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Turbo molecular vacuum pumps constitute a critical compo-
nent in many accelerator installations, where failures can be
costly in terms of both money and lost beam time. Catas-
trophic failures can be averted if prior warning is given
through a continuous online monitoring scheme. This paper
describes the use of modern machine learning techniques for
online monitoring of the pump condition through the mea-
surement and analysis of pump vibrations. Abductive ma-
chine learning is used for modeling the pump status as ‘good’
or ‘bad’ using both radial and axial vibration signals mea-
sured close to the pump bearing. Compared to other statisti-
cal methods and neural network techniques, this approach of-
fers faster and highly automated model synthesis, requiring
little or no user intervention. Normalized 50-channel spec-
tra derived from the low frequency region (0–10 kHz) of the
pump vibration spectra provided data inputs for model de-
velopment. Models derived by training on only 10 observa-
tions predict the correct value of the logical pump status out-
put with 100% accuracy for an evaluation population as large
as 500 cases. Radial vibration signals lead to simpler mod-
els and smaller errors in the computed value of the status
output. Performance is comparable with literature data on a
similar diagnosis scheme for compressor valves using neural
networks.
Keywords: Vibration monitoring and diagnostics, statistical
vibration analysis, turbo molecular pumps, machine learning,
abductive networks
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1. Introduction

The 350 kV light ion accelerator facility [4] at King
Fahd University of Petroleum and Minerals (KFUPM)
employs some 15 Balzers turbo molecular vacuum
pumps of various capacities to achieve a minimum vac-
uum level of 1.33× 10−4 Pa. Table 1 gives a summary
of the specifications and operating conditions for a typ-
ical 0.5 m3/s pump, model TPU 510, and its electronic
drive unit model TPC 300. Many of the pumps run con-
tinuously for extended periods, and operational experi-
ence has shown that bearing failures while the pump is
running at full speed can completely destroy the pump.
Such failures often occur without adequate warning
signs that can be detected through routine manual in-
spection. Even in cases when there is a change in the
pump noise, this may go unnoticed in the noisy envi-
ronment of the accelerator vault or may occur after nor-
mal working hours when the facility is left unattended.
A turbo pump is an expensive piece of equipment, and
pump failures can also be costly in terms of lost beam
time if there is a need to wait for in-house repair or for a
replacement pump to be ordered from abroad. We have
recently initiated work on the development of an online
monitoring scheme for the accelerator pumps with the
objective of automatically detecting abnormalities in
the pump condition and warning the accelerator opera-
tor in advance to avert serious failures. The importance
of continuous online monitoring for critical machinery
is well established [21], since monthly or weekly man-
ual measurements may not be frequent enough or con-
sistent enough to detect developing problems.

Vibration analysis truth tables have been used for
many years as a guide for diagnosing vibrations in ro-
tating machinery, but conclusive results often require
further evidence [24]. Recent advances in computers,
instrumentation, and signal processing techniques have
made online predictive vibration monitoring of ma-
chinery available and cost-effective approach in many
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Table 1

Summary of technical data and operating conditions for the
Balzers model TPU 510 turbo molecular pump and its elec-
tronic drive unit model TCP 300

Pump:

Nominal diameter

Inlet 0.160 m

Outlet 0.040 m

Volume flow rate for nitrogen 0.5 m3/s

Compression ratio for nitrogen 108

Theoretical ultimate pressure 10−14 bar

Speed

Rated 1000 s−1

Standby 666 s−1

Rated blade passage frequency 40000 s−1

Run-up time to 90% of rated speed 300 s

Weight 30 kg

Cooling Air

Lubricating oil Pfeiffer

Turbo oil

TL 011

Permissible ambient temperature 0–35 ◦C

Electronic Drive Unit TCP 300:

Input voltage (AC) 110–240 V

Maximum power input 300 VA

Maximum output voltage 40 V

Run-up current 7 A

Rated frequency (±2%) 1000 Hz

situations [21]. Techniques used include time domain
and frequency domain analysis as well as combina-
tions of both. Univariate time series analysis [29] and
multivariate linear regression methods [19] have been
employed to model normal vibration behavior in the
time domain. Problems with the first approach include
strong nonstationarity of the vibration time series, as in
the case of reciprocating machinery. The second tech-
nique suffers from difficulties in determining suitable
relevant time series that explain variations in the vi-
bration data, as well as strong correlations between the
various input time series. The two techniques require
complex computations and considerable user interven-
tion for each analysis performed, which makes them
difficult to implement online using simple portable
apparatus. Frequency domain techniques use the fre-
quency spectrum of the vibration signal as a signature
for the pump condition, e.g. [8].

