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The title problem is solved through extension of a method
previously formulated for plane step-wave excitation, which
employs generalized Fourier series augmented by partial clo-
sure of those series at early time. The extension encompasses
both plane and spherical incident waves with step-exponen-
tial pressure profiles. The effects of incident-wave curvature
and profile decay rate on response behavior are examined.
A method previously developed for assessing the discrep-
ancy between calculated and measured response histories is
employed to evaluate the convergence of the truncated se-
ries solutions. Also studied is the performance of doubly-
asymptotic approximations. Finally, the efficacy of modified
Cesàro summation for improving the convergence of series
solutions is examined. The documented computer program
that produced the numerical results appearing in this paper,
SPHSHK/MODSUM, may be down-loaded from the Web
site http://saviac.xservices.com.

Keywords: Fluid-structure interaction, underwater shock,
doubly-asymptotic approximations, benchmark solutions

1. Introduction

A series solution for the response of an empty
submerged spherical shell excited by a plane step-
exponential wave was first presented by Huang [11],
and was extended by Huang et al. [12] to include
the response due to a spherical step-exponential in-
cident wave. Later, Zhang and Geers [16] employed
convergence–enhancement techniques to obtain series
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solutions for the response of a fluid-filled or empty
submerged spherical shell excited by a plane step-
wave; these techniques are partial series closure at
early time and modified Cesàro summation over all
time [1]. Partial series closure consists of separat-
ing the early-time response into a closed-form portion
and a complementary mode-sum portion. The closed-
form portion invokes the plane-wave approximation
for the fluid-structure interaction and neglects stiffness
effects in the shell. Cesàro summation is a modal fil-
tering technique that substantially reduces Gibbs os-
cillations produced by a finite series representation of
a discontinuous function. The FORTRAN program,
SPHSHK/MODSUM, which was used to generate nu-
merical results in Zhang and Geers [16], was made
available for public use through the Shock and Vibra-
tion Information Analysis Center [7]. Most recently,
Huang and Mair [13] extended Huang’s 1969 formula-
tion to include Cesàro summation of the first 70 terms
of the series solution.

This paper extends the formulation of Zhang and
Geers [16] to include excitation by plane step-exponen-
tial and spherical step-exponential incident waves.
Standard Fourier summation with partial closure is
used to generate results. Representative shell responses
are shown for several incident-wave curvatures and de-
cay profiles. Convergence of shell-response series so-
lutions for these excitations is assessed with the aid of
comprehensive error-factors [5,6]. In addition, the per-
formance of the second-order doubly-asymptotic ap-
proximation (DAA2) for treating the fluid-structure in-
teraction (FSI) is examined [4]. Finally, problems asso-
ciated with using modified Cesàro summation instead
of standard Fourier summation are discussed.

2. Problem description

Figure 1 shows a schematic of a spherical shell about
to be excited by an incident spherical wave. The shell is
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Fig. 1. Schematic of shell geometry and incident spherical wave with associated variables.

composed of an isotropic material with Young’s mod-
ulus E, densityρ0, and Poisson’s ratioν. The shell
thickness-to-radius ratioh/a is assumed to be suffi-
ciently small that thin-shell theory applies. Shell spher-
ical coordinates and a nondimensional formulation are
used throughout this paper. Length is normalized to
the middle-surface shell radiusa and pressure is nor-
malized toρec

2
e, whereρe andce are the mass density

and speed of sound of the external fluid, respectively;
the internal fluid is described by densityρi and sound-
speedci . Time is normalized toa/ce, which has the
incident wave front moving over the shell during the
nondimensional interval 0< t < 2. Radial and merid-
ional displacements of the shell are given byw(θ, t)
andν(θ, t), respectively.

The pressures for the internal wave, scattered exter-
nal wave, and incident external wave are denoted by
pi (r, θ, t), ps(r, θ, t), andp0(r, θ, t), respectively. The
incident wave is described using an alternate spheri-
cal coordinate (R, Θ) system with the source located
at the wave center, which is located a distanceD from
the shell center. The wave expands radially at the fluid
sound speed and has an instantaneous radiusA(t). The
plane wave may be taken as a specialization of the
spherical wave asA→∞.

