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The limiting performance of shock isolation of a system with
one and a half degrees of freedom is studied. The possibil-
ity of using a single-degree-of-freedom model for this anal-
ysis is investigated. The error of such an approximation is
estimated. Numerical examples are presented.

1. Introduction

The most advanced achievements in the theory of
optimum impact and shock isolation have been made
for a single-degree-of-freedommodel. This model con-
sists of a rigid body (the object to be isolated) con-
nected to a moving base by means of an isolator (con-
troller). It is assumed that the body and the base move
rectilinearly along the same line. The base is subjected
to a shock disturbance modeled by an acceleration
pulse applied to it. In simpler cases, the acceleration
pulse is assumed to be precisely prescribed. The limit-
ing performance analysis of such systems implies the
determination of an optimal open-loop control force
acting between the base and the body that would min-
imize the peak magnitude of the displacement of the
body, provided that the peak force transmitted to it does
not exceed a prescribed value. Also, a formulation is
used in which the peak force transmitted to the body
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is to be minimized, with the constraint being imposed
on the peak displacement. For a comprehensive pre-
sentation of the state-of-the-art of the theory of opti-
mal shock isolation, see [1]. This book contains an ex-
tensive bibliography of relevant publications. See also
[2,4].

Any realistic body, possessing elastic and dissipative
properties, is not perfectly rigid. When utilizing meth-
ods developed for a rigid body model in the practice of
isolation system design, one should have an estimate of
the accuracy provided by the single-degree-of-freedom
approximation in terms of the performance index. This
estimate depends on the elastic and dissipative charac-
teristics of the body to be isolated. In the present pa-
per, we obtain such an estimate for the case where the
body is modeled by a mass to which a Voigt element is
attached.

The problem treated in the present paper can be re-
lated to such problems as the design of optimal isola-
tion systems for automobiles. A typical example would
be the design of padding intended to isolate the legs of
an automobile driver in a frontal crash. The goal could
be to prevent fracture of the right leg of the driver. At
the instant of crash, the driver is usually pressing on
the brake pedal with his or her right leg. The colli-
sion of the automobile with another car or with a fixed
obstacle can cause a large axial impact loading of the
leg which can lead to fracture. In order to reduce haz-
ardous consequences of the impact, the floor pan of an
automobile near the brake pedal can be made compli-
ant to help isolate the leg from high impact loadings. In
other words, the automobile is equipped with a shock
isolator, such as padding. The mechanical behavior of
the human leg under axial shock loading in automobile
crashes is sometimes modeled by a mass with a Voigt
viscoelastic element [3]. This effective mass takes into
account the influence of the masses of the upper leg
and lower leg, while the Voigt element models vis-
coelastic properties of the lower leg which is especially
vulnerable in frontal crashes. The results presented in
this paper permit the estimation of the minimum rat-
tlespace for the isolator ensuring that the peak force
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transmitted to the leg does not exceed a limiting value
beyond which the lower leg could be fractured.

2. Description of the mechanical system

Consider a mechanical system consisting of a heavy
body to which a Voigt spring-damper element is at-
tached. See Fig. 1. The masses of the spring and
damper are neglected. The system is attached to a mov-
able base by means of a shock isolator (controller) gen-
erating the control force applied to the free end of the
Voigt element. The base and the body are assumed to
move along a straight line. The motion of this system
is governed by the system of equations

m(ẍ+ z̈) + C(ẋ− ẏ) +K(x− y) = 0, (2.1)

C(ẋ− ẏ) +K(x− y) = −F , (2.2)

wherem is the mass of the body,z is the displacement
of the base with respect to an inertial reference frame,
x is the displacement of the body relative to the base,y
is the displacement of the free end of the Voigt element
with respect to the base,C andK are the damping and
stiffness coefficients, andF is the control force. Equa-
tions (2.2) and (2.2) can be equivalently represented in
the form

mẍ = F −mz̈, (2.3)

C(ẋ− ẏ) +K(x− y) = −F. (2.4)

Fig. 1. A heavy body with a Voigt element attached to a moving base
by an isolator.

Note that Eq. (2.3) coincides with the equation of
motion of the body relative to the moving base, with
the control force being applied directly to the body, i.e.,
the body does not “feel” the presence of the Voigt ele-
ment. This is a consequence of the assumption that the
mass of the entire system is concentrated in the body.

