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Abstract. A product model, in which{x(t)}, is the product of a slowly varying random window,{w(t)}, and a stationary random
process,{g(t)}, is defined. A single realization of the process will be defined asx(t). This is slightly different from the usual
definition of the product model where the window is typically defined as deterministic. An estimate of the energy (the zero order
temporal moment, only in special cases is this physical energy) of the random process,{x(t)}, is defined as

m0 =

∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|w(t)g(t)|2dt

Relationships for the mean and variance of the energy estimates,m0, are then developed. It is shown that for many cases the
uncertainty (4π times the product of rms duration,Dt, and rms bandwidth,Df ) is approximately the inverse of the normalized
variance of the energy. The uncertainty is a quantitative measure of the expected error in the energy estimate. If a transient has
a significant random component, a small uncertainty parameter implies large error in the energy estimate. Attempts to resolve a
time/frequency spectrum near the uncertainty limits of a transient with a significant random component will result in large errors
in the spectral estimates.

1. Introduction

Temporal moments are often used to study the prop-
erties of nonstationary random events [3]. The en-
ergy, centroid, rms duration, and skewness are low
order statistics describing the event. For example,
these statistics can be used to characterize a mechani-
cal shock or an earthquake. The temporal information
can be used independently, or can be used to supple-
ment other information, like the shock response spec-
tra, the Fourier energy spectrum, and frequency do-
main moments. The combination of the rms dura-
tion and the rms bandwidth defines the uncertainty
theorem that places fundamental limits on our ability
to resolve an event into a time/frequency framework.
When a nonstationary random event is resolved into a
time/frequency framework the variance of the descrip-
tion is always of interest.

If a product model is assumed, the variance of esti-
mates of the moments can be estimated [3]. All these
estimates depend on the variance of the lowest order
statistic, the energy. The variance of energy estimates
and its relationship to the uncertainty principle is ex-
plored in this paper.

The product model is used to study the normalized
error of energy (the zero order temporal moment) esti-
mates of nonstationary random events. Two measures
are discussed, the statistical bandwidth and duration,
and the rms bandwidth and duration. Comparisons of
the two methods are then made. The statistical band-
width and duration are fundamentally more correct, but
are harder to estimate. The rms bandwidth and duration
are easier to estimate, but are only approximately pre-
dict the variance in energy. The uncertainty is defined
as the product of the rms duration and bandwidth. It
is well known that the uncertainty must be equal to or
greater than a known constant [2].
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Estimating the energy in a band of frequencies is
the typical method of estimating a spectrum. For
waveforms with a random component, the uncertainty
parameter has broader implications than just a time-
frequency resolution problem, it limits the accuracy of
temporal and frequencydomain moment estimates (and
functions of these moments). A small (a small multiple
of the theoretical limit) uncertainty parameter implies
large errors in the moment estimates.

2. Statistical bandwidth and duration of a
stationary process

The normalized error in spectral estimates of a
stationary random process has been studied exten-
sively [1]. Let g(t) be a single-sample time-history
record from a zero mean stationary (ergodic) random
process,{g(t)}. The mean square value can be esti-
mated over a finite time interval,T as

ψ̂2
g =

1
T

∫ T

0

g2(t)dt (1)

The normalized error is given approximately by

e =

√√√√var[ψ̂2
g ]

ψ̂4
g

=
1√
BsT

(2)

where the statistical bandwidth,Bs is given by

Bs =

[∫ ∞
0

Ggg(f)df
]2∫ ∞

0 G2
gg(f)df

(3)

Ggg(f), f > 0 is the single sided auto (power) spectral
density of{g(t)}. Details of the derivation of Eqs (2)
and (3) are given in [1].

3. The product model

This concept can be generalized when{g(t)} is mul-
tiplied by a slowly varying, with respect to{g(t)}, non-
negative window,{w(t)}.

{x(t)} = {w(t)}{g(t)} (4)

This is generally referred to as a product model. The
typical product model assumes{w(t)} is a determin-
istic function. In this paper{w(t)} is assumed to be
nonnegative and slowing varying, with respect to the
duration of the autocorrelation of{g(t)}, the underly-
ing random process.{w(t)} and{g(t)} are assumed
to be independent.{g(t)} is assumed to be a normal

stationary random process. With no loss of generality
let the mean square of{g(t)} be unity. The expected
value,E[], of the fourth power of{w(t)} integrated
over all time is constrained to be finite.

