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Abstract. A high precision triangular shallow shell element is proposed and it is applied to free vibration analysis of composite
and isotropic shells. The Mindlin’s hypothesis is followed to include the effect of shear deformation. The formulation is made
in an efficient manner to make the element free from shear locking problem. The element has some internal nodes, which are
eliminated through static condensation technique to improve the computational elegance of the element. In the present vibration
problem, the implementation of the static condensation became possible with the help of an efficient mass lumping scheme. It is
quite interesting that the effect of rotary inertia can be included in the recommended scheme for lumped mass matrix. Numerical
examples covering a wide range of problems are solved and the results obtained are compared with the published results in many
cases, which show the precision and range of applicability of the proposed element. The performance of the proposed technique
for rotary inertia is found to be excellent. Some new results are produced, which may be useful in future research.

1. Introduction

The finite element method [2,15,28,29] is regarded as the most powerful tool specifically in structural analysis
problems. The analysis of plate and shell is one of the first problems where finite element was applied in early sixties
of last century. The initial attempts were made with Kirchhoff’s hypothesis where a number of problems were faced.
The major problem was concerned with the satisfaction of normal slope continuity at the element edges, which could
not be solved yet. In the subsequent study, the Mindlin’s hypothesis was followed to include the effect of shear
deformation where the above mentioned continuity problem could be avoided. This is achieved by considering the
transverse displacement (w) and rotations of the normal (θx andθy) as the independent displacement components.
In this group the most popular elements are based on isoparametric formulation. Though these elements are quite
elegant but they suffer from certain problems like shear locking, stress extrapolation, spurious modes and something
else.

Keeping these aspects in view, some investigations have been carried out to find out some amendments, alternative
formulations or some other techniques (e.g. [3,10,13,14,20,27,30]) to achieve an element, which may be applied
with improved accuracy without facing the above problems. This is clearly reflected in the recent review papers
on shell finite elements [28]. The requirement for the development of such elements has been increased with the
popularity of fibre reinforced laminated composites as structural material where the effect of shear deformation is
quite significant. Actually composite is weak in shear due to its low shear modulus compared to extensional rigidity.
Moreover, the layered configuration in these structures causes further complications. The transverse strains (normal
as well as shear) are found to be discontinuous at the layer interfaces, which can be represented by zigzag through
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Fig. 1. A typical shell element projected in the base plane.

thickness variation of displacement components [7]. On the other hand, transverse stresses become continuous
at the layer interfaces [5,6]. The effect of these refinements in the evaluation of global response parameters like
natural frequencies of vibration is not so prominent as that found in the evaluation of stresses specifically transverse
stresses [8]. All these have inspired the researchers (e.g. [1,4,5,8,16,21,23–26]) to make this an active area of
research in recent days. However, the present study is based on Mindlin’s hypothesis in order to have a simple
representation of the structural deformation.

In this context, the triangular Mindlin plate element developed by one of the authors (Sengupta [20]) is quite
interesting. This trouble free element based on a simple idea is found to give very good results even with a coarse
mesh in the static analysis of isotropic plates [20]. It has inspired the authors to develop the proposed shallow shell
element using the basic concept of the high precision triangular Mindlin plate element [20]. The performance of
the element has been found to be very good in the prediction of structural response under static load [21] while
that is tested for the prediction of vibration characteristics in the present study. In the shell element the transverse
displacement w is expressed by a complete fourth order polynomial while complete cubic polynomials are used to
express the in-plane displacements (u and v) and the rotations (θ x andθy) of the normal. Thus the interpolation
function ofw is one order higher than that ofθx andθy, which has helped to make this element free from locking
and other relevant problems.

The fifty-five unknowns in these five polynomials can be easily expressed in terms of fifty-five nodal displacements
of the element as shown in Fig. 1. With this the stiffness and mass matrices of an order of fifty-five can be derived
following the usual steps of finite element technique. Though these matrices can be used directly in these forms
but their implementation and use will be quite cumbersome due to the presence of the internal nodes. This can be
avoided by eliminating the degrees of freedom of the internal nodes. Actually Sengupta [20] has done it using the
technique of static condensation, which is quite easy to implement in a static analysis [20]. This is somewhat difficult
in the present vibration problem due to the presence of the mass matrix in the governing equation. The problem will
be much more severe if a consistent mass matrix is used where the matrix is more populated and having coupling of
the degrees of freedom for the internal and external nodes. On the other hand the effect of rotary inertia can easily
be incorporated in the formulation with consistent mass matrix. In the present element, the condensation technique
of Guyan [11] and something else cannot be applied, as it contributes a significant amount of mass at the internal
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Fig. 2. Geometry and axis system of a doubly curved shell panel.

nodes. In this situation, the only alternative is to have a mass matrix having no mass contribution at the internal
nodes. This is achieved with the proposed mass lumping scheme where the mass of an element is distributed at the
external nodes only. Interestingly, some recommendation has also been made for the incorporation of rotary inertia
in lumped mass matrix. The detail of the lumping scheme is presented in the formulation.

Numerical examples of isotropic and composite shells having different curvature, aspect ratio, boundary condition,
number of layers, fibre orientation and thickness ratio (h/a) are solved by the proposed element. A large number
of these results are compared with the results available in literature, which clearly reflects the performance of the
proposed element.

2. Formulation

The formulation is based on shallow shell theory with the usual assumptions. The effect of shear deformation is
taken into account following the Mindlin’s hypothesis. The area co-ordinate system [29] is used to do the formulation.