A recent trend in many areas of applied sciences has
been to resort to a machine learning approach when a
rigorous algorithmic solution becomes too complex or

when the underlying relationships between inputs and
outputs are not known. With this approach, a model
is developed automatically through training on an ad-
equate number of solved examples. Once the model
is synthesized, it can be used to perform fast predic-
tions of outputs corresponding to new cases. A ma-
jor advantage of this approach in vibration analysis
is that intensive computations are now required only
once, i.e., during training for model synthesis, rather
than being repeated for every vibration record analyzed
during actual monitoring. Using the model to process
new records becomes a simple and speedy operation
that can be implemented in real time using compact
and portable apparatus. With the shape of the vibration
spectrum as input, the problem is reduced to that of au-
tomatic pattern recognition which has been applied in
many disciplines, e.g., [28].

Numerous techniques currently exist for the devel-
opment of machine learning systems [27]. These in-
clude statistical pattern recognition methods such as
Bayesian classifiers and discriminant functions [11],
artificial neural networks modeled roughly on how the
human brain is believed to function [26], as well as
methods for the induction of decision trees [9]. These
techniques vary in their accuracy, complexity, compu-
tational requirements during training, and their abil-
ity to provide human-like explanations for their con-
clusions. Such variations have led to newer techniques
combining good features from various methods. An ex-
ample of such ‘hybrids’ is the AIM abductive network
tool [20] which draws on statistical and multiple re-
gression analysis methods as well as neural networks,
resulting in a faster and more automated approach to
model synthesis. The development of this approach
for machine learning through self-organization has fol-
lowed the track of the group method of data handling
(GMDH) algorithm [12] and the closely related adap-
tive learning network (ALN) technique [7]. A math-
ematical description of the GMDH-ALN foundations
for AIM is given in Section 2. Previous experience
with this approach in modeling and forecasting daily
minimum temperature [1] has indicated improved pre-
diction accuracy compared to neural network models.
Model synthesis is also more automated, requiring lit-
tle or no user intervention and the resulting models can
provide more insight into the phenomenon being mod-
eled. AIM models take the form of simple equations
that can be easily implemented on a portable apparatus.

Artificial neural network techniques have been pro-
posed as a new approach to automate vibration anal-
ysis, primarily in the frequency domain [5,17,19,23].
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One application diagnoses a compressor valve as good
or bad by training a back propagation network using a
set of features extracted from the acoustic spectra [5].
Kotani et al. [17] reports on the use of an acoustic
feature extraction auto-associative neural network fol-
lowed by a fault discriminating network to diagnose
eight types of compressor faults, also using acoustic
spectra. Time series of the vibration levels for the ro-
tor of a 500 MW generator have been modeled using
radial basis function neural networks [19]. This paper
describes the use of GMDH-based abductive machine
learning to diagnose a turbo molecular pump as good
or bad based on the vibration spectra measured using
an accelerometer. Following an overview of the ma-
chine leaning approach used, the experimental set up
is described and models are derived for predicting the
pump status through training on a number of known
cases. Performance of these models in predicting the
pump status from new spectra is described. We com-
pare results obtained using both radial and axial vibra-
tion signals from the pump. Results are also related to
data in the literature on the performance of similar neu-
ral network approaches.

2. GMDH-type modeling techniques

2.1. The classical GMDH approach

In quest for optimal objective models that look
only at collected data representing system behavior,
Ivakhnenko has proposed the GMDH algorithm in
1966 [15]. He observed that physical models often
require information that is not readily available and
are therefore subject to many assumptions and sim-
plifications which degrade the quality of the resulting
model. Other techniques for quantitative modeling in-
clude time-series analysis using various linear statis-
tical methods and multivariate regression [18]. These
techniques have difficulties in handling nonlinearities
in the modeled phenomena and in dealing with small
data sets, which is the case in many environmental,
ecological, and social applications [14]. Attempts to
incorporate nonlinear relationships in such models re-
quire the nonlinearity forms to be presumed a priori,
rather than being naturally and automatically derived
from the data. Inclusion of postulated nonlinearities
in this way also increases the possibility of the model
curve-fitting noise in the data [25]. GMDH-type algo-
rithms solve these problems since they automatically
determine the inherent structure of complex and highly

nonlinear systems and can synthesize adequate mod-
els with relatively few data points. The automation of
model synthesis not only lessens the burden on the an-
alyst but also safeguards the model generated from be-
ing influenced by human biases and misjudgements.