E

[∫ ∞

−∞
w4(t)dt

]
< ∞ (5)

A realization of the random process is

x(t) = w(t)g(t) (6)

Because the mean square value of{g(t)} is unity,
the expected value of the energy is

E[m0] =
∫ ∞

−∞
E[w2(t)]dt (7)

The square of the expected value of the energy is

(E[m0])2

=
∫ ∞

−∞

∫ ∞

−∞
E[w2(t)]E[w2(s)]dtds

(8)

=
∫ ∞

−∞

∫ ∞

−∞
E[w2(t)]E[w2(τ − t)]dtdτ

To provide a convenient definition of bandwidth, the
analytic function,z(t) is introduced. For a realization
of the random process the associated analytic function
is

z(t) = x(t) + iH(x(t)) (9)

whereH() denotes the Hilbert transform. The analytic
function is used to provide a more convenient defini-
tion of rms bandwidth. The Fourier transform of the
analytic signal is twice the Fourier transform ofx for
positive frequencies and zero for negative frequencies.

Z(f) =




2X(f) f > 0
X(f) f = 0
0 f < 0

(10)

whereX(f) is the Fourier transform ofx(t) andZ(f) is
the Fourier transform ofz(t). An unbiased estimate for
a single realization of the zero order temporal moment,
mo, sometimes called the energy, is given by

mo =
1
2

∫ ∞

−∞
|z(t)|2dt =

∫ ∞

−∞
|x(t)|2dt

(11)

=
∫ ∞

−∞
|X(f)|2df =

1
2

∫ ∞

0

|Z(f)|2df

The variance in the estimate of the zero order tem-
poral moment,mo, is given by

var[mo] = E[(mo − E[mo])2]
(12)

= E[m2
o] − E[mo]2
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or

var[mo] =
∫ ∞

−∞

∫ ∞

−∞
E[|x(t)|2|x(s)|2]dtds

(13)
−E[mo]2

For the product model this gives

var[mo] =
∫ ∞

−∞

∫ ∞

−∞
E[|w(t)|2|w(s)|2]

(14)
E[|g(t)|2|g(s)|2]dtds− E[mo]2

The expected value ofE[|g(t)|2|g(s)|2] is given by
Bendat and Piersol [1].

E[|g(t)|2|g(s)|2] = 2R2
gg(t− s) + Ψ4

g (15)

whereRgg(t−s) is the autocorrelation function ofg(t),
andΨ2

g = E[g2(t)], which for our case is unity.
Combining these results give

var[mo] =
∫ ∞

−∞

∫ ∞

−∞
[2R2

gg(t− s) + 1] (16)

E[|w(t)2|2|w(s)|2]dtds− E[m0]2

var[mo] = 2
∫ ∞

−∞

∫ ∞

−∞
[R2

gg(τ)]

E[|w(t)|2|w(t− τ)|2]dtdτ
(17)

+
∫ ∞

−∞

∫ ∞

−∞

E[|w(t)|2|w(t− τ)|2]dtdτ − E[m0]2

Becausew(t) varies slowly with respect to the dura-
tion ofR2

gg(τ), w2(t− τ) ≈ w2(t) during the timesτ
whenR2

gg(τ) is different from zero.

2
∫ ∞

−∞

∫ ∞

−∞
[R2

gg(τ)]E[|w(t)|2 |w(t − τ)|2]dtdτ
(18)

≈ 2
∫ ∞

−∞
[R2

gg(τ)]dτ
∫ ∞

−∞
E[|w(t)|4]dt

Let a normalized variance error be given by

e2 =
var(m0)
E[m0]2

≈ 2
∫ ∞
−∞ R2

gg(τ)dτ
∫ ∞
−∞ E[w4(t)]dt[∫ ∞

−∞ E[w2(t)]dt
]2 (19)

+

∫ ∞
−∞

∫ ∞
−∞ E[w2(t)w2(t− τ)]dtdτ[∫ ∞

−∞ E[w2(t)]dt
]2 − 1

Separating the terms in Eq. (19) that involve the
window from those involving the underlying random

process leads to the following definitions. Define the
statistical bandwidth,Bs, as

Bs =
1

2
∫ ∞
−∞ R2

gg(τ)dτ
(20)

Define the statistical duration,Ts, as

Ts =

[∫ ∞
−∞ E[w2(t)]dt

]2

∫ ∞
−∞ E[w4(t)]dt

(21)