3. Formulation

We follow the approach of Zhang and Geers [16].
For 0 < t < 2, the shell velocities and surface pres-

sures are expressed as

ν̇(θ, t) = −
N∑
n=1

ν̇n(t)
d
dθ
Pn(cosθ),

ẇ(θ, t) = ẇ∗(θ, t) +
N∑
n=0

ẇ+
n (t)Pn(cosθ),

pe(θ, t) = p0(θ, t) + ps∗ (θ, t) +
N∑
n=0

ps+

n
(t)Pn(cosθ),

pi (θ, t) = pi∗ (θ, t) +
N∑
n=0

pi+

n
(t)Pn(cosθ), (1)

where pe and pi are the external and internal pres-
sures, respectively, an underscore denotes evaluation at
the shell surface,p0 is the external pressure associated
with the incident acoustic wave,Pn( ) is the Legendre
polynomial of degreen, an asterisk denotes an initial-
response quantity, a plus indicates a complementary
response quantity, an overdot denotes a time deriva-
tive, andN is the maximum mode index of summation.
For t > 2, Fourier summation alone gives satisfactory
convergence; the counterparts to (1) are then (1) with
w∗(θ, t) = p∗(θ, t) = 0 and with the+superscripts re-
moved. The incident radial fluid velocitẏu0 is related
to the pressurep0 by

u̇0(r, θ, t) = − ∂
∂r

∫ t

0
p0(r, θ, t) dt. (2)
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3.1. Plane step-exponential wave

For a plane step-exponential wave, the incident pres-
sure is given by

p0(r, θ, t) = PIe−β(t−r cosθ−1)H(t− r cosθ − 1), (3)

wherePI is the peak value,β is the decay constant,
andH( ) is the Heaviside step function. From (2), the
associated radial fluid velocity is

u̇0(r, θ, t) = PI cosθe−β(t−r cosθ−1)

×H(t− r cosθ − 1). (4)

Evaluating (3) and (4) at the shell surface, we obtain

p0(θ, t) = PIe−β(t−cosθ−1)H(t− cosθ − 1),

u̇0(θ, t) = PI cosθe−β(t−cosθ−1)

×H(t− cosθ − 1). (5)

The ordinary differential equations (ODEs) for the
closed-form initial solution are given in Zhang and
Geers [16] as

ẅ∗ + υẇ∗ = −µ(p0− u̇0),

ps∗ = ẇ∗ − u̇0,

pi∗ = −(ci/ce)ẇ∗, (6)

whereµ = (ρe/ρ0) (a/h) andυ = µ(1 + ρici/ρece).
The closed-form initial solution for radial shell veloc-
ity is found by solving the first of (6) for an incident
wave defined by (5) with quiescent initial conditions.
This solution is

ẇ∗(θ, t) = µPI (1− cosθ)

(
e−β(t−cosθ−1)

β − υ

− e−υ(t−cosθ−1)

β − υ

)
H(t− cosθ − 1). (7)

The internal and scattered pressures can be found di-
rectly from the radial shell velocity using the last two
of (6).

The closed-form initial responseṡw∗(θ, t), ps∗(θ, t),
andpi∗ (θ, t) may be separated into modal components
by numerical integration of the modal-decomposition
relation

qn(t) =
(
n+

1
2

)∫ π

0
q(θ, t)Pn(cosθ) sinθ dθ, (8)

whereq(θ, t) is an axisymmetric function andqn(t) is
its n-th modal component. These are entered as forc-
ing functions in the complementary-response equa-
tions given by Eq. (34) in Zhang and Geers [16], which
were formulated by subtracting the modal components
of (6) from their modal equations for complete re-
sponse. The resulting system of ODEs is integrated
numerically to yield the complementary responses de-
noted by a superscript+ in (1).

After the wave front has moved past the shell, modal
summation alone can be used to calculate shell re-
sponse. This requires only that the appropriate values
for the free-field modal pressurep0

n
(t) and modal ra-

dial fluid velocity u̇0
n(t) be provided. These are deter-

mined from the modal-decomposition relation (8) with
q(θ, t) beingp0(θ, t) and thenu̇0(θ, t) as given by (5).
For t > 2, (8) may be simplified by separating out
the temporal component of the integral and using the
change of variablex = cosθ, which yields

p0
n
(t) = PI

(
n+

1
2

)
e−β(t−1)

∫ 1

−1
eβxPn(x) dx,

u̇0
n(t) = PI

(
n+

1
2

)
e−β(t−1)

∫ 1

−1
eβxxPn(x) dx, (9)

for which analytical solutions are readily found.