The GMDH approach is a formalized paradigm for
iterated (multi-phase) polynomial regression capable
of producing a high-degree polynomial model in ef-
fective predictors. The process is ‘evolutionary’ in na-
ture, using initially simple (myopic) regression rela-
tionships to derive more accurate representations in the
next iteration. To prevent exponential growth and limit
model complexity, the algorithm selects relationships
which have good predicting powers and discards all
the others within each phase. Iteration is stopped when
the new generation regression equations start to have
poorer prediction performance than those of the pre-
vious generation, at which point the model starts to
become overspecialized and therefore unlikely to per-
form well with new data. It is seen that the algorithm
has three main elements: representation, selection, and
stopping. The algorithm applies abduction heuristics
for making decisions concerning some or all of these
three aspects. A detailed description of the steps of the
classical GMDH algorithm can be found in [12].

To illustrate these steps for the classical GMDH ap-
proach, consider an estimation data base ofne obser-
vations (rows) andm + 1 columns for m independent
variables (x1,x2, . . . ,xm) and one dependent variable
y. In the first iteration we assume that our predictors
are the actual input variables. The initial rough predic-
tion equations are derived by taking each pair of input
variables (xi,xj ; i, j = 1, 2,. . . ,m) together with the
input variabley and computing the quadratic regres-
sion polynomial

y = A+Bxi + Cxj +Dx2
i +Ex2

j + Fxixj . (1)

Each of the resultingm(m−1)/2 polynomials is eval-
uated using data for the pair ofx variables used to
generate it, thus producing new estimation variables
(z1, z2, . . . , zm(m−1)/2) which would be expected to de-
scribey better than the original variables. The resulting
z variables are screened according to some selection
criterion and only those having good predicting power
are kept. The original GMDH algorithm employs an
additional and independent ‘selection set’ ofns obser-
vations for this purpose and uses the regularity selec-
tion criterion based on the root mean squared errorrk
over the selection data set, where
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r2
k =

ns∑
l=1

(yl − zkl)2

ns∑
l=1

y2
l

,

k = 1, 2,. . . ,m(m− 1)/2. (2)

Only those polynomials (and associatedz variables)
that haverk below a prescribed limit are kept and the
minimum value,rmin, obtained forrk is also saved.
The selectedz variables are more effective in describ-
ing and predicting y than the original input variables,
and the corresponding columns represent a new data
base for repeating the estimation and selection steps in
the next iteration to derive a set of higher-level vari-
ables. At each iterationrmin is compared with its previ-
ous value and the process is continued as long asrmin

decreases or until a given complexity is reached. An
increasingrmin is an indication of the model becoming
overly complex, thus over-fitting the estimation data
and performing poorly in predicting the new selection
data. Keeping model complexity checked is an impor-
tant aspect of GMDH algorithms which keep an eye on
the final objective of constructing the model, i.e., us-
ing it with new data previously unseen during training.
The best model for this purpose is that providing the
shortest description for the data available [6]. Compu-
tationally, the resulting GMDH model can be seen as
a layered network of partial quadratic descriptor poly-
nomials, each layer representing the results of an al-
gorithm iteration. The single polynomial in the final
layer predicts the independent variabley in two vari-
ables, which are themselves quadratics in two lower-
level variables, etc. The lowest-level polynomials in
the first layer operate directly on them independent in-
putx variables. Making necessary substitutions for the
complete model, we can reach a highly complex poly-
nomial (known as the Ivakhnenko polynomial) of the
form:

y = a+
m∑
i=1

bixi +
m∑
i=1

m∑
j=1

cijxixj

+
m∑
i=1

m∑
j=1

m∑
k=1

dijkxixjxk + · · · . (3)

It is worth pointing out a number of advantages for
the GMDH approach compared to conventional regres-
sion analysis, particularly for modeling large and com-
plex systems. For the modest case ofm = 10 and
orderp = 8, obtaining the coefficients of the regres-

sion polynomials directly requires solving 43758 ill-
conditioned linear equations simultaneously, while a 3-
layer GMDH model obtains the equivalent Ivakhnenko
polynomial by repetitively solving regression equa-
tions in 6 variables only (Eq. (1)). This reduces ill-
conditioning effects (smaller matrices) and allows
GMDH to model complex relationships using only a
small number of data points, while with conventional
regression we need at least as many observations as co-
efficients. GMDH also keeps generating new variables
by intermixing lower-level variables, thus reducing lin-
ear dependence [12].