Then substituting Eqs (20) and (21) into Eq. (19)
gives

e2 =
var(m̂0)
E[m0]2

≈ 1
BsTs

(22)

+

∫ ∞
−∞

∫ ∞
−∞ E[w2(t)w2(t− τ)]dtdτ[∫ ∞

−∞ E[w2(t)]dt
]2 − 1

Let

µw2(t) = E[w2(t)] (23)

Using the relationship

Cw2w2(t, t− τ) = E[(w2(t) − µw2(t))

(w2(t− τ) − µw2(t− τ)]

= E[w2(t)w2(t− τ)] (24)

−E[w2(t)]E[w2(t− τ)]

results in

e2 =
var(m̂0)
E[m0]2

≈ 1
BsTs

+
{∫ ∞

−∞

∫ ∞

−∞
E[(w2(t) − µw2(t))

(w2(t− τ) − µw2(t− τ))]dtdτ
}/

(25)

{[∫ ∞

−∞
µw2(t)dt

]2
}

or

e2 =
var(m̂0)
E[m0]2

(26)

≈ 1
BsTs

+

∫ ∞
−∞

∫ ∞
−∞ Cw2w2(t, t− τ)dtdτ[∫ ∞

−∞ µw2(t)dt
]2
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If w(t) is deterministic, i.e.w2(t) = µw2(t), the sec-
ond term on the right side is zero, and the error reduces
to the form in the previous paper on the subject [4]. If
the standard deviation ofw2(t) is small when compared
with µw2(t) the second term on the right side will be
small. The second term will also be small if the au-
tocorrelation of the random window,{w(t)}, dies out
rapidly, i.e. the duration ofw2(t) is much longer than
the duration of

∫ ∞
−∞ Cw2w2(t, t− τ)dt. If we let

w2(t) = µ2
w2(t) + εw2(t) (27)

whereµ2
w2(t) is the deterministic part andεw2(t) is

the random part of the window random process. Equa-
tion (25) becomes

e2 =
1

BsTs
(28)

+

∫ ∞
−∞

∫ ∞
−∞ E[εw2(t)εw2(t− τ)]dτdt[∫ ∞

−∞ µ2
w2(t)dt

]
The second term on the right is small ifE[ε2

w2(t)] �
µ2

w2(t), or if εw2(t) becomes uncorrelated forτ small
relative to the total duration of the transient. However,
εw2(t) cannot vary too rapidly with respect tog(t) or
the conditions for Eq. (18) will be violated.

The autocorrelation and the autospectral density of
{g(t)} form a Fourier transform pair.

Φgg(f) =
∫ ∞

−∞
Rgg(τ)e−2πifτdt (29)

The one sided spectrum is

Ggg =
{

2Φgg(f) f > 0
0 f � 0 (30)

Parseval’s formula gives

2
∫ ∞

−∞
R2

gg(τ)dτ = 2
∫ ∞

−∞
Φ2

gg(f)df
(31)

=
∫ ∞

0

G2
gg(f)df

This yields an alternate form of the statistical band-
width

Bs =

[∫ ∞
0

|Ggg(f)|df]2∫ ∞
0

G2
gg(f)df

(32)

Noting that the mean square of{g(t)} is unity to-
gether with Parseval’s formula gives

Bs =
1

2
∫ ∞
−∞ R2

gg(τ)dτ
(33)

This definition is the same as the definition of statis-
tical bandwidth (Eq. (20)) for stationary random given
earlier.

The statistical uncertainty,Us, is defined as

1
Us

=
1

BsTs
(34)

+

∫ ∞
−∞

∫ ∞
−∞ Cw2w2(t, t− τ)dtdτ[∫ ∞

−∞ µw2(t)dt
]2

Neglecting the second term on the right hand side,
an estimate is given by

Ûs ≈ B̂sT̂s (35)

The second term in Eq. (34) is always positive, there-
fore Eq. (35) will be a upper bound on the statistical
uncertainty.