Figure 1 shows a typical shell element projected in the base plane. The locations of the nodes 1, 2, 3, 13 and 16
are (1, 0, 0), (2/3, 1/3, 0), (1/2, 1/2, 0), (1/2, 1/4, 1/4) and (1/3, 1/3, 1/3) respectively. Using symmetry the locations
of other nodes can be easily obtained. The degrees of freedom at all the external nodes except 3, 7 and 11 areu, v,
w, θx andθy while it is only w at nodes 3, 7, 11, 13, 14 and 15. Node 16 containsu, v, θ x andθy.

According to earlier discussion the independent displacement components may be expressed as follows

u = [Q3]{α}, (1a)

ν = [Q3]{β} (1b)

w = [Q4]{γ}, (1c)

θx = [Q3]{µ} (1d)

and θy = [Q3]{λ}, (1e)

where[Q3] = [L3
1 L3

2 L3
3 L2

1L2 L2
2L1 L2

2L3 L2
3L2 L2

3L1 L2
1L3 L1L2L3],

[Q4] = [L4
1 L4
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Table 1
Frequency parameters(ωa2

√
(ρh)/D) of an isotropic doubly curved shell panel (Fig. 2) clamped

at y = 0 and free at the other sides(a/b = 1, a/Rx = 0.2, ν = 0.3)

h/a Ry/Rx References Mode number
1 2 3 4 5 6

0.01 −2.0 MLS-2a (8 × 8b) 7.490 8.834 29.982 32.965 38.750 56.660
MLS-2 (10× 10) 7.492 8.839 30.091 33.089 38.816 56.746
MLS-2 (12× 12) 7.492 8.840 30.140 33.111 38.883 56.847
ISSE9 (14× 14) 7.414 9.193 30.127 32.981 40.232 57.496
ISSE9 (16× 16) 7.440 9.125 30.165 33.026 39.999 57.438
ISSE9 (18× 18) 7.458 9.076 30.184 33.060 39.828 57.391
ISSE9 (20× 20) 7.471 9.040 30.194 33.085 39.698 57.352
Leissa et al. [17] 7.507 8.872 30.165 33.180 38.974 57.203

−1.0 MLS-2 (8× 8) 6.486 8.764 29.772 32.477 45.829 64.409
MLS-2 (10× 10) 6.489 8.769 29.811 32.517 45.912 64.566
MLS-2 (12× 12) 6.489 8.770 29.823 32.534 45.933 64.582
ISSE9 (20× 20) 6.525 8.911 29.713 33.286 46.448 64.707
Leissa et al. [17] 6.504 8.802 29.931 32.683 46.125 65.010

2.0 MLS-2 (8× 8) 7.751 8.860 24.463 32.528 36.322 65.441
MLS-2 (10× 10) 7.752 8.865 24.518 32.581 36.377 65.721
MLS-2 (12× 12) 7.752 8.866 24.540 32.598 36.391 65.912
ISSE9 (20× 20) 7.745 9.090 24.823 32.296 38.358 64.898
Leissa et al. [17] 7.765 8.897 24.664 32.777 36.566 66.427

0.1 −2.0 MLS-2 (8× 8) 3.511 8.031 20.219 20.958 25.377 28.088
MLS-2 (10× 10) 3.514 8.037 20.248 20.962 25.429 28.180
MLS-2 (12× 12) 3.514 8.040 20.255 20.964 25.467 28.231
ISSE9 (20× 20) 3.548 8.108 20.379 21.775 25.743 28.538

−1.0 MLS-2 (8× 8) 3.512 7.997 20.240 20.868 25.371 28.350
MLS-2 (10× 10) 3.513 8.003 20.269 20.874 25.484 28.394
MLS-2 (12× 12) 3.513 8.004 20.280 20.876 25.538 28.412
ISSE9 (20× 20) 3.547 8.076 20.391 21.616 25.862 38.687

2.0 MLS-2 (8× 8) 3.503 8.037 20.088 20.917 25.438 28.195
MLS-2 (10× 10) 3.504 8.043 20.118 20.923 25.491 28.240
MLS-2 (12× 12) 3.504 8.045 20.127 20.925 25.506 28.245
ISSE9 (20× 20) 3.538 8.113 20.250 21.741 25.802 28.554

aanalysis based on proposed element using MLS-2 as the mass lumping scheme.
bindicates mesh size.

{α} = [α1 α2 α3 α4 α5 α6 α7 α8 α9 α10]T ,

{β} = [β1 β2 β3 β4 β5 β6 β7 β8 β9 β10]T ,

{γ} = [γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12 γ13 γ14 γ15]T ,

{µ} = [µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10]T

and {λ} = [λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10]T ,

The unknowns ({α}, {β}, {γ}, {µ}and{λ}) in the above Eq. (1) can be expressed in terms of nodal displacements
by substitution of these equations at the different nodes appropriately, which leads to

{X} = [A]{δ} or {δ} = [A]−1{X}, (2)

where{δ} =
[
[α]T [β]T [γ]T [µ]T [λ]T

]T
,

{X}T = [u1 ν1 w1 θx1 θy1 u2 ν2 w2 θx2 θy2 w3 u4 ν4 w4 θx4 θy4 u5 ν5 w5 θx5 θy5 u6 ν6 w6 θx6θy6w7 u8