2.2. GMDH variations and the ALN approach

The original GMDH algorithm has been subject to
many variations in the methods used for estimating
the partial descriptor functions and in the choice of
decision rules for descriptor selection and criteria for
stopping the iterations. Optimized polynomials as well
as different descriptor functions have been proposed.
The external regularity criterion used for selection and
stopping required the splitting of the training data
available into two sets which reduces the amount of
data available for estimation. Moreover, results depend
on the way the data was divided and some splitting
heuristics and cluster analysis were often required [7].
A number of methods have been proposed which op-
erate on the whole training data set for estimation, se-
lection, and stopping, thus avoiding these limitations.
GMDH-related activities in the U.S.A. has been gener-
ally identified as the adaptive learning network (ALN)
approach (AIM being an example), which emphasized
the use of the predicted squared error (PSE) criterion
for selection and stopping to prevent model overfitting.
The PSE criterion minimizes the expected squared er-
ror that would be obtained when the network is used for
predicting new data which is different from that used
during training [7]. For example, AIM expresses this
PSE error as

PSE= FSE+ CPM

(
2k
n

)
σ2

p, (4)

where FSE is the fitting squared error for the model on
the training data, CPM is a complexity penalty mul-
tiplier selected by the user,k is the number of model
coefficients,n is the number of samples in the training
data set, andσ2

p is a prior estimate for the variance for
the error obtained with the unknown model. This es-
timate does not depend on the model being evaluated
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and is usually taken as half the variance of the depen-
dent variabley [6]. It is noted that as the model be-
comes more complex, relative to the size of the train-
ing set, the second term increases linearly while the
first term decreases. Therefore, the PSE goes through
a minimum at the optimum model size which strikes
a balance between accuracy and simplicity or exact-
ness and generality. CPM has a default value of 1 in
AIM. Lower values allow more complex models while
higher values allow simpler ones.

3. AIM abductive machine learning

AIM is a supervised inductive machine-learning
tool for automatically synthesizing abductive network
models from a data base of input and output values
which represent a training set of example situations.
Once synthesized by training on a training data set,
the network can be queried with new input data to
provide the corresponding predicted output. Abduc-
tive networks[20]combine the advantages of the neu-
ral network approach with those of advanced statisti-
cal methods. While the processing elements in neural
networks are restricted by the neuron analogy, abduc-
tive networks consist of various types of more pow-
erful numerical functional elements based on predic-
tion performance. The network size, element types,
connectivity, and coefficients for the optimum model
are automatically determined using well-proven opti-
mization criteria, thus reducing the need for user in-
tervention. With neural networks, the user has to ex-
periment with various architectures and there are no
hard and fast design rules to determine optimum val-
ues for the number of hidden layers, number of neu-

rons in each layer, and the training parameters, and
often a number of combinations need to be tried in
search of the best solution. With the commonly used
standard back propagation algorithm, training times
can be huge and there are many training parameters
to adjust which may have a major effect on the re-
sults [27]. The algorithm is not guaranteed to con-
verge to a good solution [10], and because the method
may be unstable and oscillate between solutions, it
may not be clear when to stop [27]. This makes ab-
ductive networks easier to use and considerably re-
duces the learning/development time and effort. AIM
advantages over back-propagation neural networks in
forecasting the daily minimum temperature are demon-
strated in [1] while large improvements in training
speed are reported in [20]. It should be mentioned,
however, that improvements are becoming available
which attempt to alleviate some of the problems asso-
ciated with older standard neural network paradigms.
For example, using a stiff ordinary differential equa-
tion solver with the back propagation algorithm re-
duces the number of parameters to be adjusted, cuts
on training time, and improves accuracy [27]. Using
conjugate gradient methods for unconstrained opti-
mization has been suggested for ensuring guaranteed
and faster convergence during training [10]. A step-
wise construction procedure has also been proposed
for building and training single-layer neural networks
without the requirement for the number of neurons
in the hidden layer to be fixed a priori by educated
guesses [16].

The work reported here used AIM version 1.0 for
the Macintosh computer. AIM models take the form of
layered feed-forward abductive networks of functional
elements (nodes) [3], see Fig. 1. Elements in the first

Fig. 1. A typical AIM network structure showing various types of functional elements.
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layer operate on various combinations of the indepen-
dent input variables (x’s) and the single element in the
final layer produces the predicted output for the depen-
dent variabley. In addition to the functional elements
in the main layers of the network, an input layer of nor-
malizers converts the input variables into an internal
representation asZ scores with zero mean and unity
variance[3], and an output layer of unitizers restores
the results to the original problem space. Both the el-
ement type and the combination of inputs to it from
all the previous layers are selected automatically for
best prediction performance according to the predicted
squared error (PSE) criterion[6]. The following main
functional elements are supported:

(i) A white element which consists of a constant
plus the linear weighted sum of all outputs of
the previous layer, i.e.,

OutputWhite =W0 +W1X1 +W2X2

+W3X3 + . . .+WnXn, (5)

where X1,X2, . . . ,Xn are the inputs to the
element andW0,W1, . . . ,Wn are the element
weights.