4. Estimating the statistical bandwidth and
duration

An estimate of the statistical bandwidth is given by

B̂s =
1

2
∫ ∞
−∞

[
R̂2

gg(τ)
]
dτ

(36)

The autocorrelation function can be estimated
from [1]. The motivation comes from the observation
that a hard clipped signal has the same zero crossings
as the original signal and hence should retain the fre-
quency information.

y(t) =
{

1 x(t) � 0
0 x(t) < 0 (37)

R̂yy(τ) =
1

T − τ

∫ T−τ

0

y(t)y(t + τ)dt (38)

R̂gg(τ) = sin
(π

2
Ryy(τ)

)
(39)

To estimate the statistical duration an estimate of the
window is needed. For a single realization, smoothing
(a running average either equal or unequal weighting
can be used) the square ofx and taking the square root
will result in an estimate of the window. The smoothing
reduces the effects of the underlying random process,
{g(t)}which varies rapidly with respect to the window,
{w(t)}.

ŵ(t) =
√

(smooth(x(t)))2 (40)
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A simple running average has been satisfactory in
most cases. An estimate of the statistical duration is
then

T̂s =

[∫ ∞
−∞ ŵ2(t)dt

]2

∫ ∞
−∞ ŵ4(t)dt

(41)

Using Eq. (35), an estimate of the error becomes

ês =
1√
Ûs

(42)

5. Uncertainty and the rms duration and
bandwidth

In the classical discussion [2] of the uncertainty the-
orem, the rms duration,Dt, and rms bandwidth,Df ,
are defined. The rms duration is the normalized second
moment about the centroid,tc. An estimate is given by

D̂2
t =

1
m̂0

∫ ∞

−∞
(t− t̂c)2|z(t)|2dt (43)

An estimate of the centroid,tc, is defined as the time
for which the first moment is zero∫ ∞

−∞
(t− t̂c)|z(t)|2dt = 0 (44)

In an analogous fashion an estimate of the center
frequency and the rms bandwidth can found∫ ∞

0

(f − f̂c)|Z(f)|2df = 0 (45)

D̂2
f =

1
m̂o

∫ ∞

0

(f − f̂c)2|Z(f)|2df (46)

whereZ(f) is the Fourier transform ofz(t) andfc is
the center frequency defined analogous to the tempo-
ral centroid. Using the analytic function to define the
rms duration and bandwidth has an advantage when
the waveforms are oscillatory. The spectrum of the
analytic waveform is zero for the negative frequencies,
which gives a more reasonable estimate of the center
frequency and bandwidth.

The uncertainty theorem states that the product of
the rms duration and the rms bandwidth must be greater
than a constant

4πDtDf � 1 (47)

whereDt is in seconds andDf is in Hertz. Call this
product the uncertainty parameter,U , or simply the
uncertainty

U = 4πDtDf � 1 (48)

an estimate is given by

Û = 4πD̂tD̂f (49)

A normalized error can now be defined as

er =
1√
Û

(50)

An advantage of using the rms duration and band-
width over the statistical duration and bandwidth is that
no knowledge of the window or the underlying sta-
tionary process is required. The product model is not
required for their estimation.

6. Relationship between the normalized error
using the statistical duration/bandwidth and the
rms duration/bandwidth

Consider the special case where the window and
the spectrum of the underlying random process have
a Gaussian shape. Consider a window with a unity
variance

E[w(t)] =
1√
2π

exp
(
− t2

2

)
(51)

The rms duration isDt = 1/
√

2. The statistical
duration isTs =

√
2π. Let the spectral density of the

underlying random process{g(t)} also have a unity
variance then

Φ(f) =
1√
2π

exp
(
−f2

2

)
(52)

andDf = 1/
√

2, Bs =
√

2π. For this special case

U = Us (53)

The uncertainty factor is the variance in the energy
estimate.

6.1. Other windows

Consider the cases where the second term on the
right side of Eq. (26) can be neglected. Just as a duality
exists between the rms duration and the rms bandwidth,
a duality exists between the statistical duration and the
statistical bandwidth. The relationship needs only to
be studied in one domain (time or frequency). The
relationships for several other common windows are
listed in Table 1.

In summary, anytimeDsBs ≈ 4πDtDf the in-
verse of the uncertainty parameter will approximate the
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Table 1
Rms duration and statistical duration for several windows

Function rms duration,Dt statistical duration,Ts Ts/
√

4πDt

Gaussian

f(t) = 1√
2π

exp

(
− t2

2

) 1/
√

2
0.707

√
2π

2.51
1

Squarewave
f(t) = 1
0 � t � T

T/2
√

3
0.29T

T
√

3/π

0.98

triangle
f(t) = 1 − 2|t|/T
−T/2 � t � T/2

T/2
√

10
0.16T

(5/9)T
0.56T

√
1000/324π

0.99

half-sine
f(t) = sin(πt/T )
0 � t � T

T
√

1
12

− 1
2π2

0.18T

2T/3
0.67T

1.04

terminal peak sawtooth
f(t) = t/T
0 � t � T

T
√

3/80

0.19T

(5/9)T
0.56T

√
500/243π

0.809

exponential
f(t) = tne−αt t � 0
n = 0
n = 1

√
2n+1
2α

1/2α
8/3α

24nΓ2(2n+1)
αΓ(4n+1)

