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Abstract. This paper presents a method to solve non-stationary random responses of nonlinear multi-degrees-of-freedom (MDOF)
Duffing systems subjected to evolutionary random excitations. Specific phase-lags between the excitations can also be taken into
account. The power spectral density (PSD) of the input excitations is not confined to simple white noise or filtered white noise, in
fact it can also take more complicated forms. The MDOF nonlinear random differential equations are iteratively solved by means
of the Equivalent Linearization Method (ELM) combined with the Pseudo Excitation Method (PEM). This combined method is
easy and efficient. Two examples are given in which this method is well justified by the Monte-Carlo numerical simulations.
Although only a Duffing model is dealt with in this paper for computational simplicity, the proposed method is in fact quite
general, e.g. it can also deal with nonlinear hysteretic structures that will be dealt with in a separate paper.

1. Introduction

The response of many real structural systems subjected to external random excitations can be described by
nonlinear random differential equations. In general, approximation methods have to be used to solve such nonlinear
equations. Only in very few cases can an exact solution for stationary response be found in closed form. Although
the non-stationary random response analysis of MDOF nonlinear systems is much more difficult than such problems,
some pioneering work has laid a good foundation in this field [1–11].

One of the most popular methods used in the study and engineering applications of nonlinear random vibration
problems isequivalent linearization, particularly if the random excitations are stationary. For nonlinear systems
subjected to non-stationary random excitations, however, the equivalent linear systems are time-dependant, its
solution is still not so easy. In particular, if the excitations are not uniform, i.e. phase lags exist between the
excitations, the solution will become more difficult.

It is well known that for an arbitrary nonlinear system subjected to stationary random excitations, an equivalent
time-independent linear system can be found readily based on the least-quadratic criterion. If the nonlinear system
is instead subjected to non-stationary random excitations, then at any time t, an equivalent linear system can be
found similarly based on the least quadratic criterion. And based on this idea, a nonlinear SDOF (Single Degree of
Freedom) system subjected to a non-stationary random excitation is solved iteratively [11], wherein the analytical
solution of the time-dependent mean-square response for the linear time-independent system must be available.
Therefore its application field is limited.
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In this paper, thepseudo excitation method (PEM) [12–16] is extended to solve the non-stationary random
responses of MDOF Duffing systems subjected to evolutionary random excitations. It is not necessary to know
the analytical expressions of the time-dependent mean-square responses for the linear MDOF time-independent
system, therefore the proposed method is not confined to structures subjected to white-noise or filtered white-noise
excitations. In addition, phase-lags (or time-lags) are permitted between the excitations.

Two examples are given in which the Monte-Carlo simulation is used to justify the proposed method.

2. Linear systems subjected to evolutionary multi-phase random excitations

Consider a linear structure subjected to anevolutionary random excitation

[M ]{ÿ} + [C]{ẏ} + [K]{y} = {P}f(t) (1)

in which

f(t) = g(t)x(t) (2)

g(t) is a given slowly varying modulation function, whilex(t) is a zero-mean-valued stationary random process of
which the auto-PSDSxx(ω) is also known. The PSD curve off(t) has constant shape, however its amplitude varies
with g(t). In other words, a stationary random processx(t) is modulated by a deterministic functiong(t). In order
to compute the PSD matrices of two arbitrary response vectors{y(t)} and{z(t)}, the following pseudo excitation
should be used [13,15]

f̃(t) = g(t)
√

Sxx(ω)eiωt (3)

Under the action of this deterministic loading, the equations of motion Eq. (1) of the linear structure are

[M ]{ÿ} + [C]{ẏ} + [K]{y} = {p}g(t)
√

Sxx(ω)eiωt (4)

in which [M ], [C] and [K] are time independent mass, damping and stiffness matrices,{p} is a given constant
vector. For seismic problems, the structure is initially at rest, namely,{y0} = {ẏ0} = {0} whent = 0. Thus the
time-histories of two arbitrary responses of interest, denoted asy(ω, t) andz(ω, t), can be computed in terms of the
Newmark, Wilson-θ schemes or theprecise integration method [15] with ω regarded as a parameter. It has been
verified that [13] the auto- and cross-PSD functions of these responses can be accurately computed by using the
following equations

