-Ada-
Boost.SAMME method, in training and testing stage,
rises by 4.25% and 5%, respectively, at the same time,
and there is no significant increase in time.

(2) BP neural network has the highest accuracy in the
training stage but spends the maximum time. In
addition, the problem of overfitting appears during
the testing stage for the BP neural network.

(3) The ELM algorithm has the feature of training
quickly because it can be done without iterative
tuning, which has dozens of times faster than the BP
neural network. What is more, the accuracy of the
ELM algorithm can achieve a high degree through
training.

(4) By comparison, the accuracy of ELM-Ada-
Boost.SAMME and BP-AdaBoost.SAMME is im-
proved in different degrees separately on training
and testing set; however, the BP-AdaBoost. SAMME
has lower accuracy on the testing set. It could be
inferred that the BP neural network had been
overfitted; moreover, the training time has almost
doubled, to 2 minutes.

Then, the conclusion can be drawn that the Ada-
Boost.SAMME combined with the ELM algorithm as its
weak classifiers can be adopted to achieve greater speed, as
well as accuracy.
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TaBLE 1: Simulation results of different numbers of weak classifiers and hidden layers.

Number of hidden layers  Accuracy with 10 weak classifiers

Accuracy with 100 weak classifiers

Promotion of accuracy rate (%)

140 0.8905 0.935 4.45
230 0.9145 0.936 2.15
400 0.9245 0.947 2.25
0.40 o
e
0.35

Error rate of samples
o
(3]
(=]
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FIGURE 7: Error rate of samples with a different number of weak classifiers of ELM-AdaBoost. SAMME.

5.0

T
0 50

T T T
100 150 200

Number of weak classifiers of ELM-AdaBoost

—a— Training time

FIGURE 8: Training time of samples with a different number of weak classifiers of ELM-AdaBoost.SAMME.

4.3.2. Online Simulation Experiment. In this section, in
order to test the real-time performance of the ELM-Ada-
Boost.SAMME model, the ELM-AdaBoost. SAMME and BP
neural network models based on C programming language
are both integrated into the HPR1000 simulator. Online
simulation tests are carried out in the HPR1000 simulator
under normal operating conditions with full power, and
then LOCA malfunction is inserted by instructor station (IS)
as an example after the simulator running for 20s. Based on
the simulation results in Figure 9, the red curve youtl (2)
represents the output variable of the diagnosis model based

on the ELM-AdaBoost.SAMME algorithm indicating the
appearance of LOCA, whereas the orange curve yout2 (2)
represents the output variable based on the BP neural
network. The other colored curves are for the rest of the fault
diagnosis variables.

As we can see clearly in Figure 9, the ELM-Ada-
Boost. SAMME model diagnoses the malfunction of LOCA
in 25 s after inserting malfunction in 20s, and the BP model
diagnoses the malfunction in 28 s. Both models can diagnose
the malfunction correctly; nonetheless, the ELM-Ada-
Boost.SAMME is 3 seconds faster than the BP model.
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TaBLE 2: Simulation results of three algorithms.

Algorithm Average accuracy of training

Average accuracy of testing

Average training Model parameters

samples samples time/s
ELM 0.8925 0.925 1.6018 Hidden li’fg number:
Weak classifier number:
ELM- 100
AdaBoost.SAMME 0-935 0-975 3.3401 Hidden layer number:
140
BP 0.9638 0.918 46.7853 Hidden laﬁr number:
Hidden layer number:
BP-AdaBoost. SAMME 0.977 0.921 102.9676 . 45
Hidden layer number:
100
Variable: Max: Min:
yaorultas(:) 2§10e+00 01.12)05+00 Save J l Delete } [Restor e] l Tool
=
Monitor Parameter B B2
Bs 0
e 7
ol [Hs =
, Oe ‘ v
[ MutiSelection 0
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Byouti 1) 0 % 00 Hyoutz2(2) 1 2 00
Wyout1(2) 1 B 00 Myout3(1) 0 2 5 B
Wyoutz2(1) 0 2 00 Myouts(2) 0 2 0 0

FiGURE 9: Comparison curves of an online test of the two models.

With the foregoing analysis, we can conclude that the
ELM-AdaBoost.SAMME model can diagnose the mal-
function more quickly and reliably. Therefore, the Ada-
Boost.SAMME algorithm really does have some accuracy
enhancements for weak classifiers. At the same time, it is
proved that the ELM-AdaBoost.SAMME model can also
meet the real-time requirement.

5. Conclusions

In this paper, an ELM-AdaBoost.SAMME-based method is
applied for fault diagnosis in NPP. The ELM-Ada-
Boost.SAMME model selects the ELM algorithm as its weak
classifiers and then applies the AdaBoost.SAMME algorithm to
integrate weak classifiers into a strong classifier. To estimate the
fault diagnosis ability of the proposed model for NPP, a di-
agnosis model based on ELM-AdaBoostSAMME is built.
What is more, the model integrates into the HPR1000 sim-
ulator for real-time testing and a more accurate reflection.
Simulation results show that the model is characterized by the
fast and accurate diagnosis as well as real-time requirement.
Meanwhile, the AdaBoost. SAMME algorithm is also proved to
be effective in boosting the weak classifier. That is, the

AdaBoost. SAMME algorithm can be applied not only in the
ELM algorithm but also in other diagnosis algorithms.
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