1/α
8/3

√
3α

24n+1Γ2(2n+1)√
4π

√
2n+1Γ(4n+1)

2/
√

4π ≈ 0.56
8/3

√
3π ≈ 0.86

squared error in the variance of the energy estimates.

e2
s ≈ 1

U
when DsBs ≈ 4πDtDf (54)

For a rectangular window with a rectangular spec-
trum

DsBs =
3
π

4πDtDf

(55)
DsBs = 0.95(4πDtDf)

Thus for a rectangular window with a rectangular
spectrum the squared error in the variance of the energy
estimate is within a few percent of the inverse of the
uncertainty. This is also true for several other windows.
Thus, uncertainty parameter and the variance of the
energy estimates are related in an important manner.

The uncertainty is a quantitative measure of the er-
ror in the energy estimates for many random realiza-
tions involving the product model. The measure also
provides guidance as to the resolution we can expect
when performing a time/frequency characterization of
a deterministic transient. If we are close to the uncer-
tainty criteria (U ander near unity), our estimates can
be in error because either time and/or frequency will
be dilated. If the waveform is also a realization of a
random process, we will be in error because of poor
energy estimates. Aser gets small (U larger), we are on
safer ground both from the viewpoint of distortion of
the waveform and the viewpoint of errors in the energy
estimate.

7. Ensemble averaging

If multiple realizations of the process are available,
ensemble averaging can reduce the errors. The errors
will be reduced roughly by the factor1/

√
n, wheren is

the number of realizations available [1, Section 8.5.3].

8. Conclusions

It is desirable to represent transient waveforms in a
time/frequency framework. An optimum way to per-
form this decomposition, keeping in mind acceptable
error bounds, is still not clear. It is clear that the
uncertainty theorem and estimation errors in the mo-
ments (energy, centroid, center frequency, duration,
bandwidth, etc.) are closely related and related to a
bandwidth-time (BT) product. For example, we can
talk about the energy in a short interval of time, but it is
meaningful only for a broadband process. We can talk
about the energy in a narrow band of frequencies, but
it is meaningful only for long duration waveforms. If
we have a band-limited time-limited waveform, we are
limited in the time/frequency resolution we can achieve.
Moreover, if the waveform has a random component,
as we approach the theoretical BT limits the estimation
errors will be come unacceptable.
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Appendix A: Example

For this example a deterministic Hanning window
will be used. This will allow the estimates of the win-
dow to be compared with the actual window. The
window was 2048 samples long. A sample rate of
10 000 samples/second was chosen. The random sig-
nal was a white random band-limited from 1–2 kHz.
The time history is plotted as the solid line in Fig. A1.
The magnitude of the analytic function is shown as
the dotted line. The Hanning window is shown as
the dash-dot line. The smoothed estimate of the win-
dow is shown as the dashed line. The energy is esti-
mated at0.15 g2s (E = 0.146). The uncertainty is
over 100 times the requirement of the uncertainty the-
orem (U = 114). To estimate the statistical duration,
the waveform was smoothed with a running average
of 205 points (S = 205). The statistical duration is
estimated as 0.108 s (Dse = 0.0108). The true sta-
tistical duration calculated from the window is 0.105 s
(Ds = 0.105). The statistical bandwidth is estimated
as 1150 Hz (Bs = 1150). The normalized rms dura-
tion is estimated 0.104 s (2π1/2rmsD = 0.104). The
normalized rms bandwidth is estimated as 1090 Hz
((2π1/2rmsB = 1090). The estimated error in the en-
ergy from the statistical duration and bandwidth is 9.0%
(es = 0.0899). The estimated error in the energy from
the rms duration and bandwidth is 9.4% (er = 0.094).
As can be seen the two estimates of error are in close
agreement. This implies that the energy estimate has
an rms error of about 9% for this transient with a total
duration of 200 ms, a bandwidth of about 1 kHz, and
an uncertainty 114 times the minimum possible. If we
attempted to resolve time better than 0.2 s or divide
the signal into bandwidths of less than 1 kHz, reducing
the uncertainty, the error in the energy estimate would
increase appropriately. Appendix B lists the code used
to generate this example.