Syy(ω) = y(ω, t)∗y(ω, t) = |y(ω, t)|2 (5)

Syz = y(ω, t)∗z(ω, t) (6)

If the interested responses are two vectors, denoted as{y(t)} and{z(t)}, the corresponding time history{y(ω, t)}
and{z(ω, t)} should be solved from Eq. (3) before the following equations are used to give their accurate auto- and
cross-PSD matrices [13]

[Syy(ω)] = {y(ω, t)}∗{y(ω, t)}T (7)

[Syz(ω)] = {y(ω, t)}∗{z(ω, t)}T (8)

It has also been verified that if the precise integration method [15,17] is used in solving Eq. (4), the efficiency
would be much higher than using Newmark method.

If the random excitationf(t) in Eq. (2) is a vector, specific time-lags exist between all its components, then
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{f(t)} =




F1(t)
F2(t)

...
Fn(t)




=




a1g(t − t1)F (t − t1)
a2g(t − t2)F (t − t2)

...
ang(t − tn)F (t − tn)




(9)

= [G(t)]{F (t)} =




a1g(t − t1)
a2g(t − t2)

. . .
ang(t − tn)







F (t − t1)
F (t − t2)

...
F (t − tn)




in which aj(j = 1, 2, . . . , n) are given non-negative real numbers,t1, t2, . . . , tn represent the time lags between
the forces applying on different points of the structure.a k = 0 means no load applies on the k-th DOF.F (t)
is a stationary random process, its auto-PSDSFF (ω) is known. Using Wiener-Khintchine formula and denoting
τ = τl − τk gives

E[{F (τk)}{F (τl)}T ] = E




F (τk − t1)F (τl − t1) F (τk − t1)F (τl − t2) . . . F (τk − t1)F (τl − tn)
F (τk − t2)F (τl − t1) F (τk − t2)F (τl − t2) . . . F (τk − t2)F (τl − tn)

...
...

. . .
...

F (τk − tn)F (τl − t1) F (τk − tn)F (τl − t2) . . . F (τk − tn)F (τl − tn)




=
∫ ∞

−∞




1 eiω(t1−t2) . . . eiω(t1−tn)

eiω(t2−t1) 1 . . . eiω(t2−tn)

...
...

. . .
...

eiω(tn−t1) eiω(tn−t2) . . . 1


 eiωτSFF (ω)dω (10)

=
∫ ∞

−∞
[V ]∗[R0][V ]T eiωτSFF (ω)dω

in which

[V ] = diag[e−iωt1 , e−iωt2 , . . . , e−iωtn ] (11)

[R0] = {q0}{q0}T =




1 1 . . . 1
1 1 . . . 1
...

...
. . . · · ·

1 1 . . . 1


 (12)

herein[R0] and{q0} are matrix and vector with all elements be unity.
Assume that{y(t)} is an arbitrary response vector due to the excitation{f(t)}, then

{y(t)} =
∫ t

0

[h(t − τ)]{f(τ)}dτ =
∫ t

0

[h(t − τ)][G(τ)]{F (τ)}dτ (13)

If {yk(tk)} and{yltl)} are two kinds of response vectors, then their cross-correlation matrix would be

[Rykyl
(tk, tl] = E[{yk(tk)}{yl(tl)}T ] =

∫ t

0

∫ t

0

[hk(tk − τk)][G(τk)]E[{F (τk)}{F (τl)}T ]
(14)

[G(τl)]T [hl(tl − τl)]T dτkdτl

Substituting Eqs (10), (11) and (12) into Eq. (14) gives

[Rykyl
(tk, tl)] =

∫ ∞

−∞
{Ik}∗{Il}T SFF (ω)dω (15)

in which
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Ik(ω, tk) =
∫ lk

0

[hk(tk − τk)][G(τk)][V ]{q0}eiωτkdτk (16)

It is known from Eq. (15) that whentk = tl = t, the cross-PSD matrix of{yk} and{yl} is

[Sykyl
(ω, t)] = {Ik(ω, t)}∗{Il(ω, t)}T SFF (ω) (17)

It is also known from Eq. (16), thatIk(ω, t) is the transient response due to the deterministic excitation
[G(t)][V ]{q0}eiωt. Therefore by using the following pseudo excitation