(ii) Single, double, and triple elements which im-
plement a third-degree polynomial expression
with all possible cross-terms for one, two, and
three inputs, respectively; for example,

OutputDouble =W0 +W1X1 +W2X2 +W3X
2
1

+W4X
2
2 +W5X1X2 +W6X

3
1

+W7X
3
2 . (6)

The first step in solving a problem is preparing
a data base of input-output training examples which
AIM uses to derive the abductive network model. This
model network is synthesized layer by layer until no
further improvement in performance is possible or a
preset limit on the number of layers is reached. Within
each layer, every element is computed and its perfor-
mance scored for all combinations of allowed inputs.
The best network structure, element types and coeffi-
cients, and connectivity are all determined automati-
cally by minimizing the PSE criterion. This selects the
most accurate model that does not overfit the training
data, and therefore strikes a balance between the ac-
curacy of the model in representing the training data
and its generality which allows it to fit yet unseen
future data. In this way the model is optimized for

the actual use for which it is developed, rather than
simply fitting the training data. The user may option-
ally control this trade-off between accuracy and gen-
erality using the complexity penalty multiplier (CPM)
parameter[6]. Larger values than the default value of
1 lead to simpler models which are less accurate but
are more likely to generalize well with unseen data,
while lower values produce more complex networks
which overfit the training data and may therefore de-
grade prediction performance with noise. An ‘Evalu-
ate’ utility allows evaluation of the resulting abductive
network on an independent set of data and generates
a report of the results. To obtain good AIM models,
the training set should be a good representation of the
problem space. The learning task is also simplified by
breaking the problem into smaller and more manage-
able assignments, and by utilizing any human knowl-
edge on parameters relevant to the model in the choice
of input variables to be included in the training data
base.

4. Experimental setup

Figure 2 shows the experimental setup used for
data acquisition and analysis of pump vibration. Vi-
bration signals are detected using a ceramic shear
mode accelerometer, PCB Piezoelectronics Inc., model
352B22 [22]. Table 2 gives a summary of the dynamic
performance of this tansducer. Vibration perpendicu-
lar to the flat mounting surface of the sensor are inter-
nally converted into shear forces. Sensitivity is low at
very low and very high frequencies, with a reasonably
flat response (±3 dB variations) over the frequency
range 1 Hz to 16 kHz. Sensitivity increases steadily
with higher frequencies up to a mounted resonant fre-
quency exceeding 32 kHz. The accelerometer response
drops at frequencies above that resonant frequency.
The sensor was adhesively mounted on the surface of
the pump being monitored through a thin layer of petro
wax. Two positions have been investigated for mount-
ing the acceleration sensor as shown in Fig. 2. In posi-
tion R the sensor is sensitive to radial vibrations, while
in position A the sensor registers axial vibrations (par-
allel to the pump axis). One of the objectives of this
work has been to compare vibration monitoring per-
formance for these two types of vibration signals. AC-
coupled signals from the built-in preamplifier of the ac-
celerometer were further magnified in two timing fil-
ter amplifiers type ORTEC 474 with no CR or RC tim-
ing networks inserted (for a flat frequency response).



R.E. Abdel-Aal and M. Raashid / Using abductive machine learning 259

Fig. 2. Experimental setup for the acquisition and analysis of pump vibration signals.

The frequency spectrum of the unfiltered vibration sig-
nal was observed on a Hewlett Packard spectrum ana-
lyzer model HP 8568B which showed frequency com-
ponents as high as 75 kHz with the pump running at
the full speed of 1000 s−1. It appears that the high
frequency response of the accelerometer extends be-
yond the mounted resonant frequency with adequate
sensitivity to allow the detection of vibration signals
having such higher frequency components. An anti-
aliasing low pass filter with 30 dBs/octave attenuation
in the stop band was inserted between the two amplifier
stages. The filtered signal had a peak-to-peak ampli-
tude of about 4 V, and a DC offset of –4 V was applied
to this signal using an ORTEC dual sum-and-invert
amplifier model ORTEC 553. This converts the bipolar
signal into a unipolar 0–8 V signal which was sampled
by a LeCroy 3511 CAMAC ADC at a sampling fre-
quency of about 84 kHz (sampling interval= 12µs).
This sampling frequency is about five times the high
end of the frequency range where the transducer re-
sponse is flat within±3 dBs, see Table 2. Cut-off fre-
quency on the anti-aliasing filter was selected to pre-
vent aliasing effects due to the higher frequency com-
ponents of the vibration signal. Vibration waveform
records, each being 4K-samples in length, were ac-
quired by a VAX 3200 workstation running the XSYS
data acquisition and analysis package [2,13]. Software
in the VAX computed the magnitude of the fast Fourier
transform (FFT) of the sampled record and generated
data bases for training and evaluating the AIM models.
These data were transfered to a Macintosh computer,
connected to the VAX as a terminal, for use in the de-
velopment and evaluation of AIM models for vibration
monitoring.