Appendix B: Matlab� code used to generate the
example in Appendix A

% teststatdur bw
% Example for Shock and Vibration paper

% D. O. Smallwood, 11/25/2002

sr=10000; % sample rate
T=1/sr; % sample interval
L=2048; % length of transient, samples
ix=(1:L);
t=T.*ix; % time
w=hanning(L); % actual window
g=randn(2*L,1); % white noise
[b,a]=butter(4,[.2 .4]); % filter from 1000 to

2000 Hz
g=filter(b,a,g); % band limited white noise
g=g(L+1:2*L); % don’t use first part, gets rid

of transient response of filter
g=g./std(g); % normalize to 1 g rms
x=w.*g; % product model
z=abs(hilbert(x)); % analytic function
[tm,fm,U,xa]=tfamoment(x,T); % computes

moments
tm, fm, U
ms=T*sum((T.*xcorr(x)).ˆ2);
m0=T*trapz(abs(x).ˆ2);
Bs = (m0.ˆ2)/ms; % estimate of statistical BW
S=round(L/10); % smoothing parameter,

1/10 of length of transient
ww=sqrt(smootht(x.ˆ2,S,‘zz’)); % estimated

window
ww4=sum(ww.ˆ4); % estimate of windowˆ4
x4=sum(x.ˆ4);
w4=sum(w.ˆ4); % correct value
Dse=(1/T)*m0.ˆ2/ww4; % estimated statisti-

cal duration
Ds=T*(sum(w.ˆ2)).ˆ2/w4; % actual statistical

duration
es=sqrt(1/(Dse*Bs)); % estimate of error

from statistical BW and duration
er=sqrt(1/U); % estimate of error from rms

duration and bandwidth
plot(t,x,‘k-’);
hold on
plot(t,z,‘k:’);
plot(t,ww,‘k–’,‘LineWidth’,2);
plot(t,w,‘k-.’,‘LineWidth’,2);
title([‘E=‘num2str(tm(1),3)’ S=‘num2str(S,3)’ U=

‘num2str(U,3)’ Dse=‘num2str(Dse,3). . . ’ Ds=‘num2
str(Ds,3)’ Bs=‘num2str(Bs,4)’ 2πˆ{1/2}rmsD=‘num2
str(2*sqrt(pi)*tm(3),3) . . . ’ 2πˆ{1/2}rmsB=‘num2str
(2*sqrt(pi)*fm(3),4). . . ’ es=‘num2str(es,3)’ er=‘num2
str(er,2)]) legend(‘x’,‘abs(z)’, ‘est. of window’, ’win-
dow’)

xlabel(‘time(s)’), ylabel(‘acceleration(g)’)
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Fig. A1. Example of a nonstationary random signal.

hold off
legend(‘x’,‘abs(z)’,‘est. of window’,‘window’)
xlabel(‘time(s)’), ylabel(‘acceleration(g)’)

function [tm,fm,U,xa]=tfamoment(x,T,smoothx)
% [tm,fm,U,xa]=tfamoment(x,T,smoothx)
% Computes the temporal moments, frequency mo-

ments, uncertainty, and analytic function
% of a real time history x. This formulation is useful

for band-limited waveforms.
% Gives a better estimate of the uncertainty for os-

cillatory waveforms
% than the normal method which uses a two sided

spectrum.
% INPUT: x = a real time history
% T = the sample interval, if missing or empty T=1

is used
% smoothx = the mean square time history will be

smoothed with
% smoothx*length(x) points to make an estimate

of the statistical duration,

% 0<smoothx<=1.
% optional, default smooth=1/length(x), i.e. no

smoothing
% OUTPUT: tm = the normalized temporal moments

of the analytic function
% corresponding to x. The analytical function

is defined as
% xa = x + i*hilbert transform(x)
% tm(1) = the energy
% tm(2) = the centroid
% tm(3) = the rms duration, Dt
% tm(4) = the nondimensional skewness
% tm(5) = the nondimensional kurtosis
% tm(6) = the statistical time duration of xa,

Ds
% tm(7) = the statistical time duration of x,

Dsx
% fm = the normalized moments in the fre-

quency domain of xa
% fm(1) = the energy
% fm(2) = the center frequency
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% fm(3) = the rms bandwidth, Df, If Dt is
seconds, Df is Hertz