The system of Eqs (2.3) and (2.4) is a simple model
of a viscoelastic structure isolated from shock applied
to the base. The variabley may be interpreted as the
displacement of this structure relative to the base and
the differencex− y as its deformation. In accordance
with Eq. (2.4), the control force is equal in magnitude
to the internal force developed in the viscoelastic struc-
ture. The time history of the base acceleration,z̈, is
treated as the external disturbance.

We introduce the notation

u = −F
m

, v = −z̈, c =
C

m
, k =

K

m
(2.5)

to represent Eqs (2.3) and (2.4) in the form

ẍ+ u = v, (2.6)

c(ẋ− ẏ) + k(x− y) = u. (2.7)

3. Limiting performance analysis of the isolation
system

3.1. Problem formulation

Consider two problems of limiting isolation capabil-
ities (limiting performance problems) for the system of
Eqs (2.6) and (2.7). We choose the maximum magni-
tude of the displacement of the free end of the Voigt
element,

J1(u) = max
t∈[0,∞)

∣∣y(t)
∣∣, (3.1)

and the maximum magnitude of the absolute accelera-
tion of the body,

J2(u) = max
t∈[0,∞)

∣∣u(t)
∣∣, (3.2)

to be the performance criteria.

Problem 1. For a system described by Eqs (2.6) and
(2.7) subject to the initial conditions,

x(0) = 0, ẋ(0) = 0, y(0) = 0, (3.3)
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and a prescribed disturbancev(t), define an optimal
open-loop controlu0(t) such that

J2(u0) = min
u
J2(u), (3.4)

provided

J1(u) 6 D, (3.5)

whereD is a prescribed positive number.

In terms of the viscoelastic structure, Problem 1 in-
volves the minimization of the maximum magnitude of
the internal force developed in this structure with the
constraint being imposed on the peak displacement of
it. The initial conditions of Eq. (3.3) imply that at the
initial time instant, the position and velocity of the cen-
ter of mass of the viscoelastic structure are specified
(x(0) = 0, ẋ(0) = 0) and the structure is undeformed
(x(0)− y(0) = 0). Note that the initial rate of defor-
mation,ẋ− ẏ is not prescribed. This is a consequence
of the assumption that the mass of the entire system is
concentrated at one point. In accordance with Eq. (2.7),
the rate of deformation is uniquely expressed in terms
of the deformation and the control force applied to the
system.

Problem 2. For a system described by Eqs (2.6) and
(2.7) subject to the initial conditions,

x(0) = 0, ẋ(0) = 0, y(0) = 0, (3.6)

and a prescribed disturbancev(t), define an optimal
open-loop controlu0(t) such that

J1(u0) = min
u
J1(u), (3.7)

provided

J2(u) 6 u∗, (3.8)

whereu∗ is a prescribed positive number.

Problem 2 implies the minimization of the displace-
ment of the body with the constraint being imposed on
the internal force developed in it.

3.2. Duality of optimization problems

Problems 1 and 2 are very similar. The only differ-
ence is that in Problem 1, the peak force transmitted to
the body is minimized, while the peak displacement is
subjected to a constraint and in Problem 2 these crite-
ria change place. Solutions of these two problems are
also closely related.

In Problem 1, the optimal controlu0 depends on the
maximum displacement,D, allowed for the body. To
indicate this fact, we will writeu0 = u0

D. In Problem 2,
the optimal controlu0 depends on the maximum mag-
nitude,u∗, of the absolute acceleration allowed for the
body, i.e.,u0 = uu∗0 .

Suppose we have solved Problem 2 for all values of
u∗ for some interval [u−,u+]. Then we can construct
the functiong(u∗)

g(u∗) = J1
(
uu∗0

)
, (3.9)

showing the minimum value of the peak displacement
of the body, depending on the maximum value of force
allowed to be transmitted to it. The functiong(u∗)
is nonincreasing. This follows from the fact that the
greater theu∗, the larger the set of admissible controls
and, hence, the lower the minimum value of the per-
formance index. Normally, this function is continuous,
monotonically decreasing, and has the shape shown
in Fig. 2. The range of the functiong(u∗) defined for
u∗ ∈ [u−,u+] is the interval [D−,D+], where

D− = g(u+), D+ = g(u−). (3.10)

In the literature on shock isolation, the function defined
by Eq. (3.9) is usually referred to as thelimiting per-
formance characteristicor thetrade-off curve.