ν8 w8 θx8 θy8 u9 ν9 w9 θx9 θy9 u10 ν10 w10 θx10 θy10 w11 u12 ν12 w12 θx12 θy12 w13 w14 w15

u16 ν16 θx16 θy16]

and the matrix[A] having an order of 55× 55 can be obtained with the co-ordinates of the different nodes.
The generalised stress strain relationship of a laminated shell may be written as
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Table 2
Frequency parameters (100ωa

√
ρ/E) of an isotropic cylindrical shell panel (Fig. 3) simply

supported at the four sides(a/b = 1, a/R = 0.5, ν = 0.3)

h/a Reference Mode numbers
1 2 3 4 5 6

0.1 MLS-1a (4 × 4) 74.792 140.31 146.99 216.66 261.14 265.13
MLS-1 (6× 6) 74.828 140.54 147.26 217.42 262.59 266.67
MLS-1 (8× 8) 74.842 140.62 147.36 217.74 263.15 267.26
MLS-1 (10× 10) 74.847 140.66 147.40 217.89 263.42 267.53
MLS-1 (12× 12) 74.848 140.68 147.42 217.98 263.51 267.60
MLS-2 (4× 4) 74.289 138.20 144.75 212.19 255.08 258.95
MLS-2 (6× 6) 74.282 138.40 144.99 212.85 256.32 260.28
MLS-2 (8× 8) 74.295 138.48 145.09 213.14 256.82 260.79
MLS-2 (10× 10) 74.301 138.51 145.13 213.27 257.04 261.03
MLS-2 (12× 12) 74.301 138.52 145.15 213.30 257.25 261.13
ISSE9 (20× 20) 74.164 138.13 144.70 212.36 255.64 259.67
Lim and Liewb [18] 74.367 139.05 145.25 213.69 258.11 261.57
Lim and Liewc [18] 74.365 139.02 145.23 213.63 258.01 261.49

0.2 MLS-1 (4× 4) 117.49 235.64 241.02 340.53 398.24 401.37
MLS-1 (6× 6) 117.64 236.78 242.26 343.96 403.91 407.22
MLS-1 (8× 8) 117.69 237.19 242.70 345.22 405.97 409.35
MLS-1 (10× 10) 117.71 237.38 242.92 345.81 406.94 410.35
MLS-1 (12× 12) 117.71 237.45 242.99 346.06 407.67 410.69
MLS-2 (4× 4) 115.00 228.27 233.28 329.00 368.99 371.83
MLS-2 (6× 6) 115.13 229.24 234.34 331.88 389.59 392.67
MLS-2 (8× 8) 115.17 229.59 234.72 332.95 391.33 394.46
MLS-2 (10× 10) 115.19 229.76 234.90 333.46 392.16 395.30
MLS-2 (12× 12) 115.20 229.89 235.01 334.03 392.41 395.56
ISSE9 (20× 20) 114.67 227.90 232.98 329.75 390.19 392.32
Lim and Liewb [18] 115.38 231.34 235.53 335.29 395.85 397.87

aAnalysis based on proposed element using MLS-1 as the mass lumping scheme.
bResults based on higher order shear deformation theory (HSDT).
cResults based on first order shear deformation theory (FSDT).

{σ} = [D]{ε}, (3)

where {σ}T = [Nx Ny Nxy Mx My Mxy Qx Qy], (4)

{ε} =




∂u/∂x + w/Rx

∂ν/∂y + w/Ry

∂u/∂y + ∂ν/∂x + 2w/Rxy

−∂θx/∂x
−∂θy/∂y

−∂θx/∂y − ∂θy/∂x
∂w/∂x − θx

∂w/∂y − θy




(5)

and [D] =




A11 A12 A16 B11 B12 B16 0 0
A21 A22 A26 B21 B22 B26 0 0
A61 A62 A66 B61 B62 B66 0 0
B11 B12 B16 D11 D12 D16 0 0
B21 B22 B26 D21 D22 D26 0 0
B61 B62 B66 D61 D62 D66 0 0
0 0 0 0 0 0 A55 A54

0 0 0 0 0 0 A45 A44




(6)
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Table 3
Frequency parameters(ωa2

√
ρ/E2h2) of a cross-ply spherical shell panel (Fig. 2) simply

supported at the four sides(a/b = 1, E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2,
ν12 = 0.25)

Rx/a References Mode numbers
1 2 3 4 5 6

Two layer (0/90)

3 MLS-2 (8× 8) 9.8531 21.425 21.425 21.736 22.005 29.702
MLS-2 (10× 10) 9.8546 21.427 21.427 21.752 22.021 29.742
MLS-2 (12× 12) 9.8551 21.428 21.428 21.760 22.030 29.750
ISSE9 (20× 20) 9.8288 21.596 21.868 22.141 22.155 29.453
Reddy [19] 9.9608

5 MLS-2 (8× 8) 9.2555 21.425 21.425 21.453 21.619 29.541
MLS-2 (10× 10) 9.2567 21.427 21.427 21.468 21.635 29.581
MLS-2 (12× 12) 9.2572 21.428 21.428 21.473 21.641 29.592
ISSE9 (20× 20) 9.2502 21.314 21.484 22.141 22.155 29.296
Reddy [19] 9.2309

10 MLS-2 (8× 8) 8.9865 21.350 21.425 21.425 21.434 29.454
MLS-2 (10× 10) 8.9876 21.365 21.427 21.427 21.449 29.494
MLS-2 (12× 12) 8.9881 21.371 21.427 21.427 21.455 29.504
ISSE9 (20× 20) 8.9839 21.211 21.230 22.141 22.156 29.230
Reddy [19] 8.9841