3.2. Spherical step-exponential wave

We now apply the above procedure to a spherical
incident wave. The free-field pressure for this wave is
given in the source coordinate system by (Fig. 1)

p0(R, Θ, t) = PI
As

R
e−β(t−R+As)H(t−R+As), (10)

whereAs is the source standoff (radius of the wave
front when it first reaches the shell). We note that
the pressure at the wave front is calibrated such that
p0 = PI , whenR = As. Equation (10) may be trans-
formed into the shell coordinate system using the law
of cosines and geometric relations, which yield the fol-
lowing:

R =
√
r2 +D2 + 2Dr cosθ,

As =D − 1. (11)
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The free-field pressure in the shell coordinate sys-
tem at any point in the fluid is therefore

p0(r, θ, t) =
PI (D − 1)√

r2 +D2 + 2rD cosθ

× e−β(t−1+D−
√
r2+D2+2rD cosθ)

×H
(
t− 1 +D −

√
r2 +D2 + 2rD cosθ

)
. (12)

Using (2), one can show that the radial fluid velocity in
the shell coordinate system is given by

u̇0(r, θ, t) = PI (D − 1) (r +D cosθ)

×
(

e−β(t−1+D−
√
r2+D2+2rD cosθ)

r2 +D2 + 2rD cosθ

− e−β(t−1+D−
√
r2+D2+2rD cosθ) − 1

β(r2 +D2 + 2rD cosθ)3/2

)
×H

(
t− 1 +D −

√
r2 +D2 + 2rD cosθ

)
. (13)

Evaluating (12) and (13) at the shell surface, we obtain

p0(θ, t) =
PI (D − 1)

Z
e−β(t−1+D−Z)

×H(t− 1 +D − Z),

u̇0(θ, t) = PI (D − 1) (1+D cosθ)

×
(

e−β(t−1+D−Z)

Z2
− e−β(t−1+D−Z)

βZ3

)
×H(t− 1 +D − Z), (14)

whereZ = (1 +D2 + 2D cosθ)1/2.
These equations for the pressure and radial fluid ve-

locity may now be entered into the first of (6) to find
the closed-form initial solutions for 0< t < 2. Solving
for the radial shell velocity, we obtain

ẇ∗(θ, t) =

{
(1− e−υ(t−1+D−Z)) (1 +D cosθ)

υβZ3

+
e−υ(t−1+D−Z) − e−β(t−1+D−Z)

β − υ

×
[

1 +D cosθ
Z2

− 1
Z
− 1 +D cosθ

βZ3

]}
×µPI (D − 1)H(t− 1 +D − Z). (15)

We can then determine the initial solutions for inter-
nal and scattered pressure directly from (15) using the
last two of (6). These responses are then separated into
modal components by numerically performing the in-
tegration in (8).

The equations for incident modal pressure and
modal radial velocity are found by numerically per-
forming the integration in (8) withq(θ, t) beingp0(θ, t)
and thenu̇0(θ, t) as defined in (14). As with the plane
step-exponential wave, this process may be simplified
for t > 2 by separating out the temporal portion from
the integral and using the change of variablex = cosθ.
Thus, the incident modal pressure and modal radial ve-
locity for t > 2 are given by

p0
n
(t) =

(
n+

1
2

)
PI (D − 1)e−β(t−1+D)

×
∫ 1

−1
eβZZ−1Pn(x) dx,

u̇0
n(t) = PI

(
n+

1
2

)
(D − 1)

[
e−β(t−1+D)

∫ 1

−1
eβZ

× (1 +Dx)

(
1
Z2
− 1
βZ3

)
Pn(x) dx

+

∫ 1

−1

(1 +Dx)Pn(x)
βZ3

dx

]
, (16)

which are evaluated numerically.

4. Convergence analysis

This section describes how a method formulated by
Geers [5,6] may be used to evaluate quantitatively the
level of convergence of series solutions. The method
was originally developed for evaluating the accuracy
of a calculated response relative to a valid measured
response. In this study, the response obtained by sum-
ming the first eight modes (N = 7) is taken as the mea-
sured response, and the response obtained by summing
the first five modes (N = 4) is taken as the calculated
response. Inherent in this approach is the assumption
that higher and higher modes contribute less and less
to the response.

The magnitude, phase, and comprehensive error fac-
tors are defined in Geers [6] as



M.A. Sprague and T.L. Geers / Response of empty and fluid-filled, submerged spherical shells 151

M =
√
ψcc/ψmm − 1,

P = 1− ψcm/
√
ψccψmm,

C =
√
M2 + P 2, (17)

respectively, in which the correlation factorsψcc,ψmm
andψcm are given by

ψcc = T−1
∫ T

0
c2(t) dt,

ψmm = T−1
∫ T

0
m2(t) dt,

ψcm = T−1
∫ T

0
m(t)c(t) dt, (18)

whereT is the total time under consideration,m(t) is
the measured response, andc(t) is the calculated re-
sponse.