% fm(4) = the nondimensional frequency do-
main skewness

% fm(5) = the nondimensional frequency do-
main kurtosis

% U = 4*pi*Dt*Df = 4*pi*tm(3)*fm(3),
% The normalized uncertainty bound , from

rms duration and BW, U >=1
% tm,fm,U are row vectors
% xa = The analytic function
% Note: the energy of the analytic function is twice

the energy of the real part.
% See tfmoment for a definition of the moments
% Also see moments tmoment and tfmoment

% David Smallwood Sandia National Laboratories,
7/17/2001

if nargin<3, smoothx=1/length(x);, end
if isempty(smoothx), smoothx=1/length(x);, end
nsmooth=round(smoothx*length(x)); % number of

points to smooth
tm=zeros(1,7);
fm=zeros(1,5);
U=zeros(1,3);
if nargin<2, T=1;, end
if isempty(T), T=1;, end
if min(size(x))>1, error(‘x is not a vector’), end
x=x(:);
N=length(x);
if ˜isreal(x)

warning(‘HILBERT ignores imaginary part of in-
put.’)

x = re3al(x);
end
%X=fft(x);
%X2=fft(x.ˆ2);
[z,Z]=hilbert2(x);
Z=T*Z(1:fix(N/2)+1);
xa=z;
z=abs(z).ˆ2; % magnitude squared of the an-

alytic function
Z=real(abs(Z).ˆ2); % magnitude squared of

the magnitude of the frequency spectrum of the analytic
function

t=T*(0:N-1)’; % time vector
df=1/(T*N); % frequency increment
f=df*(0:N/2)’; % frequency vector

% find temporal moments

m0 = T*trapz(z);
m1 = T*trapz(t.*z);
m2 = T*trapz((t.ˆ2).*z);
m3 = T*trapz((t.ˆ3).*z);
m4 = T*trapz((t.ˆ4).*z);
% ms = T.*trapz(z.ˆ2);
ms = T.*trapz(smootht(z,nsmooth));
msx = T.*trapz(smootht(x.ˆ2,nsmooth));
Dsx=m0.ˆ2/msx;; % statistical duration of x
% notice that Ds is in error because of leakage in the

Hilbert transform
% w=smootht(abs(z.ˆ2),nsmooth); % esti-

mated window squared
Ds=m0.ˆ2/ms; % statistical duration of z
E = m0;
tau = m1/m0;
% To get unbiased result, I lose a degree of freedom

by subtracting an estimate
% of tau instead of true value.
D = sqrt( (N/(N-1))*(m2/m0 -tauˆ2) );
S3 = ((N/(N-1))*(N/(N-2)))*(m3/m0 - 3*m1*m2

/m0ˆ2 + 2*tauˆ3);
S = sign(S3) * abs(S3)ˆ(1/3);
K4 = ((N/(N-1))*(N/(N-2))*((N+1)/(N-3)))*(m4/m0

-4*m3*m1/m0ˆ2 +6*m2*m1ˆ2/m0ˆ3 -3*m1ˆ4/m0ˆ4);
K = sqrt(sqrt(K4));
tm(1)=E;
tm(2)=tau;
tm(3)=D;
tm(4)=S/D;
tm(5)=K/D;
tm(6)=Ds;
tm(7)=Dsx;
% find frequency moments
m0 = df*trapz(Z);
m1 = df*trapz(f.*Z);
m2 = df*trapz((f.ˆ2).*Z);
m3 = df*trapz((f.ˆ3).*Z);
m4 = df*trapz((f.ˆ4).*Z);
Ef = m0;
cfreq = m1/m0;
% To get unbiased result, I lose a degree of freedom

by subtracting an estimate
% of cfreq instead of true value.
B = sqrt( (N/(N-1))*(m2/m0 -cfreqˆ2) );
S3 = ((N/(N-1))*(N/(N-2)))*(m3/m0 - 3*m1*m2/

m0ˆ2 + 2*cfreqˆ3);
S = sign(S3) * abs(S3)ˆ(1/3);
K4 = ((N/(N-1))*(N/(N-2))*((N+1)/(N-3)))*(m4/m0

-4*m3*m1/m0ˆ2 +6*m2*m1ˆ2/m0ˆ3 -3*m1ˆ4/m0ˆ4);
K = sqrt(sqrt(K4));
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fm(1)=Ef;
fm(2)=cfreq;
fm(3)=B;
fm(4)=S/B;
fm(5)=K/B;
% D is rms duration is seconds, B is rms bandwidth

in Hz.
% U must be >=1
U=4*pi*B*D;

function S = smootht(A,n,edge, wind)
% function S = smootht(A,n,edge,wind)
% A function used to smooth a time history with a

window n points long
% INPUT: A– a vector
% n– the odd number of points averaged for

smoothed function
% optional, if missing or empty, default: n=1.