Four layer (0/90/90/0)

3 MLS-2 (8× 8) 12.893 22.210 22.210 22.684 29.695 35.079
MLS-2 (10× 10) 12.897 22.211 22.212 22.702 29.736 35.147
MLS-2 (12× 12) 12.900 22.211 22.212 22.710 29.751 35.168
ISSE9 (20× 20) 12.876 22.174 22.193 22.509 29.242 34.638
Reddy [19] 12.795

5 MLS-2 (8× 8) 12.469 21.427 21.427 22.345 29.478 34.951
MLS-2 (10× 10) 12.472 21.429 21.429 22.363 29.519 35.018
MLS-2 (12× 12) 12.473 21.429 21.429 22.368 29.528 35.032
ISSE9 (20× 20) 12.451 22.174 22.181 22.192 29.039 34.514
Reddy [19] 12.437

10 MLS-2 (8× 8) 12.283 21.427 21.427 22.203 29.391 34.897
MLS-2 (10× 10) 12.285 21.429 21.429 22.220 29.432 34.964
MLS-2 (12× 12) 12.285 21.429 21.429 22.225 29.442 34.987
ISSE9 (20× 20) 12.214 22.040 22.174 22.192 28.952 34.462
Reddy [19] 12.280

The rigidity matrix[D] constitutes of the contributions of its individual layers. Using the material properties and
fiber orientation of the individual layers it can be easily obtained following the steps available in any standard text on
mechanics of fiber reinforced laminated composites. For the evaluation of rigidity parameters for transverse shear
(A44, A45, A54 andA55), a shear correction factor of 5/6 is used.

Now the field variables as expressed in Eq. (1) may be substituted in Eq. (5) to express the strain vector{ε} as

{ε} = [C]{δ}. (7)

With the help of Eq. (2) the strain vector{ε} in Eq. (7) may be expressed in terms of nodal displacement vector
{X} as

{ε} = [C][A]−1{X} = [B]{X}. (8)

Once the matrices[B] and[D] are obtained, the element stiffness matrix[K e] can be easily derived using the help
of Virtual work technique and it may be expressed as

[Ke] =
∫

A

[B]T [D][B]dxdy (9)

In a similar manner the consistent mass matrix of an element can be derived with the help of the Eqs (1) and (2)
and it may be expressed as
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Table 4
Frequency parameters(ωa2

√
ρ/E2h2) of a cross-ply (0/90/0) cylindrical shell panel (Fig. 3)

simply supported at the four sides(a/b = 1, E1/E2 = 25, G12 = G13 = 0.5E2, G23 =
0.5E2, ν12 = 0.25)

R/a References Mode numbers
1 2 3 4 5 6

h/a = 0.01

4 MLS-2 (8× 8) 22.708 40.221 56.717 61.727 62.501 75.124
MLS-2 (10× 10) 22.708 40.221 56.719 61.728 62.502 75.120
MLS-2 (12× 12) 22.708 40.221 56.720 61.728 62.502 75.119
ISSE9 (20× 20) 22.705 40.218 56.691 61.712 62.477 75.080
Reddy [19] 22.709

5 MLS-2 (8× 8) 20.333 35.002 55.005 56.666 61.822 73.741
MLS-2 (10× 10) 20.333 35.002 55.005 56.668 61.823 73.736
MLS-2 (12× 12) 20.333 35.002 55.005 56.668 61.823 73.735
ISSE9 (20× 20) 20.325 34.985 54.952 56.506 61.661 73.542
Reddy [19] 20.332

10 MLS-2 (8× 8) 16.625 26.400 44.329 56.284 60.576 70.310
MLS-2 (10× 10) 16.625 26.400 44.330 56.287 60.578 70.310
MLS-2 (12× 12) 16.625 26.400 44.330 56.288 60.579 70.310
ISSE9 (20× 20) 16.620 26.398 44.320 56.257 60.553 70.279
Reddy [19] 16.625

h/a = 0.1

4 MLS-2 (8× 8) 12.232 18.934 21.427 21.427 30.844 31.079
MLS-2 (10× 10) 12.235 18.945 21.429 21.429 30.891 31.125
MLS-2 (12× 12) 12.236 18.949 21.430 21.430 30.912 31.132
ISSE9 (20× 20) 12.166 18.845 22.178 22.183 30.245 30.879
Reddy [19] 12.233

5 MLS-2 (8× 8) 12.204 18.851 21.427 21.427 30.849 30.980
MLS-2 (10× 10) 12.207 18.861 21.429 21.429 30.894 31.026
MLS-2 (12× 12) 12.208 18.854 21.430 21.430 30.917 31.035
ISSE9 (20× 20) 12.137 18.761 22.178 22.183 30.250 30.781
Reddy [19] 12.207

10 MLS-2 (8× 8) 12.167 18.738 21.427 21.427 30.848 30.857
MLS-2 (10× 10) 12.170 18.748 21.429 21.429 30.894 30.904
MLS-2 (12× 12) 12.171 18.751 21.430 21.430 30.918 30.918
ISSE9 (20× 20) 12.099 18.649 22.178 22.183 30.256 30.649
Reddy [19] 12.173

[Me] = [A]−T ρh

∫
A

(
[Qu]T [Qu] + [Qv]T [Qv] + [Qw]T [Qw]
+h2

12 [Qθx]T [Qθx] + h2

12 [Qθy]T [Qθy]