Figure 2 shows, forT = 10, comprehensive error
factors for calculated radial-velocity histories pertain-
ing to an empty steel spherical shell excited by spher-
ical step-exponential waves at several standoffs and
for many decay constants. The thickness-to-radius ra-
tio h/a is 0.01, the mass-density ratioρ0/ρe is 7.7, and
the sound-velocity ratioc0/ce is (13.8)1/2, where the
plate velocityc0 is given byc0 = [E/ρ0(1−ν2)]1/2. As
shown, all errors are below 0.045, which indicates sat-
isfactory modal convergence. Even so, the comprehen-
sive error factor forβ = 10,D/a = 2, is one hundred
times that forβ = 0,D/a =∞.

5. Representative shell responses

This section presents numerical results for steel
spherical shells submerged in water that are either
empty or filled with water. System parameters are
the same as those used in the convergence analy-
sis. Figure 3 shows pressure histories atθ = π on
the shell’s external surface (the point of first contact)
for an empty spherical shell excited by plane step-
exponential waves with various decay constants. Fig-
ures 4 and 5 show associated radial-velocity histories
atθ = π andθ = 0, respectively. These figures demon-
strate satisfactory convergence, and exhibit expected
trends asβ → 0. Figure 6 shows radial-velocity histo-
ries for afilled shell excited by plane step-waves with
various decay constants. These histories do not show
the level of convergence exhibited by their counterparts

for an empty shell during 06 t < 2, but are well con-
verged fort > 2.

Figure 7 shows external-pressure histories atθ = π
for an empty shell excited bysphericalstep-exponen-
tial waves, all withβ = 2. This figure demonstrates
adequate convergence for the three standoffs consid-
ered, and shows that standoff has a small effect on ex-
ternal pressure. Figures 8 and 9 show radial velocity
histories for the empty shell atθ = π and θ = 0,
respectively. Unlike the situation with pressure, varia-
tions in standoff cause large changes in radial-velocity
response, most notably atθ = 0. The results demon-
strate adequate convergence, but also show how modal
convergence atθ = π suffers as standoff is decreased.
As the source of an incident spherical wave approaches
the shell, higher response modes become increasingly
important and the effects of modal truncation are more
pronounced. Figure 10 shows radial-velocity response
of a filled shell. As with the plane-wave excitation,
convergence of the filled-shell histories is not quite as
satisfactory as that of the empty-shell histories.

6. DAA calculations

Many underwater-shock calculations for complex
marine structures make use of a doubly asymptotic ap-
proximation to treat the fluid-structure interaction [3,4,
8–10,15]. First-order (DAA1), second-order (DAA2),
and third-order (DAA3) approximations have been for-
mulated. As part of the present study, response histo-
ries for spherical incident waves based on the second-
order, operator-matched DAA [4,9,10] were compared
with their acoustically based counterparts. Represen-
tative comparisons are shown in Figs 11 and 12 at
θ = π andθ = 0 respectively; two types of DAA2-
based radial-velocity histories are shown, one ob-
tained by modal summation as discussed above and
the other produced by the finite-element/boundary-ele-
ment (FE/BE) software assembly USA-DYNA [2,14].
For the USA-DYNA calculations, a quarter-model of a
spherical shell was constructed with 864 thick-shell fi-
nite elements with 8 corner nodes and the same number
of wet-surface boundary elements.

We observe in Figs 11 and 12 that the acoustics-
based and DAA2-based modal-summation histories are
almost indistinguishable for both plane step-wave and
spherical step-exponential-wave excitation atθ = π
but show small late-time differences atθ = 0. There is
excellent agreement at all times between the
USA-DYNA calculations and the DAA2-based modal-
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Fig. 2. Comprehensive error factors for radial-velocity histories atθ = π calculated by modal summation (N = 4 vsN = 7); empty spherical
shell excited by various spherical step-exponential waves.

Fig. 3. External-surface pressure histories atθ = π for an empty spherical shell excited by plane step-exponential waves.

Fig. 4. Shell radial-velocity histories atθ = π for an empty spherical shell excited by plane step-exponential waves.
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Fig. 5. Shell radial-velocity histories atθ = 0 for an empty spherical shell excited by plane step-exponential waves.