{f̃(t)} = [G(t)][V ]{q0}
√

SFF (ω)eiωt =




g(t − t1)a1e
−iωt1

g(t − t2)a2e
−iωt2

...
g(t − tn)ane−iωtn




eiωt
√

SFF (ω) (18)

the resulted response must be

{yk(ω, tk)} = {Ik(ω, t)}
√

SFF (ω) (19)

Therefore, according to Eq. (17), one obtains

[Sykyl
(ω, t)] = {yk(ω, t)}∗{yl(ω, t)}T (20)

Let k = l, Eq. (20), gives the auto-PSD matrix of{yk}.

[Sykyk
(ω, t)] = {yk(ω, t)}∗{yk(ω, t)}T (21)

By neglecting the subscriptk, Eq. (7) is obtained. For two responses{y(t)} and{z(t)}, just follow the above
process, Eq. (8) can also be derived.

3. Duffing systems subjected to evolutionary multi-phase random excitations

The nonlinear equations of motion can be written as

[M ]{Ÿ } + [C]{Ẏ } + [K]{Y } + {g} = {f(t)} (22)

in which{g} represents the nonlinear property of the structure. For the MDOF Duffing system as shown in Fig. 1,
{g} has the following form

{g} =




µ1k1x
3
1 − µ2k2x

3
2

µ2k2x
3
2 − µ3k3x

3
3

...
µn−1kn−1x

3
n−1 − µnknx3

n

µnknx3
n




(23)

{x} =




x1

x2

...
xn




=




y1

y2 − y1

...
yn − yn−1




, {µ} = {µ1, µ2, . . . , µn}T (24)

{x} is the story drift vector,{µ} is the vector which characterizes the intensity of system non-linearity,{f(t)} is a
zero-mean-valued evolutionary random process.

According to the least quadratic criterion [7–9], the nonlinear{g} term can be linearized as

{g} = [Kµ(t)]{Y } (25)

where[Kµ(t)] is a time-variant tri-diagonal symmetric matrix which relies on the time-variant structural responses:
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Fig. 1. Shear type MDOF Duffing system.

[Kµ(t)] = 3




µ1k1E[x2
1(t)] + µ2k2E[x2

2(t)] − µ2k2E[x2
2(t)] 0

µ2k2E[x2
2(t)] + µ3k3E[x2

3(t)] − µ3k3E[x2
3(t)]

. . .
. . .

Sym µn−1kn−1E[x2
n−1(t)] + µnknE[x2

n(t)] − µnknE[x2
n(t)]

µnknE[x2
n(t)]




(26)

At any timet,

E[x2
i (t)] =

∫ ∞

−∞
Sxi(ω, t)dω (i = 1, 2, . . . , n) (27)

It can be computed conveniently according to PEM:

E[x2
1(t)] = 2

∫ ∞

0

|x1(ω, t)|2dω = 2
∫ ∞

0

|y1(ω, t)|2dω

(28)

E[x2
i (t)] = 2

∫ ∞

0

|xi(ω, t)|2dω = 2
∫ ∞

0

|yi(ω, t) − yi−1(ω, t)|2dω i = 2, 3, . . . , n

Equations (22), (25), (26) and (28) constitute a closed iteration ring from which the non-stationary solution at time
t of the equivalent linear system can be computed. When the displacement variance at timet j , {E[y2(tj ]}, has been
obtained, this response at the next timetj+1, {E[y2(tj+1)]}, can be computed by means of the following steps:

(1) Taket = tj+1 in Eq. (18);
(2) Let {g} = 0 in Eq. (22), compute{y(ω, tj+1)} over a series of significant frequencies using a time-history

method such as Newmark method;
(3) Compute the mean-square value of{x(tj+1)} by using Eq. (28);
(4) Compute[Kµ(tj+1)] according to Eq. (26), which will be assembled into the stiffness matrix[K] of Eq. (22)
(5) Solve Eq. (22) for{y(ω, tj+1)}over a series of significant frequencies, repeat steps (3)∼ (5) until{y(ω, t j+1)}

converges;
(6) Compute the PSD vector{Syy(ω, tj+1)} and mean square value vector{E[y2(tj+1)]} from {y(ω, tj+1)} at

time tj+1.