)
dxdy[A]−1, (10)

where[Qu] = [[Q3][N1][N2][N1][N1]], [Qv] = [[N1][Q3][N2][N1][N1], [Qw] = [[N1][N1[Q4][N1][N1]],
[Qνx] = [[N1][N1][N2][Q3][N1]]

and [Qνy] = [[N1][N1][N2][N1][Q3]].
In the above equation[N1] and[N2] are null matrices of order1×10 and1×15 respectively. The first three terms

of the mass matrix in Eq. (10) are associated with the movement of mass alongu, ν andw respectively, which are
found to contribute the major inertia. The last two terms are associated with rotary inertia and their contribution is
expected to be significant in thick shell only. The integration found in Eqs (9) and (10) is carried out numerically [30]
to evaluate the element stiffness and mass matrices.

Though the consistent mass matrix presented in Eq. (10) includes all the contributions including rotary inertia
but the difficulty of its use in this form is discussed earlier. It has also been mentioned that the difficulty can be
overcome by using a lumped mass matrix based on the mass lumping scheme presented below. In this context two
similar mass lumping schemes are proposed where the effect of rotary inertia is taken into account in one case.

In the first lumping scheme (MLS-1), the mass of an elementm e is distributed atw of its external nodes where
the ratio of distribution is dependent on the corresponding diagonal elements of the consistent mass matrix[M e]
presented in Eq. (10). This is similarly done foru, v and it is as follows
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Table 5
Frequency parameters(ωa2

√
ρ/E2h2) of an angle-ply (30/-30/...) cylindrical shell panel

(Fig. 3) simply supported at the four sides(a/b = 1, E1/E2 = 40, G12 = G13 = G23 =
0.5E2, ν12 = 0.25)

φ References Mode numbers
1 2 3 4 5 6

30/-30

20◦ MLS-2 (8× 8) 19.951 29.841 39.186 46.478 53.989 68.040
MLS-2 (10× 10) 19.953 29.848 39.203 46.485 54.031 68.124
MLS-2 (12× 12) 19.953 29.849 39.210 46.487 54.041 68.145
ISSE9 (20× 20) 19.966 29.864 39.239 46.553 54.116 68.366
Soldatos [22] 18.80

30◦ MLS-2 (8× 8) 23.315 30.649 40.622 46.898 54.993 68.217
MLS-2 (10× 10) 23.318 30.657 40.640 46.926 55.037 68.300
MLS-2 (12× 12) 23.318 30.660 40.648 46.935 55.045 68.321
ISSE9 (20× 20) 23.325 30.673 40.677 46.994 55.124 68.544
Soldatos [22] 23.52

45◦ MLS-2 (8× 8) 29.082 32.460 43.392 47.965 57.078 68.602
MLS-2 (10× 10) 29.089 32.468 43.415 47.994 57.075 68.692
MLS-2 (12× 12) 29.090 32.471 43.422 48.003 57.075 68.710
ISSE9 (20× 20) 29.110 32.489 43.463 48.066 57.175 68.941
Soldatos [22] 31.36

30/-30/30/-30

20◦ MLS-2 (8× 8) 24.156 38.792 51.624 59.023 70.005 84.455
MLS-2 (10× 10) 24.159 38.807 51.662 59.078 70.100 84.616
MLS-2 (12× 12) 24.160 38.812 51.675 59.096 70.138 84.721
ISSE9 (20× 20) 24.173 38.840 51.736 59.200 70.276 85.012
Soldatos [22] 24.16

30◦ MLS-2 (8× 8) 27.270 40.037 52.516 59.455 69.855 84.580
MLS-2 (10× 10) 27.275 40.039 52.556 59.512 69.953 84.742
MLS-2 (12× 12) 27.277 40.039 52.568 59.536 70.021 84.901
ISSE9 (20× 20) 27.285 40.087 52.633 59.635 70.134 85.137
Soldatos [22] 27.99

45◦ MLS-2 (8× 8) 32.921 42.562 54.379 60.395 72.640 84.855
MLS-2 (10× 10) 32.929 42.583 54.424 60.454 72.747 85.017
MLS-2 (12× 12) 32.933 42.588 54.443 60.471 72.789 85.102
ISSE9 (20× 20) 32.954 42.626 54.510 60.582 72.944 85.415
Soldatos [22] 34.84

mwl
i,i =

mi,i∑
mi,i

me (i = 3, 8, 11, 14, 19, 24, 27, 30, 35, 40, 43, 46) (11a)

mul
i,i =

mi,i∑
mi,i

me (i = 1, 6, 12, 17, 22, 28, 33, 38, 44) (11b)

and mvl
i,i =

mi,i∑
mi,i

me (i = 2, 7, 13, 18, 23, 29, 34, 39, 45) (11c)

wheremul
i,i, m

vl
i,i andmwl

i,i are the ith diagonal elements corresponding tou, v andw of the proposed lumped mass
matrix [Ml] andmi,i is the ith diagonal element of the consistent mass matrix[Me].