Fig. 2. General shape of the trade-off curve and illustration of the
duality property.
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If the trade-off curve constructed by solving Prob-
lem 2 for allu∗ ∈ [u−,u+] and the corresponding op-
timal controlsuu∗0 are known we can obtain the solu-
tion of Problem 1 for anyD ∈ [D−,D+] without solv-
ing the latter problem directly. This solution is defined
as

J2
(
u0
D

)
= g−1(D), u0

D = ug
−1(D)

0 , (3.11)

where the functiong−1(·) is the inverse ofg(·). As
is apparent from Eq. (3.11), the optimal control,u0

D,
for Problem 1 with a specific value ofD coincides
with an optimal control,uu∗0 , for Problem 2 withu∗ =
g−1(D). This is the essence of the duality property
of optimization problems. Note that this property is
not specific only to limiting performance problems for
shock isolation systems. This is the general case for
optimization problems with two performance criteria,
one of which is to be minimized, while the other is
subject to the constraint.

The simplest method of calculating the quantity
g−1(D) is a graphical method using the trade-off curve
g(u∗) shown in Fig. 2. To calculate this quantity one
should draw a line through the point (0,D) parallel
to the u∗-axis on the coordinate planegu∗ and find
the point of intersection of this line with the trade-off
curve. The abscissa of the intersection point is the de-
sired valueg−1(D).

In the subsequent sections, we deal mostly with
Problem 2, since it is easier to analyze theoretically.

4. Estimates for the solution of Problem 2

4.1. Maximum deformation

To estimate the maximum deformation we introduce
the notation

ξ = x− y (4.1)

to represent Eq. (2.7) in the form

cξ̇ + kξ = u. (4.2)

The solution of this equation with the zero initial con-
dition, ξ(0) = 0, is expressed as

ξ(t) =
1
c

t∫
0

exp

(
−k
c

(t− τ )

)
u(τ ) dτ , (4.3)

which implies the estimate

∣∣ξ(t)∣∣6 u∗
c

t∫
0

exp

(
−k
c

(t− τ )

)
dτ

=
u∗
k

[
1− exp

(
−k
c
t

)]
, (4.4)

whereu∗ is the maximum magnitude allowed for the
control variableu. Equation (4.4) implies a simple up-
per estimation for the deformation magnitude,∣∣ξ(t)∣∣ 6 u∗

k
. (4.5)

Hence, the deformation of the Voigt element does not
exceed the static deformation produced by the maxi-
mum allowable control force.

4.2. Problem of optimal shock isolation for a
single-degree-of-freedom system

Consider the problem of optimal isolation for a
single-degree-of-freedom system governed by
Eq. (2.6), with the external disturbance coinciding with
that of Problem 2. Denote the peak displacement for
this system bỹJ1, i.e.,

J̃1(u) = max
t∈[0,∞)

∣∣x(t)
∣∣, (4.6)

wherex(t) is the solution of the differential equation

ẍ+ u = v (4.7)

with the initial conditions

x(0) = 0, ẋ(0) = 0. (4.8)

Problem 3. For the system governed by Eq. (4.7) with
the initial conditions of Eq. (4.8), find an optimal con-
trol ũ0 such that

J̃1(ũ0) = min
u
J̃1(u), (4.9)

provided∣∣u(t)
∣∣ 6 u∗. (4.10)

Problem 3 is the well-known fundamental prob-
lem of optimal shock isolation of a single-degree-of-
freedom system. The solution of this problem is avail-
able for a number of typical shapes of the external dis-
turbance. See, for example, [1,2,4].
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4.3. Comparison of the optimal values of the
performance indices in Problems 2 and 3

The absolute value of the difference between the op-
timal valuesJ1(u0) andJ̃1(ũ0) of the performance in-
dices in Problems 2 and 3, respectively, is estimated
by ∣∣J1(u0)− J̃1(ũ0)

∣∣ 6 u∗
k
. (4.11)

To prove this inequality, we use Eq. (4.1) which
leads to the relations

x = ξ + y, (4.12)

y = x− ξ. (4.13)

The relations of Eqs (4.12) and (4.13) yield the in-
equalities∣∣x(t)