Clearly, in the above steps, the analytical expressions of the time-dependent mean-square response for the
equivalent linear MDOF time-independent system need not be known, therefore this method applies not only to
structures subjected to simple white-noise or filtered white-noise excitations, but also to structures subjected to more
complicated random excitations. It can also be seen from Eq. (9) or Eq. (11) that the proposed method permits
phase-lags (or time-lags) existing between the excitations.
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4. Monte-Carlo simulation

4.1. Sample time history curves

A uniformly modulated evolutionary random process with the form off(t) in Eq. (2) can be simulated by the
following expression [16,18,19]

fns(t) = g(t)
N∑

k=1

Ak cos(ωkt + ϕk) (29)

in which

∆ω = (ωu − ωl)/N, A2
k = 4Sff(ωk) · ∆ω

(30)
ωk = ωl + (k − 1

2
)∆ω, k = 1, 2, . . . , N

ωl andωu are the lower and upper bounds of the frequency region,ϕ k is a random real number uniformly distributed
in the region [0, 2π].

Form fully coherent evolutionary random excitationsf (i)(t)(i = 1, 2, . . . , m), if specific phase-lags exist between
all its components, then these excitations can be simulated by the following expression [16]

f (i)
ns (t) = g(t)

N∑
k=1

Ak cos(ωkt + ωkti + ϕk) (31)

WhenN is sufficiently large,f (i)
ns (t)(i = 1, 2, . . . , m) simulates the fully coherent random processf (i)(t) with

invariant time-phasest [16].

4.2. Numerical simulation for nonlinear systems

Provided the equations of motion of a nonlinear dynamic system is

MŸ + G(Ẏ , Y ) = F (t) (32)

in whichG(Ẏ , Y ) is the nonlinear term.
The simulation process for the nonlinear system is as follows:

(1) Substitute an excitation according to Eq. (29) into the right hand side of Eq. (32), compute the displacement
vectors{Y } at a series of time points by means of a time history method; For the displacement values corre-
sponding to each element in the vector{Y } at a series of discrete time points, the Fast Fourier Transformation
(FFT) scheme is used to obtain the PSD values at a series of frequencies which

(2) will then be used to compute the PSD vector{SY Y (ω)} of the displacement vector at these frequencies.
(3) Integrate the PSD vector{SY Y (ω)} in the effective frequency region to obtain the corresponding response

variances{σ2
Y }.

(4) The above steps (1)∼(3) are repeated for a large amount of excitation samples to generate corresponding
{σ2

Y } samples, and the statistics.

For nonlinear equations, iterations must be executed at each time step. The statistics of the responses at any
arbitrary time will then be computed by means of the assemble average of a great deal of response samples.

It is noted that the time step size must be small enough to ensure the integration precision [18,19].
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Fig. 2. Displacement standard deviation comparison using PEM and Monte-Carlo method.

5. Numerical examples

Example 1. Two DOF Duffing system
Consider a 2 DOF shear-type Duffing system, withm1 = m2 = 1000 kg, k1 = 150 kN/m, k2 = 100 kN/m and

[C] =
[

440 −120
−120 260

]
see Fig. 1, which is subjected to the following evolutionary random excitations

{f(t)} =
{

f1(t)
f2(t)

}
=

{
g(t)x(t)
g(t + T )x(t + T )

}
(33)

in whichT is the time-lag betweenf1(t) andf2(t). The PSD functions off1(t) andf2(t) are equal to each other,
and both will simultaneously take one of the following forms:

1) Sx1(ω) = S0 = 2.5 × 10−3 (KN2s); or (34)

2) Sx2(ω) =
C

π
· 4abω2

(ω2
0 − ω2)2 + 4a2ω2

(35)

=
0.03927

3.14
· 80ω2

(50 − ω2)2 + 40ω2
(kN2s)

The modulation function has the form

g(t) = d(e−p1t − e−p2t) = 4.0(e−0.0995t − e−0.199t) (36)

When the excitation PSD is a white noise expressed by Eq. (34) and forT = 0.0 orT = 1.0, without or with time-
lags between the excitations, the displacement standard deviations computed by PEM are shown in Figs 2(a)–(b).
Such standard deviations are also computed using Monte-Carlo simulation method, with 4000 samples,ω l = 0.0,
ωu = 100.0, N = 2000; and the results are also shown in Figs 2(a)–(b). Clearly, these two methods give quite
close results. WhenT = 0.0, the maximum difference is less than 3.0%, and whenT = 1.0 the errors are mostly
within 5.0%, the maximum is 7.0%. As the PEM is an accurate method for linear systems, the errors come from the
linearization of the nonlinear system.