In the second lumping scheme (MLS-2), the effect of rotary inertia is considered in addition to those(m ul
i,i, m

vl
i,i,

andmwl
i,i ) taken in the previous case (MLS-1). These additional mass contributions are taken in the following

manner

mθxl
i,i =

h2

12
mi,i∑
mi,i

me (i = 4, 9, 15, 20, 25, 31, 36, 41, 47) (11d)

and mθyl
i,i =

h2

12
mi,i∑
mi,i

me (i = 5, 10, 16, 21, 26, 32, 37, 42, 48) (11e)
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Table 6
Frequency parameters(ωa2

√
ρ/E2h2) of an angle-ply (45/-45/45) spherical shell panel (Fig. 2) having

different boundary conditions at the four sides(Rx/a = 3.0, a/b = 1, E1/E2 = 25, G12 = G13 = 0.5E2,
G23 = 0.2E2, ν12 = 0.25)

Boundary conditions References Mode numbers
1 2 3 4 5 6

h/a = 0.1

C-F-F-Fa MLS-2 (8× 8) 1.8189 5.2302 8.6923 11.380 13.668 16.516
MLS-2 (10× 10) 1.8185 5.2347 8.7086 11.385 13.665 16.554
MLS-2 (12× 12) 1.8184 5.2355 8.7101 11.386 13.665 16.567
ISSE9 (20× 20) 1.8154 5.2411 8.7361 11.374 13.633 16.621

S-S-F-F MLS-2 (8× 8) 5.0182 8.3933 17.034 19.007 24.426 27.821
MLS-2 (10× 10) 5.0202 8.4017 17.065 19.034 24.484 27.892
MLS-2 (12× 12) 5.0213 8.4056 17.076 19.042 24.501 27.913
ISSE9 (20× 20) 5.1040 8.4172 17.118 19.085 24.591 28.024

S-S-S-S MLS-2 (8× 8) 17.622 23.368 28.839 31.408 34.399 40.297
MLS-2 (10× 10) 17.628 23.381 28.875 31.411 34.462 40.401
MLS-2 (12× 12) 17.630 23.393 28.891 31.412 34.482 40.467
ISSE9 (20× 20) 17.639 23.419 30.980 32.412 34.585 39.604

C-C-C-C MLS-2 (8× 8) 21.827 28.321 31.494 37.619 41.951 45.920
MLS-2 (10× 10) 21.844 28.358 31.545 37.705 42.070 46.078
MLS-2 (12× 12) 21.859 28.373 31.567 37.761 42.105 46.101
ISSE9 (20× 20) 21.874 28.425 31.638 37.865 42.299 46.377

h/a = 0.2

C-F-F-F MLS-2 (8× 8) 1.5516 4.1169 6.1968 6.5954 9.4154 11.239
MLS-2 (10× 10) 1.5513 4.1195 6.1915 6.6033 9.4257 11.256
MLS-2 (12× 12) 1.5513 4.1211 6.1903 6.6061 9.4201 11.269
ISSE9 (20× 20) 1.5492 4.1235 6.1658 6.6144 9.4413 11.279

S-S-F-F MLS-2 (8× 8) 4.0419 6.8216 12.594 13.011 14.667 15.667
MLS-2 (10× 10) 4.0437 6.8283 12.619 13.030 14.670 15.704
MLS-2 (12× 12) 4.0445 6.8299 12.627 13.041 14.671 15.616
ISSE9 (20× 20) 4.0468 6.802 12.662 13.065 15.708 15.772

S-S-S-S MLS-2 (8× 8) 11.002 15.359 15.704 17.255 21.379 23.775
MLS-2 (10× 10) 11.009 15.382 15.705 17.288 21.442 23.859
MLS-2 (12× 12) 11.012 15.392 15.705 17.302 21.563 23.905
ISSE9 (20× 20) 11.023 15.423 15.708 17.345 21.556 24.020

C-C-C-C MLS-2 (8× 8) 12.549 16.743 18.014 22.036 24.014 25.314
MLS-2 (10× 10) 12.562 16.772 18.051 22.104 24.098 25.423
MLS-2 (12× 12) 12.595 16.785 18.063 22.117 24.127 25.487
ISSE9 (20× 20) 12.584 16.826 18.119 22.230 24.263 25.620

aClamped atx = 0, free atx = a, free aty = 0 and free aty = b.

where the use of(h2/12) can be justified with the expression of the consistent mass matrix as presented in Eq. (10).
With this lumped mass matrix[Ml] based on MLS-1 or MLS-2, the degrees of freedom of the internal nodes can

be condensed out to get the final form of stiffness and mass matrices of an order forty-eight. These matrices are
computed for all the elements and assembled together to form the stiffness and mass matrices of the whole structure
and these are stored in a single array following the skyline storage technique. The overall system of equations is
solved by the simultaneous iterative technique of Corr and Jennings [9] after substitution of boundary conditions,
which gives first few frequencies for the lower modes as required.

3. Results and discussions

Numerical examples of isotropic and composite shells are solved by the proposed element to make the validation
and study its performance. Problems of isotropic shells are taken, as the element has not been applied to such
problems so far. The results obtained in the form of natural frequency for first few modes are presented in non-
dimensional form and compared with the published results in many cases. In the absence of suitable published
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results, the structure is analysed with an existing shear deformable element to compare the results obtained by the
proposed element. In this context a separate computer program (ISSE9) based on nine noded isoparametric element
is written where the assumptions are identical to those used in the proposed element.