Table 2

Summary of the dynamic performance data for the PCB 352B22
accelerometer

Voltage sensitivity (±15%) 1.02 mV/ms−2

Frequency range (±5% variations) 5–8000 Hz

Frequency range (±10% variations) 2.5–9000 Hz

Frequency range (±3 dB variations) 1–16000 Hz

Mounted resonant frequency > 32 kHz

Measurement range ±3924 ms−2 Peak

Resolution (broadband) 0.015 ms−2 Peak

Amplitude linearity ±1 %

Transverse linearity 6 5 %

5. Data analysis

Figure 3 shows 500-sample sections of the vibration
waveform records from a TPU 510 pump. The records
were measured after approximately 5000 hours of op-
eration (when bearing change becomes due) as well
as shortly following bearing change. The former con-
dition was used to represent a ‘bad’ pump, and the
latter a ‘good’ pump. Shown in the figure are wave-
forms measured in both the radial and axial positions
of the accelerometer (positions R and A in Fig. 2, re-
spectively). It is noted that the good pump is gener-
ally much quieter, where the vibration signals are lower
in amplitude and have predominantly lower frequency
components. It is also noted that signals at the radial
position of the sensor are relatively richer in frequency
components compared to the axial position. Figure 4
shows the complete 4K-point FFT spectrum of the 4K-
sample waveform record of the radial vibration sig-
nal for the bad pump. Each channel increment repre-
sents a frequency interval of 1/(4095× 12× 10−6) ≈
20.35 Hz. The figure indicates that the majority of
the frequency content of the sampled vibration sig-
nal lies below 10 kHz. Frequency analysis in this re-
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Fig. 3. 500-sample waveform records of the pump vibration signals: (a), (b) at the radial (R) position for the ‘good’ and ‘bad’ pump conditions,
respectively; (c), (d) at the axial (A) position for the ‘good’ and ‘bad’ pump conditions, respectively. Sampling interval= 12µs.

gion is acknowledged as the most effective method for
detecting imbalance, misalignment, mechanical reso-
nances, and looseness in rotating machinery [21]. This
region (channels 1 to 500 of the FFT record) was used
throughout as the vibration signature of the pump con-
dition. Figure 5 shows plots of this region of the vi-
bration spectra corresponding to the cases of the four
waveform records in Fig. 3. The fundamental compo-
nent in all cases is about 1 kHz, which is the frequency
corresponding to the rated pump speed of 1000 s−1.
The plots confirm observations made above on the time
records regarding relative density of frequency compo-
nents for good vs bad pumps as well as for radial vs
axial sensor positions.

Data bases for training and evaluation were de-
rived from the 500-channel frequency spectra shown
in Fig. 5 through a data reduction procedure, since the
version of AIM used allows a maximum of only 50 in-
put parameters for use in model synthesis and evalua-

Fig. 4. FFT spectrum for a 4096-sample waveform record for the vi-
bration signal at the radial (R) position and the ‘bad’ pump condi-
tion. 1 channel= 20.35 Hz.
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Fig. 5. FFT spectra in the low-frequency region (0–10 kHz), 1 channel= 20.35 Hz: (a), (b) at the radial (R) position for the ‘good’ and ‘bad’
pump conditions, respectively; (c), (d) at the axial (A) position for the ‘good’ and ‘bad’ pump conditions, respectively.

tion. We employed a method adopted by [5] to reduce
the 500-channel spectra to 50-channel spectra. With
this method, the original 500-channel spectrumS is di-
vided into 50 segments;S1,S2, . . . ,S50, each consist-
ing of 10 channels. The 50-channel percentage area ra-
tio spectrumR used for AIM training is derived such
that itsjth channelRj contains the percentage ratio of
the sum of the contents of all channels within segment
Sj to the total sum of the contents of all channels in all
the 50 segments, which is the total area of the original
spectrumS, i.e.,

Rj = 100×

10∑
i=1

Sji

50∑
k=1

10∑
i=1

Ski

. (7)