∣∣ 6 ∣∣y(t)
∣∣+ ∣∣ξ(t)∣∣ (4.14)

and ∣∣y(t)
∣∣ 6 ∣∣x(t)

∣∣+ ∣∣ξ(t)∣∣, (4.15)

respectively.
Taking into account the estimate of Eq. (4.5), we ob-

tain ∣∣x(t)
∣∣ 6 ∣∣y(t)

∣∣+ u∗
k

, (4.16)∣∣y(t)
∣∣ 6 ∣∣x(t)

∣∣+ u∗
k

, (4.17)

wherex(t) and y(t) define a solution of the system
of Eqs (2.6) and (2.7) with the initial conditions of
Eq. (3.6) for a control functionu(t). From Eqs (4.16)
and (4.17), it follows that

max
t∈[0,∞)

∣∣x(t)
∣∣ 6 max

t∈[0,∞)

∣∣y(t)
∣∣+ u∗

k
, (4.18)

max
t∈[0,∞)

∣∣y(t)
∣∣ 6 max

t∈[0,∞)

∣∣x(t)
∣∣+

u∗
k
. (4.19)

The behavior of the variablex in this solution co-
incides with that of the variablex in the solution of
Eq. (4.7) with the initial conditions of Eq. (4.8) for
the same controlu(t). This follows from the fact that
Eqs (2.6) and (4.7), as well as the initial conditions for
x in Eqs (3.6) and (4.8), coincide. With reference to the
definitions of Eqs (3.1) and (4.6) for the criteriaJ1(u)

andJ̃1(u), one can rewrite Eqs (4.18) and (4.19) in the
form

J̃1(u) 6 J1(u) +
u∗
k

, (4.20)

J1(u) 6 J̃1(u) +
u∗
k
. (4.21)

Substituteu = u0 (the optimal control for Problem
2) into Eq. (4.20) to obtain

J̃1(u0) 6 J1(u0) +
u∗
k
. (4.22)

Sinceũ0 is the optimal control for Problem 3, we have
the inequality

J̃1(ũ0) 6 J̃1(u0). (4.23)

The relations of Eqs (4.22) and (4.23) imply that

J̃1(ũ0)− J1(u0) 6
u∗
k
. (4.24)

Substitute nowu = ũ0 (the optimal control for Prob-
lem 3) into Eq. (4.21) to obtain

J1(ũ0) 6 J̃1(ũ0) +
u∗
k
. (4.25)

Sinceu0 is the optimal control for Problem 2, we have
the inequality

J1(u0) 6 J1(ũ0). (4.26)

It follows from Eqs (4.25) and (4.26) that

J1(u0)− J̃1(ũ0) 6
u∗
k
. (4.27)

Equations (4.24) and (4.27) imply the relation of
Eq. (4.11).

For practical use, it is convenient to represent the
estimate of Eq. (4.11) in the form

|J1(u0)− J̃1(ũ0)|
J̃1(ũ0)

6 u∗

kJ̃1(ũ0)
. (4.28)

5. Graphical estimation technique

5.1. Preliminary considerations

It is useful to represent the estimate of Eq. (4.11)
graphically. Let us rewrite Eq. (4.11) in the form
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(
uu∗0

)
− J̃1

(
ũu∗0

)∣∣ 6 u∗
k

(5.1)

indicating the dependence of the optimal controlsu0

(for Problem 2) and̃u0 (for Problem 3) onu∗. The
function J̃1(ũu∗0 ) defines the trade-off curve for Prob-
lem 3 (for the single-degree-of-freedom model). This
curve is assumed to be known. The functionJ1(uu∗0 )
defines the trade-off curve for Problem 2. This curve
is unknown. The inequality of Eq. (5.1) implies that
the trade-off curve for Problem 2 lies within a corridor
which can be defined as

G−(u∗) 6 J1
(
uu∗0

)
6 G+(u∗), (5.2)

where the boundary functionsG−(u∗) and G+(u∗)
have the form

G−(u∗) = J̃1
(
ũu∗0

)
− u∗

k
,

G+(u∗) = J̃1
(
ũu∗0

)
+
u∗
k
. (5.3)

The plots of these functions are easy to construct if
the trade-off curvẽJ1(ũu∗0 ) is known. We will refer to
the corridor defined by Eq. (5.2) as thetrade-off corri-
dor, since all trade-off curves for Problems 1 and 2 lie
within it.