3.1. Isotropic doubly curved shell

A cantilevered doubly curved shell panel as shown in Fig. 2 (clamped aty = 0) is analysed for three different values
of Ry/Rx (-2.0, -1.0 and 2.0) takingh/a = 0.01 and 0.1. The analysis is carried out by the proposed element with
three different mesh divisions taking MLS-2 as the mass lumping scheme. The first six natural frequencies obtained
by the proposed element are presented in Table 1 with the analytical solution of Leissa et al. [17]. As the effect
of shear deformation and rotary inertia is not considered by Leissa et al. [17], the structure is also analysed by the
isoparametric element (ISSE9) and the results obtained are included in Table 1. The results indicate the performance
of the proposed element in doubly curved shell panel having complex geometry. In one case (h/a = 0.01 and
Ry/Rx = −2) the analysis with the isoparametric element is carried out with four different mesh sizes (see Table 1).
It shows that the isoparametric element requires higher mesh size compared to the proposed element to attain the
convergence or to get the desirable accuracy. This infers that the proposed element possesses improved performance
compared to isoparametric element. This feature has been highlighted in details by Sengupta [20] with his plate
element based on similar concept. For the isoparametric element, a mesh size of 20x20 appears to be sufficient and
it is used in the other cases. This is also followed in the subsequent examples where it is used.

3.2. Isotropic cylindrical shell

A cylindrical shell panel as shown in Fig. 3, is analysed by the proposed element with five different mesh divisions
taking simply supported boundary condition at the four sides. Using both the mass lumping schemes (MLS-1 and
MLS-2) the analysis is carried out for thickness ratio (h/a) of 0.1 and 0.2. The first six natural frequencies obtained
in the present analysis are presented in Table 2 with those of Lim and Liew [18] who have solved the problem
analytically using higher order shear deformation theory (HSDT). They [18] have also presented some results based
on Mindlin’s hypothesis i.e., first order shear deformation theory (FSDT). Table 2 shows the performance of the
proposed element in terms of convergance rate and solution accuracy. It also indicates that lumping scheme MLS-2
has performed better particularly in the case of higher thickness ratio and it is expected as discussed earlier. This
has been throughly studied by Haldar [12] taking different types of plate and shell problems. Based on these
observations, MLS-2 may be recommended for the analysis of shell of any thickness while MLS-1 may be used
when thickness ratio is reasonable small.

3.3. Cross-ply spherical shell

A cross-ply spherical shell panel on square base simply supported at the four sides is analysed with the proposed
element (mesh size:8 × 8, 10 × 10 and 12) taking MLS-2 as mass lumping scheme. The study is made for
unsymmetrical (0/90) and symmetrical (0/90/90/0) ply arrangements taking curvature ratioR x/a = Ry/b = 3, 5
and 10 (Fig. 2). In all the cases the thickness ratio (h/a) is taken as 0.1. The first six natural frequencies obtained by
the proposed element are presented in Table 3 with the fundamental frequency of Reddy [19] obtained analytically.
To compare the results for higher modes the problem is also solved by the isoparametric element and the frequencies
obtained are included in Table 3. The table shows that the results obtained from different sources agreed well.

3.4. Cross-ply cylindrical shell

A cross-ply (0/90/0) cylindrical shell panel simply supported at the four sides is analysed forR x/a = 4, 5 and
10 (Fig. 3) takingh/a = 0.01 and 0.1. Similar to the previous example the analyis is carried out with the proposed
element (mesh size: of8×8, 10×10 and12×12) using mass lumping scheme MLS-2 and the isoparametric element
(mesh size:20 × 20). This analysis scheme is followed in the solution of the problems in the subsequest examples.
The first six natural frequencies obtained by both the elements are presented with the fundamental frequency of
Reddy [19] in Table 4, which shows that the results agreed well. The material properties and other data are given in
Table 4, which is done in the other tables also.
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Fig. 3. Geometry and axis system of a cylindrical shell panel.

3.5. Angle-ply cylindrical shell

An angle-ply (30/-30/...) cylindrical shell panel simply supported at the four sides is analysed for the subtended
angleφ = 20◦, 30◦ and 45◦ (Fig. 3) takingh/a = 0.05. The analysis is done for two layer (30/-30) and four layer
(30/-30/30/-30) ply arrangements using the proposed element and the isoparametric element. The first six natural
frequencies obtained by these elements are presented with the fundamental frequency of Soldatos [22] in Table 5. It
shows that the results obtained by the proposed element are close to those obtained from other means.

3.6. Angle-ply spherical shell

An angle-ply (45/-45/45) spherical shell panel having a square base is analysed by the proposed element and the
isoparametric element takingRx/a = Ry/b = 3 (Fig. 2) andh/a = 0.1 and 0.2. The study is made for different
combination of boundary conditions at the four sides, which include simply supported, clamped and free edges. The
first six natural frequencies obtained in the present analysis are presented in Table 6, which shows that the agreement
between the results obtained by the two elements is good.

4. Conclusions

A high precision triangular shallow shell element is proposed. The effect of shear deformation is incorporated
in the formulation and it is done in such a manner, which has made the element free from locking in shear. This is
based on the concept used in a shear deformable plate element developed by one of the authors of this paper. An
effective use of the element in vibration analysis is due the mass lumping scheme proposed in this study. This may
be considered as one of the contributions of this paper, as it can be used in any dynamic analysis with an element
having internal nodes. The element is applied to the analysis of isotropic and composite shells having different
geometry, thickness ratio, stacking sequence, boundary condition and some similar features. The results obtained by
the proposed element are compared with the results obtained from other sources, which shows the performance of
the element in terms of accuracy and range of applicability. A number of new results particularly for the composite
shells are generated. It is expected that these new results will be useful in future research.