In addition to satisfying the data reduction requirement
by AIM, this averaging approach is useful in reduc-

ing sensitivity of the resulting models to changes in in-
dividual spectrum components which may result, for
example, from slight changes in sensor location if the
spectrum data were to be applied directly to the AIM
network. The method also produces normalized train-
ing/evaluation data such that the models are derived
and used with input data always in the same number
space (range 0–100). Using ratios of the spectral com-
ponent levels, rather than amplitudes of the spectral
components themselves, makes the resulting models
more robust against variations in vibration signal lev-
els which are reflected directly in the spectrum am-
plitude. Therefore, the normalized area ratio spectrum
used to derive the training/evaluation data bases pro-
vides a spectral signature that contains information on
the relative strength of frequency components in the
various regions of the spectrum, while being fairly im-
mune to signal amplitude variations including those
caused by gain and offset changes.
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6. AIM modeling

As a first exercise, we considered the development
of abductive network models that continuously per-
form go-no go checks on the pump condition by clas-
sifying the frequency spectrum as representing a good
or a bad pump. Figure 6 shows typical 50-channel per-
centage area ratio spectra for good and bad pumps us-
ing signals from both the radial and axial sensor posi-
tions. In each position, spectra for both good and bad
pumps are shown superimposed on the same plot to in-
dicate the relative ease of separating the two patterns.
It is seen that discrimination appears easier with sig-
nals at the radial sensor position, and therefore this task
should be achieved using simpler models. A typical
data base record for modeling the pump status in terms
of the percentage area ratio spectrum is given below:

Inputs: Output:
Channel contents Logical variable
of the percentage
area ratio spectrum
Ch1, Ch2, Ch3, . . . , Ch50 Pump status

(1 = ‘Good’, 0 = ‘Bad’)

Throughout this paper, the numbers of training and
evaluation observations will be designated NT and NE,
respectively. All models were developed using the de-
fault CPM value of 1. Models were synthesized using
a training data base of 1000 records (NT= 1000) with
both good and bad pump status equally represented
(500 records each). Structure of the resulting networks
for both the radial and axial sensor positions is shown
in Fig. 7. The network for the radial case is simpler,
since the ‘good’ and ‘bad’ spectrum signatures are eas-
ier to differentiate as noted above. The radial network
is a single-layer network that uses only the contents of
channel 5 to achieve the required discrimination, while
discrimination in the axial case requires a 2-layer net-
work operating on two variables (Ch5 and Ch15). Sub-
stituting the equations shown in Fig. 7(a) for the vari-
ous functional elements produces the following model
relationship for the pump status at the radial sensor po-
sition:

StatusRadial,NT=1000 =−0.081056+ 0.21675(Ch5)

− 0.01076(Ch5)2. (8)

The corresponding polynomial expression for the ax-
ial configuration is much more complex, consisting
of 28 terms with powers as high as 9 and 3 for Ch5

Fig. 6. Percentage area ratio spectra for the ‘good’ and ‘bad’ pump
conditions used for developing the AIM models: (a) at the radial (R)
position, (b) at the axial (A) position.

and Ch15, respectively. Both networks were evaluated
on a mixture of 250 ‘good’ and 250 ‘bad’ new cases
(NE = 500). The resulting logical value for the pump
status (ideally 1 for ‘Good’ and 0 for ‘Bad’) was de-
rived from the real number predicted by the network
for the status output through simple thresholding at 0.5.
Table 3 lists the maximum, average, and standard de-
viation of the error in the predicted pump status out-
put as well as the good/bad classification accuracy for
both sensor positions. The table indicates 100% accu-
racy for the AIM model in predicting the pump status
for the 500 evaluation cases, since the error in the value
of the computed status output never exceeds 0.5. It is
noted that the maximum error is higher for the axial
sensor configuration, although a lower average error is
obtained.
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Table 3

Summary of errors in the predicted pump status output for two sizes of the training data base, NT=
1000 and NT= 10. In both cases the evaluation data base has 500 cases. Classification accuracy is
for the logical status (0, 1) obtained from computed status output by simple thresholding at 0.5

NT = 1000, NE= 500 NT= 10, NE= 500

Radial Axial Radial Axial

position position position position

Average absolute error 0.0077 0.0031 0.0602 0.0973

Standard deviation of absolute error 0.0116 0.0082 0.0804 0.1122

Maximum absolute error 0.0532 0.1072 0.3064 0.3583

Classification accuracy, % 100 100 100 100

Fig. 7. Structure of the AIM abductive network models obtained for
the pump status: (a) using radial vibration signals, (b) using axial
vibration signals.