Fig. 6. Shell radial-velocity histories atθ = π for a filled spherical shell excited by plane step-exponential waves.

Fig. 7. External-surface pressure histories atθ = π for an empty spherical shell excited by spherical step-exponential waves (β = 2).
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Fig. 8. Shell radial-velocity histories atθ = π for an empty spherical shell excited by spherical step-exponential waves (β = 2).

Fig. 9. Shell radial-velocity histories atθ = 0 for an empty spherical shell excited by spherical step-exponential waves (β = 2).

Fig. 10. Shell radial-velocity histories atθ = π for a filled spherical shell excited by spherical step-exponential waves (β = 2).
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Fig. 11. Shell radial-velocity histories atθ = π for an empty spherical shell excited by a plane step wave (D = ∞, β = 0) and a spherical
step-exponential wave (D = 2,β = 2);N = 7.

Fig. 12. Shell radial-velocity histories atθ = 0 for an empty spherical shell excited by a plane step wave (D = ∞, β = 0) and a spherical
step-exponential wave (D = 2,β = 2);N = 7.

summation histories at both points on the shell. This
supports the conclusion that the series solutions for
radial-velocity are adequately converged.

It should be noted that USA-DYNA calculations
with 4-node shell elements produce unsatisfactory
early-time radial-velocity histories atθ = π. Figure 13
shows radial-velocity histories atθ = π due to exci-
tation by a plane step-wave calculated with FE mod-
els consisting of 864 thick-shell elements (8 corner
nodes), 864 shell elements (4 corner nodes), and 486
shell elements (again 4 corner nodes). The oscillatory
4-node-element histories differ significantly from the
8-node-element history during 0. t . 0.6. Such
oscillations do not appear on the back of the shell,
however. We see in figure, that refining the 4-node-

elment mesh produces higher-frequency oscillations
with slightly lower magnitude.

7. Cesàro summation

In order to improve convergence of their modal-
series solutions, Zhang and Geers [16] and subse-
quently Huang and Mair [13] replaced the usual
Fourier summation with Cesàro summation [1]. Al-
though such replacement reduces Gibbs oscillations in
a series representation of a discontinuous function, it
can also slow the convergence rate when there are no
discontinuities. This is demonstrated in Fig. 14, which
showsincident-waveradial fluid-velocity histories at
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Fig. 13. Shell radial-velocity histories atθ = π for an empty spherical shell excited by a plane step wave (D =∞, β = 0).

Fig. 14. Incident-wave radial-velocity histories atr = 1, θ = π for several incident spherical waves withβ = 2;N = 7.

Fig. 15. DAA2-based shell radial-velocity histories atθ = π for an empty spherical shell excited by a plane step wave (D = ∞, β = 0) and a
spherical step-exponential wave (D = 2,β = 2);N = 7.
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r = 1, θ = π produced by Fourier summation and
by Cesàro summation. For large standoff (D = 6),
Cesàro summation is clearly superior, in that the Gibbs
oscillations at early time are subdued and convergence
at late time is excellent. However, for small standoff
(D = 2), Cesàro summation excessively attenuates
early-time response and fails to converge satisfactorily
at late time for the eight modes used; Fourier summa-
tion is clearly superior in this case.

As we have seen, partial closure of a Fourier series
for shell response can greatly enhance modal conver-
gence; hence, Cesàro summation is rarely needed and
may be detrimental. This is illustrated in Fig. 15, which
shows six DAA2-based velocity histories, two Cesàro-
summed, two Fourier-summed, and two USA-DYNA-
calculated. For the plane step-wave excitation, both
the Fourier-summed and Cesàro-summed histories lie
very close to the USA-DYNA-calculated history, but
for excitation by the spherical step-exponential wave,
the Cesàro-summed history departs somewhat from the
other two.

8. Conclusion

We have extended the work of Zhang and Geers [16]
to include spherical, step-exponential incident waves
and have incorporated the extension in the program
SPHSHK/MODSUM [7]. In doing so, we found satis-
factory convergence of the series solutions by the usual
Fourier summation, as long as partial series closure
is employed. Such closure, however, is not adequate
to treat discontinuous wet-surface and shell fields in
the region 90◦ . θ . 155◦ for standoffs substan-
tially greater than the shell radius and in the region
120◦ . θ . 165◦ for standoffs comparable to the
shell radius [16]. With partial closure, Cesàro summa-
tion appears to be rarely, if ever, called for, and may
impair series convergence.
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