When using Eq. (34) as the PSD of both excitations, Fig. 3 gives the comparison of the two methods forT = 0.4,
1.0 and 1.6. It is shown that for all cases, the two methods give quite close results; it is also shown that the
non-stationary responses of the nonlinear system rely heavily on the time lagT .
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Fig. 3. Displacement standard deviation comparison for different time lags.
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Fig. 4. Displacement standard deviation for non white spectrum and time lagT = 1.6 s.

The PSD form of Eq. (35) is somewhat similar to a wind-gust spectrum. Under this excitation and withT = 1.6,
the responses due to the two methods still meet quite well, as shown in Fig. 4.

For this example,µ1 = µ2 = 0.05 represents rather strong non-linearity. In fact, for the corresponding linear
system, i.e. forµ1 = µ2 = 0.0, the eigenvalues of the system are(ω2

1 , ω
2
2) = (50.0, 300.0)1/s−2 for µ1 = µ2 = 0.05

and with stationary excitations, the eigenvalues of the equivalent linear system are(ω 2
1 , ω

2
2) = (61.4, 368.7), the

increments are both about 23%.

Example 2. Five DOF Duffing System
Consider a 5 DOF shear type Duffing system as shown in Fig. 1, subjected to seismic evolutionary random

excitations, Its parameters arem1 = m2 = 3000.0 kg, m3 = m4 = 2000.0 kg, m5 = 1500 kg, k1 = k2 =
500.0 kN/m,k3 = k4 = 400.0 kN/m,k5 = 300.0 kN/m,µi = 0.15(i = 1, 2, 3, 4, 5); [C] = 0.014[K] s. The ground
acceleration PSD takes the following Kanai-Tajimi filtered white noise spectrum

Sf (ω) =
ω4

g + 4ζ2
gω2

gω2

(ω2
g − ω2)2 + 4ζ2

gω2
gω

2
S0 (37)
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Fig. 5. Displacement standard deviations for a 5 DOF system due to seismic Kanai-Tajimi spectrum.

with ωg = 5.0s−1, ζg = 0.5, S0 = 0.25 m2s−3. The modulation function has the following form

g(t) =




I0( t
t1

)2 0 � t � t1
I0 t1 � t � t2
I0e

−c(t−t2) t � t2

(38)

with I0 = 1.0, t1 = 4.0s,t2 = 18.0 s,c = 0.18.
The standard deviation curves of the non-stationary displacement responses are computed using PEM and Monte-

Carlo method with 1000 samples,ωl = 0.0, ωu = 50.0, N = 2000, respectively. And the results are both shown in
Fig. 5. Once again, It is found that the results from PEM agree well with those from Monte-Carlo simulation. The
differences are all within 6%. The first eigenvalue of the structure is 19.11 (forµ i = 0) and 23.79 (forµi = 0.15)
respectively, the difference is 11%, which also signifies a rather strong nonlinear characteristics. Figure 5 also
shows that the maximum difference, about 6%, takes place in the strong excitation region. This phenomenon shows
that stronger excitations will lead to stronger non-linearity, and so more severe errors will take place due to the
equivalent linearization. It should be noted that in essence the proposed method does not apply to problems with
strong non-linearity.

6. Conclusions

The pseudo excitation method [12–15] is extended to the analysis of non-stationary random responses of nonlinear
structures. Duffing models are used in the given examples for computational simplicity. In fact, the proposed method
is quite general, for instance it can also deal with structures with nonlinear hysteretic damping [16]. This method
not only has good precision, but also has high computational efficiency, especially for structures with many degrees
of freedom. Its implementation is also rather convenient.
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