If n is even, n+1 points are used
% If n=1, no smoothing is performed, S=A;
% Data are always smoothed with an odd num-

ber of points with the center at the current location.
% edge – optional input, how do you want the edges

handled?
% two character vector for the method for the

leading and trailing ends respectively
% edge=‘r’ – end points reflected in time at

edges beyond the frame length,
% edge=‘z’ – data is zero outside the frame

length
% edge=‘p’ – data is periodic
% edge=‘o’ – data is odd outside of frame,

data is reflected and multiplied by -1
% if missing or empty, default: edge=‘rr’
% wind – window weighting function, vector of

length n, sum of wind weights should be n
% optional: if missing or empty wind==ones

(n,1) is the default
% OUTPUT: S– the smoothed vector the same length

as A
% if n>=length(A) all values will be replaced

by the mean of A
% Also see smooth.m for frequency domain smooth-

ing

% D.O. Smallwood, Sandia National Laboratories,
09 December 1993.

% modified 6/16/2000 dos
% modified 9/20/2001 dos, changed treatment of

ends
% modified 11/25/2002, a little clean up. DOS

win=[‘ ’];
if nargin<3, edge=‘rr’;, end
if isempty(edge), edge=‘rr’;, end
if ˜(edge(1)==‘r’ | edge(1)==‘z’ | edge(1)==‘p’ |

edge(1)==‘o’)
error(‘invalid value for edge’)

end
if ˜(edge(2)==‘r’ | edge(2)==‘z’ | edge(2)==‘p’ |

edge(2)==‘o’)
error(‘invalid value for edge’)

end
if nargin<2, n=1;, end
if isempty(n), n=1;, end
if max(size(n))>1, error(‘n is not a scalar’), end
if min(size(A))>1, error(‘A is not a vector’), end
[r,c]=size(A);
flip=0;
if r==1, flip=1;, end
A=A(:);
if n<1, error(‘n is <1’), end

N = length(A);
if n>=N

S=mean(A).*ones(size(A));
return

end
if n==1

S = A;
else

n2=fix(n/2);
n=2*n2+1;
if nargin<4, wind=ones(n,1);, , win=‘ones’;, end
if isempty(wind), wind=ones(n,1);, , win=‘ones’;,

end
if length(wind)˜=n, error(‘wind not the right

length’), end
if abs(sum(wind)-n)>1e4*eps

warning(‘sum of wind is not n, wind has been
normalized’)

wind=(n/sum(wind)).*wind;
end
if abs(sum(wind)-length(wind))>100*n*eps

win=‘ones’;
end
S = zeros(size(A));
if N<n

Mean = mean(A);
S = Mean*ones(size(A));

else
% treat the ends

if edge(1)==‘r’
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Ae=[A(n2+1:-1:2); A];
elseif edge(1)==‘z’

Ae=[zeros(n2,1); A];
elseif edge(1)==‘o’

Ae=[2*A(1)-A(n2+1:-1:2); A];
elseif edge(1)==‘p’

Ae=[A(N-n2+1:N); A];
end
if edge(2)==‘p’

Ae=[Ae; A(1:n2)];
elseif edge(2)==‘z’

Ae=[Ae; zeros(n2,1)];
elseif edge(2)==‘r’

Ae=[Ae; A(N-1:-1:N-1-n2)];
elseif edge(2)==‘o’

Ae=[Ae; 2*A(N)-A(N-1:-1:N-n2)];
end

% treat the middle part
Ne=length(Ae);
if win==‘ones’

SS=sum(Ae(1:n));
S(1)=SS/n;
for i=2:N

SS=SS-Ae(i-1)+Ae(i+n-1);
S(i) = SS/n;

end
else

wind=wind(:);
for i=1:N

S(i)=(sum(Ae(i:i+n-1).*wind))/n;
end

end
end

end
S=S(1:N);
if flip==1, S=S’;, end
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