596 A.H. Sheikh et al. / A high precision shear flexible triangular element for vibration of composite shells

References

[1] A. Barut, E. Madenci and A. Tessler, Nonlinear analysis of laminates through a Mindlin type shallow shell element,Computer Methods in
Applied Mechanics and Engineering143 (1997), 155–173.

[2] K.J. Bathe,Finite element procedure, Prentice-Hall, Englewood Cliffs, New Jersey, 1995.
[3] K.J. Bathe, A. Iosilevich and D. Chapelle, An evaluation of the MITC shell elements,Computers and Structures75 (2000), 1–30.
[4] B. Brank and E. Carrera, A family of shear-deformable shell finite elements for composite structures,Computers and Structures76 (2000),

287–297.
[5] B. Brank and E. Carrera, Multilayered shell finite element with interlaminar continuous shear stresses: a refinement of the Reissner-Mindlin

formulation,International Journal for Numerical Methods in Engineering38 (2000), 843–874.
[6] E. Carrera, A study of transverse normal stress effects on vibration of multilayered plates and shells,Journal of Sound and Vibration225

(1999), 803–829.
[7] E. Carrera, Historical review of zig-zag theory for multilayered plates and shells,Applied Mechanics Review56 (2003), 287–308.
[8] E. Carrera, Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and

benchmarking,Arch Comp Meth Eng10 (2003), 215–296.
[9] R.B. Corr and A. Jennings, A simultaneous iteration algorithm for symmetric eigenvalue problems,International Journal for Numerical

Methods in Engineering10 (1976), 647–663.
[10] E.N. Dvorkin and K.J. Bathe, A continuum mechanics based four node shell element for general nonlinear analysis,Engineering

Computations1 (1984), 77–88.
[11] R.J. Guyan, Reduction of stiffness and mass matrices,AIAA Journal3 (1965), 380–387.
[12] S. Haldar,A high precision triangular element with shear deformation for static and dynamic analysis of composite plates, shells and

folded plates, PhD Thesis, Department of Applied Mechanics, Bengal Engineering College, Deemed University, India, 2001.
[13] H.C. Huang and E. Hinton, A nine node Lagrangian Mindlin plate element with enhanced shear interpolation,Engineering Computations

1 (1984), 369–379.
[14] T.J.R. Hughes, M. Cohen and M. Haroun, Reduced and selective integration techniques in the finite element analysis of plates,Nuclear

Engineering and Design46 (1978), 203–222.
[15] H. Kardestuncer and D.H. Norrie,Finite element handbook, McGraw-Hill, New York, 1987.
[16] S. Klinkel, F. Gruttmann and W. Wagner, A continuum based 3D shell element for laminated structures,Computers and Structures71

(1999), 43–62.
[17] A.W. Leissa, J.K. Lee and A.J. Wang, Vibration of cantilevered doubly-curved Shallow shells,International Journal of Solids Structures

19 (1983), 411–424.
[18] C.W. Lim and K.M. Liew, A higher order theory for vibration of shear deformable cylindrical shallow shells,International Journal of

Mechanical Sciences37 (1995), 277–295.
[19] J.N. Reddy, Exact solutions of moderately thick laminated shells,Journal of Engineering Mechanics Division, ASCE110 (1984), 794–809.
[20] D. Sengupta, Stress analysis of flat plates with shear using explicit stiffness matrix,International Journal for Numerical Methods in

Engineering32 (1991), 1389–1409.
[21] A.H. Sheikh, S. Haldar and D. Sengupta, A high precision shell element with shear deformation for the analysis of isotropic and composite

shells,International Journal of Computational Engineering Science3 (2002), 277–290.
[22] K.P. Soldatos, Influence of thickness shear deformation on free vibrations of rectangular plates, cylindrical panels and cylinders of

antisymmetric angle ply construction,Journal of sound and vibration119 (1987), 111–137.
[23] R.M. Sorem and K.S. Surana, p-version curved shell element for geometrically nonlinear analysis of laminated composite plates and shells,

ASME Energy Engineering I,Composite Materials Design and Analysis3 (1997), 85–93.
[24] K.S. Surana, R.M. Sorem and R. Bhatacharya, A survey of theories and finite element formulations for laminated composites,ASME

Composite Materials Design and Analysis1 (1996), 179–195.
[25] K.Y. Sze, L.Q. Yao and T.H.H. Pian, An eighteen-node hybrid-stress solid-shell element for homogeneous and laminated structures,Finite

Elements in Analysis and Design38 (2002), 353–374.
[26] C.W.S. To and B. Wang, Hybrid strain-based three-node flat triangular laminated composite shell elements for vibration analysis,Journal

of Sound and Vibration211 (1998), 277–291.
[27] M.H. Verwood and A.W.M. Kok, A shear locking free six-node Mindlin plate bending element,Computers and Structures36 (1990),

547–555.
[28] H.T.Y. Yang, S. Saigal, A. Masud and R.K. Kapania, A survey of recent shell finite elements,International Journal for Numerical Methods

in Engineering47 (2000), 101–127.
[29] O.C. Zienkiewics and R.L. Taylor,Finite element method: Vol. 2, Solid mechanics, McGraw-Hill, New York, 2000.
[30] O.C. Zienkiewicz, R.L. Taylor and J.M. Too, Reduce integration technique in general analysis of plates and shells,International Journal

for Numerical Methods in Engineering3 (1971), 275–290.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