5.2. The case of a half-sine pulse disturbance

We choose to illustrate the construction of the corri-
dor defined by Eq. (5.2) for the case where the external
disturbance has the shape of a half-sine pulse

v =

{
a sin

(
π
T∗
t
)
, if 0 6 t 6 T∗,

0, if t > T∗.
(5.4)

5.2.1. Trade-off curve for a single-degree-of-freedom
system

Figure 3 shows the trade-off curvẽJ1(ũu∗0 ) for a
single-degree-of-freedom system subjected to the half-
sine pulse disturbance of Eq. (5.4). This curve is rep-
resented in normalized (dimensionless) variables, with
the optimal value of the peak displacement,J̃1(ũu∗0 ),
being normalized by the quantity

d = aT 2
∗/π (5.5)

and the maximum magnitude of the absolute accelera-
tion allowed for the body,u∗, by the maximum accel-

Fig. 3. Trade-off curve for a single-degree-of-freedom system sub-
ject to a half-sine pulse disturbance.

eration of the base,a. In other words, Fig. 3 shows the
plot of the functionJ∗(w∗), where

J∗ =
J̃1(ũu∗0 )

d
, w∗ =

u∗
a
. (5.6)

Figure 3 provides a unified limiting performance char-
acteristic for the single-degree-of-freedom system of
Problem 3 subjected to the disturbance of the form of
Eq. (5.4). Using this curve, one can determine the min-
imum value of the peak displacement,J̃1(ũu∗0 ), for any
specific set of the input data, which involve the quanti-
tiesu∗, a, andT∗. To this end, one should

• Calculate the quantityw∗ = u∗/a.
• Find the corresponding valueJ∗(w∗) using the

curve of Fig. 3.
• Calculate the quantitỹJ1(ũu∗0 ) = J∗(w∗)d.

The trade-off curve of Fig. 3 can be used also for
solving the problem which is dual to Problem 3, i.e.,
one of the minimization of the maximum magnitude
of the absolute acceleration experienced by the body,
provided the peak displacement does not exceed a pre-
scribed quantityD. We will denote the desired mini-
mum of the peak absolute acceleration byJ̃2(ũ0

D). To
determine the valuẽJ2(ũ0

D) for a specific set of the in-
put data (D, a, andT∗), one should

• Calculate the quantityJ0
∗ = D/d.

• Find the corresponding valuew0
∗ using the trade-

off curve of Fig. 3.
• Calculate the desired quantitỹJ2(ũ0

D) = w0
∗a.



D.V. Balandin et al. / On the optimal shock isolation of a system with one and a half degrees of freedom 165

5.2.2. Trade-off corridor
Divide Eq. (5.2) by the quantityd of Eq. (5.5). Then,

with reference to Eq. (5.3), we obtain

g−(w∗) 6 J(w∗) 6 g+(w∗), (5.7)

where

J(w∗) =
J1(uu∗0 )

d
, (5.8)

g−(w∗) = J∗(w∗)− εw∗,

g+(w∗) = J∗(w∗) + εw∗. (5.9)

The parameterε in Eq. (5.9) is defined as

ε =
π

kT 2
∗
. (5.10)

The inequalities of Eq. (5.7) represent the trade-off
corridor in a normalized form. The shape of this cor-
ridor depends only on one dimensionless parameterε.
Qualitatively, the trade-off corridor is shown in Fig. 4;
the trade-off curve for the single-degree-of-freedom
system is depicted by the solid line.

5.2.3. Determination of the relative error for
Problem 2

The estimate of the relative error of the approxi-
mation of the original system by a single-degree-of-
freedom system for Problem 2 (Eq. 4.28) can be repre-
sented as

Fig. 4. Trade-off corridor.

|J1(uu∗0 )− J̃1(ũu∗0 )|
J̃1(ũu∗0 )

6 εw∗
J∗(w∗)

. (5.11)

One can calculate the right-hand side of Eq. (5.11) for
any set of the input data, involving the quantitiesu∗, a,
T∗, andk, by using the trade-off curve for the single-
degree-of-freedom system. To this end, one should

• Calculatew∗ = u∗/a andε = π/(kT 2
∗ ).