The 100% ‘good’ vs ‘bad’ classification accuracy
for the above models suggests that adequate results
may still be obtained with much smaller sizes for the
training data base, i.e., lower values for NT. It was
found that the 100% classification accuracy with the
same 500 evaluation cases used above was maintained
with NT as small as 10 training cases (5 ‘good’ and 5
‘bad’). Networks obtained in this case are much sim-
pler, leading to the following linear relationships for
the pump status:

StatusRadial,NT=10 = −0.03+ 0.095(Ch5), (9)

StatusAxial,NT=10 = −0.05+ 0.0274(Ch5). (10)

Both models use only the contents of channel 5 to de-
termine the pump status. The simpler models obtained
with NT = 10 are attributed to the fact that they need
to reconcile much less statistical variations in the input
parameters (channels contents of the percentage area

ratio spectrum) during training with NT= 10, as com-
pared with NT= 1000. However, it is expected that
such models would be less robust with changes in the
training sets than those obtained with larger values of
NT. In other words, a different model may be obtained
by training on a different set of 10 training spectra. Ta-
ble 3 lists data on the error in the predicted real value
for the pump status output at both sensor positions. The
results indicate that, for the same network complexity,
axial vibrations are associated with larger errors in the
status output.

7. Discussion

GMDH-based abductive machine learning has been
used for diagnosing a turbo molecular pump as good
or bad as judged by low frequency vibration spectra
collected in both the radial and axial directions. 100%
diagnosis accuracy for a 500-case evaluation popula-
tion is maintained for training data bases as small as
10 cases. Similar accuracy has been reported in the lit-
erature with neural networks diagnosing a compressor
valve [5], but with a larger training data base (NT= 20)
and a much smaller evaluation data set (NE= 21).
Results indicate that radial vibrations produce simpler
and more accurate models in general, due to more dis-
tinct signatures for the good and bad cases. AIM pro-
vides a fast, convenient, and accurate approach to mod-
eling and classifying the vibration spectra. Adequate
models were synthesized automatically with the de-
fault value of the CPM parameter without the user hav-
ing to experiment with various architectures as in the
case with presently available neural network tools for
which no design methodologies exist. Network train-
ing is also expected to be faster with AIM, which con-
siderably reduces development time and effort. Result-
ing models in the form of a few polynomial equations
readily reveal input variables that influence the classi-
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fication and allow fast and efficient online monitoring
using simple portable apparatus.

The way ‘good’ and ‘bad’ pump conditions were de-
fined here may be somewhat idealistic, since ‘good’
was represented by a pump having a brand new bearing
and ‘bad’ with the bearing approaching the end of its
useful life. In practice, a pump would normally be con-
sidered satisfactory for a considerable interval follow-
ing bearing change. This can be taken into account by
extending the spectrum measurements for the ‘good’
pump over such an interval to improve the represen-
tation of natural variability within the ‘good’ class.
A similar approach can be applied on the other extreme
for the representation of the ‘bad’ condition. How-
ever, representing diverse and truly bad conditions in a
unique way would be more difficult. Mayes [19] argues
that it is not possible to model the abnormal behav-
ior since it is unknown, and therefore only the normal
behavior should be modeled. Diagnosis is then made
by looking for clear departures from this model which
go beyond acceptable normal variability, thus indicat-
ing genuine changes. This approach is possible with
time series modeling using either ARIMA [29], regres-
sion analysis [19], or neural networks [19]. The first
two techniques would be particularly easier to imple-
ment, since deviations would show simply as changes
in a few model coefficients. However, the categorical
classification approach adopted here and in [5] requires
that the class type (‘good’ or ‘bad’) is known for each
training or evaluation observation, which implies mod-
eling abnormal behavior. In situations where a finite
number of fault modes can be identified and modeled,
the technique can be useful in diagnosing a good unit
and classifying the fault type [17]. It is also possible to
extend the 2-state classification method described here
to model a finite number of pump operating conditions
spanning the bearing lifetime as represented by their
vibration frequency spectra.

Work described here has utilized existing VAX-
based hardware and software designed originally for
the acquisition and analysis of nuclear physics experi-
mental data. This has limited the frequency range an-
alyzed due to the limited sampling frequency of 84
kHz. Higher frequency parts of the vibration spec-
trum, presently excluded by the anti-aliasing filter, may
prove useful in identifying problems such as pitting
and cracking in bearings, insufficient lubrication, shaft
rubbing and pump cavitation [21]. To include such
higher frequency components requires sampling at a
higher frequency and using an accelerometer with a
broader bandwidth. The present sensor may still be

used if proper equalization is included to account for
variations in the frequency response over the wider
band of interest. Future work would consider faster and
more efficient modern PC-based hardware and soft-
ware platforms for sampling and analyzing the vibra-
tion signals. Moreover, more uptodate versions of the
AIM software are now becoming available on the PC.
These factors will allow an integrated approach to the
acquisition, analysis, and monitoring of the vibration
data as well as the modeling of the vibration status for
all the pumps of interest. It is worth noting that the
newer AIM versions support a larger number of the in-
put parameters, which allows greater resolution for the
vibration spectra that can be modeled.
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