• DetermineJ∗(w∗) using the trade-off curve.
• Calculate the ratio on the right-hand side of

Eq. (5.11).

5.2.4. Construction of estimates for Problem 1
Using the trade-off corridor shown in Fig. 4, one can

also estimate the relative error of the approximation
of the original system by the single-degree-of-freedom
system for Problem 1, which is dual to Problem 2. The
input data for Problem 1 involve the quantitiesD, a,
T∗, andk. To obtain the desired estimate one should

• Calculate the parameterε = π/(kT 2
∗ ).

• Plot the curvesg−(w∗) andg+(w∗) together with
the trade-off curve,J∗(w∗), for the single-degree-
of-freedom system.
• Calculate the quantityJ0

∗ = D/d, whered is de-
fined by Eq. (5.5).
• Using the plots of the functionsg−(w∗), g+(w∗),

and J∗(w∗), determine the valuesw∗ = w−∗ ,
w∗ = w+

∗ , andw∗ = w0
∗ such thatg−(w−∗ ) = J0

∗,
g+(w+

∗ ) = J0
∗, J∗(w

0
∗) = J0

∗. This stage is illus-
trated by Fig. 5.

Fig. 5. Error estimate for the problem of the minimization of the peak
value of the transmitted force.



166 D.V. Balandin et al. / On the optimal shock isolation of a system with one and a half degrees of freedom

• Estimate the absolute error as∣∣J2
(
u0
D

)
− J̃2

(
ũ0
D

)∣∣ 6 a∆, (5.12)

where

∆ = max
{
w0
∗ − w−∗ , w+

∗ − w0
∗
}
. (5.13)

• Estimate the relative error as

|J2(u0
D)− J̃2(ũ0

D)|
J̃2(ũ0

D)
6 ∆

w0
∗
. (5.14)

6. Numerical example

6.1. Parameters of the system

Let the external disturbance be a half-sine pulse of
the form of Eq. (5.4), with

a = 500
m
s2

, T∗ = 0.07 s. (6.1)

The parameters of the model are identified as

m = 11.5 kg,K = 963
kN
m

, (6.2)

which corresponds to

k =
K

m
= 84 · 103 s−2. (6.3)

6.2. Estimates for Problem 2

Set the maximum absolute acceleration to be expe-
rienced by the body to be

u∗ = 217
m
s2

, (6.4)

which corresponds to the maximum force allowed to
be transmitted to the body of

F∗ = mu∗ = 2500 N. (6.5)

The solution of Problem 3 (with a single-degree-of-
freedom model) for these parameters yields

J̃1(ũ0) = 36 cm. (6.6)

One can readily obtain this quantity using the trade-off
curve of Fig. 3. To do so, substitute the values ofa, T∗,
andu∗ into Eqs (5.5) and (5.6) to obtain

d = 78 cm, w∗ = 0.43. (6.7)

Then, using the curve of Fig. 3, find the value ofJ∗ for
w∗ = 0.43. This yields

J∗ = 0.46. (6.8)

By multiplying this value byd, we obtain the value of
Eq. (6.6) for the minimum of the peak displacement.

Substitution of this solution and the parameters of
Eqs (6.3) and (6.4) into Eq. (4.28) leads to the estimate

|J1(u0)− J̃1(ũ0)|
J̃1(ũ0)

6 0.007. (6.9)

6.3. Estimates for Problem 1

We identify the maximum peak displacement as

D = 36 cm. (6.10)

Following the technique described in Section 4.2.4, we
determine the estimate for the relative error (Eq. 5.14)
to be

|J2(u0
D)− J̃2(ũ0

D)|
J̃2(ũ0

D)
6 0.008, (6.11)

with

J̃2
(
ũ0
D

)
= 217

m
s2
.

7. Conclusions

If the static deformation of the Voigt element pro-
duced by the maximum force allowed to be transmit-
ted to the body is substantially less than the absolute
minimum of the peak displacement of the rigid single-
degree-of-freedom system model, then the rigid model
provides a good approximation to the original system.
The larger the stiffness of the Voigt element, the more
accurate the rigid body approximation is in terms of
the performance index. In this case, the optimal con-
trol for the single-degree-of-freedom system is a near-
optimal control for the original system with one and a
half degrees of freedom.
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